WO2016141625A1 - 一种利用废料制备钕铁硼磁体的方法及钕铁硼磁体 - Google Patents
一种利用废料制备钕铁硼磁体的方法及钕铁硼磁体 Download PDFInfo
- Publication number
- WO2016141625A1 WO2016141625A1 PCT/CN2015/077938 CN2015077938W WO2016141625A1 WO 2016141625 A1 WO2016141625 A1 WO 2016141625A1 CN 2015077938 W CN2015077938 W CN 2015077938W WO 2016141625 A1 WO2016141625 A1 WO 2016141625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- sludge
- sintered ndfeb
- iron
- magnet
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F8/00—Manufacture of articles from scrap or waste metal particles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F2009/001—Making metallic powder or suspensions thereof from scrap particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Definitions
- the invention belongs to the technical field of recycling of sintered NdFeB sludge, and relates to a short process method for preparing high-performance sintered NdFeB magnets by using sintered NdFeB sludge.
- NdFeB magnetic materials Compared with other magnetic materials, NdFeB magnetic materials have excellent magnetic properties and mechanical properties. Therefore, it is widely used in many fields such as electronic information, household appliances, medical and aerospace, especially in the field of new green energy such as energy-saving cars and wind power.
- a wide range of applications has led to a rapid increase in annual production, but in the production of sintered NdFeB magnets, approximately 30% of the total weight of NdFeB waste, including cutting blocks and sludge waste, is produced.
- China is a major producer of NdFeB materials. In 2013, its output was 94,000 tons, accounting for 91% of the global total. In the production process, it will form nearly 10,000 tons of cutting blocks, and there will be 20,000-20,000 tons.
- the NdFeB material forms sludge waste.
- the production cost of sintered NdFeB magnets has increased significantly.
- the recycling of Sintered NdFeB waste is very important. Therefore, green and efficient recycling of NdFeB waste can protect the environment and save resources. Can produce good social and economic benefits.
- the recovery methods for the sintered NdFeB cutting block are as follows: (1) hydrogen explosion of the scrap material, hydrogen detonation powder is coated with the rare earth-rich phase to prepare a regenerated bonded magnet or a hot-pressed magnet; (2) hydrogen explosion powder Performing a hydrogenation-disproportionation-recombination (HDDR) process to prepare a regenerative bonded magnet or The hot pressing is a magnet; (3) ball-milling, orientation molding, and vacuum sintering of the hydrogen explosion powder to prepare a regenerated sintered magnet; (4) mixing the hydrogen explosion powder with the new powder to perform any of the above processes, but Performance will be reduced accordingly.
- HDDR hydrogenation-disproportionation-recombination
- the current rare earth permanent magnet waste recycling mainly based on NdFeB processing sludge mainly adopts hydrometallurgical processes, such as acid precipitation precipitation process, double salt conversion process, hydrochloric acid solution process and full extraction process.
- the process of each method is briefly compared as follows: (1) Acid-soluble precipitation method: This process is a relatively primitive method. The main processes are oxidative roasting, acid decomposition, precipitation, burning to obtain rare earth oxides and subsequent electrolytic rare earth fluorides. Preparation of a simple substance of metal. The rare earth recovery rate of rare earth oxides produced by this process is low.
- Hydrochloric acid excellent dissolution method The process flow is divided into four procedures: oxidizing, burning, separating, extracting, and precipitating.
- the rare earth recovery rate is greater than 95%, and the purity of Dy 2 O 3 obtained by separation is 99. %, yttrium oxide is 98%, and the raffinate can achieve the precipitation of crystalline rare earth carbonate to meet the needs of customers.
- Sulfuric acid double salt precipitation method usually includes the following steps: sulfuric acid dissolution, double salt precipitation rare earth, alkali conversion, hydrochloric acid dissolution, extraction separation, precipitation, and burning to obtain rare earth oxide.
- the Nd 2 O 3 is separated from the non-rare earth (Fe, Al, etc.) by the double salt method of sulfuric acid, and the rare earth obtained by the double salt precipitation of the rare earth can be directly prepared into an oxide with a purity of 93%.
- the obtained product has a high recovery rate of Nd 2 O 3 (up to 85.53%) and a purity of 99% for both Nd 2 O 3 and Dy 2 O 3 , which is a widely used method in the industry.
- (4) Total extraction method The process of recovering rare earth and cobalt in NdFeB waste residue by total solvent extraction can be divided into: N-503 extraction of iron, P 507 extraction of rare earth, separation of ruthenium and osmium, and further purification of cobalt. After 60 stages of cascaded extraction experiments, 99% of Nd 2 O 3 ; 98% of Dy 2 O 3 ; 99% of cobalt carbonate products were obtained. The process requires many steps and a longer production cycle.
- the final product of the above process is rare earth oxide or metal, which has a long process and generates a large amount of waste acid waste liquid, which pollutes the environment.
- the Chinese patent (Application No. 201410101544.7) discloses a method of preparing NdFeB sludge into a regenerated sintered NdFeB magnetic powder. Although this method can be used to obtain sintered NdFeB magnetic powder from NdFeB sludge, the obtained magnetic powder has no magnetic properties and cannot be practically applied.
- the invention overcomes the prior art and prepares a sintered NdFeB magnet with high magnetic properties by optimizing the adjustment process.
- NdFeB sludge as raw material, removing impurities from organic matter by distillation and organic solvent ultrasonic cleaning, and then regenerating NdFeB powder by calcium reduction and diffusion reaction; using magnetic field sonication during rinsing, effectively separating calcium oxide And non-magnetic substances.
- Adding Nd 2 O 3 powder to the calcium reduction reaction is beneficial to obtain high-performance sintered NdFeB magnetic powder, and CaH 2 can obtain better reduction effect.
- the recycled NdFeB alloy powder has a particle size of about 10 ⁇ m, which significantly reduces the energy consumption of the milling.
- the maximum magnetic energy product of the regenerated NdFeB sintered magnet obtained by doping the nano powder reaches 35.26 MGOe, which achieves the magnetic properties of the current mainstream NdFeB sintered products.
- the invention has the advantages of short process (directly obtaining sintered NdFeB powder by using NdFeB sludge as raw material to prepare sintered magnet), high efficiency (the prepared magnet has good magnetic properties), and environmental protection (no waste acid is generated during the preparation process, waste) Characteristics of liquid and exhaust gases).
- the method of the invention comprises the steps of sludge water bath distillation, ultrasonic cleaning, calcium reduction diffusion, magnetic field ultrasonic rinsing and drying, powder mixing and sintering:
- Slurry water bath distillation adding distilled water to the sludge to be recovered and stirring, preferably according to the volume ratio of sludge to distilled water is 1:15, and under the vacuum condition, stepwise heating is performed to perform water bath distillation.
- the temperature is raised by 5 ° C every 5-10 minutes, until 80 ° C, after the internal liquid is evaporated to dryness, and the operation is repeated three times to obtain a powder after distillation;
- the powder pretreated in step (2) is subjected to an XRF test, and according to the test result and the stoichiometric ratio of RE 2 Fe 14 B, Nd 2 O 3 , FeB, CaH 2 and CaO are added before the reaction, and Nd 2 O is added.
- the mass percentage of B in B is 0-10% (that is, the mass percentage of B in the total weight of powder + Nd 2 O 3 +FeB after pretreatment is higher than the mass percentage of B in RE 2 Fe 14 B 0-10% of the number, such as the mass percentage of B in RE 2 Fe 14 B is x%, then the mass percentage of B in the total weight of powder + Nd 2 O 3 + FeB after pretreatment is x% -(x+10)%), the mass of CaH 2 is 1.2-1.3 times the total weight of the powder +Nd 2 O 3 +FeB after pretreatment, and the mass of CaO is 0.5 times of the mass of CaH 2 ; under the protection of inert gas, Reducing the diffusion reaction, the reaction temperature is 1160-1240 ° C, time
- the reduced product obtained in the step (3) is ground, the ground powder is placed in a glass container, ultrasonically rinsed under a magnetic field condition, and then dried.
- the degree of vacuum is 10 -3 Pa or less, the temperature is 400 ° C, and the time is 120 min.
- a regenerated NdFeB powder is obtained, and the general particle size is about 10 ⁇ m.
- each of the above rinsing times is 15 minutes each.
- the regenerated NdFeB powder obtained in the step (4) is ground to 3-5 ⁇ m, the nano hydride powder is added and mixed, and the amount of the nano hydride added is 10-20 wt%; Orientation and press molding; firstly, dehydrogenation treatment at 900-1000 ° C for 30-180 min, then increasing the temperature at 1050-1150 ° C for 120-240 min, and finally performing secondary heat treatment, wherein the first-stage heat treatment temperature is 850 ° C - 950 ° C , time 60-180 min; secondary heat treatment temperature 450 ° C - 550 ° C, time 60-180 min; obtained regenerated sintered magnet.
- the hydride of the above step (5) is hydrazine hydride, hydrazine hydride, hydrazine hydride or hydrazine hydride.
- the invention utilizes NdFeB sludge as raw material to realize waste recycling and reuse, and does not generate waste acid, waste liquid and waste gas in the preparation process, and has high efficiency and environmental protection process, and greatly reduces the production cost of NdFeB;
- the treated sludge sludge magnetic powder directly prepares the regenerated NdFeB powder, fully utilizes all valuable elements in the NdFeB sludge, avoids secondary waste in sludge recovery and reuse; uses magnetic field ultrasonic rinsing to remove calcium oxide and regenerate ferroniobium
- the boron alloy powder has a particle size of about 10 ⁇ m, which is convenient for subsequent treatment, and significantly reduces the energy consumption of the milling.
- the magnetic energy product of the regenerated sintered magnet prepared by doping the nanopowder reaches 35.26 MGOe.
- Figure 3 shows the demagnetization curve of the regenerated NdFeB sintered magnet.
- Powder; test XRD shown in Figure 1
- XRF (as shown in Table 1). It can be seen from Fig. 1 that the powders after pretreatment are mainly Fe 3 O 4 , Nd(CO 3 )(OH) 4 ⁇ xH 2 O, Fe 2 Nd and Fe 2 B.
- the XRF results are shown in Table 1.
- Nd 2 O 3 is added before the reaction to make the total amount of rare earth reach 40%
- FeB is added to make the B content in the powder excessive 0
- the mass of CaH 2 is mixed powder.
- CaO 0.5 times the mass of the mass CaH 2.
- the reaction mixture is mixed, covered with a batter, placed in a tube furnace, and subjected to a calcium reduction diffusion reaction under the protection of an inert gas.
- the reaction temperature is 1160 ° C, the holding time is 150 min; after cooling to room temperature, the reduced product is broken.
- XRD results show that the product is mainly NdFeB and a small amount of NdFe 4 B 4 .
- the regenerated NdFeB powder is ground to a particle size of about 5 ⁇ m, 15 wt.% of nano hydride powder is added and mixed; oriented in a magnetic field and press-formed; firstly dehydrogenated at 900 ° C for 120 min, then raised at 1100
- the second stage heat treatment was carried out, wherein the first stage heat treatment temperature was 900 ° C for 180 min; the second stage heat treatment temperature was 480 ° C for 120 min; and a sintered magnet was obtained.
- the obtained NdFeB powder is ground to about 3 ⁇ m, 10 wt.% nano hydride powder is added and mixed; oriented in a magnetic field and press-formed; firstly dehydrogenated at 950 ° C for 100 min, then raised at 1050 ° C After sintering for 240 min, the second stage heat treatment was carried out, wherein the first stage heat treatment temperature was 850 ° C for 120 min; the second stage heat treatment temperature was 450 ° C for 180 min; and a sintered magnet was obtained.
- the obtained NdFeB powder was ground to 4 ⁇ m, 20 wt.% nano yttrium hydride powder was added and mixed; oriented in a magnetic field and press-formed; firstly dehydrogenated at 1000 ° C for 30 min, then raised at 1150 ° C Sintering for 120 min, and finally performing a secondary heat treatment, wherein the first-stage heat treatment temperature is 950 ° C, the time is 60 min; the second-stage heat treatment temperature is 550 ° C, and the time is 60 min; and a sintered magnet is obtained.
- the obtained NdFeB powder was ground to 4 ⁇ m, 10 wt.% nano hydride powder was added and mixed; oriented in a magnetic field and press-formed; firstly dehydrogenated at 1000 ° C for 60 min, then raised at 1100 ° C Sintering for 180 min, and finally performing a secondary heat treatment, wherein the first-stage heat treatment temperature is 900 ° C, the time is 180 min; the second-stage heat treatment temperature is 480 ° C, and the time is 120 min; and a sintered magnet is obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Processing Of Solid Wastes (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
一种利用烧结钕铁硼油泥废料制备高性能烧结钕铁硼磁体的短流程方法,包括油泥中有机物的蒸馏,油泥粉末超声洗涤,钙还原扩散,磁场下超声漂洗和干燥,混粉和烧结等步骤。以钕铁硼油泥废料为原料直接得到再生高性能烧结钕铁硼磁体;在油泥蒸馏过程中采用真空阶梯式升温的方法有效去除绝大部分有机物。在油泥粉末洗涤过程中采用磁场超声处理,有效地将残留有机物除去。通过掺杂纳米粉末所得再生钕铁硼烧结磁体最大磁能积达到35.26MGOe。该方法流程短、高效环保、稀土回收和利用率高。以及一种利用该方法制备的钕铁硼磁体。
Description
本发明属于烧结钕铁硼油泥废料的回收利用技术领域,涉及一种利用烧结钕铁硼油泥废料制备高性能烧结钕铁硼磁体的短流程方法。
与其它磁性材料相比,钕铁硼磁性材料具有优异的磁性能和力学性能。因此其广泛应用于电子信息、家用电器、医学医疗和航空航天等许多领域,尤其在节能汽车和风力发电等新型绿色能源等领域发挥着重要的作用。广阔的应用领域带来年产量的迅速增长,但是在烧结钕铁硼磁体的生产过程中,大约会产生原料总重30%的钕铁硼废料,包括切削块和油泥废料等。以中国为例:中国是钕铁硼材料生产大国,2013年产量为9.4万吨,占全球总产量的91%,在生产过程中大约会形成近万吨切削块,同时有2-3万吨钕铁硼原料形成油泥废料。特别是近几年,由于稀土金属价格的高位震荡,烧结钕铁硼磁体的生产成本明显增加。随着全球环境立法的发展和资源保护和可持续发展的需求,烧结钕铁硼的废料的回收利用非常重要,因此,绿色高效的回收利用钕铁硼废料既能保护环境,节约资源,同时还可以产生很好得社会效益和经济效益。
目前对于烧结钕铁硼切削块的回收方法有:(1)对边角料进行氢爆,将氢爆粉进行富稀土相包覆,制备再生粘结磁体或热压磁体;(2)对氢爆粉进行氢化-歧化-再化合(HDDR)处理,制备再生粘结磁体或
热压为磁体;(3)对氢爆粉体进行球磨、取向压型、真空烧结制备再生烧结磁体;(4)将氢爆粉与新的粉体混合,进行以上任一工艺路线,但是其性能会相应降低。
另一方面,当前以钕铁硼加工油泥为主的稀土永磁废料回收主要采用湿法冶金工艺,如酸溶沉淀工艺、复盐转化工艺、盐酸优溶工艺和全萃取工艺等。各种方法的工艺简要比较如下:(1)酸溶沉淀法:该工艺属于比较原始的方法,主要过程有氧化焙烧、酸分解、沉淀、灼烧制取稀土氧化物以及后续的电解稀土氟化物制备金属单质。用该工艺批量生产稀土氧化物稀土回收率较低。(2)盐酸优溶法:工艺流程分为氧化培烧、分解除杂、萃取分离、沉淀灼烧四个程序,该方法稀土回收率大于95%,分离制得的Dy2O3纯度达99%、氧化镨钕为98%,而且萃余液能实现晶型碳酸稀土的沉淀满足客户的需求。(3)硫酸复盐沉淀法:通常包括以下几个环节:硫酸溶解、复盐沉淀稀土、碱转化、盐酸溶解、萃取分离、沉淀、灼烧得到稀土氧化物。采用硫酸复盐法将Nd2O3与非稀土(Fe、Al等)分离,复盐沉淀稀土过程中得到的稀土直接制备成氧化物时其纯度可以达到93%。所得最终产品中Nd2O3回收率高(可以达到85.53%),Nd2O3和Dy2O3纯度均达到99%,是目前业内使用比较广泛的方法。(4)全萃取法。全溶剂萃取法回收NdFeB废渣中的稀土与钴的过程可以分为:N-503萃取铁、P507萃取稀土,分离钕与镝,进一步提纯钴。经过60级的串级分段萃取试验,分别获得99%的Nd2O3;98%的Dy2O3;99%的碳酸钴产品。该工艺所需要的步骤多,生产周期也较长。以上工艺最终产品为稀土
氧化物或金属,流程长,产生大量废酸废液,污染环境。
针对上述问题,中国专利(申请号201410101544.7)公开了一种将钕铁硼油泥制备成再生烧结钕铁硼磁粉的方法。虽然采用该方法可以从钕铁硼油泥得到烧结钕铁硼磁粉,但是所得磁粉并没有磁性能,不能得到实际的应用。
发明内容
本发明克服现有技术,通过优化调整工艺,制备出了具有较高磁性能的烧结钕铁硼磁体。以钕铁硼油泥废料为原料,采用蒸馏和有机溶剂超声清洗的方法去除有机物杂质,再通过钙还原扩散反应制备再生钕铁硼粉末;在漂洗过程中采用磁场超声处理,有效地分离了氧化钙和非磁性物质。钙还原反应中加入Nd2O3粉末有利于获得高性能的烧结钕铁硼磁粉,采用CaH2可以得到更好的还原效果。再生钕铁硼合金粉末颗粒尺寸为10μm左右,显著降低了制粉能耗。通过掺杂纳米粉末所得再生钕铁硼烧结磁体最大磁能积达到35.26MGOe,达到目前烧结钕铁硼主流产品的磁性能。本发明具有流程短(以钕铁硼油泥为原料直接得到烧结钕铁硼粉末进而制备烧结磁体)、高效(所制备磁体具有较好的磁性能)、环保(制备过程中不产生废酸、废液和废气)的特点。
本发明方法包括油泥水浴蒸馏、超声清洗、钙还原扩散、磁场超声漂洗和干燥、混粉和烧结等步骤:
(1)油泥水浴蒸馏:将蒸馏水加入待回收油泥中搅拌,优选按照油泥与蒸馏水体积比为1:15,在真空条件下,阶梯式升温进行水浴蒸馏,
优选从30℃开始,每间隔5-10min升温5℃,直至80℃,待内部液体蒸干后,再重复操作3次,得到蒸馏后粉末;
(2)油泥超声清洗:向步骤(1)蒸馏后粉末中加入丙酮,先用丙酮超声清洗3次,再加入无水乙醇超声清洗,除去洗液后,烘干(如在真空50℃条件下),得到预处理后粉末;优选比例为每5g粉末对应10ml丙酮、10ml无水乙醇;
(3)钙还原扩散:将步骤(2)预处理后粉末中加入适量Nd2O3和FeB,用CaH2作为还原剂,CaO作为分散剂,进行钙还原扩散反应;
优选先将步骤(2)预处理后粉末进行XRF测试,根据测试结果和按照RE2Fe14B化学计量比计算,反应前加入Nd2O3、FeB、CaH2和CaO,加入的Nd2O3使稀土占预处理后粉末+Nd2O3+FeB总重量的40%,加入FeB使预处理后粉末+Nd2O3+FeB总重量中B的质量百分含量相对于RE2Fe14B中B的质量百分含量过量0-10%(即预处理后粉末+Nd2O3+FeB总重量中B的质量百分含量数高于RE2Fe14B中B的质量百分含量数的0-10%,如RE2Fe14B中B的质量百分含量数为x%,则预处理后粉末+Nd2O3+FeB总重量中B的质量百分含量数为x%-(x+10)%),CaH2的质量为预处理后粉末+Nd2O3+FeB总重量的1.2-1.3倍,CaO质量为CaH2质量的0.5倍;在惰性气体保护下,进行还原扩散反应,反应温度为1160-1240℃,时间60-150min;
(4)漂洗和干燥:将步骤(3)得到的还原产物研磨,将研磨所得粉末放入玻璃容器中,在磁场条件下进行超声漂洗,然后干燥。优选在0.1-0.5T磁场下进行超声漂洗,先用体积百分含量15%的丙三醇水
溶液进行化学漂洗3次,然后用水漂洗至上清液pH=8-10,最后酒精和乙醚各漂洗1次;漂洗后,在真空条件下干燥,真空度10-3Pa以下,温度400℃,时间120min,最后得到再生钕铁硼粉末,一般颗粒尺寸为10μm左右。优选上述每次漂洗时间各为15min。
(5)混粉和烧结:将步骤(4)所得再生钕铁硼粉末磨粉至3-5μm,添加纳米氢化物粉末并混粉,纳米氢化物的添加量为10-20wt%;在磁场中取向并压制成型;首先在900-1000℃进行30-180min的脱氢处理,然后升高温度在1050-1150℃烧结120-240min,最后进行二级热处理,其中一级热处理温度850℃-950℃,时间60-180min;二级热处理温度450℃-550℃,时间60-180min;获得再生烧结磁体。
上述步骤(5)的氢化物为氢化钕、氢化镨、氢化镝或氢化铽。
本发明以钕铁硼油泥废料为原料,实现了废物的回收再利用,制备过程中不产生废酸、废液和废气,高效环保流程短,同时大大降低了钕铁硼的生产成本;通过预处理后油泥废料磁粉直接制备再生钕铁硼粉末,充分利用了钕铁硼油泥中的所有有价元素,避免了油泥回收再利用中的二次浪费;采用磁场超声漂洗去除氧化钙,再生钕铁硼合金粉末颗粒尺寸为10μm左右,方便后继处理,显著降低了制粉能耗。通过掺杂纳米粉末制备的再生烧结磁体磁能积达到35.26MGOe。
图1油泥预处理后粉末XRD结果
图2再生钕铁硼磁粉XRD结果
图3再生钕铁硼烧结磁体退磁曲线。
本发明的特点可以从下述实施例中得以体现,但它们并不构成对本发明的限制。
实施例1
将30ml钕铁硼油泥废料置于烧瓶中,加入450ml蒸馏水,使用旋转蒸发仪进行水浴蒸馏,在真空条件下,阶梯式升温,从30℃开始,每间隔5min升温5℃,直至80℃,待内部液体蒸干后,再重复操作3次,得到26.42g蒸馏后粉末。向蒸馏后粉末中加入52ml丙酮,超声清洗3次,再加入无水乙醇,超声清洗2次,每次超声时间为10min,除去洗液后,在真空50℃条件下烘干,得到预处理后粉末;测试XRD(如图1所示)、XRF(如表1所示)。由图1可以看出,预处理后粉末中主要为Fe3O4,Nd(CO3)(OH)4·xH2O,Fe2Nd和Fe2B。XRF结果见表1。
根据表1中的元素含量和按照RE2Fe14B化学计量比,反应前加入Nd2O3使稀土总量达到40%,加入FeB使粉末中B含量过量0,CaH2的质量为混合粉末质量的1.2倍,CaO质量为CaH2质量的0.5倍。将反应物混匀,用钽片包覆,放入管式炉内,在惰性气体保护下进行钙还原扩散反应,反应温度为1160℃,保温时间150min;冷却至室温后,将还原产物破碎,放入烧杯中,在0.5T磁场下超声漂洗,先用15%(体积比)的丙三醇水溶液进行化学漂洗3次,然后用水漂洗至上清液pH=9.3,最后用酒精和乙醚各漂洗1次,每次漂洗时间15min。漂洗后,在真空条件下干燥,真空度10-3Pa以下,温度400℃,时间
120min,最后得到再生钕铁硼粉末,颗粒尺寸为10μm左右。测试XRD(如图2所示)和XRF(如表3所示)。XRD结果可以看出产物主要是钕铁硼和少量NdFe4B4。将再生钕铁硼粉末研磨至颗粒尺寸约5μm,添加15wt.%纳米氢化钕粉末并混粉;在磁场中取向并压制成型;首先在900℃进行120min的脱氢处理,然后升高温度在1100℃烧结180min,最后进行二级热处理,其中一级热处理温度900℃,时间180min;二级热处理温度480℃,时间120min;获得烧结磁体。所得烧结磁体(BH)max=35.26MGOe,Br=12.36kGs,Hcj=13.12kOe(见图3)。
实施例2
将30ml钕铁硼油泥废料置于烧瓶中,加入450ml蒸馏水,使用旋转蒸发仪进行水浴蒸馏,在真空条件下,阶梯式升温,从30℃开始,每间隔8min升温5℃,直至80℃,待内部液体蒸干后,再重复操作2次,得到25.64g蒸馏后粉末。向蒸馏后粉末中加入51ml丙酮,超声清洗3次,再加入无水乙醇,在磁场下超声清洗1次,每次超声时间为12min,除去洗液后,在真空50℃条件下烘干,得到预处理后粉末;测试XRF,结果见表2。
根据表2中的元素含量和RE2Fe14B化学计量比,反应前加入Nd2O3使稀土总量达到40%,加入FeB使粉末中B含量过量5%,CaH2的质量为混合粉末质量的1.25倍,CaO质量为CaH2质量的0.5倍。将反应物混匀,用钽片包覆,放入管式炉内,在惰性气体保护下进行钙还原扩散反应,反应温度为1180℃,保温时间110min;冷却至室温
后,将还原产物破碎,放入烧杯中,在0.3T磁场下超声漂洗,先用15%(体积比)的丙三醇水溶液进行化学漂洗3次,然后用水漂洗至上清液pH=10,最后用酒精和乙醚各漂洗1次,每次漂洗时间15min。漂洗后,在真空条件下干燥,真空度10-3Pa以下,温度400℃,时间120min,最后得到再生钕铁硼粉末,颗粒尺寸为10μm左右。将所得钕铁硼粉末磨粉至约3μm,添加10wt.%纳米氢化镨粉末并混粉;在磁场中取向并压制成型;首先在950℃进行100min的脱氢处理,然后升高温度在1050℃烧结240min,最后进行二级热处理,其中一级热处理温度850℃,时间120min;二级热处理温度450℃,时间180min;获得烧结磁体。所得烧结磁体(BH)max=35.45MGOe,Br=12.32kGs,Hcj=12.08kOe。
实施例3
将30ml钕铁硼油泥废料置于烧瓶中,加入450ml蒸馏水,使用旋转蒸发仪进行水浴蒸馏,在真空条件下,阶梯式升温,从30℃开始,每间隔10min升温5℃,直至80℃,待内部液体蒸干后,再重复操作3次,得到25.26g蒸馏后粉末。向蒸馏后粉末中加入50.5ml丙酮,超声清洗3次,再加入无水乙醇,超声清洗2次,每次超声时间为15min,除去洗液后,在真空50℃条件下烘干,得到预处理后粉末;测试XRF,结果见表3。
根据表3中的元素含量和RE2Fe14B化学计量比,反应前加入Nd2O3使稀土总量达到40%,加入FeB使粉末中B含量过量8%,CaH2的
质量为混合粉末质量的1.3倍,CaO质量为CaH2质量的0.5倍。将反应物混匀,用钽片包覆,放入管式炉内,在惰性气体保护下进行钙还原扩散反应,反应温度为1240℃,保温时间60min;冷却至室温后,将还原产物破碎,放入烧杯中,在0.1T磁场下超声漂洗,先用15%(体积比)的丙三醇水溶液进行化学漂洗3次,然后用水漂洗至上清液pH=8,最后用酒精和乙醚各漂洗1次,每次漂洗时间15min。漂洗后,在真空条件下干燥,真空度10-3Pa以下,温度400℃,时间120min,最后得到再生钕铁硼粉末,颗粒尺寸为10μm左右。将所得钕铁硼粉末磨粉至4μm,添加20wt.%纳米氢化镝粉末并混粉;在磁场中取向并压制成型;首先在在1000℃进行30min的脱氢处理,然后升高温度在1150℃烧结120min,最后进行二级热处理,其中一级热处理温度950℃,时间60min;二级热处理温度550℃,时间60min;获得烧结磁体。所得烧结磁体(BH)max=31.66MGOe,Br=11.15kGs,Hcj=18.36kOe。
实施例4
将30ml钕铁硼油泥废料置于烧瓶中,加入450ml蒸馏水,使用旋转蒸发仪进行水浴蒸馏,在真空条件下,阶梯式升温,从30℃开始,每间隔10min升温5℃,直至80℃,待内部液体蒸干后,再重复操作2次,得到25.64g蒸馏后粉末。向蒸馏后粉末中加入51ml丙酮,超声清洗4次,再加入无水乙醇,超声清洗2次,每次超声时间为15min,除去洗液后,在真空50℃条件下烘干,得到预处理后粉末;测试XRF,
结果见表4。
根据表4中的元素含量和RE2Fe14B化学计量比,反应前加入Nd2O3使稀土总量达到40%,加入FeB使粉末中B含量过量10%,CaH2的质量为混合粉末质量的1.2倍,CaO质量为CaH2质量的0.5倍。将反应物混匀,用钽片包覆,放入管式炉内,在惰性气体保护下进行钙还原扩散反应,反应温度为1200℃,保温时间100min;冷却至室温后,将还原产物破碎,放入烧杯中,在0.1T磁场下超声漂洗,先用15%(体积比)的丙三醇水溶液进行化学漂洗3次,然后用水漂洗至上清液pH=9,最后用酒精和乙醚各漂洗1次,每次漂洗时间15min。漂洗后,在真空条件下干燥,真空度10-3Pa以下,温度400℃,时间120min,最后得到再生钕铁硼粉末,颗粒尺寸为10μm左右。将所得钕铁硼粉末磨粉至4μm,添加10wt.%纳米氢化铽粉末并混粉;在磁场中取向并压制成型;首先在在1000℃进行60min的脱氢处理,然后升高温度在1100℃烧结180min,最后进行二级热处理,其中一级热处理温度900℃,时间180min;二级热处理温度480℃,时间120min;获得烧结磁体。所得烧结磁体(BH)max=32.25MGOe,Br=11.68kGs,Hcj=20.65kOe。
表1 油泥预处理后粉末XRF结果(实施例1)
表2 油泥预处理后粉末XRF结果(实施例2)
表3 油泥预处理后粉末XRF结果(实施例3)
表4 油泥预处理后粉末XRF结果(实施例4)
Claims (9)
- 一种利用烧结钕铁硼油泥废料制备高性能烧结钕铁硼磁体的短流程方法,其特征在于,包括油泥水浴蒸馏、超声清洗、钙还原扩散、磁场超声漂洗和干燥、混粉和烧结步骤,具体包括以下步骤:(1)油泥水浴蒸馏:将蒸馏水加入待回收油泥中搅拌,在真空条件下,阶梯式升温进行水浴蒸馏,待内部液体蒸干后,再重复操作3次,得到蒸馏后粉末;(2)油泥超声清洗:向步骤(1)蒸馏后粉末中加入丙酮,先用丙酮超声清洗3次,再加入无水乙醇超声清洗,除去洗液后,烘干,得到预处理后粉末;(3)钙还原扩散:将步骤(2)预处理后粉末中加入适量Nd2O3和FeB,用CaH2作为还原剂,CaO作为分散剂,进行钙还原扩散反应;(4)漂洗和干燥:将步骤(3)得到的还原产物研磨,将研磨所得粉末放入玻璃容器中,在磁场条件下进行超声漂洗,然后干燥;(5)混粉和烧结:将步骤(4)所得再生钕铁硼粉末磨粉至3-5μm,添加纳米氢化物粉末并混粉,纳米氢化物的添加量为10-20wt%;在磁场中取向并压制成型;首先在900-1000℃进行30-180min的脱氢处理,然后升高温度在1050-1150℃烧结120-240min,最后进行二级热处理,其中一级热处理温度850℃-950℃,时间60-180min;二级热处理温度450℃-550℃,时间60-180min;获得再生烧结磁体。
- 按照权利要求1的一种利用烧结钕铁硼油泥废料制备高性能烧结钕铁硼磁体的短流程方法,其特征在于,步骤(1)中按照油泥与蒸馏水体积比为1:15,在真空条件下,阶梯式升温进行水浴蒸馏,优选从30℃开始,每间隔5-10min升温5℃,直至80℃,待内部液体蒸干后,再重复操作3次,得到蒸馏后粉末。
- 按照权利要求1的一种利用烧结钕铁硼油泥废料制备高性能烧结钕铁硼磁体的短流程方法,其特征在于,步骤(2)中每5g粉末对应10ml丙酮、10ml 无水乙醇。
- 按照权利要求1的一种利用烧结钕铁硼油泥废料制备高性能烧结钕铁硼磁体的短流程方法,其特征在于,步骤(3)钙还原扩散反应的物质用量为:先将步骤(2)预处理后粉末进行XRF测试,根据测试结果和按照RE2Fe14B化学计量比计算,反应前加入Nd2O3、FeB、CaH2和CaO,加入的Nd2O3使稀土占预处理后粉末+Nd2O3+FeB总重量的40%,加入FeB使预处理后粉末+Nd2O3+FeB总重量中B的质量百分含量相对于RE2Fe14B中B的质量百分含量过量0-10%,CaH2的质量为预处理后粉末+Nd2O3+FeB总重量的1.2-1.3倍,CaO质量为CaH2质量的0.5倍。
- 按照权利要求1的一种利用烧结钕铁硼油泥废料制备高性能烧结钕铁硼磁体的短流程方法,其特征在于,步骤(3)钙还原扩散反应的条件为:在惰性气体保护下,反应温度为1160-1240℃,时间60-150min。
- 按照权利要求1的一种利用烧结钕铁硼油泥废料制备高性能烧结钕铁硼磁体的短流程方法,其特征在于,步骤(4)为:在0.1-0.5T磁场下进行超声漂洗,先用体积百分含量15%的丙三醇水溶液进行化学漂洗3次,然后用水漂洗至上清液pH=8-10,最后酒精和乙醚各漂洗1次;漂洗后,在真空条件下干燥,真空度10-3Pa以下,温度400℃,时间120min,最后得到再生钕铁硼粉末。
- 按照权利要求6的一种利用烧结钕铁硼油泥废料制备高性能烧结钕铁硼磁体的短流程方法,其特征在于,每次漂洗时间各为15min。
- 按照权利要求6的一种利用烧结钕铁硼油泥废料制备高性能烧结钕铁硼磁体的短流程方法,其特征在于,步骤(5)的氢化物为氢化钕、氢化镨、氢化镝或氢化铽。
- 按照权利要求1-8的任一方法制备得到的钕铁硼磁体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15862136.7A EP3090821B1 (en) | 2015-03-08 | 2015-04-30 | Method for preparing neodymium-iron-boron magnet by utilizing waste material |
US15/133,042 US9728310B2 (en) | 2015-03-08 | 2016-04-19 | Short-process method for preparing sintered NdFeB magnets with high magnetic properties recycling from NdFeB sludge |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510101336.1 | 2015-03-08 | ||
CN201510101336.1A CN104690270B (zh) | 2015-03-08 | 2015-03-08 | 一种利用烧结钕铁硼油泥废料制备高性能烧结钕铁硼磁体的短流程方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/133,042 Continuation US9728310B2 (en) | 2015-03-08 | 2016-04-19 | Short-process method for preparing sintered NdFeB magnets with high magnetic properties recycling from NdFeB sludge |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016141625A1 true WO2016141625A1 (zh) | 2016-09-15 |
Family
ID=53338032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/077938 WO2016141625A1 (zh) | 2015-03-08 | 2015-04-30 | 一种利用废料制备钕铁硼磁体的方法及钕铁硼磁体 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3090821B1 (zh) |
CN (1) | CN104690270B (zh) |
WO (1) | WO2016141625A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108359798A (zh) * | 2017-06-03 | 2018-08-03 | 江西离子型稀土工程技术研究有限公司 | 一种快速高效回收利用钕铁硼废料的方法 |
CN112837921A (zh) * | 2021-01-06 | 2021-05-25 | 陈凯华 | 一种钕铁硼磁体渗镝的方法 |
CN115116688A (zh) * | 2022-08-26 | 2022-09-27 | 山西汇镪磁性材料制作有限公司 | 一种资源节约型低成本的钕铁硼磁体材料及加工工艺 |
CN115449627A (zh) * | 2022-10-13 | 2022-12-09 | 中国科学院赣江创新研究院 | 一种氧化焙烧钕铁硼废料的方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106498166B (zh) * | 2016-11-02 | 2018-04-17 | 江西理工大学 | 一种钕铁硼油泥废料氧化还原全组分回收的方法 |
CN106319575B (zh) * | 2016-11-02 | 2018-04-17 | 江西理工大学 | 一种钕铁硼油泥废料电解制备钕铁硼合金的方法 |
US9890442B1 (en) * | 2017-03-17 | 2018-02-13 | King Saud University | Method of preparing a metal matrix nanocomposite |
CN107424700B (zh) * | 2017-08-30 | 2019-03-22 | 北京工业大学 | 利用双面磨加工钕铁硼油泥废料制备再生烧结钕铁硼磁体的方法 |
KR102093491B1 (ko) * | 2017-11-28 | 2020-03-25 | 주식회사 엘지화학 | 소결 자석의 제조 방법 및 소결 자석 |
CN108305772B (zh) * | 2017-12-25 | 2019-10-29 | 宁波韵升股份有限公司 | 一种烧结钕铁硼磁体晶界扩散的方法 |
CN108188151B (zh) * | 2017-12-30 | 2020-09-25 | 北京工业大学 | 一种去除废旧hddr粘结钕铁硼磁粉中碳氧的方法 |
CN108188152B (zh) * | 2017-12-30 | 2020-09-25 | 北京工业大学 | 一种去除废旧快淬粘结钕铁硼磁粉中碳氧的方法 |
CN110090964A (zh) * | 2018-01-28 | 2019-08-06 | 蒋盼盼 | 一种稀土钕铁硼镀层废品回收再利用的方法 |
EP3660174B1 (en) * | 2018-11-27 | 2021-10-27 | Institut "Jozef Stefan" | A method for recovery of nd2fe14b grains from bulk sintered nd-fe-b magnets and/or magnet scraps by electrochemical etching |
CN109852809A (zh) * | 2019-04-10 | 2019-06-07 | 江苏集萃安泰创明先进能源材料研究院有限公司 | 一种短流程从钕铁硼油泥废料中回收钕铁硼合金粉的方法及再生烧结磁体的制备方法 |
CN110157916B (zh) * | 2019-06-26 | 2020-11-03 | 北京工业大学 | 一种低成本的利用钕铁硼油基切片油泥制备高性能各向异性钕铁硼磁粉的方法 |
KR102600123B1 (ko) * | 2019-10-16 | 2023-11-07 | 주식회사 엘지화학 | 소결 자석의 제조 방법 |
CN112359211B (zh) * | 2020-11-16 | 2022-12-02 | 江苏集萃安泰创明先进能源材料研究院有限公司 | 一种废旧非晶纳米晶铁芯的回收及再利用方法、一种非晶纳米晶粉心 |
CN112877541B (zh) * | 2021-01-11 | 2022-09-20 | 中国科学院过程工程研究所 | 一种基于钕铁硼油泥料制备的再生合金及其制备方法 |
CN114317974A (zh) * | 2021-12-22 | 2022-04-12 | 内蒙古大学 | 一种钕铁硼油泥废料的预处理方法 |
CN115011793A (zh) * | 2022-06-01 | 2022-09-06 | 吉水金诚新材料加工有限公司 | 低温氧化工艺及其低温氧化窑 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894097A (en) * | 1984-02-01 | 1990-01-16 | Yamaha Corporation | Rare earth type magnet and a method for producing the same |
JP2002356724A (ja) * | 2001-03-30 | 2002-12-13 | Sumitomo Metal Ind Ltd | 希土類磁石合金スラグの再生法及び希土類磁石合金の製造法 |
CN102211192A (zh) * | 2011-06-09 | 2011-10-12 | 天津一阳磁性材料有限责任公司 | 二次回收料制备高性能钕铁硼的方法 |
CN103117143A (zh) * | 2013-01-25 | 2013-05-22 | 宁波同创强磁材料有限公司 | 一种用钕铁硼镀镍废料烧结而成的钕铁硼磁体 |
CN103882234A (zh) | 2014-03-18 | 2014-06-25 | 北京工业大学 | 一种将钕铁硼油泥制备成再生钕铁硼磁粉的方法 |
CN104036949A (zh) * | 2014-06-11 | 2014-09-10 | 北京工业大学 | 一种利用块状烧结钕铁硼加工废料制备高性能再生烧结钕铁硼磁体的方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5183494A (en) * | 1991-04-23 | 1993-02-02 | Industrial Technology Research Instiute | Process for manufacturing rare earth-iron-boron permanent magnet alloy powders |
CN1044648C (zh) * | 1997-05-22 | 1999-08-11 | 南开大学 | 共沉淀还原扩散法制备钕铁硼永磁合金 |
CN102912112A (zh) * | 2012-10-20 | 2013-02-06 | 北京工业大学 | 一种对钕铁硼线切割废料油泥的预处理方法 |
CN103160682B (zh) * | 2013-02-19 | 2014-12-31 | 北京工业大学 | 一种钕铁硼线切割油泥制备钕铁硼合金的预处理方法 |
CN103317146B (zh) * | 2013-07-09 | 2015-09-30 | 中国石油大学(华东) | 水热法制备钕铁硼磁粉的方法 |
CN103343235B (zh) * | 2013-07-19 | 2015-03-25 | 北京工业大学 | 一种钕铁硼油泥两步共沉淀回收钕铁的方法 |
CN103343233B (zh) * | 2013-07-19 | 2015-10-28 | 北京工业大学 | 一种钕铁硼油泥回收钕铁的方法 |
CN103667715B (zh) * | 2013-12-17 | 2016-05-18 | 北京工业大学 | 一种在c2h2o4-oh体系下从钕铁硼油泥中同时回收钕、镨、镝、钴、铁的方法 |
CN104036947A (zh) * | 2014-06-11 | 2014-09-10 | 北京工业大学 | 一种利用废旧永磁电机磁钢制备高矫顽力再生烧结钕铁硼磁体的方法 |
CN104190943B (zh) * | 2014-08-04 | 2016-04-06 | 中磁科技股份有限公司 | 一种烧结钕铁硼废料回收利用的方法 |
-
2015
- 2015-03-08 CN CN201510101336.1A patent/CN104690270B/zh active Active
- 2015-04-30 WO PCT/CN2015/077938 patent/WO2016141625A1/zh active Application Filing
- 2015-04-30 EP EP15862136.7A patent/EP3090821B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894097A (en) * | 1984-02-01 | 1990-01-16 | Yamaha Corporation | Rare earth type magnet and a method for producing the same |
JP2002356724A (ja) * | 2001-03-30 | 2002-12-13 | Sumitomo Metal Ind Ltd | 希土類磁石合金スラグの再生法及び希土類磁石合金の製造法 |
CN102211192A (zh) * | 2011-06-09 | 2011-10-12 | 天津一阳磁性材料有限责任公司 | 二次回收料制备高性能钕铁硼的方法 |
CN103117143A (zh) * | 2013-01-25 | 2013-05-22 | 宁波同创强磁材料有限公司 | 一种用钕铁硼镀镍废料烧结而成的钕铁硼磁体 |
CN103882234A (zh) | 2014-03-18 | 2014-06-25 | 北京工业大学 | 一种将钕铁硼油泥制备成再生钕铁硼磁粉的方法 |
CN104036949A (zh) * | 2014-06-11 | 2014-09-10 | 北京工业大学 | 一种利用块状烧结钕铁硼加工废料制备高性能再生烧结钕铁硼磁体的方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3090821A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108359798A (zh) * | 2017-06-03 | 2018-08-03 | 江西离子型稀土工程技术研究有限公司 | 一种快速高效回收利用钕铁硼废料的方法 |
CN112837921A (zh) * | 2021-01-06 | 2021-05-25 | 陈凯华 | 一种钕铁硼磁体渗镝的方法 |
CN115116688A (zh) * | 2022-08-26 | 2022-09-27 | 山西汇镪磁性材料制作有限公司 | 一种资源节约型低成本的钕铁硼磁体材料及加工工艺 |
CN115116688B (zh) * | 2022-08-26 | 2022-12-27 | 山西汇镪磁性材料制作有限公司 | 一种资源节约型低成本的钕铁硼磁体材料及加工工艺 |
CN115449627A (zh) * | 2022-10-13 | 2022-12-09 | 中国科学院赣江创新研究院 | 一种氧化焙烧钕铁硼废料的方法 |
CN115449627B (zh) * | 2022-10-13 | 2023-12-12 | 中国科学院赣江创新研究院 | 一种氧化焙烧钕铁硼废料的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3090821B1 (en) | 2017-11-15 |
EP3090821A1 (en) | 2016-11-09 |
EP3090821A4 (en) | 2017-03-22 |
CN104690270B (zh) | 2016-11-09 |
CN104690270A (zh) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016141625A1 (zh) | 一种利用废料制备钕铁硼磁体的方法及钕铁硼磁体 | |
US9728310B2 (en) | Short-process method for preparing sintered NdFeB magnets with high magnetic properties recycling from NdFeB sludge | |
CN104690277B (zh) | 一种利用还原扩散技术回收钕铁硼油泥的方法 | |
CN103343233B (zh) | 一种钕铁硼油泥回收钕铁的方法 | |
CN103866127A (zh) | 一种利用含钕铁硼废料再生制备钕铁硼的方法 | |
CN104036942A (zh) | 一种利用块状烧结钕铁硼加工废料制备高性能高矫顽力再生烧结钕铁硼磁体的方法 | |
CN106498169B (zh) | 一种钕铁硼废料回收工艺 | |
CN103343235B (zh) | 一种钕铁硼油泥两步共沉淀回收钕铁的方法 | |
CN104036949A (zh) | 一种利用块状烧结钕铁硼加工废料制备高性能再生烧结钕铁硼磁体的方法 | |
CN104211388B (zh) | 一种适于低温烧结的M型锶铁氧体SrFe12O19的制备方法 | |
CN104036946A (zh) | 一种利用废旧永磁电机磁钢制备高性能高矫顽力再生烧结钕铁硼磁体的方法 | |
CN112662881A (zh) | 一种微波还原热解钴酸锂电池制备工业级钴粉的方法 | |
CN104036948A (zh) | 一种利用废旧永磁电机磁钢制备高性能再生烧结钕铁硼磁体的方法 | |
CN104036947A (zh) | 一种利用废旧永磁电机磁钢制备高矫顽力再生烧结钕铁硼磁体的方法 | |
CN107610860A (zh) | 一种无芯磨加工钕铁硼油泥废料制备再生烧结磁体的方法 | |
CN104036943A (zh) | 一种利用块状烧结钕铁硼加工废料制备高矫顽力再生烧结钕铁硼磁体的方法 | |
CN103432973B (zh) | 一种石墨烯-三氧化二铁纳米颗粒复合材料的制备方法 | |
CN109338113B (zh) | 一种Ca-氯化物还原扩散技术回收钕铁硼套孔油泥废料的方法 | |
CN112331474B (zh) | 一种钕铁硼块体废料的回收再利用方法 | |
CN104404255A (zh) | 一种对钕铁硼废料进行前处理-酸浸出的简便化方法 | |
CN103123840B (zh) | 一种具有高抗压强度的永磁材料及其制备方法 | |
CN115961138B (zh) | 一种再生磁粉、利用氯化-还原扩散联合法制备再生磁粉的方法及其用途 | |
CN109087802A (zh) | 一种稀土永磁体回收利用方法 | |
CN108470616B (zh) | 一种利用钕铁硼固体废料制备Nd2Fe14B/α-Fe纳米复合磁粉的方法 | |
CN113816354A (zh) | 一种利用钛白粉生产过程中废弃物制备磷酸铁的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2015862136 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015862136 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15862136 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |