WO2016141882A1 - 一种自动涂胶系统及其涂胶方法 - Google Patents

一种自动涂胶系统及其涂胶方法 Download PDF

Info

Publication number
WO2016141882A1
WO2016141882A1 PCT/CN2016/076049 CN2016076049W WO2016141882A1 WO 2016141882 A1 WO2016141882 A1 WO 2016141882A1 CN 2016076049 W CN2016076049 W CN 2016076049W WO 2016141882 A1 WO2016141882 A1 WO 2016141882A1
Authority
WO
WIPO (PCT)
Prior art keywords
glue
coordinates
automatic
camera
needle
Prior art date
Application number
PCT/CN2016/076049
Other languages
English (en)
French (fr)
Inventor
诸庆
丁小明
吴林哲
柯海挺
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2016141882A1 publication Critical patent/WO2016141882A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00

Definitions

  • the present invention relates to a gumming system, and more particularly to a system for controlling automatic coating by machine vision and a method of applying the same.
  • the assembly of the mobile phone camera module is to manually adjust the position of the lens motor module (VCM) and the sensor chip (SENSOR) in the camera module, so that the lens mounted in the lens assembly,
  • the geometrical optical axis center of the optical lens such as the filter is aligned with the center of the photosensitive element of the image module.
  • the lens and the photosensitive chip may cause optical axis of such an axisymmetric optical component during system assembly due to operational errors. Offset, there is a positional accuracy deviation between the lens and the sensor chip such as Tilt and Shift, which has a serious impact on the imaging quality of the module, resulting in a continuous decline in the yield of the product.
  • the mobile phone camera module and related optical components industry generally adopts the lens mount (H/A) for the product packaging process (COB) to fix the finished product, and the lens mount is attached with the glue directly attached.
  • the semi-finished product of the lens motor module is directly attached to the semi-finished product of the photosensitive chip, and the direct attachment by the manual operation usually has difficulty in accurately aligning the lens assembly with the photosensitive chip.
  • the continuous improvement of the pixel of the mobile phone camera module the light sensitivity of the photosensitive chip is continuously improved, the shift of the optical center and the offset between the lens and the photosensitive chip have a serious influence on the imaging quality of the module, resulting in the product
  • the yield is declining and the method of direct attachment via H/A has gradually become inapplicable.
  • More and more automated equipment uses machine vision systems to replace human eyes for measurement and judgment.
  • the machine vision system converts the subject into image signals for transmission to a dedicated image processing system based on pixel distribution and brightness, color, etc. , the image is converted into a digitized signal; the image system performs various operations on the signals to extract the features of the target, and then controls the devices on the site to perform the specified actions according to the result of the discrimination.
  • AA equipment automatic aligning equipment
  • the main object of the present invention is to provide an automatic gluing system and a gluing method thereof, which adopts a machine vision automatic gluing method instead of direct attaching in a packaging process, for accurately coating a semi-finished product, and realizing automatic self-aligning. Automatic glue curing of optical products.
  • Another object of the present invention is to provide an automatic glue application system and a glue application method thereof, which are used for realizing automatic coating of equipment by the conversion constant and conversion relationship of pixel coordinates and mechanical coordinates, thereby improving the quality of product packaging, thereby It helps to achieve precise glue curing between products.
  • Another object of the present invention is to provide an automatic glue application system and a glue application method thereof, wherein an automatic correction method of a camera vision scale system is designed for automatically scaling a camera scale factor to obtain a camera scale factor.
  • Another object of the present invention is to provide an automatic gluing system and a gluing method thereof, wherein the designed gluing needle automatic correction control method is used for automatically correcting the position of the gluing needle to complete the needle correction of the gluing mechanism.
  • Another object of the present invention is to provide an automatic glue application system and a glue application method thereof, which can independently select a registered image as a glue coating curve by using a semi-finished product of the package component as a glue coating reference image, and expand the selected glue coating reference image range. It is convenient for the rubber coating operation of the actual product to prevent the occurrence of glue, glue and other phenomena.
  • Another object of the present invention is to provide an automatic glue application system and a glue application method thereof, wherein one of the package components is a photosensitive chip semi-finished product, and the other of the package components is a lens motor module semi-finished product.
  • the photosensitive chip or the lens motor module is used as a glue coating reference image, and optionally a glue coating curve is formed according to the registered image.
  • Another object of the present invention is to provide an automatic glue application system and a glue application method thereof, which can automatically calculate and restore the glue line coordinates on the semi-finished product of the photosensitive chip by using the image of the semi-finished product of the lens motor module as the glue coating reference image, which can be automatically
  • the glue application task is completed, so that the automatic glue application system provides the semi-finished image of the lens motor module as a glue line production function, which helps prevent the occurrence of the glue problem when the photosensitive chip is used as the registered image.
  • Another object of the present invention is to provide an automatic glue application system and a glue application method thereof, wherein the designed automatic correction method of the glue glue line coordinates is used for correcting the glue line coordinates and completing the coordinates of any point on the glue line. make up.
  • Another object of the present invention is to provide an automatic gluing system and a gluing method thereof, which provide various parameter setting requirements for gluing, enable pre-gelting, stepwise setting of gluing speed, and stepwise setting of gluing. Height, section setting spit and pre-collecting, easy to operate, meet the glue requirements of the equipment.
  • Another object of the present invention is to provide an automatic glue coating system and a glue application method thereof, which are automatically scaled by a glue coating reference image and a drawing glue line, so as to eliminate the difficulty in manufacturing the glue glue line caused by excessive image size. .
  • Another object of the present invention is to provide an automatic gluing system and a gluing method thereof, which are suitable for an AA device, and adopt an independently designed machine vision system, so that the automatic gluing system and the automatic aligning system share visual data. It helps to reduce the cost of hardware and the number of images, saves the image capture time of the device, and makes the cost performance and efficiency of the device increase rapidly.
  • the present invention provides an automatic gumming system comprising: a machine vision unit for acquiring a transformation constant to obtain a positional relationship between a target pixel coordinate and a mechanical coordinate; a needle calibration a unit for correcting a needle position, setting a needle-coated collagen spot based on a transformation constant acquired by the machine vision unit; and a glue line drawing unit for registering the glued visual image to acquire a registration image, and based on the Register the image to draw the glue path coordinates.
  • the automatic gumming system further includes a glue line correction unit for compensating the glue line coordinates.
  • the automatic gluing system further includes a gluing parameter control unit for automatically mechanically controlling the gluing operation to provide various parameter setting requirements required for gluing, such that
  • the automatic glue coating system advances the glue, sets the glue speed in sections, sets the glue height in sections, sets the glue and sets the glue in advance.
  • the automatic glue application system is suitable for the automatic aligning device of the mobile phone camera module, so that the automatic glue application system shares the visual data with the automatic aligning device.
  • An automatic glue application method comprising:
  • S100 acquires a transformation constant of a pixel coordinate and a mechanical coordinate of the object through a machine vision unit
  • the S200 corrects the needle position by a needle calibration unit, and sets the needle to apply collagen spots;
  • the S300 registers a glued visual image through a glue line drawing unit for drawing the glue path coordinates.
  • the method further comprises the step S400 of compensating the glue line coordinates by a glue line correction unit.
  • the method further comprises the step S500 of automatically controlling the gluing operation by a gluing parameter control unit to automatically control the gluing operation according to the glue line path and the target.
  • the step S100 comprises the steps of:
  • S110 sets a reference point by using a camera coefficient correction jig
  • S130 relatively moves the reference point by determining that the reference points are respectively in a mechanical coordinate system and a pixel coordinate system
  • the moving position relationship is calculated, and the transformation constant of the machine vision unit is calculated and acquired.
  • the step S200 comprises the steps of:
  • S210 moves the needle to the reference plane height measurement position, and obtains the reference height h 0 ;
  • the needle is placed on the flat reference surface, and the glue reference point is obtained by lifting the needle and applying glue;
  • S230 moves the glue reference point to the center of the field of view by an automatic movement algorithm for automatically correcting the glue applicator needle.
  • the step S220 comprises the steps of:
  • S222 moves the needle to a preset glue coordinate (x cj , y cj , z cj -z up ), and spits glue on the reference surface for setting the glue reference point, wherein z up is the Needle lift height parameter.
  • the step S230 comprises the steps of:
  • S231 moves the camera to the glue reference point and takes an image
  • the step of the automatic movement algorithm of step S230 is: setting the camera field size to X pix ⁇ Y pix , by obtaining the camera scale factor (x vs , y vs ), and
  • the automatic movement algorithm is designed according to the positive and negative of the moving direction of the glue reference point in the field of view and the moving direction of the machine coordinate XY axis, for acquiring the pixel coordinates of the glue reference point and corresponding mechanical coordinates.
  • the step S233 comprises the steps of: when and When both are less than 1 pixel, it is determined that the glue reference point successfully moves the center of the camera field of view, recording mechanical coordinates (x c1 , y c1 , z c1 ) and pixel coordinates (x v , y v ), the needle calibration unit
  • the needle correction of the glue applying mechanism is completed; when the deviation cannot be within 1 pixel by multiple movements, it is determined that the obtained camera scale factor error is too large, and the camera scale factor needs to be recalibrated.
  • the step S300 comprises the steps of:
  • S310 registers a visual image by a semi-finished product of the package component to form a package component semi-finished product registration image, wherein one of the package components is a photosensitive chip semi-finished product, and the other of the package components is a lens motor module semi-finished product;
  • S320 may, according to the sensor chip registration image and/or the lens motor module registration image, selectively draw the glue line path coordinates according to the sensor chip image or the lens motor module image.
  • the step S310 includes the step S311: registering the visual image of the photosensitive chip semi-finished product, and acquiring visual reference coordinates (x 0 , y 0 , a 0 ), where a 0 is the recognition angle of the photosensitive chip.
  • the step S310 further includes a step S312 of registering the lens motor module semi-finished visual image to obtain visual reference coordinates (x 1 , y 1 , a 1 ).
  • the step S320 comprises the steps of:
  • S321 draws a glue line on the registration image of the lens motor module, and obtains pixel coordinates (x v1 , y v1 ), ..., (x vn , y vn ) of each point of the path;
  • S322 saves the glue line path (x' v1 , y' v1 ), ..., (x' vn , y' vn ) in the mechanical coordinate according to the relative scale according to the visual scale factor (x vvs , y vvs ), where
  • the visual scale factor is a visual scale factor of a camera that registers an image of the lens motor module;
  • the step S322 includes the steps of: saving according to the relative scale according to the visual scale factor (x vvs , y vvs ), and recognizing the point coordinate translation to (0, 0) calculation,
  • the lens motor module glue line pixel coordinates are converted into machine coordinates, and the glue line path (x' v1 , y' v1 ), ..., (x' vn , y' vn ) is saved in the relative coordinates according to the relative coordinates.
  • the step S323 includes the steps of: according to the camera coordinate ratio (x vs , y vs ) of the camera chip semi-finished product, and the photosensitive chip semi-finished product and the lens motor.
  • the mechanical coordinate of the lens motor module glue line is converted into the pixel coordinate glue line of the photosensitive chip by the translation and rotation in the pixel coordinate system, and is reduced to The photosensitive chip line path pixel coordinates (x 1 , y 1 ), ..., (x n , y n ).
  • the S400 comprises the steps of:
  • S410 registers a visual image and obtains a visual reference (x 0 , y 0 , a 0 );
  • S420 draws a glue path to the registration image, and obtains coordinates (x 1 , y 1 ), ..., (x n , y n ) of each point of the path;
  • the S430 rotates according to a preset rotation manner according to the recognition point or the first point as a rotation center, and corrects the glue line coordinates by shifting coordinates of the rotated points.
  • the step S430 comprises the steps of:
  • S4311 acquires visual data of the measured image (x' 0 , y' 0 , a' 0 );
  • S4313 translates the points (x' 1 , y' 1 ), ..., (x' n , y' n ) by a distance (x' 0 - x 0 , y' 0 - y 0 ) to Used to automatically correct the glue line coordinates.
  • the step S430 comprises the steps of:
  • FIG. 1 is a schematic illustration of an automatic gumming system in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a schematic view showing the pixel coordinates and mechanical coordinate conversion of the lens motor module of the automatic glue application system according to the above preferred embodiment of the present invention.
  • FIG. 3 is a lens motor module glue line machine of the automatic gluing system according to the above preferred embodiment of the present invention; Schematic diagram of the coordinates and the pixel coordinates of the sensor chip.
  • Figure 4 is a schematic illustration of the glue line coordinates of the automatic gumming system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 5 is a schematic view of a first glue line correction of the automatic gumming system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 6 is a schematic view of a second glue line correction of the automatic gumming system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 7 is a flow chart of automatic needle correction of the automatic gumming system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 8 is a flow chart showing the production of a glue line of a lens motor module image of the automatic gumming system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 9 is a flow chart of automatic compensation of glue line coordinates of the automatic gumming system in accordance with the above-described preferred embodiment of the present invention.
  • An automatic glue application system as shown in FIG. 1 includes a machine vision unit for acquiring a transformation constant to obtain a positional relationship between target pixel coordinates and mechanical coordinates; a needle calibration unit, the needle a calibration unit for setting a needle-coated collagen spot by a transformation constant obtained by the machine vision unit for correcting a needle position; and a glue line drawing unit for registering a glued visual image to obtain registration An image through which the glue line path coordinates are drawn. Therefore, the automatic glue coating system adopts the machine vision automatic glue coating instead of the direct attachment in the packaging process, so as to accurately apply the glue to the semi-finished product to realize the automatic glue curing of the automatic core-aligning optical product.
  • the automatic gumming system further includes a glue line correction unit for compensating the glue line coordinates. Wherein, the correction and compensation of the coordinates of any point on the glue line is completed by the correction method of the glue glue line coordinates.
  • the automatic gluing system further includes a glue parameter control unit for automatically controlling the gluing operation to automatically control the gluing operation according to the glue path and the target, thereby providing the glue application.
  • a glue parameter control unit for automatically controlling the gluing operation to automatically control the gluing operation according to the glue path and the target, thereby providing the glue application.
  • Various parameter setting requirements are required, such as pre-adhesive dispensing, step-by-step setting of gluing speed, segmentation of gluing height, segmentation of spit and pre-collection, convenient operation, and meeting the glue requirements of the equipment.
  • the automatic glue coating system is suitable for the packaging process of the mobile phone camera module, and the plastic lens glued to the camera module of the camera module is automatically controlled by the machine to accurately package the lens motor module and the light sensor chip, correspondingly, matched with the AA. device.
  • the automatic gluing system can also be applied to other required packaging processes for accurately drawing the glue line between the package components to complete the packaging process of the finished product and improve the product quality.
  • the conversion constant and the rotation through the pixel coordinates and the mechanical coordinates The relationship is used to achieve automatic gluing of the device, improving the quality of the product package, thereby facilitating precise glue curing between the products.
  • the machine vision unit acquires a transformation constant of the machine vision, that is, a camera scale factor, by using an automatic correction method of the camera visual scale factor designed for automatically scaling the camera scale factor.
  • the coordinate parameter correction by the reference point is used to acquire the correlation transformation constant to reflect the movement position on the machine coordinate and the positional relationship on the pixel coordinate.
  • the camera coefficient correction jig is placed at the glue application position of the semi-finished product of the mobile phone camera module, the reference point is set, and the photographing position is initially determined by the camera positioning manner, so that the reference point is near the center of the camera field of view, and the glue is applied.
  • the XY axis of the mechanism moves the camera slightly in the positive direction of the mechanical coordinate system, and determines that the reference point moves in the positive or negative direction within the field of view of the camera for determining the moving direction of the reference point in the field of view and the XY axis. Positive and negative direction of movement.
  • the camera field of view is divided into four upper left, upper right and lower left, and lower right areas, and the reference points are sequentially moved from the upper left to the upper right of the camera field of view, and moved to the lower right area, through the acquired pixel coordinates and mechanical coordinates.
  • the XY axis of the glue applying mechanism is the XY axis in the machine coordinate system, and the moving position of the reference point in the XY axis of the machine coordinate and the pixel coordinate of the reference point in the center of the camera field of view is determined.
  • the relationship is calculated to obtain a transformation constant in the machine vision unit, ie the camera scale factor (x vs , y vs ).
  • the reference point is enabled with the camera Moving by moving, changing the corresponding pixel coordinates, can determine the positive and negative of the reference point between the mechanical coordinates and the pixel coordinates.
  • the needle calibration unit adopts a designed glue needle automatic correction control method for automatically correcting the position of the glue application needle, completes the needle correction of the glue application mechanism, and the needle calibration unit can set the origin position of the automatic glue application mechanism, so that The subsequent semi-finished product of the camera module is a bit of reference.
  • the machine vision unit After starting the startup, the machine vision unit first acquires the camera scale factor (x vs , y vs ), the needle calibration unit releases the syringe, and moves the glue applying mechanism to the reference plane leveling position.
  • the needle cylinder is caused by gravity to make the needle flat against the reference surface and lock the syringe, and the glue reference point is set by lifting the needle and spitting, and moving the camera to the glue
  • the glue reference point (x vs , y vs ) and the automatic movement algorithm are used to move the glue reference point to the center of the field of view, that is, the preset collagen coating point, and if the movement is successful, the image is completed.
  • the needle coordinate correction of the gumming mechanism ends, and if the movement fails, the visual scale factor may have an error, and the visual scale factor is automatically acquired again.
  • the method of automatically adjusting the needle of the gumming device is used to automatically correct the needle coordinates of the gumming device.
  • the current reference plane height h 0 is obtained by the laser range finder as the reference height, and in order for the glue to smoothly flow out from the needle, the calibration unit sets the needle lift height parameter z up to lift the needle and spit the glue. Therefore, the preset glue dispensing coordinate of the glue applying mechanism is (x cj , y cj , z cj -z up ), and at the glue dispensing coordinate, the glue applying mechanism spits a little glue on the reference surface, The glue point is used as a reference point.
  • the initial coordinate of the needle of the glue applying mechanism is set as the center of the camera field, and the glue point position is moved to the center of the field of view by an automatic movement algorithm.
  • the camera field size is X pix ⁇ Y pix
  • the obtained camera scale factor (x vs , y vs ) is based on the positive and negative of the moving direction of the reference point in the camera field of view and the moving direction of the XY axis, that is,
  • the automatic movement algorithm can be designed by judging the transformation constant and the position correspondence relationship between the pixel coordinates and the mechanical coordinates of the reference point.
  • the pixel coordinates of the reference point and corresponding mechanical coordinates are acquired multiple times by the automatic movement algorithm, and the reference point is moved to the center of the camera field of view. Among them, when and If it is less than 1 pixel, it is determined that the glue reference point is centered and moved, and the glue reference point is successfully moved to the center of the camera field of view; when the deviation cannot be reached within 1 pixel by multiple movements, the obtained result is determined.
  • the camera scale factor error is too large, and the camera scale factor of the machine vision unit needs to be recalibrated.
  • the mechanical coordinates recorded at this time are (x c1 , y c1 , z c1 ), and the pixel coordinates are (x v , y v ), thereby, the needle
  • the calibration unit completes the needle correction of the gumming mechanism.
  • the glue line drawing unit can use the semi-finished product of the package component as the glue coating reference image, and can independently select the registered image to perform the glue coating curve, and expand the selected glue coating reference image range.
  • one of the packaging components is a semi-finished product of a photosensitive chip
  • the other of the packaging components is a semi-finished product of a lens motor module
  • a visual image of the glue is registered by the photosensitive chip and/or the lens motor module to form a photosensitive image.
  • a chip visual image or a lens motor module visual image the glue line drawing unit is capable of drawing a glue line according to the registered image.
  • the first type of glue line drawing manner when the image is registered according to the photosensitive chip semi-finished product, the glue line path can be directly drawn in the pixel coordinate system of the image registration image of the sensor chip; the second glue line drawing mode is as described above.
  • the lens motor module semi-finished product registers an image, draw a glue line on the registered image of the lens motor module, obtain pixel coordinates of each point of the path, and then make the lens motor module according to a visual scale factor (x vvs , y vvs ) Glue line pixel coordinates and mechanical coordinate conversion, obtaining the glue line path in the mechanical coordinate system of the lens motor module, and then, according to the camera scale factor (x vs , y vs ) and the relative angle difference ⁇ a, in the pixel coordinate system Performing translation and rotation, converting the mechanical coordinate of the lens motor module glue line into a pixel coordinate glue line of the photosensitive chip.
  • the method for drawing a glue line according to the lens motor module semi-finished product registration image designed by the invention the semi-finished product of the mobile phone camera module can be generally divided into the lens motor module semi-finished product and the photosensitive chip semi-finished product, and the glue coating action of the rubber coating mechanism is generally implemented on the photosensitive chip semi-finished product. Therefore, the glue control system generally only uses the photosensitive chip semi-finished product to be glued as a registered image, and draws the glue line directly on the photosensitive chip semi-finished product image according to the first type of glue line drawing manner.
  • the glue line drawing unit not only provides a drawing of the glue line according to the registration image of the sensor chip, but also provides a glue line according to the registration image of the lens motor module, which helps to selectively switch the glue line. Draw an image.
  • the user can automatically switch the glue line drawing with the photo sensor semi-finished product image and/or the lens motor module semi-finished product image according to product requirements.
  • the glue line drawing unit provides a glue line drawing image switching function.
  • the automatic glue coating system automatically extracts the visual reference parameters (x 0 , y 0 , a 0 ) by calculation, and also performs subsequent glue line coordinate correction, which is convenient for the glue application operation of the actual product, and is adopted as a photosensitive chip or a lens motor module. Applying a glue reference image, optionally making a glue curve based on the registered image.
  • the photosensitive chip registers a glued visual image
  • the automatic glue application system identifies a visual image of the photosensitive chip of the semi-finished product of the mobile phone camera module, and obtains a visual reference coordinate (x) 0 , y 0 , a 0 ), wherein a 0 is the recognition angle of the photosensitive chip, and at the same time, the photographing position is (x c2 , y c2 , z c2 ), and the pixel coordinates of the visual image directly on the photosensitive chip are obtained.
  • Draw a glue line path Draw a glue line path.
  • the glue line drawing unit automatically calculates and restores the semi-finished product of the photosensitive chip through the image of the semi-finished product of the lens motor module as a coating reference image.
  • Glue line coordinates automatically complete the glue application task.
  • the line pixel coordinates are converted into machine coordinates, and the glue line paths (x' v1 , y' v1 ), ..., (x' vn , y' vn ) in the machine coordinates are saved in relative coordinates. As shown in FIG.
  • the automatic gluing system provides the semi-finished image of the lens motor module as a glue line making function, which helps prevent the occurrence of the gluing error when the photoreceptor chip is used as the registered image.
  • the glue line correction unit performs coordinate correction and compensation on the glue line by using an automatic correction method of the designed glue line coordinates for correcting the glue line coordinates.
  • the path path is created on the registered image, and the coordinates of each point of the path (x 1 , y 1 ), ..., (x n) are obtained. , y n ), wherein the registration image is selected from the photo sensor registration image and/or the lens motor module registration image.
  • the coordinates of each node (x 1 , y 1 ), ..., (x n , y n ) are generated, and if the target recognition point coordinates are (x' 0 , y' 0 , a' 0 ), obtaining visual data of the measured image (x' 0 , y' 0 , a' 0 ), as shown in the glue line coordinates shown in FIG. 4, correcting the glue line coordinates by two methods .
  • the first type of glue line correction method shown in FIG. 5 the rotation correction is performed by the identification point, and the registration image recognition point (x 0 , y 0 ) is used as the rotation center, and the rotation is performed according to the Cartesian coordinate system. equation:
  • each node coordinate (x 1 , y 1 ), ..., (x n , y n ) of the glue line is centered on the identification point (x 0 , y 0 ) to obtain a point ( x' 1 , y' 1 ),...,(x' n ,y' n ), by (x' 1 ,y' 1 ),...,(x' n ,y' n ) by distance ( x' 0 -x 0 , y' 0 -y 0 ) Perform translation to complete the automatic compensation of the glue line coordinates.
  • the second glue line correction method performs rotation correction by the first point, and uses the first point coordinate (x 1 , y 1 ) as a rotation center to set the point (x 0 , y 0 ), (x 1 , y 1 ), ..., (x n , y n ) is rotated by the angle ⁇ a to obtain a point (x′′ 0 , y′′ 0 ), (x” 1 , y” 1 ),...
  • the second glue line correction method is relatively complicated to calculate, but is simple from a programming point of view, and points coordinates (x 0 , y 0 ), (x 1 , y 1 ), ..., (x) n , y n ) is rotated by the relative angle difference ⁇ a with the first point (x 1 , y 1 ) as the center of rotation, and (x′′ 0 , y′′ 0 ), (x′ 1 , y′ 1 ), ..., (x" n , y" n ), and then the points are translated by the distance (x" 0 - x 0 , y" 0 - y 0 ) to complete the correction of the glue line coordinates.
  • the automatic glue coating system can pass the glued reference image and the automatic zoom function of drawing the glue line, so as to eliminate the problem of difficulty in making the glue line caused by the excessive size of the picture.
  • the glue parameter control unit is designed to control a plurality of glue parameters, such as the glue parameter control unit. Design the glue release function in advance and provide the glue collection function to compensate the hysteresis of different glues flowing out from needles of different sizes or different specifications; if the glue parameter control unit designs the function of setting the segment glue speed, It is used to meet the requirements of the semi-finished products of the mobile phone camera module for different thickness of the rubber line; for example, the rubberized parameter control unit is designed to have a segmented rubber line height setting function and a switch rubber function for avoiding some of the described Obstructions such as capacitance that may exist in the glue path of the semi-finished product of the mobile phone camera module.
  • the automatic gluing system is suitable for AA equipment, adopts a self-designed machine vision system, so that the automatic gluing system and the automatic aligning system share visual data, and the industrial camera independently develops visual recognition software.
  • the ActiveX control method is integrated with the Windows-based device control software to realize the independent development of the machine vision system of the AA device, thereby effectively avoiding the use of the smart camera kit to cause the visual cost of the device to be too high, and contributing to the improvement including the automatic coating.
  • the price/performance ratio of the entire AA equipment including the glue system is integrated with the Windows-based device control software to realize the independent development of the machine vision system of the AA device, thereby effectively avoiding the use of the smart camera kit to cause the visual cost of the device to be too high, and contributing to the improvement including the automatic coating.
  • the visual parameters of the automatic glue coating system station are shared with the visual parameters of the AA station, the hardware cost and the number of images are reduced, the image capturing time of the device is saved, and the cost performance and efficiency of the device are rapidly increased. Raise the UPH of the device.
  • An automatic gluing method the steps of which include:
  • the S100 acquires a variation constant of the pixel coordinates and the mechanical coordinates of the object through a machine vision unit;
  • the S200 corrects the needle position by a needle calibration unit, and sets the needle to apply collagen spots;
  • the S300 registers a glued visual image through a glue line drawing unit for drawing the glue path coordinates.
  • the method further includes step S400: compensating the glue line coordinates by a glue line correction unit.
  • the method further comprises the step S500: automatically controlling the glue application operation by a glue application parameter control unit, thereby automatically controlling the glue application operation according to the glue line path and the target object.
  • the step S100 includes the following steps:
  • S110 sets a reference point by using a camera coefficient correction jig
  • S130 relatively moves the reference point, and calculates and acquires a transformation constant of the machine vision unit by determining a positional relationship between the reference points in a machine coordinate system and a pixel coordinate system.
  • the step S200 includes the following steps:
  • S210 moves the needle to the reference plane height measurement position, and obtains the reference height h 0 ;
  • the needle is placed on the flat reference surface, and the glue reference point is obtained by lifting the needle and applying glue;
  • S230 moves the glue reference point to the center of the field of view by an automatic movement algorithm for automatically correcting the glue applicator needle.
  • the step S220 includes the following steps:
  • S222 moves the needle to a preset glue coordinate (x cj , y cj , z cj -z up ), and spits glue on the reference surface for setting the glue reference point, wherein z up is the Needle lift height parameter.
  • the step S230 includes the following steps:
  • S231 moves the camera to the glue reference point and takes an image
  • the step of designing the automatic movement algorithm of step S230 setting the camera field of view size to X pix ⁇ Y pix , obtaining the camera scale factor (x vs , y vs ), and according to the glue reference point
  • the automatic movement algorithm is designed to obtain the pixel coordinates of the glue reference point and the corresponding machine coordinates by the positive and negative of the moving direction and the mechanical coordinate XY axis moving direction in the field of view.
  • the step S233 comprises the steps of: when and When both are less than 1 pixel, it is determined that the glue reference point successfully moves the center of the camera field of view, recording mechanical coordinates (x c1 , y c1 , z c1 ) and pixel coordinates (x v , y v ), the needle calibration unit
  • the needle correction of the glue applying mechanism is completed; when the deviation cannot be within 1 pixel by multiple movements, it is determined that the obtained camera scale factor error is too large, and the camera scale factor needs to be recalibrated.
  • the step S300 includes the following steps:
  • S310 registers a visual image by a semi-finished product of the package component to form a package component semi-finished product registration image, wherein one of the package components is a photosensitive chip semi-finished product, and the other of the package components is a lens motor module semi-finished product;
  • S320 may, according to the sensor chip registration image and/or the lens motor module registration image, selectively draw the glue line path coordinates according to the sensor chip image or the lens motor module image.
  • the step S310 includes the step S311: registering the visual image of the photosensitive chip semi-finished product, and acquiring visual reference coordinates (x 0 , y 0 , a 0 ), where a 0 is the recognition angle of the photosensitive chip.
  • the step S310 further includes the step S312: registering the lens motor module semi-finished product visual image, and acquiring the visual reference coordinates (x 1 , y 1 , a 1 ).
  • the step S320 includes the following steps:
  • S321 draws a glue line on the registration image of the lens motor module, and obtains pixel coordinates (x v1 , y v1 ), ..., (x vn , y vn ) of each point of the path;
  • S322 saves the glue line path (x' v1 , y' v1 ), ..., (x' vn , y' vn ) in the mechanical coordinate according to the relative scale according to the visual scale factor (x vvs , y vvs ), where
  • the visual scale factor is a visual scale factor of a camera that registers an image of the lens motor module;
  • the step S322 includes the steps of: saving according to the relative scale path according to the visual scale factor (x vvs , y vvs ), and calculating the point coordinate to the (0, 0) calculation, and the lens motor module glue line
  • the pixel coordinates are converted into machine coordinates, and the glue line paths (x' v1 , y' v1 ), ..., (x' vn , y' vn ) in the machine coordinates are saved in relative coordinates.
  • the step S323 includes the steps of: according to the camera coordinate ratio (x vs , y vs ) of the camera, and the relative angle between the semi-finished product of the photosensitive chip and the semi-finished product of the lens motor module.
  • the S400 includes the steps of:
  • S410 registers a visual image and obtains a visual reference (x 0 , y 0 , a 0 );
  • S420 draws a glue path to the registration image, and obtains coordinates (x 1 , y 1 ), ..., (x n , y n ) of each point of the path;
  • the S430 rotates according to a preset rotation manner according to the recognition point or the first point as a rotation center, and corrects the glue line coordinates by shifting coordinates of the rotated points.
  • the step S430 includes the following steps:
  • S4311 acquires visual data of the measured image (x' 0 , y' 0 , a' 0 );
  • S4313 translates the points (x' 1 , y' 1 ), ..., (x' n , y' n ) by a distance (x' 0 - x 0 , y' 0 - y 0 ) to Used to automatically correct the glue line coordinates.
  • the step S430 includes the following steps:

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

一种自动涂胶方法和自动涂胶系统,方法包括如下步骤:S100通过机器视觉单元获取目标物像素坐标和机械坐标的变换常数;S200通过针头校准单元校正针头位置,设置针头涂胶原点;以及S300通过一胶线绘制单元注册涂胶视觉图像,以用于绘制胶线路径坐标。上述自动涂胶方法和自动涂胶系统用于精确涂胶于半成品,实现自动调芯光学产品的自动涂胶固化。

Description

一种自动涂胶系统及其涂胶方法 技术领域
本发明涉及一种涂胶系统,具体地说,是一种通过机器视觉控制自动涂胶的系统及其涂胶方法。
背景技术
在手机摄像模组(CCM)行业中,光学产品正朝着小型化、轻量化以及高精度化发展,对光学器件的产品质量也愈加严格把控。随着手机模组像素不断提高,光敏感性也要求不断提高,在市场上越来越追求拍摄高清图像的手机。而在普遍的人工生产模式中,手机摄像模组的组装是通过人工手动调节摄像模组中的镜头马达模组(VCM)与感光芯片(SENSOR)的位置,使得安装在镜头组件中的镜片、滤光片等光学镜片的几何光轴中心与影像模组的感光元件的中心相对齐,但是,镜头与感光芯片可能会由于操作误差而导致此类轴对称光学组件在系统组装时,出现光心偏移,镜头与感光芯片之间存在着倾斜度(Tilt)、偏移(Shift)等位置精度偏差,对模组的成像质量有着严重的影响,导致产品的良率不断下降。
目前,手机摄像模组及相关光学元器件行业对产品的封装工艺(COB)普遍采用的是镜座贴附(H/A)来进行成品固定,镜座贴附采用的是胶质直接贴附的方式,将镜头马达模组半成品直接贴附于感光芯片半成品,而通过人工操作的直接贴附通常存在着难以准确使镜头组件与感光芯片相对齐的情况发生。而随着手机摄像模组像素的不断提高,感光芯片光敏感性不断提高,光心的偏移及镜头与感光芯片之间偏移的存在对模组的成像质量有着严重的影响,导致产品的良率不断下降,通过H/A直接贴附的方法已逐渐不适用。
越来越多的自动化设备使用机器视觉系统来代替人眼做测量和判断,通过机器视觉系统将被摄目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转换成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备完成指定动作。其中,自动化调芯设备(Active Alignment设备,简称AA设备)的出现,扩大机器视觉的应用范围,得以自动调芯(AA),是手机摄像模组行业近几年发展的趋势。在AA设备的涂胶流程中,为使自动调整的镜头、 芯片的产品实现可自动涂胶固化,H/A直接贴附的方式就不再适用,需要一套自动涂胶系统来实现手机摄像模组半成品的涂胶工艺。
发明内容
本发明的主要目的在于提供一种自动涂胶系统及其涂胶方法,其采用机器视觉自动涂胶的方式代替封装工艺中的直接贴附,以用于精确涂胶于半成品,实现自动调芯光学产品的自动涂胶固化。
本发明的另一目的在于提供一种自动涂胶系统及其涂胶方法,其通过像素坐标和机械坐标的变换常数和转换关系以用于实现设备的自动涂胶,提高产品封装的质量,从而,有助于产品之间的精确涂胶固化。
本发明的另一目的在于提供一种自动涂胶系统及其涂胶方法,其中,设计的相机视觉比例系统的自动校正方法以用于可自动标定相机比例系数,获取相机比例系数。
本发明的另一目的在于提供一种自动涂胶系统及其涂胶方法,其中,设计的涂胶针头自动校正控制方法以用于自动校正涂胶针头位置,完成涂胶机构的针头校正。
本发明的另一目的在于提供一种自动涂胶系统及其涂胶方法,其通过封装元件的半成品作为涂胶基准图像,可自主选择注册图像做涂胶曲线,扩大选取的涂胶基准图像范围,便于实际产品的涂胶操作,防止溢胶、粘胶等现象的出现。
本发明的另一目的在于提供一种自动涂胶系统及其涂胶方法,其中,所述封装元件中的一个是感光芯片半成品,所述封装元件中的另一是镜头马达模组半成品,通过感光芯片或镜头马达模组作为涂胶基准图像,可选择地根据注册图像做涂胶曲线。
本发明的另一目的在于提供一种自动涂胶系统及其涂胶方法,其通过镜头马达模组半成品图像作为涂胶基准图像,得以自动计算还原在感光芯片半成品上的胶线坐标,可自动地完成涂胶任务,从而,所述自动涂胶系统提供以镜头马达模组半成品图像作为胶线制作功能,有助于防止只以感光芯片作为注册图像时的涂胶问题的发生。
本发明的另一目的在于提供一种自动涂胶系统及其涂胶方法,其中,设计的涂胶胶线坐标的自动校正方法以用于校正胶线坐标,完成对胶线上任意点的坐标补偿。
本发明的另一目的在于提供一种自动涂胶系统及其涂胶方法,其提供涂胶所需的各种参数设置需求,得以提前出胶、分段设置涂胶速度,分段设置涂胶高度,分段设置吐胶以及提前收胶,方便操作,满足设备的涂胶要求。
本发明的另一目的在于提供一种自动涂胶系统及其涂胶方法,其通过涂胶基准图像与绘制胶线自动缩放,以用于消除图片尺寸过大引起的涂胶胶线制作困难问题。
本发明的另一目的在于提供一种自动涂胶系统及其涂胶方法,其适用于AA设备,采用自主设计的机器视觉系统,使得所述自动涂胶系统与自动调芯系统共用视觉数据,有助于减少硬件成本与摄像次数,节省设备的取像时间,使得设备的性价比及效率快速提升。
从而,为了实现以上提到的目的,本发明提供一种自动涂胶系统,其包括:一机器视觉单元,以用于获取变换常数,得到目标物像素坐标和机械坐标的位置关系;一针头校准单元,以用于校正针头位置,基于所述机器视觉单元获取的变换常数来设置针头涂胶原点;以及一胶线绘制单元,以用于注册涂胶视觉图像来获取注册图像,并基于所述注册图像绘制胶线路径坐标。
根据本发明的一个实施例,所述自动涂胶系统进一步包括一胶线校正单元,以用于补偿所述胶线坐标。
根据本发明的一个实施例,所述自动涂胶系统进一步包括一涂胶参数控制单元,所述以用于自动机械控制涂胶操作,得以提供涂胶所需的各种参数设置需求,使得所述自动涂胶系统提前出胶、分段设置涂胶速度,分段设置涂胶高度,分段设置吐胶以及提前收胶。
根据本发明的一个实施例,所述自动涂胶系统适用于手机摄像模组的自动调芯设备,以使所述自动涂胶系统与所述自动调芯设备共用视觉数据。
一种自动涂胶方法,其包括:
S100通过一机器视觉单元获取目标物像素坐标和机械坐标的变换常数;
S200通过一针头校准单元校正针头位置,设置针头涂胶原点;以及
S300通过一胶线绘制单元注册涂胶视觉图像,以用于绘制胶线路径坐标。
根据本发明的一个实施例,所述方法进一步包括步骤S400:通过一胶线校正单元补偿所述胶线坐标。
根据本发明的一个实施例,所述方法进一步包括步骤S500:通过一涂胶参数控制单元自动机械控制涂胶操作,得以根据胶线路径和目标物自动控制涂胶操作。
根据本发明的一个实施例,所述步骤S100包括步骤:
S110通过相机系数校正治具设置参照点;
S120通过相机定位的方式初始拍照位置,使得所述参照点处于相机视野中心附近;以及
S130相对移动所述参照点,通过判断所述参照点分别在机械坐标系下和像素坐标系 下的移动位置关系,计算并获取所述机器视觉单元的变换常数。
根据本发明的一个实施例,所述步骤S200包括步骤:
S210将所述针头移至基准面测高位置,并获取基准高度h0
S220将所述针头靠平基准面,通过抬升所述针头并涂胶来获取胶水参照点;以及
S230通过自动移动算法将所述胶水参照点移至视野中心,以用于自动校正所述涂胶针头。
根据本发明的一个实施例,所述步骤S220包括步骤:
S221移动所述针头于预设出胶位置(xcj,ycj,zcj),使得所述针头贴平所述基准面并锁紧针筒;以及
S222移动所述针头至预设出胶坐标(xcj,ycj,zcj-zup),在所述基准面上吐胶以用于设置所述胶水参照点,其中,zup为所述针头抬升高度参数。
根据本发明的一个实施例,所述步骤S230包括步骤:
S231将相机移至所述胶水参照点并取像;
S232通过步骤S100自动获取所述相机的比例系数(xvs,yvs);以及
S233通过所述相机比例系数(xvs,yvs)与自动移动算法,多次获取所述胶水参照点的像素坐标及相对应的机械坐标,以用于将所述胶水参照点移动至所述相机视野中心。
根据本发明的一个实施例,所述步骤S230的自动移动算法的设计步骤:设所述相机视野大小为Xpix×Ypix,通过获取的所述相机比例系数(xvs,yvs),并根据所述胶水参照点在视野范围内移动方向与机械坐标XY轴移动方向的正负性来进行设计所述自动移动算法,以用于获取所述胶水参照点的像素坐标及相对应的机械坐标。
根据本发明的一个实施例,所述步骤S233包括步骤:当
Figure PCTCN2016076049-appb-000001
Figure PCTCN2016076049-appb-000002
均小于1个pixel时,判定所述胶水参照点成功移动所述相机视野中心,记录机械坐标(xc1,yc1,zc1)以及像素坐标(xv,yv),所述针头校准单元完成涂胶机构的针头校正;当通过多次移动都无法达到偏差在1个pixel以内,则判定获取的所述相机比例系数误差过大,需对所述相机比例系数进行重新校正。
根据本发明的一个实施例,所述步骤S300包括步骤:
S310通过封装元件的半成品注册视觉图像,形成封装元件半成品注册图像,其中,所述封装元件中的一个是感光芯片半成品,所述封装元件的另一个是镜头马达模组半成品;以及
S320根据所述感光芯片注册图像和/或所述镜头马达模组注册图像,可选择地按所述感光芯片图像或按所述镜头马达模组图像绘制胶线路径坐标。
其中,所述步骤S310包括步骤S311:注册所述感光芯片半成品视觉图像,获取视觉基准坐标(x0,y0,a0),其中a0为所述感光芯片的识别角度。
根据本发明的一个实施例,所述步骤S310进一步包括步骤S312:注册所述镜头马达模组半成品视觉图像,获取视觉基准坐标(x1,y1,a1)。
根据本发明的一个实施例,所述步骤S320包括步骤:
S321在所述镜头马达模组注册图像上绘制胶线,获取路径各点像素坐标(xv1,yv1),...,(xvn,yvn);
S322根据视觉比例系数(xvvs,yvvs),按相对坐标保存机械坐标下胶线路径(x'v1,y'v1),...,(x'vn,y‘vn),其中,所述视觉比例系数为所述镜头马达模组注册图像的相机的视觉比例系数;以及
S323根据所述相机比例系数(xvs,yvs)以及相对角度差△a,在像素坐标系下平移和旋转后,还原胶线坐标(x1,y1),...,(xn,yn),其中,所述相对角度差△a=a0-a1
根据本发明的一个实施例,所述步骤S322包括步骤:根据所述视觉比例系数(xvvs,yvvs),按相对路径保存,以识别点坐标平移至(0,0)计算,将所述镜头马达模组胶线像素坐标转换为机械坐标,按相对坐标保存所述机械坐标下胶线路径(x'v1,y'v1),...,(x'vn,y‘vn)。
根据本发明的一个实施例,所述步骤S323包括步骤:在所述感光芯片半成品摄像的相机坐标下,根据所述相机视觉比例系数(xvs,yvs)以及所述感光芯片半成品与镜头马达模组半成品的相对角度差△a=a0-a1,通过像素坐标系下的平移与旋转,将所述镜头马达模组胶线机械坐标转换为所述感光芯片像素坐标胶线,还原成所述感光芯片胶线路径像素坐标(x1,y1),...,(xn,yn)。
根据本发明的一个实施例,所述S400包括步骤:
S410注册视觉图像,并获取视觉基准(x0,y0,a0);
S420绘制涂胶路径于所述注册图像,获取路径各点坐标(x1,y1),...,(xn,yn);以及
S430根据识别点或第一点为旋转中心,按预设的旋转方式旋转,通过将旋转后的各点坐标平移来校正胶线坐标。
根据本发明的一个实施例,所述步骤S430包括步骤:
S4311获取被测图像视觉数据(x'0,y'0,a'0);
S4312将所述胶线各点坐标(x1,y1),...,(xn,yn)以所述识别点(x0,y0)为旋转中心,得(x'1,y'1),...,(x'n,y'n);以及
S4313将所述各点(x'1,y'1),...,(x'n,y'n)按距离(x'0-x0,y'0-y0)进行平移,以用于自动校正胶线坐标。
根据本发明的一个实施例,所述步骤S4312包括步骤:以所述注册图像识别点(x0,y0)作为旋转中心,根据笛卡尔坐标系下绕任意点的旋转方程:
Figure PCTCN2016076049-appb-000003
其中,△a=a'0-a0  (1),将各点(x1,y1),...,(xn,yn)旋转得(x'1,y'1),...,(x'n,y'n)。
根据本发明的一个实施例,所述步骤S430包括步骤:
S4321将各点坐标(x0,y0),(x1,y1),...,(xn,yn)以所述第一点坐标(x1,y1)为旋转中心,按相对角度差△a旋转得点(x″0,y″0),(x”1,y”1),...,(x″n,y″n);以及
S4322将所述各点(x″0,y″0),(x”1,y”1),...,(x″n,y″n)按距离△x0=x″0-x0,△y0=y″0-y0进行平移,以用于自动校正胶线坐标。
附图说明
图1是根据本发明的一优选实施例一种自动涂胶系统的示意图。
图2是根据本发明的上述优选实施例的所述自动涂胶系统的镜头马达模组胶线像素坐标与机械坐标转换的示意图。
图3是根据本发明的上述优选实施例的所述自动涂胶系统的镜头马达模组胶线机械 坐标与感光芯片像素坐标胶线转换的示意图。
图4是根据本发明的上述优选实施例的所述自动涂胶系统的胶线坐标示意图。
图5是根据本发明的上述优选实施例的所述自动涂胶系统的第一种胶线校正示意图。
图6是根据本发明的上述优选实施例的所述自动涂胶系统的第二种胶线校正示意图。
图7是根据本发明的上述优选实施例的所述自动涂胶系统的针头自动校正流程图。
图8是根据本发明的上述优选实施例的所述自动涂胶系统的镜头马达模组图像的胶线制作流程图。
图9是根据本发明的上述优选实施例的所述自动涂胶系统的胶线坐标自动补偿流程图。
具体实施方式
根据本发明的权利要求和说明书所公开的内容,本发明的技术方案具体如下文所述。
如图1所示的一种自动涂胶系统包括一机器视觉单元,所述机器视觉单元以用于获取变换常数,得到目标物像素坐标和机械坐标的位置关系;一针头校准单元,所述针头校准单元以用于校正针头位置,通过所述机器视觉单元获取的变换常数来设置针头涂胶原点;以及一胶线绘制单元,所述胶线绘制单元以用于注册涂胶视觉图像来获取注册图像,通过所述注册图像绘制胶线路径坐标。从而,所述自动涂胶系统采用机器视觉自动涂胶的方式代替封装工艺中的直接贴附,以用于精确涂胶于半成品,实现自动调芯光学产品的自动涂胶固化。
所述自动涂胶系统进一步包括一胶线校正单元,所述胶线校正单元以用于补偿所述胶线坐标。其中,通过涂胶胶线坐标的校正方法完成对所述胶线上任意点坐标的校正和补偿。
所述自动涂胶系统进一步包括一涂胶参数控制单元,所述涂胶参数控制单元以用于自动机械控制涂胶操作,得以根据胶线路径和目标物自动控制涂胶操作,得以提供涂胶所需的各种参数设置需求,如提前出胶、分段设置涂胶速度,分段设置涂胶高度,分段设置吐胶以及提前收胶,方便操作,满足设备的涂胶要求。
所述自动涂胶系统适用于手机摄像模组的封装工艺,通过机械自动控制涂胶于摄像模组的感光芯片,得以精确封装所述镜头马达模组与感光芯片,相对应地,配合于AA设备。所述自动涂胶系统也可以适用于其他所需的封装工艺,以用于封装元件之间精确绘制胶线来完成成品的封装工艺,提高产品质量。其中,通过像素坐标和机械坐标的变换常数和转 换关系以用于实现设备的自动涂胶,提高产品封装的质量,从而,有助于产品之间的精确涂胶固化。
所述机器视觉单元通过设计的相机视觉比例系数的自动校正方法以用于可自动标定相机比例系数,获取所述机器视觉的变换常数,即相机比例系数。其中,通过参照点(Mark点)的坐标参数校正用于获取相关变换常数,来反映机械坐标上的移动位置和像素坐标上的移动位置关系。
其中,在所述手机摄像模组半成品涂胶位置处放置相机系数校正治具,设置所述参照点,通过相机定位的方式初始拍照位置,使得所述参照点处于相机视野中心附近,将涂胶机构的XY轴按机械坐标系的正方向微移动相机,通过判断所述参照点在相机视野内按正或负方向移动,以用于判断所述参照点在视野范围内的移动方向与XY轴移动方向的正负性。随后将相机视野划分为左上、右上及左下、右下四块区域,将所述参照点依次从所述相机视野的左上移动至右上,并移动至右下区域,通过获取的像素坐标及机械坐标便可获得相机比例系数(xvs,yvs)。
换句话说,所述涂胶机构的XY轴为机械坐标系下的XY轴,通过判断所述参照点在机械坐标XY轴的移动位置与所述参照点在相机视野中心的像素坐标的移动位置关系,计算得到所述机器视觉单元中的变换常数,即所述相机比例系数(xvs,yvs)。设置所述参照点在相机视野中心附近,便于所述参照点在像素坐标系下的移动,便于捕捉,当按机械坐标系的正方向微移动相机时,所述参照点得以随着所述相机的移动而移动,改变对应的像素坐标,得以判断所述参照点在机械坐标和所述像素坐标之间转换的正负性。通过相对移动所述参照点得以使所述参照点在像素坐标依次相对移动,分别获取所述机械坐标和像素坐标,从而,计算获取所述机器视觉单元的相机比例系数(xvs,yvs)。
所述针头校准单元通过设计的涂胶针头自动校正控制方法以用于自动校正涂胶针头位置,完成涂胶机构的针头校正,通过所述针头校准单元得以设置自动涂胶机构的原点位置,使后续涂胶的摄像模组半成品有点位可参考。开始启动后,所述机器视觉单元先获取所述相机比例系数(xvs,yvs),所述针头校准单元松开针筒,将所述涂胶机构移至所述基准面测高位置,获取基准高度h0,同时,所述针筒由于重力的作用使得所述针头靠平基准面并锁紧针筒,通过抬升针头并吐胶的方式设置胶水参照点,将相机移至所述胶水参照点位置并取像,通过所述相机比例系数(xvs,yvs)以及自动移动算法,将所述胶水参照点移至 视野中心,即预设的涂胶原点,若移动成功,则完成所述涂胶机构的针头坐标校正,结束,若移动失败,所述视觉比例系数可能有误差,重新自动获取所述视觉比例系数。
具体地,所述涂胶装置针头自动校正的方法以用于自动校正涂胶装置的针头坐标。根据涂胶装置预设的拍照位置来获取像素坐标以及所述视觉比例系数,对涂胶位置进行补偿和校正,同时,根据激光测距仪(Laser)来获取测距位置,获取所述基准面和/或所述摄像模组的相对高度。先松开所述针筒的锁紧机构,将所述涂胶机构移动至预设的出胶位置(xcj,ycj,zcj),通过胶筒的重力使所述针头贴平所述基准面并锁紧针筒。同时,通过所述激光测距仪获取当前基准面高度h0作为所述基准高度,并且为使胶水可从针头顺利流出,所述校准单元设置针头抬升高度参数zup,得以抬升针头并吐胶,从而,所述涂胶机构的预设出胶坐标为(xcj,ycj,zcj-zup),在所述出胶坐标下,所述涂胶机构在基准面上吐出一点胶水,将所述胶水点作为参照点。
进而,为减小相机倾斜及镜头畸变带来的视觉比例系数非线性误差,将所述涂胶机构的针头初始坐标设置为相机视野中心,通过自动移动算法将胶水点位置移至视野中心。设相机视野大小为Xpix×Ypix,通过获取的所述相机比例系数(xvs,yvs),根据所述参照点在相机视野范围内移动方向与XY轴移动方向的正负性,即通过判断所述参照点在所述像素坐标与机械坐标之间的变换常数及位置对应关系,便可设计自动移动算法。通过所述自动移动算法,多次获取所述参照点的像素坐标及对应的机械坐标,将所述参照点移动至所述相机视野中心。其中,当
Figure PCTCN2016076049-appb-000004
Figure PCTCN2016076049-appb-000005
均小于1个pixel,则判定所述胶水参照点置中移动完成,所述胶水参照点成功移至所述相机视野中心;当通过多次移动都无法达到偏差在1个pixel以内,则判定获取的所述相机比例系数误差过大,需对所述机器视觉单元的相机比例系数进行重新校正。当判定所述胶水参照点成功置中时,记录此时的所述机械坐标为(xc1,yc1,zc1),所述像素坐标为(xv,yv),从而,所述针头校准单元完成所述涂胶机构的针头校正。
所述胶线绘制单元通过封装元件的半成品作为涂胶基准图像,可自主选择其中的注册图像做涂胶曲线,扩大选取的涂胶基准图像范围。其中,所述封装元件中的一个是感光芯片半成品,所述封装元件的另一个是镜头马达模组半成品,通过所述感光芯片和/或所述镜头马达模组注册涂胶视觉图像,形成感光芯片视觉图像或镜头马达模组视觉图像,所述 胶线绘制单元得以根据所述注册图像绘制胶线。第一种胶线绘制方式,当按所述感光芯片半成品注册图像时,得以直接在所述感光芯片注册图像的像素坐标系下绘制胶线路径;第二种胶线绘制方式,当按所述镜头马达模组半成品注册图像时,在所述镜头马达模组注册图像上绘制胶线,获取路径各点像素坐标,再根据视觉比例系数(xvvs,yvvs),使得所述镜头马达模组胶线像素坐标与机械坐标转换,获得所述镜头马达模组机械坐标系下的胶线路径,随后,根据相机比例系数(xvs,yvs)及相对角度差△a,在像素坐标系下进行平移和旋转,将所述镜头马达模组胶线机械坐标转换成感光芯片像素坐标胶线。
本发明设计的根据镜头马达模组半成品注册图像进行胶线路径绘制方法。由于在AA设备中,所述手机摄像模组半成品来料通常可分为所述镜头马达模组半成品和所述感光芯片半成品,而所述涂胶机构的涂胶动作一般在感光芯片半成品上实施,因而,涂胶控制系统一般仅会以需涂胶的所述感光芯片半成品作为注册图像,按照所述第一种胶线绘制方式直接在所述感光芯片半成品图像上进行胶线绘制。但是鉴于有些手机摄像模组产品的镜头马达模组半成品外边缘较窄,而所述感光芯片半成品的外边缘较宽,如果还是以所述感光芯片半成品作为胶线制作的图像,则很有可能因不同的操作人员制作的胶线路径存在差异较大的问题,导致溢胶、粘胶等现象的出现,不利于根据实际情况进行胶线绘制,可能造成AA良率的下降。在本发明中,所述胶线绘制单元不仅提供按所述感光芯片注册图像绘制胶线,还提供按所述镜头马达模组注册图像绘制胶线,有助于可选择地切换所述胶线绘制图像。使用者可根据产品需求自主切换用所述感光芯片半成品图像和/或所述镜头马达模组半成品图像进行胶线绘制。所述胶线绘制单元提供胶线绘图图像切换功能,当使用者需要根据所述镜头马达模组半成品图像进行胶线路径绘制时,只需要注册一张镜头马达模组半成品图像,相对应地,所述自动涂胶系统通过计算自动提取视觉基准参数(x0,y0,a0),同样进行后续的胶线坐标校正,便于实际产品的涂胶操作,通过感光芯片或镜头马达模组作为涂胶基准图像,可选择地根据所述注册图像制作涂胶曲线。
具体地,根据所述第一种胶线绘制方式,所述感光芯片注册涂胶视觉图像,所述自动涂胶系统识别所述手机摄像模组半成品的感光芯片视觉图像,获取视觉基准坐标(x0,y0,a0),其中a0为所述感光芯片的识别角度,同时,记拍照位置为(xc2,yc2,zc2),得以直接在所述感光芯片视觉图像的像素坐标系下绘制胶线路径。
另一方面,如图2所示,根据所述第二种胶线绘制方式,所述胶线绘制单元通过镜头马达模组半成品图像作为涂胶基准图像,得以自动计算还原在感光芯片半成品上的胶线坐 标,自动完成涂胶任务。通过注册所述感光芯片半成品图像,获取视觉基准(x0,y0,a0),并且,注册所述镜头马达模组半成品图像,获取视觉基准(x1,y1,a1),其中α1为所述镜头马达模组的识别角度。在所述镜头马达模组半成品注册图像上绘制胶线,获取路径各点坐标,记所绘制的胶线路径的各点像素坐标为(xv1,yv1),...,(xvn,yvn)。根据注册所述镜头马达模组视觉图像的相机的视觉比例系数(xvvs,yvvs),按相对路径保存,以识别点坐标平移至(0,0)计算,将所述镜头马达模组胶线像素坐标转换为机械坐标,按相对坐标保存所述机械坐标下胶线路径(x'v1,y'v1),...,(x'vn,y‘vn)。如图3所示,在所述感光芯片半成品摄像的相机坐标下,根据注册所述感光芯片视觉图像的相机的所述相机比例系数(xvs,yvs),以及所述感光芯片半成品与镜头马达模组半成品的相对角度差△a=a0-a1,通过像素坐标系下的平移与旋转,将所述镜头马达模组胶线机械坐标转换为所述感光芯片像素坐标胶线,还原成所述感光芯片胶线路径像素坐标(x1,y1),...,(xn,yn)。
从而,所述自动涂胶系统提供以镜头马达模组半成品图像作为胶线制作功能,有助于防止只以感光芯片作为注册图像时的涂胶误差的发生。
所述胶线校正单元通过设计的涂胶胶线坐标的自动校正方法以用于校正所述胶线坐标,完成对所述胶线的坐标校正和补偿。当注册视觉图像并获取视觉基准(x0,y0,a0),在所述注册图像上进行途径路径制作,获取路径各点坐标(x1,y1),...,(xn,yn),其中,所述注册图像选自所述感光芯片注册图像和/或镜头马达模组注册图像。在涂胶胶线绘制界面上绘制完成胶线后,生成各节点坐标(x1,y1),...,(xn,yn),若被测目标识别点坐标为(x'0,y'0,a'0),获取被测图像视觉数据(x'0,y'0,a'0),如图4所示的胶线坐标,通过两种方法校正所述胶线坐标。
如图5所示的第一种胶线校正方法,通过识别点进行旋转校正,以所述注册图像识别点(x0,y0)作为旋转中心,根据笛卡尔坐标系下绕任意点的旋转方程:
Figure PCTCN2016076049-appb-000006
其中,△a=a'0-a0  (1)。再将所述胶线各点按距离△x0=x'0-x0,△y0=y'0-y0平移,以用于完成对所述胶线上任意点的坐标补偿。换 句话说,将所述胶线的各节点坐标(x1,y1),...,(xn,yn)以所述识别点(x0,y0)为旋转中心,得点(x'1,y'1),...,(x'n,y'n),将(x'1,y'1),...,(x'n,y'n)按距离(x'0-x0,y'0-y0)进行平移,完成胶线坐标自动补偿。
如图6所示的第二种胶线校正方法,通过第一点进行旋转校正,以所述第一点坐标(x1,y1)作为旋转中心,将点(x0,y0),(x1,y1),...,(xn,yn)按角度△a旋转后得到点(x″0,y″0),(x”1,y”1),...,(x″n,y″n),再将各点(x″0,y″0),(x”1,y”1),...,(x″n,y″n)按距离△x0=x″0-x0,△y0=y″0-y0进行平移后完成所述胶线坐标的校正。其中,所述第二种胶线校正方法计算相对较复杂,但从编程角度而言较为简单,将点坐标(x0,y0),(x1,y1),...,(xn,yn)以所述第一点(x1,y1)为旋转中心,按相对角度差△a旋转得点(x″0,y″0),(x”1,y”1),...,(x″n,y″n),再将各点按距离(x″0-x0,y″0-y0)进行平移,完成所述胶线坐标校正。
值得一提的是,所述自动涂胶系统得以通过所述涂胶基准图像与绘制胶线的自动缩放功能,以用于消除图片尺寸过大引起的涂胶胶线制作困难问题。
在具体实施涂胶操作中,由于所述手机摄像模组类的产品对涂胶功能需求的多样性,所述涂胶参数控制单元设计多种涂胶参数控制,如所述涂胶参数控制单元设计提前出胶功能及提供收胶功能,以用于补偿不同胶水从不同大小或不同规格的针头中流出的滞后性;如所述涂胶参数控制单元设计分段胶线速度的设置功能,以用于满足手机摄像模组半成品对不同段所述胶线粗细要求不一;如所述涂胶参数控制单元设计分段胶线高度设置功能以及开关胶功能,以用于避开某些所述手机摄像模组半成品的胶线路径中可能存在的电容等障碍物。
值得一提的是,所述自动涂胶系统适用于AA设备,采用自主设计的机器视觉系统,使得所述自动涂胶系统与自动调芯系统共用视觉数据,采用工业相机自主开发视觉识别软件,并采用ActiveX控件方式与基于Windows的设备控制软件进行整合,实现AA设备的机器视觉系统的自主开发,有效避免设备采用智能相机套件导致设备的视觉成本过于高昂,有助于提升包括所述自动涂胶系统在内的整台AA设备的性价比。其中,由于所述自动涂胶系统工位的视觉参数与AA工位的视觉参数共用,有助于减少硬件成本与摄像次数,节省设备的取像时间,使得设备的性价比及效率快速提升,从而提升设备的UPH。
一种自动涂胶方法,其步骤包括:
S100通过一机器视觉单元获取目标物像素坐标和机械坐标的变化常数;
S200通过一针头校准单元校正针头位置,设置针头涂胶原点;以及
S300通过一胶线绘制单元注册涂胶视觉图像,以用于绘制胶线路径坐标。
其中,所述方法进一步包括步骤S400:通过一胶线校正单元补偿所述胶线坐标。
其中,所述方法进一步包括步骤S500:通过一涂胶参数控制单元自动机械控制涂胶操作,得以根据胶线路径和目标物自动控制涂胶操作。
其中,所述步骤S100包括步骤:
S110通过相机系数校正治具设置参照点;
S120通过相机定位的方式初始拍照位置,使得所述参照点处于相机视野中心附近;以及
S130相对移动所述参照点,通过判断所述参照点分别在机械坐标系下和像素坐标系下的移动位置关系,计算并获取所述机器视觉单元的变换常数。
其中,所述步骤S200包括步骤:
S210将所述针头移至基准面测高位置,并获取基准高度h0
S220将所述针头靠平基准面,通过抬升所述针头并涂胶来获取胶水参照点;以及
S230通过自动移动算法将所述胶水参照点移至视野中心,以用于自动校正所述涂胶针头。
其中,所述步骤S220包括步骤:
S221移动所述针头于预设出胶位置(xcj,ycj,zcj),使得所述针头贴平所述基准面并锁紧针筒;以及
S222移动所述针头至预设出胶坐标(xcj,ycj,zcj-zup),在所述基准面上吐胶以用于设置所述胶水参照点,其中,zup为所述针头抬升高度参数。
其中,所述步骤S230包括步骤:
S231将相机移至所述胶水参照点并取像;
S232通过步骤S100自动获取所述相机的比例系数(xvs,yvs);以及
S233通过所述相机比例系数(xvs,yvs)与自动移动算法,多次获取所述胶水参照点的像素坐标及相对应的机械坐标,以用于将所述胶水参照点移动至所述相机视野中心。
其中,所述步骤S230的自动移动算法的设计步骤:设所述相机视野大小为Xpix×Ypix, 通过获取的所述相机比例系数(xvs,yvs),并根据所述胶水参照点在视野范围内移动方向与机械坐标XY轴移动方向的正负性来进行设计所述自动移动算法,以用于获取所述所述胶水参照点的像素坐标及相对应的机械坐标。
其中,所述步骤S233包括步骤:当
Figure PCTCN2016076049-appb-000007
Figure PCTCN2016076049-appb-000008
均小于1个pixel时,判定所述胶水参照点成功移动所述相机视野中心,记录机械坐标(xc1,yc1,zc1)以及像素坐标(xv,yv),所述针头校准单元完成涂胶机构的针头校正;当通过多次移动都无法达到偏差在1个pixel以内,则判定获取的所述相机比例系数误差过大,需对所述相机比例系数进行重新校正。
其中,所述步骤S300包括步骤:
S310通过封装元件的半成品注册视觉图像,形成封装元件半成品注册图像,其中,所述封装元件中的一个是感光芯片半成品,所述封装元件的另一个是镜头马达模组半成品;以及
S320根据所述感光芯片注册图像和/或所述镜头马达模组注册图像,可选择地按所述感光芯片图像或按所述镜头马达模组图像绘制胶线路径坐标。
其中,所述步骤S310包括步骤S311:注册所述感光芯片半成品视觉图像,获取视觉基准坐标(x0,y0,a0),其中a0为所述感光芯片的识别角度。
其中,所述步骤S310进一步包括步骤S312:注册所述镜头马达模组半成品视觉图像,获取视觉基准坐标(x1,y1,a1)。
其中,所述步骤S320包括步骤:
S321在所述镜头马达模组注册图像上绘制胶线,获取路径各点像素坐标(xv1,yv1),...,(xvn,yvn);
S322根据视觉比例系数(xvvs,yvvs),按相对坐标保存机械坐标下胶线路径(x'v1,y'v1),...,(x'vn,y‘vn),其中,所述视觉比例系数为所述镜头马达模组注册图像的相机的视觉比例系数;以及
S323根据所述相机比例系数(xvs,yvs)以及相对角度差△a,在像素坐标系下平移和旋转后,还原胶线坐标(x1,y1),...,(xn,yn),其中,所述相对角度差△a=a0-a1
其中,所述步骤S322包括步骤:根据所述视觉比例系数(xvvs,yvvs),按相对路径保存,以识别点坐标平移至(0,0)计算,将所述镜头马达模组胶线像素坐标转换为机械坐标,按相对坐标保存所述机械坐标下胶线路径(x'v1,y'v1),...,(x'vn,y‘vn)。
其中,所述步骤S323包括步骤:在所述感光芯片半成品摄像的相机坐标下,根据所述相机视觉比例系数(xvs,yvs)以及所述感光芯片半成品与镜头马达模组半成品的相对角度差△a=a0-a1,通过像素坐标系下的平移与旋转,将所述镜头马达模组胶线机械坐标转换为所述感光芯片像素坐标胶线,还原成所述感光芯片胶线路径像素坐标(x1,y1),...,(xn,yn)。
其中,所述S400包括步骤:
S410注册视觉图像,并获取视觉基准(x0,y0,a0);
S420绘制涂胶路径于所述注册图像,获取路径各点坐标(x1,y1),...,(xn,yn);以及
S430根据识别点或第一点为旋转中心,按预设的旋转方式旋转,通过将旋转后的各点坐标平移来校正胶线坐标。
其中,所述步骤S430包括步骤:
S4311获取被测图像视觉数据(x'0,y'0,a'0);
S4312将所述胶线各点坐标(x1,y1),...,(xn,yn)以所述识别点(x0,y0)为旋转中心,得(x'1,y'1),...,(x'n,y'n);以及
S4313将所述各点(x'1,y'1),...,(x'n,y'n)按距离(x'0-x0,y'0-y0)进行平移,以用于自动校正胶线坐标。
其中,所述步骤S4312包括步骤:以所述注册图像识别点(x0,y0)作为旋转中心,根据笛卡尔坐标系下绕任意点的旋转方程:
Figure PCTCN2016076049-appb-000009
其中,△a=a'0-a0  (1),将各点(x1,y1),...,(xn,yn)旋转得(x'1,y'1),...,(x'n,y'n)。
其中,所述步骤S430包括步骤:
S4321将各点坐标(x0,y0),(x1,y1),...,(xn,yn)以所述第一点坐标(x1,y1)为旋转中心,按 相对角度差△a旋转得点(x″0,y″0),(x”1,y”1),...,(x″n,y″n);以及
S4322将所述各点(x″0,y″0),(x”1,y”1),...,(x″n,y″n)按距离△x0=x″0-x0,△y0=y″0-y0进行平移,以用于自动校正胶线坐标。
上述内容为本发明的具体实施例的例举,对于其中未详尽描述的设备和结构,应当理解为采取本领域已有的通用设备及通用方法来予以实施。
同时本发明上述实施例仅为说明本发明技术方案之用,仅为本发明技术方案的列举,并不用于限制本发明的技术方案及其保护范围。采用等同技术手段、等同设备等对本发明权利要求书及说明书所公开的技术方案的改进应当认为是没有超出本发明权利要求书及说明书所公开的范围。

Claims (22)

  1. 一种自动涂胶系统,其特征在于,包括:
    一机器视觉单元,以用于获取变换常数,得到目标物像素坐标和机械坐标的位置关系;
    一针头校准单元,以用于校正针头位置,其基于所述机器视觉单元获取的变换常数来设置针头涂胶原点;以及
    一胶线绘制单元,以用于注册涂胶视觉图像来获取注册图像,并基于所述注册图像绘制胶线路径坐标。
  2. 根据权利要求1所述的自动涂胶系统,其进一步包括一胶线校正单元,以用于补偿所述胶线坐标。
  3. 根据权利要求2所述的自动涂胶系统,其进一步包括一涂胶参数控制单元,以用于自动机械控制涂胶操作,得以提供涂胶所需的各种参数设置需求,使得所述自动涂胶系统提前出胶、分段设置涂胶速度,分段设置涂胶高度,分段设置吐胶以及提前收胶。
  4. 根据权利要求1到3中任一所述的自动涂胶系统,其适用于手机摄像模组的自动调芯设备,得以使所述自动涂胶系统与所述自动调芯设备共用视觉数据。
  5. 一种自动涂胶方法,其特征在于,包括步骤:
    S100通过一机器视觉单元获取目标物像素坐标和机械坐标的变换常数;
    S200通过一针头校准单元校正针头位置,设置针头涂胶原点;以及
    S300通过一胶线绘制单元注册涂胶视觉图像,以用于绘制胶线路径坐标。
  6. 根据权利要求5所述的自动涂胶方法,所述步骤S100包括步骤:
    S110通过相机系数校正治具设置参照点;
    S120通过相机定位的方式初始拍照位置,使得所述参照点处于相机视野中心附近;以及
    S130相对移动所述参照点,通过判断所述参照点分别在机械坐标系下和像素坐标系下的移动位置关系,计算并获取所述机器视觉单元的变换常数。
  7. 根据权利要求6所述的自动涂胶方法,所述步骤S200包括步骤:
    S210将所述针头移至基准面测高位置,并获取基准高度h0
    S220将所述针头靠平基准面,通过抬升所述针头并涂胶来获取胶水参照点;以及
    S230通过自动移动算法将所述胶水参照点移至视野中心,以用于自动校正所述涂胶针头。
  8. 根据权利要求7所述的自动涂胶方法,所述步骤S220包括步骤:
    S221移动所述针头于预设出胶位置(xcj,ycj,zcj),使得所述针头贴平所述基准面并锁紧针筒;以及
    S222移动所述针头至预设出胶坐标(xcj,ycj,zcj-zup),在所述基准面上吐胶以用于设置所述胶水参照点,其中,zup为所述针头抬升高度参数。
  9. 根据权利要求8所述的自动涂胶方法,所述步骤S230包括步骤:
    S231将相机移至所述胶水参照点并取像;
    S232通过步骤S100自动获取所述相机的比例系数(xvs,yvs);以及
    S233通过所述相机比例系数(xvs,yvs)与自动移动算法,多次获取所述胶水参照点的像素坐标及相对应的机械坐标,以用于将所述胶水参照点移动至所述相机视野中心。
  10. 根据权利要求9所述的自动涂胶方法,所述步骤S230的自动移动算法的设计步骤:设所述相机视野大小为Xpix×Ypix,通过获取的所述相机比例系数(xvs,yvs),并根据所述胶水参照点在视野范围内移动方向与机械坐标XY轴移动方向的正负性来进行设计所述自动移动算法,以用于获取所述胶水参照点的像素坐标及相对应的机械坐标。
  11. 根据权利要求10所述的自动涂胶方法,所述步骤S233包括步骤:当
    Figure PCTCN2016076049-appb-100001
    Figure PCTCN2016076049-appb-100002
    均小于1个pixel时,判定所述胶水参照点成功移动所述相机视野中心,记录机 械坐标(xc1,yc1,zc1)以及像素坐标(xv,yv),所述针头校准单元完成涂胶机构的针头校正;当通过多次移动都无法达到偏差在1个pixel以内,则判定获取的所述相机比例系数误差过大,需对所述相机比例系数进行重新校正。
  12. 根据权利要求7或11所述的自动涂胶方法,所述步骤S300包括步骤:
    S310通过封装元件的半成品注册视觉图像,形成封装元件半成品注册图像,其中,所述封装元件中的一个是感光芯片半成品,所述封装元件的另一个是镜头马达模组半成品;以及
    S320根据所述感光芯片注册图像和/或所述镜头马达模组注册图像,可选择地按所述感光芯片图像或按所述镜头马达模组图像绘制胶线路径坐标。
  13. 根据权利要求12所述的自动涂胶方法,所述步骤S310包括步骤S311:注册所述感光芯片半成品视觉图像,获取视觉基准坐标(x0,y0,a0),其中a0为所述感光芯片的识别角度。
  14. 根据权利要求13所述的自动涂胶方法,所述步骤S310进一步包括步骤S312:注册所述镜头马达模组半成品视觉图像,获取视觉基准坐标(x1,y1,a1)。
  15. 根据权利要求14所述的自动涂胶方法,所述步骤S320包括步骤:
    S321在所述镜头马达模组注册图像上绘制胶线,获取路径各点像素坐标(xv1,yv1),…,(xvn,yvn);
    S322根据视觉比例系数(xvvs,yvvs),按相对坐标保存机械坐标下胶线路径(x'v1,y'v1),…,(x'vn,y‘vn),其中,所述视觉比例系数为所述镜头马达模组注册图像的相机的视觉比例系数;以及
    S323根据所述相机比例系数(xvs,yvs)以及相对角度差△a,在像素坐标系下平移和旋转后,还原胶线坐标(x1,y1),…,(xn,yn),其中,所述相对角度差△a=a0-a1
  16. 根据权利要求15所述的自动涂胶方法,所述步骤S322包括步骤:根据所述视觉比例系数(xvvs,yvvs),按相对路径保存,以识别点坐标平移至(0,0)计算,将所述镜头马达模组胶线像素坐标转换为机械坐标,按相对坐标保存所述机械坐标下胶线路径(x'v1,y'v1),…,(x'vn,y‘vn)。
  17. 根据权利要求16所述的自动涂胶方法,所述步骤S323包括步骤:在所述感光芯片半成品摄像的相机坐标下,根据所述相机视觉比例系数(xvs,yvs)以及所述感光芯片半成品与镜头马达模组半成品的相对角度差△a=a0-a1,通过像素坐标系下的平移与旋转,将所述镜头马达模组胶线机械坐标转换为所述感光芯片像素坐标胶线,还原成所述感光芯片胶线路径像素坐标(x1,y1),…,(xn,yn)。
  18. 根据权利要求17所述的自动涂胶方法,其进一步包括步骤S400:通过一胶线校正单元补偿所述胶线坐标。
  19. 根据权利要求18所述的自动涂胶方法,所述S400包括步骤:
    S410注册视觉图像,并获取视觉基准(x0,y0,a0);
    S420绘制涂胶路径于所述注册图像,获取路径各点坐标(x1,y1),…,(xn,yn);以及
    S430根据识别点或第一点为旋转中心,按预设的旋转方式旋转,通过将旋转后的各点坐标平移来校正胶线坐标。
  20. 根据权利要求19所述的自动涂胶方法,所述步骤S430包括步骤:
    S4311获取被测图像视觉数据(x'0,y'0,a'0);
    S4312将所述胶线各点坐标(x1,y1),…,(xn,yn)以所述识别点(x0,y0)为旋转中心,得(x′1,y′1),…,(x'n,y'n);以及
    S4313将所述各点(x′1,y′1),…,(x'n,y'n)按距离(x'0-x0,y'0-y0)进行平移,以用于自动校正胶线坐标。
  21. 根据权利要求20所述的自动涂胶方法,所述步骤S4312包括步骤:以所述注册图像识别点(x0,y0)作为旋转中心,根据笛卡尔坐标系下绕任意点的旋转方程:
    Figure PCTCN2016076049-appb-100003
    其中,△a=a'0-a0(1),将各点(x1,y1),…,(xn,yn)旋转得(x′1,y′1),…,(x'n,y'n)。
  22. 根据权利要求19所述的自动涂胶方法,所述步骤S430包括步骤:
    S4321将各点坐标(x0,y0),(x1,y1),…,(xn,yn)以所述第一点坐标(x1,y1)为旋转中心,按相对角度差△a旋转得点(x″0,y″0),(x″1,y″1),…,(x″n,y″n);以及
    S4322将所述各点(x″0,y″0),(x″1,y″1),…,(x″n,y″n)按距离△x0=x″0-x0,△y0=y″0-y0进行平移,以用于自动校正胶线坐标。
PCT/CN2016/076049 2015-03-11 2016-03-10 一种自动涂胶系统及其涂胶方法 WO2016141882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510106162.8A CN105964486B (zh) 2015-03-11 2015-03-11 一种自动涂胶系统及其涂胶方法
CN2015101061628 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016141882A1 true WO2016141882A1 (zh) 2016-09-15

Family

ID=56878934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076049 WO2016141882A1 (zh) 2015-03-11 2016-03-10 一种自动涂胶系统及其涂胶方法

Country Status (2)

Country Link
CN (1) CN105964486B (zh)
WO (1) WO2016141882A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108421681A (zh) * 2018-05-30 2018-08-21 苏州智华汽车电子有限公司 车载摄像头自动点胶治具
CN111628040A (zh) * 2019-02-26 2020-09-04 东泰高科装备科技有限公司 一种电池互联方法、系统及太阳能电池互联设备
CN111617933A (zh) * 2020-05-22 2020-09-04 梅卡曼德(北京)机器人科技有限公司 涂胶轨迹的获取方法及涂胶方法、装置和涂胶轨迹生成系统
CN112289132A (zh) * 2020-09-23 2021-01-29 深圳市轴心自控技术有限公司 基于3d模型的轨迹路径示教方法及点胶设备
CN112289131A (zh) * 2020-09-23 2021-01-29 深圳市轴心自控技术有限公司 基于2d图片的轨迹路径示教方法及点胶设备
CN112750126A (zh) * 2021-01-29 2021-05-04 深圳市磐锋精密技术有限公司 一种物料溢胶在线监测系统和监测方法
CN113058816A (zh) * 2021-04-30 2021-07-02 珠海广浩捷科技股份有限公司 一种旋转点胶装置及点胶校正方法
CN113220038A (zh) * 2021-04-16 2021-08-06 红蜂维尔(山东)自动化技术有限公司 全自动针头位置自修正系统
CN113399200A (zh) * 2020-03-17 2021-09-17 深圳市腾盛精密装备股份有限公司 一种点胶方法及五轴联动点胶机
CN114011661A (zh) * 2021-12-08 2022-02-08 上海汇大机械制造有限公司 涂胶控制方法及其系统
CN115128813A (zh) * 2022-07-12 2022-09-30 舜宇奥来半导体光电(上海)有限公司 虚像显示模组主动对准的方法
CN115471551A (zh) * 2022-09-13 2022-12-13 苏州市凌臣采集计算机有限公司 点胶点位的坐标获取方法、装置、计算机设备及可读存储介质
CN116422543A (zh) * 2023-06-15 2023-07-14 苏州希盟科技股份有限公司 一种基于空间平面的点胶控制方法、装置、设备及介质

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493042B (zh) * 2016-10-18 2018-12-21 凌云光技术集团有限责任公司 点胶方法及点胶系统
JP6875136B2 (ja) * 2017-01-31 2021-05-19 アルファーデザイン株式会社 塗布装置、情報処理装置、情報処理方法、プログラム
CN106984491A (zh) * 2017-03-15 2017-07-28 复旦大学 触控屏的面胶涂胶设备
CN106890764A (zh) * 2017-03-15 2017-06-27 复旦大学 触控屏的边框胶涂胶设备
CN108694732A (zh) * 2017-04-05 2018-10-23 深圳市腾盛工业设备有限公司 一种相机多点标定的方法及装置
CN108734688A (zh) * 2017-04-24 2018-11-02 深圳市腾盛工业设备有限公司 坐标的关联方法、装置、电子设备以及存储介质
CN107218276B (zh) * 2017-06-05 2019-05-10 河南平高电气股份有限公司 一种法兰连接面涂胶方法及法兰密封连接方法
CN108355909A (zh) * 2017-11-21 2018-08-03 长春市立恒自动化科技有限公司 一种双工位光学镜头点胶装置及方法
CN108372085A (zh) * 2018-04-10 2018-08-07 博众精工科技股份有限公司 吹胶机构校正装置及点胶方法
CN108582315A (zh) * 2018-05-04 2018-09-28 曲阜师范大学 板材破损自动修补装置
CN110694855A (zh) * 2018-07-10 2020-01-17 深圳市轴心自控技术有限公司 基于单ccd的点胶针头校正方法及装置
CN110811072A (zh) * 2018-08-07 2020-02-21 清远广硕技研服务有限公司 喷涂方法以及喷涂装置
CN110449688B (zh) * 2019-08-13 2022-01-07 深圳市鸿起源科技有限公司 点锡膏机的点锡控制方法、点锡膏机及存储介质
CN113134454B (zh) * 2020-01-20 2022-05-24 深圳硅基传感科技有限公司 传感电极的滴涂设备
CN111739092A (zh) * 2020-06-12 2020-10-02 广东博智林机器人有限公司 一种吊篮、检测机器人、检测控制系统及检测方法
CN112317241B (zh) * 2020-10-15 2022-04-29 软智电子有限公司 一种点胶方法、系统、设备及存储介质
CN113310403B (zh) * 2021-04-02 2022-12-16 深圳市世宗自动化设备有限公司 相机对针方法、装置及系统
CN114833038A (zh) * 2022-04-15 2022-08-02 苏州鸿优嘉智能科技有限公司 一种涂胶路径规划方法及其系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239751A (ja) * 1998-02-25 1999-09-07 Toray Ind Inc 凹凸基材への塗液の塗布装置および方法並びにプラズマディスプレイの製造装置および方法
JP2010125369A (ja) * 2008-11-26 2010-06-10 Konica Minolta Holdings Inc 描画装置及び描画装置におけるヘッドユニットへのヘッドの取り付け方法
CN102078848A (zh) * 2009-12-01 2011-06-01 塔工程有限公司 用于控制涂胶机的方法
CN103551276A (zh) * 2013-10-31 2014-02-05 刘飞 一种智能高速点胶机
CN203565284U (zh) * 2013-10-25 2014-04-30 惠州市桑莱士光电有限公司 带ccd检查和组装校正的手机摄像头模组用自动点胶设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354811A (ja) * 1999-04-16 2000-12-26 Juki Corp 粘性剤吐出制御装置
CN103846192B (zh) * 2014-03-21 2015-05-13 武汉大学 自主定位智能点胶系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239751A (ja) * 1998-02-25 1999-09-07 Toray Ind Inc 凹凸基材への塗液の塗布装置および方法並びにプラズマディスプレイの製造装置および方法
JP2010125369A (ja) * 2008-11-26 2010-06-10 Konica Minolta Holdings Inc 描画装置及び描画装置におけるヘッドユニットへのヘッドの取り付け方法
CN102078848A (zh) * 2009-12-01 2011-06-01 塔工程有限公司 用于控制涂胶机的方法
CN203565284U (zh) * 2013-10-25 2014-04-30 惠州市桑莱士光电有限公司 带ccd检查和组装校正的手机摄像头模组用自动点胶设备
CN103551276A (zh) * 2013-10-31 2014-02-05 刘飞 一种智能高速点胶机

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108421681A (zh) * 2018-05-30 2018-08-21 苏州智华汽车电子有限公司 车载摄像头自动点胶治具
CN111628040A (zh) * 2019-02-26 2020-09-04 东泰高科装备科技有限公司 一种电池互联方法、系统及太阳能电池互联设备
CN111628040B (zh) * 2019-02-26 2022-09-09 紫石能源有限公司 一种电池互联方法、系统及太阳能电池互联设备
CN113399200A (zh) * 2020-03-17 2021-09-17 深圳市腾盛精密装备股份有限公司 一种点胶方法及五轴联动点胶机
CN111617933A (zh) * 2020-05-22 2020-09-04 梅卡曼德(北京)机器人科技有限公司 涂胶轨迹的获取方法及涂胶方法、装置和涂胶轨迹生成系统
CN112289131A (zh) * 2020-09-23 2021-01-29 深圳市轴心自控技术有限公司 基于2d图片的轨迹路径示教方法及点胶设备
CN112289132A (zh) * 2020-09-23 2021-01-29 深圳市轴心自控技术有限公司 基于3d模型的轨迹路径示教方法及点胶设备
CN112750126A (zh) * 2021-01-29 2021-05-04 深圳市磐锋精密技术有限公司 一种物料溢胶在线监测系统和监测方法
CN113220038A (zh) * 2021-04-16 2021-08-06 红蜂维尔(山东)自动化技术有限公司 全自动针头位置自修正系统
CN113058816A (zh) * 2021-04-30 2021-07-02 珠海广浩捷科技股份有限公司 一种旋转点胶装置及点胶校正方法
CN114011661A (zh) * 2021-12-08 2022-02-08 上海汇大机械制造有限公司 涂胶控制方法及其系统
CN115128813A (zh) * 2022-07-12 2022-09-30 舜宇奥来半导体光电(上海)有限公司 虚像显示模组主动对准的方法
CN115471551A (zh) * 2022-09-13 2022-12-13 苏州市凌臣采集计算机有限公司 点胶点位的坐标获取方法、装置、计算机设备及可读存储介质
CN115471551B (zh) * 2022-09-13 2023-09-01 苏州市凌臣采集计算机有限公司 点胶点位的坐标获取方法、装置、计算机设备及可读存储介质
CN116422543A (zh) * 2023-06-15 2023-07-14 苏州希盟科技股份有限公司 一种基于空间平面的点胶控制方法、装置、设备及介质
CN116422543B (zh) * 2023-06-15 2023-09-08 苏州希盟科技股份有限公司 一种基于空间平面的点胶控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN105964486A (zh) 2016-09-28
CN105964486B (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
WO2016141882A1 (zh) 一种自动涂胶系统及其涂胶方法
CN110103217B (zh) 工业机器人手眼标定方法
US10690492B2 (en) Structural light parameter calibration device and method based on front-coating plane mirror
CN110146038B (zh) 筒形件装配转角的分布式单目相机激光测量装置及方法
US20040066454A1 (en) Device and method of measuring data for calibration, program for measuring data for calibration, program recording medium readable with computer, and image data processing device
WO2022037633A1 (zh) 双目摄像头的标定及图像矫正方法、装置、存储介质、终端、智能设备
CN109191527B (zh) 一种基于最小化距离偏差的对位方法及装置
WO2022078074A1 (zh) 车辆与车道线的位置关系检测方法、系统和存储介质
US20050232620A1 (en) Automatic focusing method for digital camera
CN112381827B (zh) 基于视觉图像的快速高精度缺陷检测方法
JPS61231557A (ja) 色分解フイルムを重ね合わせるための方法と装置
CN112950724B (zh) 丝印视觉标定方法及装置
WO2020073940A1 (zh) 基于机器视觉的晶硅光伏太阳能电池印刷定位平台标定方法及装置
CN112883972A (zh) 校准方法、校准装置、校准系统及计算机可读存储介质
CN106643500A (zh) 一种对锡膏印刷机印刷平台的标定及对位方法
CN112365502B (zh) 一种基于视觉图像缺陷检测的标对方法
CN114714356A (zh) 基于双目视觉的工业机器人手眼标定误差精确检测方法
US20220412795A1 (en) Sensor Arrangement
CN117097872A (zh) 一种投影设备自动梯形校正系统及方法
CN113330487A (zh) 参数标定方法及装置
CN112839168B (zh) 一种自动调整aoi检测系统中相机成像分辨率的方法
CN113079318B (zh) 晶边缺陷自动对焦系统及方法和计算机存储介质
CN115103124A (zh) 一种用于摄像头模组主动对准的方法
CN112468801B (zh) 广角摄像模组的光心测试方法及其测试系统和测试标板
CN112509035A (zh) 一种光学镜头和热成像镜头的双镜头图像像素点匹配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761109

Country of ref document: EP

Kind code of ref document: A1