WO2016139953A1 - 熱間プレス部材およびその製造方法 - Google Patents

熱間プレス部材およびその製造方法 Download PDF

Info

Publication number
WO2016139953A1
WO2016139953A1 PCT/JP2016/001175 JP2016001175W WO2016139953A1 WO 2016139953 A1 WO2016139953 A1 WO 2016139953A1 JP 2016001175 W JP2016001175 W JP 2016001175W WO 2016139953 A1 WO2016139953 A1 WO 2016139953A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
plated steel
tailored blank
weld metal
steel sheet
Prior art date
Application number
PCT/JP2016/001175
Other languages
English (en)
French (fr)
Inventor
泰明 沖田
池田 倫正
中島 清次
功一 中川
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56848824&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016139953(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016531728A priority Critical patent/JP6164367B2/ja
Priority to US15/551,375 priority patent/US11168378B2/en
Priority to CN201680013861.0A priority patent/CN107405667A/zh
Priority to KR1020177026504A priority patent/KR102037648B1/ko
Priority to EP16758649.4A priority patent/EP3266533B1/en
Priority to MX2017011320A priority patent/MX2017011320A/es
Publication of WO2016139953A1 publication Critical patent/WO2016139953A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/201Work-pieces; preparation of the work-pieces, e.g. lubricating, coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/322Bonding taking account of the properties of the material involved involving coated metal parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a hot press member suitable for use in a vehicle body structural member of an automobile.
  • the hot press member of the present invention is a hot press member (hereinafter referred to as a tailored blank hot press) formed by using a tailored blank material in which a plurality of steel plates having different thicknesses and steel types are joined with their end portions butted together. (Also referred to as a member).
  • Patent Document 1 a forming technique called hot press forming that achieves both ease of forming and high strength, that is, after heating and softening the steel sheet so as to facilitate press working,
  • a molding technique that achieves both easy forming and high strength by forming a heated steel plate using a die and a punch and simultaneously quenching.
  • processing such as shot blasting is usually performed to remove the scale on the surface of the formed body.
  • processing such as shot blasting complicates the manufacturing process and leads to a decrease in productivity.
  • a steel plate for a hot press member a steel plate having a plating film on its surface has been proposed.
  • an Al-based plated steel plate as disclosed in Patent Document 2 is often used.
  • the Al-based plated steel sheet has an Al-based plated layer on the surface thereof.
  • this Al-based plated steel sheet is heated to an austenite region of Ac 3 or more, Fe of the base steel sheet rapidly diffuses into the plated layer to form an alloy layer of Al and Fe. Thereby, the production
  • tailored blank materials have been put into practical use as means for improving the yield of press products for automobile members.
  • tailored blanks are used for presses with blanks of the required size by matching the end faces of multiple types of steel sheets with different plate thicknesses and steel types and joining them by laser welding or plasma welding according to the purpose. It is a material.
  • a high strength steel plate is disposed in a portion requiring high strength
  • a rust-proof steel plate is disposed in a portion requiring corrosion resistance
  • mild steel is disposed in other portions. It is possible to significantly reduce the weight and reduce the cost while ensuring the characteristics.
  • Patent Document 3 discloses a technique for applying hot press molding to a tailored blank material.
  • a high-strength portion and a low-strength portion (plate) are secured while ensuring good shape freezing by performing press molding and quenching in a state where the tailored blank material is heated to a high temperature. It is possible to integrally form a member having both a thin steel plate and a portion formed from a steel plate with low hardenability.
  • Patent Document 5 discloses a technique in which an Al-based plating layer of a portion to be welded on a plate is removed in advance and welded.
  • Patent Document 6 discloses a tailored blank for hot stamping formed by butt-welding Al plated steel sheets having different strengths and laser welding. That is, in Patent Document 6, in order to obtain a tailored blank, the average concentration of Al in the weld metal formed by butt laser welding is 0.3 mass% or more and 1.5 mass% or less, and the Ac 3 point temperature of the weld metal is 1250. The product of the hardness of the weld metal after hot stamping and the thickness of the thinnest part of the weld metal is higher than the product of the hardness and thickness of the steel sheet on the low strength side after hot stamping. Thus, it is disclosed that the steel sheets to be butt welded are combined and welded.
  • Patent Document 7 discloses that the amount of oxygen in the weld metal is reduced by suppressing the oxygen content of the welded portion of the Derard blank material to 0.005% by mass or less, thereby austenite grains during heating of the hot press.
  • a technique for manufacturing a hot press member in which hardenability during mold forming and cooling is ensured by suppressing the refinement of the diameter, and the welded portion is sufficiently baked.
  • Patent Document 5 the method of removing and welding the Al-based plating layer described in Patent Document 5 requires an additional step of removing the plating layer. Moreover, when a plating layer is removed widely, there exists a problem that the part inferior to corrosion resistance increases.
  • concentration of Al of the weld metal of patent document 6 to 0.3 mass% or less 1.5 mass% or more is a butt
  • the average concentration of Al in the weld metal such as the target position of the laser, which makes it difficult to select welding conditions.
  • Patent Document 6 mentions the adjustment of the Al concentration in the weld metal by adding a filler wire, but in this case, there is a problem of an increase in cost.
  • Patent Document 7 there is no mention about the influence of plating, and depending on the plating composition and the basis weight of plating, sufficient welding cannot be put into the weld metal in cooling after hot pressing, Sufficient strength cannot be secured in weld metal. Further, even if the method of Patent Document 7 is used, the weld metal may be softer than the base metal after hot pressing, and there is a risk of fracture at the weld when a destructive test is performed on actual parts. There is.
  • the present invention has been developed in view of the above-described present situation, and Al is mixed into the weld metal such as removal of a plating layer and addition of a filler wire, which are necessary when obtaining a tailored blank material from an Al-based plated steel sheet. It aims at providing the tailored blank hot press member which ensured sufficient intensity
  • a Zn-based plated steel sheet containing Zn as a main component is used to suppress the mixing of Al into the weld metal from the plated layer of the steel sheet during joining. It is effective. That is, since Zn has a boiling point as low as 907 ° C., it evaporates due to heat conduction from the weld metal during laser or plasma welding and does not enter the weld metal. In addition, since the Zn-based plating layer has a small Al content, the mixing of Al into the weld metal can also be suppressed. Therefore, by using a Zn-based plated steel sheet at the time of joining the steel sheets when obtaining the tailored blank material, it is possible to suppress the deterioration of the hardenability of the weld metal while ensuring the corrosion resistance.
  • the inventors have also made various studies on the components of the plating layer formed on the steel sheet surface.
  • Ni contained in the plating layer flows into the weld metal during welding,
  • the hardenability of the weld metal during cooling after hot pressing is improved and the strength of the weld metal is improved.
  • the gist configuration of the present invention is as follows. It is a hot press member made of a tailored blank material in which 1.2 or more plated steel plates are joined with their ends butted, All of the plating layers on the surface of the plated steel sheet are Zn-based plating layers,
  • the hot press member includes two or more parts formed from the plated steel sheets and a joint between at least one of the parts, When the thickness of the thinnest part in the joint is t w and the thickness of the thinnest part is t 0 , the relationship of t w / t 0 ⁇ 0.9 is satisfied, A hot-pressed member in which the tensile strengths of the above parts are all 1180 MPa or more.
  • a method for producing the hot press member according to 1 above The process of obtaining a tailored blank material by using two or more plated steel sheets having a Zn-based plating layer as a raw material, butting ends of the plated steel sheets and joining them by laser welding or plasma welding; A process in which the tailored blank is heated to a temperature range of Ac 3 transformation point to 1000 ° C., cooled, and hot pressed at a temperature of 600 ° C. or higher; A method for manufacturing a hot-pressed member.
  • the hot press member includes two or more parts formed from the plated steel sheets and a joint between at least one of the parts, When the thickness of the thinnest part in the joint is t w and the thickness of the thinnest part is t 0 , the relationship of t w / t 0 ⁇ 0.8 is satisfied, A hot-pressed member in which the tensile strengths of the above parts are all 1180 MPa or more.
  • a method for manufacturing the hot press member according to 3 above Using two or more plated steel sheets with Zn-Ni alloy plating layer containing 10 to 25 mass% of Ni and having an adhesion amount of 10 g / m 2 or more and 90 g / m 2 or less on one side of the steel sheet. , By matching the ends of the plated steel sheets and joining them by laser arc hybrid welding with laser welding preceded by TIG welding, obtaining a tailored blank material; A step of heating the tailored blank material to a temperature range of Ac 3 transformation point to 1000 ° C., cooling and hot pressing at a temperature of 600 ° C. or higher; A method for manufacturing a hot-pressed member.
  • the corrosion resistance and the weld metal after hot pressing without controlling the mixing of Al into the weld metal such as removal of the plating layer or addition of filler wires. It is possible to stably obtain a tailored blank hot press member that secures sufficient strength.
  • the present invention relates to a hot press member using a tailored blank material in which two or more plated steel plates are joined with their end portions butted together.
  • the tailored blank material used here is a tailored blank material in which two or more plated steel sheets are joined with their end portions butted together without removing the plating layer in advance.
  • the hot press member of this invention has two or more site
  • the tensile strength of each part of the hot press member is 1180 MPa or more. The upper limit is not particularly limited, but is usually 2000 MPa.
  • a combination of the steel plate in the tailored blank material for example, a combination of a plated steel plate and a non-plated cold-rolled steel plate, which is applied to a part having both a part requiring rust prevention and a part not requiring rust prevention. Is mentioned. Thereby, cost reduction can be achieved. Moreover, as a combination other than the above, a part requiring particularly high strength (a part having a large load that can be borne by the product of the tensile strength and the cross-sectional area of the part concerned) and the strength up to that part are not required.
  • a steel plate with a large plate thickness forms a part that requires high strength after hot pressing
  • a steel plate with a small plate thickness forms a part that does not require that much strength.
  • the present invention is particularly directed to a hot-pressed member using a tailored blank material in which the latter thick steel plate and the thin steel plate are combined.
  • the hot press member which uses the tailored blank material comprised with the steel plate of the same board thickness is also contained in the object of this invention.
  • the plating layer formed on the surface of the above plated steel sheet will be described.
  • the plating layer of each plated steel sheet constituting the tailored blank material is not an Al-based plating that has been conventionally used, but a Zn-based plating. Thereby, in joining for making a tailored blank material, it is suppressed that Al mixes in a weld metal from a plating layer, and welding with a plating layer adhering is attained.
  • Al has a melting point of 660 ° C. and a boiling point of 2513 ° C., it melts but does not evaporate during welding with a laser or plasma. For this reason, in the case of using an Al-based plated steel sheet, if the plating layer is not removed in advance, molten Al is mixed into the weld metal at the time of joining by laser or plasma welding. On the other hand, when using a Zn-based plated steel sheet, Zn has a boiling point of 907 ° C, which is a relatively low temperature. Therefore, during laser or plasma welding, heat evaporates before reaching the laser or plasma arc due to heat conduction from the weld metal. .
  • Zn is not mixed in the weld metal and does not affect the hardenability of the weld metal in cooling after hot pressing. Therefore, when using a Zn-based plated steel sheet for the steel sheet constituting the tailored blank material, it is not necessary to add a step of removing the plating layer in advance as in the case of the Al-based plated steel sheet, and the plated layer is adhered. As-is welding is possible.
  • Examples of the Zn-based plated layer of the plated steel sheet include a pure Zn plated layer, a hot dip galvanized layer, an alloyed hot dip galvanized layer, and a Zn—Ni alloy plated layer containing a predetermined amount of Ni.
  • the hot dip galvanized layer contains Al: 0.01 to 1.0% by mass and inevitable impurities in addition to Zn.
  • the alloyed hot-dip galvanized layer contains Al: 0.01 to 1.0 mass%, Fe: 7 to 15 mass%, and unavoidable impurities.
  • the preferred adhesion amount of the plating per one surface of the steel sheet when forming a pure Zn plating layer, a hot dip galvanizing layer, or an alloyed hot dip galvanizing layer is not particularly limited, but is 30 to 90 g / m 2. It is preferable to set it as the range. If the adhesion amount of the plating per one surface of the steel sheet is less than 30 g / m 2, there is a concern that the corrosion resistance after coating is deteriorated. On the other hand, when the adhesion amount of the plating per one surface of the steel plate exceeds 90 g / m 2 , the adhesion is lowered and the cost is increased.
  • the amount of Al mixed in the weld metal increases during joining for making a tailored blank material, and there is a concern that the strength of the weld metal may be reduced. .
  • the adhesion amount of the plating per one surface of the steel sheet in the pure Zn plating layer, the hot dip galvanizing layer or the alloyed hot dip galvanizing layer is in the range of 30 to 90 g / m 2 . More preferably, it is in the range of 50 to 70 g / m 2 .
  • a Zn-Ni alloy plating layer containing a predetermined amount of Ni is preferable. That is, Zn evaporates due to heat during laser or plasma welding, whereas Ni has a high melting point, so it is taken into the weld metal without evaporating due to heat during welding.
  • Ni is an element that increases the carbon equivalent Ceq, as shown in the following formula (1). For this reason, at the time of joining for making a tailored blank material, Ni is mixed into the weld metal from the plating layer, and the carbon equivalent of the weld metal is higher than that of the steel plate itself to be joined.
  • Ni contained in the plating layer is a weld metal during laser welding or plasma welding for making a tailored blank material. It is taken in and improves the hardenability of the weld metal (joint part between the parts of the hot press member) at the time of cooling after hot pressing, and contributes to increasing the strength of the weld metal after hot pressing.
  • the melting point having a crystal structure of Ni 2 Zn 11 , NiZn 3 or Ni 5 Zn 21 is as high as 881 ° C. Since the ⁇ phase is formed, the zinc oxide formation reaction on the plating layer surface during the heating process can be suppressed to a minimum. Furthermore, since the plating layer remains as a ⁇ phase even after hot pressing, it exhibits excellent perforated corrosion resistance due to the sacrificial anticorrosive effect of Zn.
  • the ⁇ phase of Ni 2 Zn 11 , NiZn 3 and Ni 5 Zn 2 can be confirmed by an X-ray diffraction method or an electron diffraction method using TEM (Transmission Electron Microscopy).
  • the amount of Ni contained in the Zn—Ni alloy plating layer is less than 10% by mass, the effect of improving the hardenability due to the mixing of Ni from the plating layer into the weld metal is small.
  • the thickness of the thinnest part in the weld metal of the hot pressed member is 0.8 times the thickness of the thinnest part of the hot pressed member parts. If not, sufficient strength cannot be obtained in the weld metal after hot pressing.
  • the Ni content exceeds 25% by mass, Zn in the plating layer decreases, while Ni, which has a lower ionization tendency than Fe, increases, so the post-coating corrosion resistance (corrosion resistance when the plating is damaged) descend.
  • the amount of Ni contained in the Zn—Ni alloy plating layer is 10% by mass or more and 25% by mass or less. Preferably they are 11 mass% or more and 15 mass% or less. In the Zn—Ni alloy plating layer, components other than Zn and Ni are inevitable impurities.
  • Amount of plating adhesion per side of steel sheet 10g / m 2 or more and 90g / m 2 or less
  • the amount of plating per side of steel sheet is less than 10g / m 2 , a sufficient amount is required for joining to make a tailored blank. Ni is not taken into the weld metal, and the effect of improving the hardenability of the weld metal becomes insufficient. Moreover, there is a concern about deterioration of corrosion resistance after painting. For this reason, the adhesion amount of the plating per one surface of the steel sheet is set to 10 g / m 2 or more. Preferably it is 11 g / m 2 or more.
  • the adhesion amount of the plating per one surface of the steel sheet exceeds 90 g / m 2 , the effect of improving the corrosion resistance after coating is saturated, resulting in an increase in cost. For this reason, the adhesion amount of the plating per one surface of the steel sheet is 90 g / m 2 or less. Preferably it is 70 g / m 2 or less. Moreover, in the said Zn-Ni plating, Ni pre-plating may be given.
  • the formation method of a plating layer is not specifically limited, What is necessary is just to use well-known methods, such as electroplating.
  • the plating adhesion amount is obtained by dissolving the plating with hydrochloric acid, for example, and analyzing the dissolved solution by atomic absorption spectrometry or ICP emission spectroscopy to quantify the Zn adhesion amount or Ni adhesion amount, respectively. be able to.
  • the component composition of the base steel sheet of the plated steel sheet is not particularly limited, but the tensile strength at each part of the hot pressed member is 1180 MPa or more, and sufficient strength is obtained even in the weld metal, and high strength. From the viewpoint of molding a site requiring a good shape freezing property, it is preferable to have a component composition having a high carbon content and a high carbon equivalent.
  • C 0.15 to 0.5 mass%
  • Si 0.05 to 2.0 mass%
  • Mn 0.5 to 3 mass%
  • P 0.1 mass% or less
  • S 0.05 mass% or less
  • Al 0.1 mass% or less
  • N 0.01% by mass or less
  • % Representing the following component composition means “mass%” unless otherwise specified.
  • C 0.15-0.5% C is an element that improves the strength of the steel.
  • the amount is preferably 0.15% or more.
  • the C content is in the range of 0.15 to 0.5%.
  • Si 0.05-2.0% Si, like C, is an element that improves the strength of steel.
  • the amount is preferably 0.05% or more.
  • the amount of Si exceeds 2.0%, the occurrence of surface defects called red scale is significantly increased during hot rolling. Moreover, a rolling load increases and the ductility of a hot-rolled steel sheet is deteriorated.
  • the Si content exceeds 2.0%, the plating processability may be adversely affected during the Zn plating process. Therefore, the Si content is in the range of 0.05 to 2.0%.
  • Mn 0.5-3% Mn is an element effective for suppressing the ferrite transformation and improving the hardenability. Further, Mn is an element effective for lowering the heating temperature before hot pressing because it lowers the Ac 3 transformation point. In order to exhibit such an effect, the Mn content needs to be 0.5% or more. On the other hand, if the amount of Mn exceeds 3%, segregation occurs and the uniformity of various properties in each part of the steel plate and the hot-pressed member decreases. Therefore, the Mn content is in the range of 0.5 to 3%.
  • P 0.1% or less
  • the P amount is preferably 0.001% or more.
  • the S amount is preferably 0.0001% or more.
  • Al 0.1% or less
  • Al is an element which acts as a deoxidizer, and from the viewpoint of expressing such effects, the Al content is preferably 0.005% or more.
  • N 0.01% or less
  • the N content is 0.01% or less.
  • the N content is preferably 0.0001% or more.
  • Cr 0.01-1% Cr is an element effective for strengthening steel and improving hardenability. In order to exhibit such effects, the Cr content is preferably 0.01% or more. On the other hand, if the amount of Cr exceeds 1%, the cost is significantly increased. Therefore, the upper limit of the Cr content is preferably 1%.
  • Ti 0.2% or less Ti is an element effective for strengthening steel and improving toughness by refining.
  • nitride is formed in preference to B described below, it is also an effective element for exhibiting the effect of improving the hardenability by solute B.
  • the Ti content is preferably 0.01% or more.
  • the upper limit of Ti content is preferably 0.2%.
  • B 0.0005-0.08%
  • B is an element effective for improving the hardenability during cooling after hot pressing and improving toughness after hot pressing.
  • the B content is preferably 0.0005% or more.
  • the upper limit of the B amount is preferably 0.08%.
  • Sb has an effect of suppressing a decarburized layer generated in the steel sheet surface layer portion between the time when the steel plate is heated before hot pressing and the time when the steel plate is cooled by a series of processes of hot pressing.
  • the Sb content is preferably 0.003% or more.
  • the Sb content is preferably 0.003 to 0.03%.
  • the plated steel plate which comprises a tailored blank material was demonstrated.
  • the thickness of the thinnest portion in the weld metal (joint between portions of the heat-pressing member) of the hot press members and t w, the thinnest portion of the site of the hot press member When the thickness is t 0 , it is important for t w / t 0 to satisfy the following relationship depending on the type of the plating layer formed on the surface of the plated steel sheet.
  • the tailored blank hot press member is required not to break at the weld metal (joint portion between the hot press member portions).
  • a load that can be borne can be determined by the product of tensile strength and cross-sectional area.
  • a fracture occurs at a smaller value among the product of the tensile strength of the weld metal and the cross-sectional area at the thinnest part, and the product of the tensile strength and the cross-sectional area at each part of the hot press member.
  • the weld metal usually does not come into direct contact with the mold during molding, so the cooling rate during quenching becomes slow or the cooling start temperature decreases. Or for this reason, with a weld metal, the tensile strength tends to decrease, and there is a high risk of fracture with the weld metal.
  • the tailored blank hot-pressed member of the present invention uses a Zn-based plated steel sheet having a low Al content as a raw material, and suppresses the mixing of Al at the time of joining the steel sheets when obtaining a tailored blank material.
  • the strength reduction of the weld metal after hot pressing is suppressed.
  • the thickness t w of the thinnest portion of the weld metal of the hot press member is the thickness t 0 of the thinnest portion of the hot press member portions. If it is less than 0.9 times, the weld metal also tends to break.
  • the plating layer formed on the surface of the plated steel sheet used as the material is a Zn-based plating layer such as a pure Zn plating layer, a hot dip galvanizing layer, or an alloyed hot dip galvanizing layer
  • the thickness t w of the thinnest portion in the joint portion and the thickness t 0 of the thinnest portion of the hot pressed member the relationship of t w / t 0 ⁇ 0.9 is satisfied.
  • the plated layer formed on the surface of the plated steel sheet is a Zn—Ni alloy plated layer, and this Zn—Ni alloy plated layer contains 10% by mass or more and 25% by mass or less of Ni, and (When the adhesion amount per side of steel sheet is 10g / m 2 or more and 90g / m 2 or less)
  • the plating layer formed on the surface of the plated steel plate is a Zn-Ni alloy plating layer among the Zn-based plating layers, Ni is welded from the plating layer during joining to obtain the tailored blank material as described above. Since it is mixed in the metal, the weld metal is easily baked in the cooling after hot pressing.
  • the plating layer formed on the surface of the plated steel sheet is a Zn-Ni alloy plating layer, and this Zn-Ni alloy plating layer contains 10 mass% or more and 25 mass% or less of Ni and adheres to one surface of the steel sheet.
  • laser welding or plasma welding may be used for joining for making the tailored blank material.
  • the plated steel sheet having the above-described Zn-Ni alloy plating layer is used as a material, laser preceded by TIG welding. It is preferable to apply laser arc hybrid welding with welding. This is because, by using laser arc hybrid welding with laser welding preceded by TIG welding, the surface of the steel sheet, in particular, the plating layer is melted widely by the arc of the preceding TIG welding, while the weld metal part is Limited by laser welding. Thereby, the amount of Ni mixed into the weld metal from the plating layer can be increased, and the hardenability of the weld metal can be improved more advantageously.
  • these joining conditions are not particularly limited as long as they are conditions for through welding without humping.
  • the gap is set to 0 to 0.3 mm, and these steel plates are aligned and abutted on the opposite side of the laser irradiation surface, laser output: 2.0 to 6.0 kW, focal position: thick plate
  • the welding may be performed under the condition of ⁇ 1.5 mm around the surface of the steel plate on the side, welding speed: 2.0 to 6.0 m / min, and shielding gas: Ar or He.
  • TIG welding When laser arc hybrid welding with laser welding preceded by TIG welding is performed, the preceding TIG welding is performed with a receding angle of 0 ° to 60 ° and a distance between the electrode and the steel plate on the thick plate side of 10 to 20 mm.
  • Arc current 80 A to 200 A (DCRP)
  • Shielding gas He or Ar
  • Target position Laser irradiation position to 10 mm in front of laser irradiation position
  • laser welding Laser output: 2.0 to 6.0 kW
  • Welding speed 2.0 to What is necessary is just to weld on the conditions of the range of +/- 1.5mm centering on the steel plate surface of 6.0m / min
  • shielding gas Ar or He
  • a focal point position thick plate side.
  • the heating temperature before hot pressing is set to the Ac 3 transformation point or more is to form a hard phase such as a martensite phase by rapid cooling after hot pressing, thereby increasing the strength of the member.
  • the upper limit of the heating temperature before hot pressing was set to 1000 ° C because a large amount of oxide layer formed on the surface of the plating layer when the temperature exceeded 1000 ° C. This is because it becomes a material layer.
  • the heating temperature here means the highest temperature reached of the steel sheet.
  • Ac 3 937.2 ⁇ 476.5 [% C] +56 [% Si] ⁇ 19.7 [% Mn] ⁇ 16.3 [% Cu] ⁇ 26.6 [% Ni] ⁇ 4.9 [% Cr] +38.1 [% Mo] +124.8 [ % V] +136.3 [% Ti] +198.4 [% Al] +3315 [% B] (2)
  • [% M] indicates the content (mass%) of the M element.
  • the average temperature rising rate during heating before hot pressing is 60 ° C./s or more
  • the formation of a thick oxide layer on the surface of the plating layer can be more advantageously suppressed, and resistance spot weldability can be further improved.
  • generation of the oxide layer in a plating layer surface increases, so that the high temperature residence time to which a steel plate is exposed to high temperature conditions becomes long. Therefore, the higher the average temperature rising rate, the shorter the high temperature residence time, and as a result, the generation of the oxide layer on the plating layer surface can be suppressed.
  • the holding time at the heating temperature is not particularly limited, but a shorter time is preferable in order to suppress the formation of the oxide layer.
  • the holding time may be 0 seconds (it is not necessary to hold it).
  • heating by an electric furnace or a gas furnace flame heating, current heating, high-frequency heating, induction heating, and the like can be given.
  • energization heating, high-frequency heating, induction heating, and the like are suitable for setting the average temperature rising rate to 60 ° C./s or higher.
  • the heated tailored blank is allowed to cool and hot pressed at a temperature of 600 ° C. or higher. This is because, in the case of the above-described steel sheet of component system, when it is allowed to cool to less than 600 ° C., the ferrite phase starts to form before hot pressing, and sufficient tensile strength cannot be obtained. is there.
  • the upper limit of the hot press starting temperature is not particularly limited, but is usually about 800 ° C.
  • C 0.23%, Si: 0.25%, Mn: 1.2%, P: 0.01%, S: 0.01%, Al: 0.03%, N: 0.005%, Cr: 0.2%, Ti: Cold-rolled steel sheet containing 0.02%, B: 0.0022%, Sb: 0.008%, the balance being Fe and inevitable impurities, and various sheet thicknesses with Ac 3 transformation point of 833 ° C (steel type) a), and by mass%, C: 0.23%, Si: 0.25%, Mn: 2.0%, P: 0.02%, S: 0.01%, Al: 0.03%, N: 0.004%, with the balance being Fe and Cold-rolled steel sheets (steel type b) having a component composition consisting of inevitable impurities and various thicknesses with an Ac 3 transformation point of 808 ° C.
  • FIG. 1 denotes a steel plate A (a portion formed from the steel plate A in the hot press member, hereinafter also referred to as a portion A), and 2 denotes a steel plate B (a portion formed from the steel plate B in the hot press member).
  • 3 is a weld metal (joint between part A and part B), t A is the plate thickness of steel plate A, t B is the plate thickness of steel plate B, and t w is hot The thickness of the thinnest part in the joint between the part A and the part B of the hot press member obtained after pressing, t 0 is the thickness of the part B.
  • Laser welding uses a YAG laser with a focused diameter of 0.6 mm, laser output: 3.0 kW, welding speed: 3 m / min, shielding gas: Ar (20 L / min), focal position: steel plate on the thick plate side (steel plate) A) Performed under surface conditions.
  • laser arc hybrid welding with laser welding preceded by TIG welding is the same as TIG welding, with a receding angle of 60 degrees, a distance between electrode and steel plate: 15 mm, arc current: 100 A (DCRP), shielding gas: Ar (20L / min), Target position: Same as laser irradiation position, laser welding uses a YAG laser with a focused diameter of 0.6mm, laser power: 3.0kW, welding speed 3m / min, shielding gas: Ar (20 L / min), focal position: It was performed under the condition of the steel plate (steel plate A) surface on the thick plate side. Also, the thickness of the joint was adjusted by changing the gap between the steel plates in the range of 0 to 0.4 mm.
  • each tailored blank was heated in an electric furnace in the atmosphere to 900 ° C. over 180 seconds (measured at the temperature of the steel plate (steel plate A) on the thick plate side), and without being held at that temperature, After taking out and air-cooling to 700 ° C. in the atmosphere, hot pressing was performed by immediately sandwiching with a mold to obtain a hot pressing member having a shape as shown in FIG.
  • tensile test pieces having the shape of JIS Z22415 were cut out from the parts A and B of the hot press member obtained, and the tensile strengths of the parts A and B were measured.
  • the measurement results are shown in Table 1.
  • a tensile test piece of a butt-welded joint according to JIS Z3121 1A was taken from the joint between the part A and the part B, and samples for observing the cross-sectional shape of the joint were taken from both sides.
  • the thickness t w (mm) of the thinnest part of the weld metal is measured from the sample for observing the cross-sectional shape, and the t w (mm) and the part B are measured. From the thickness t 0 (mm), t w / t 0 was determined.
  • the value of t w / t 0 is shown in Table 1.
  • the corrosion resistance evaluation after coating of the obtained tailored blank hot press member was performed.
  • 70 mm ⁇ 150 mm test pieces were sampled from the parts A and B of the hot press member, and subjected to chemical conversion treatment and electrodeposition coating.
  • the chemical conversion treatment was performed under standard conditions using PB-L3020 manufactured by Nippon Parkerizing Co., Ltd.
  • the electrodeposition coating was performed using GT-10 manufactured by Kansai Paint Co., Ltd. under the conditions of baking at 170 ° C. for 20 minutes after coating at a voltage of 200 V, and the film thickness was 20 ⁇ m.
  • the obtained electrodeposition coating test piece was cross-cut with a cutter knife, and after sealing the non-scratched surface and end, 480 hours of salt water in accordance with JIS Z2371 (2000) A spray test was performed. And the test piece after a test was washed with water and dried, the peeling test of a wound part was done with the cellophane adhesive tape, and the one-side maximum peeling width was measured. From the obtained one-side maximum width, the corrosion resistance after painting was evaluated according to the following criteria. ⁇ : Maximum peel width on one side ⁇ 5mm ⁇ : One side maximum peel width> 5mm

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)
  • Laser Beam Processing (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

 2枚以上のめっき鋼板が端部同士を突き合わせて接合されたテーラードブランク材を用いてなる、熱間プレス部材であって、上記熱間プレス部材は、上記各めっき鋼板より形成された2以上の部位と、少なくとも1つの上記部位間の接合部とをそなえ、上記接合部における最も薄い部分の厚さをtwとし、上記部位のうちの厚さが最も薄い部位の厚さをt0としたとき、tw/t0をめっき鋼板のめっき層の種類に応じて適正に制御し、上記部位の引張強さをいずれも1180MPa以上とする。

Description

熱間プレス部材およびその製造方法
 本発明は、自動車の車体構造部材に用いて好適な熱間プレス部材に関するものである。
 また、本発明の熱間プレス部材は、板厚や鋼種が異なる複数の鋼板が端部同士を突き合わせて接合されたテーラードブランク材を用いてなる、熱間プレス部材(以下、テーラードブランク熱間プレス部材ともいう)を対象とする。
 自動車の燃費を向上させるための自動車車体の軽量化、および衝突安全性の向上に対する要求から、使用する鋼板の高強度化および板厚低減の努力が続けられている。しかし、鋼板の高強度化に伴い、通常、プレス加工性は低下するため、鋼板を所望の部材形状に加工することが困難になる場合が多くなっている。
 ここで、特許文献1には、成形の容易化と高強度化の両立を図った熱間プレス成形と呼ばれる成形技術、すなわち、プレス加工が容易になるように鋼板を加熱して軟化した後、ダイとパンチからなる金型を用いて、加熱した鋼板を成形すると同時に急冷することにより、成形の容易化と高強度化の両立を図る成形技術が提案されている。
 しかし、この熱間プレス成形では、プレス成形後に高い強度を得るため、熱間プレス成形前に鋼板をAc点以上の高温に加熱することが必要である。このため、鋼板表面にはスケール(鉄酸化物)が生成し、そのスケールが熱間プレス成形時に剥離して、金型、さらには熱間プレス成形後の成形体(部材)表面を損傷させるという問題がある。
 また、成形体表面に残ったスケールは、外観不良や塗装密着性の低下の原因になるだけでなく、電気抵抗が高く、車体の組み立てにおいて主に用いられる抵抗スポット溶接が困難になるという問題がある。
 このため、熱間プレス成形を行う場合には、通常、ショットブラストなどの処理を行い、成形体表面のスケールを除去する。しかし、ショットブラストなどの処理は製造工程を複雑にし、生産性の低下を招く。
 このようなことから、熱間プレス前の加熱時におけるスケールの生成を抑制し、ショットブラストなどの処理なしで、熱間プレス後の部材における良好な塗装性や耐食性を確保することができ、さらには抵抗スポット溶接の施工も容易な熱間プレス部材用鋼板の開発が望まれている。
 このような熱間プレス部材用鋼板として、表面にめっき被膜を設けた鋼板が提案されており、例えば、特許文献2のようなAl系めっき鋼板が多く用いられている。
 ここで、Al系めっき鋼板は、その表面にAl系めっき層を有する。そして、このAl系めっき鋼板がAc点以上のオーステナイト域に加熱されると、下地鋼板のFeが急速にめっき層中に拡散してAlとFeとの合金層が形成される。これにより、スケールの生成が抑制される。この結果、酸洗やショットブラストなどの処理を行わずとも、熱間プレス成形後の熱間プレス部材の抵抗スポット溶接が可能となる。
 一方、自動車用部材のプレス品の歩留まりを向上させる手段としてテーラードブランク材が実用化されている。ここに、テーラードブランク材とは、目的に応じて、板厚や鋼種が異なる複数種類の鋼板の端面を突き合わせて、レーザ溶接やプラズマ溶接などによって接合し、必要な大きさのブランクとしたプレス用素材である。このような技術を用いて、例えば、高い強度が必要な部位には高強度鋼板を、耐食性が必要な部分には防錆鋼板を、その他の部位には軟鋼などを配置することにより、必要な特性を確保しつつ、大幅な軽量化およびコスト低減が可能となる。
 従来、このようなテーラードブランク材に対しては、冷間プレスによる成形が適用されてきた。しかし、近年の鋼板の高強度化に伴うスプリングバック等の成形性の問題は、テーラードブランク材でも同様に重要な課題となっている。
 そこで、特許文献3には、テーラードブランク材に対して熱間プレス成形を適用する技術が開示されている。
 この特許文献3の技術では、テーラードブランク材を高温に加熱した状態で、プレス成形、焼き入れを行うことにより、良好な形状凍結性を確保しつつ、高強度の部位と低強度の部位(板厚が薄い鋼板や焼き入れ性が低い鋼板から形成される部位)を併せ持つ部材を一体成形することを可能としている。
 しかし、上記特許文献3のような技術において、熱間プレス用めっき鋼板として広く実用化されているAl系めっき鋼板を用いる場合には、以下のような問題が生じることが、特許文献4などによって知られている。
 すなわち、テーラードブランク材とするためのレーザ溶接中に、Al系めっき層に含まれるAlが溶接金属中に混入する。これにより、熱間プレス後の冷却における溶接金属の焼き入れ性が低下し、熱間プレス後に得られる部材の溶接金属(接合部)の強度が低くなって、十分な強度が得られない場合があることが知られている。
 このような問題を解決するため、例えば、特許文献5には、板の溶接される部分のAl系めっき層を予め取り除いて溶接する技術が開示されている。
 また、特許文献6には、強度の異なるAlめっき鋼板を突き合わせレーザ溶接して形成したホットスタンプ用のテーラードブランクが開示されている。
 すなわち、特許文献6には、テーラードブランクを得るために、突き合わせレーザ溶接によって形成される溶接金属中のAlの平均濃度を0.3質量%以上1.5質量%以下とし、溶接金属のAc3点温度を1250℃以下とし、さらに、ホットスタンプ後の溶接金属の硬さと溶接金属の最も薄い部分の厚さの積の値が、低強度側の鋼板のホットスタンプ後の硬さと板厚の積の値より高くなるように、前記突き合わせ溶接する鋼板を組み合わせて溶接することが開示されている。
 さらに、特許文献7には、デーラードブランク材の溶接部の酸素量を0.005質量%以下に抑制することで溶接金属中の酸化物を低減し、これにより、熱間プレスの加熱時のオーステナイト粒径の微細化を抑制することで金型成形・冷却中の焼き入れ性を確保し、溶接部にも十分に焼きが入った熱間プレス部材を製造する技術が開示されている。
英国特許第1490535号公報 特開2003-82436号公報 特開2004‐58082号公報 特開平11-277266号公報 特表2009-534529号公報 特開2013-204090号公報 特許第4867319号公報
 しかし、特許文献5に記載のAl系めっき層を除去して溶接する方法は、めっき層を除去する追加工程が必要となる。また、めっき層を広く除去した場合、耐食性に劣る部分が多くなるという問題がある。
 また、特許文献6に記載の溶接金属のAlの平均濃度を0.3質量%以下1.5質量%以上に制限する溶接方法は、溶接部の隙間などの突き合わせ状態、鋼板の板厚、めっきの目付量、レーザの狙い位置など、溶接金属中のAlの平均濃度に影響する因子が多く、溶接条件の選定が難しいという問題がある。加えて、特許文献6では、フィラーワイヤの添加による溶接金属中のAl濃度の調整についても言及されているが、この場合には、コスト増加の問題がある。
 さらに、特許文献7では、めっきの影響については何ら言及されておらず、めっき組成やめっきの目付け量によっては、やはり熱間プレス後の冷却において溶接金属に十分な焼きを入れることができず、溶接金属において十分な強度を確保できない。また、特許文献7の方法を用いても、熱間プレス後において、母材よりも溶接金属の方が軟らかくなる場合があり、実部品で破壊試験を行った場合には溶接部で破断するおそれがある。
 本発明は、上記の現状に鑑み開発されたものであって、Al系めっき鋼板からテーラードブランク材を得る場合に必要となるめっき層の除去やフィラーワイヤの添加といった溶接金属中へのAlの混入制御を行うことなく、熱間プレス後の溶接金属(鋼板の接合部)において十分な強度を確保した、テーラードブランク熱間プレス部材を提供することを目的とする。
 また、本発明は、上記のテーラードブランク熱間プレス部材の製造方法を提供することを目的とする。
 さて、発明者らは、上記の目的を達成するため、鋭意検討を行った結果、以下の知見を得た。
(1)熱間プレスで素材とするテーラードブランク材を得るにあたり、接合時に鋼板のめっき層から溶接金属中へのAlの混入を抑制するには、主成分をZnとしたZn系めっき鋼板を用いることが有効である。
 すなわち、Znは、沸点が907℃と低温であるため、レーザまたはプラズマ溶接中に溶接金属からの熱伝導により蒸散し、溶接金属中には混入しない。また、Zn系めっき層ではAlの含有量が少ないため、溶接金属中へのAlの混入も抑制できる。
 そのため、テーラードブランク材を得る際の鋼板の接合時にZn系めっき鋼板を用いることにより、耐食性を確保しつつ、溶接金属の焼き入れ性の低下を抑制することができる。
(2)しかし、Zn系めっきであっても、純Znめっき層や溶融亜鉛めっき層、合金化溶融亜鉛めっき層を形成した鋼板を適用した場合、突き合わせ状態、および、突き合わせる端面の状態等によって、必ずしも熱間プレス後の溶接金属において十分な強度を確保することができなかった。
(3)そこで、発明者らは、熱間プレス後の溶接金属で十分な強度を確保すべく、さらに詳しく検討を行った。
 その結果、以下のことを見出した。
 すなわち、
(a)テーラードブランク材の素材鋼板として、純Znめっき層や溶融亜鉛めっき層、合金化溶融亜鉛めっき層といったZn系めっき鋼板を使用するとともに、
(b)熱間プレス部材おいて、溶接金属(熱間プレス後に各めっき鋼板より形成される部位(以下、熱間プレス部材の部位ともいう)間の接合部)における最も薄い部分の厚さを、熱間プレス部材の部位のうちの最も薄い部位の厚さの0.9倍以上にする、
ことにより、熱間プレス部材の溶接金属において十分な強度を確保することが可能となる。その結果、当該溶接金属における破断を有効に防止できる。
(4)また、発明者らは、鋼板表面に形成するめっき層の成分についても、種々検討を重ねた。
 その結果、Znを主成分として所定量のNiを添加するとともに、鋼板片面当たりのめっき付着量を所定の範囲に制御することで、めっき層に含まれるNiが溶接中、溶接金属に流れ込み、これにより、熱間プレス後の冷却時における溶接金属の焼き入れ性が向上して、溶接金属の強度が改善されることを見出した。
 そして、このようなZn-Ni合金めっき層を有する鋼板をテーラードブランク材の素材鋼板として使用する場合には、熱間プレス部材おいて、溶接金属(熱間プレス部材の部位間の接合部)における最も薄い部分の厚さを、熱間プレス部材の部位のうちの最も薄い部位の厚さの0.8倍以上とすることにより、熱間プレス部材の溶接金属において十分な強度を確保すること可能となり、その結果、当該溶接金属における破断を有効に防止できる、ことを併せて見出した。
 本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.2枚以上のめっき鋼板が端部同士を突き合わせて接合されたテーラードブランク材を用いてなる、熱間プレス部材であって、
 前記めっき鋼板の表面におけるめっき層がいずれもZn系めっき層であり、
 また、上記熱間プレス部材は、上記各めっき鋼板より形成された2以上の部位と、少なくとも1つの上記部位間の接合部とをそなえ、
 上記接合部における最も薄い部分の厚さをtwとし、上記部位のうちの厚さが最も薄い部位の厚さをt0としたとき、tw/t0≧0.9の関係を満足し、
 上記部位の引張強さがいずれも1180MPa以上である、熱間プレス部材。
2.前記1に記載の熱間プレス部材を製造するための方法であって、
 Zn系めっき層を有する2枚以上のめっき鋼板を素材とし、該めっき鋼板の端部同士を突き合わせて、レーザ溶接またはプラズマ溶接により接合することにより、テーラードブランク材を得る工程と、
 上記テーラードブランク材を、Ac変態点~1000℃の温度域に加熱後、冷却し、600℃以上の温度で熱間プレスする工程、
とをそなえる、熱間プレス部材の製造方法。
3.2枚以上のめっき鋼板が端部同士を突き合わせて接合されたテーラードブランク材を用いてなる、熱間プレス部材であって、
 上記めっき鋼板の表面におけるめっき層がいずれもZn-Ni合金めっき層であり、該Zn-Ni合金めっき層は、10質量%以上25質量%以下のNiを含み、かつ鋼板片面当たりの付着量が10g/m2以上90g/m2以下であり、
 また、上記熱間プレス部材は、上記各めっき鋼板より形成された2以上の部位と、少なくとも1つの上記部位間の接合部とをそなえ、
 上記接合部における最も薄い部分の厚さをtwとし、上記部位のうちの厚さが最も薄い部位の厚さをt0としたとき、tw/t0≧0.8の関係を満足し、
 上記部位の引張強さがいずれも1180MPa以上である、熱間プレス部材。
4.前記3に記載の熱間プレス部材を製造するための方法であって、
 10質量%以上25質量%以下のNiを含み、かつ鋼板片面当たりの付着量が10g/m2以上90g/m2以下であるZn-Ni合金めっき層を有する2枚以上のめっき鋼板を素材とし、該めっき鋼板の端部同士を突き合わせて、TIG溶接が先行するレーザ溶接とのレーザアークハイブリッド溶接により接合することにより、テーラードブランク材を得る工程と、
 前記テーラードブランク材を、Ac変態点~1000℃の温度域に加熱後、冷却し、600℃以上の温度で熱間プレスする工程、
とをそなえる、熱間プレス部材の製造方法。
 本発明によれば、めっき層の除去やフィラーワイヤの添加といった溶接金属中へのAlの混入制御を行うことなく、耐食性や熱間プレス後の溶接金属(熱間プレス部材の部位間の接合部)における十分な強度を確保した、テーラードブランク熱間プレス部材を安定して得ることができる。
めっき鋼板同士を突き合わせて接合することにより得たテーラードブランク材の概略断面図である。
 以下、本発明を具体的に説明する。
 本発明は、2枚以上のめっき鋼板が端部同士を突き合わせて接合されたテーラードブランク材を用いてなる、熱間プレス部材に関するものである。なお、ここで用いるテーラードブランク材は、2枚以上のめっき鋼板を、予めめっき層を除去することなく、端部同士を突き合わせて接合したテーラードブランク材である。
 また、本発明の熱間プレス部材は、テーラードブランク材を構成する各めっき鋼板より形成された2以上の部位と、少なくとも1つの部位間の接合部とをそなえるものである。
 また、熱間プレス部材の各部位の引張強さは、いずれも1180MPa以上となる。なお、上限は特に限定されるものではないが、通常、2000MPaである。
 ここで、テーラードブランク材における鋼板の組み合わせとしては、例えば、防錆が必要な部位と防錆を必要としない部位を併せ持つ部品に対して適用される、めっき鋼板と非めっきの冷延鋼板の組み合わせが挙げられる。これにより、低コスト化が達成できる。
 また、上記以外の組み合わせとしては、特に高い強度を必要とする部位(当該部位の引張強さと断面積の積で表される負担可能な負荷が大きい部位)と、そこまでの強度を必要としない部位を併せ持つ部品に対して適用される、板厚の大きな鋼板(例えば、1.2~2.3mm程度)と板厚の小さな鋼板(例えば、0.8~1.8mm程度)の組み合わせが挙げられる。これにより、軽量化と低コスト化を同時に達成できる。ここで、板厚の大きな鋼板は、熱間プレス後に高い強度を必要とする部位を形成し、板厚の小さな鋼板は、そこまでの強度を必要としない部位を形成する。
 本発明は、特に、後者の板厚の大きな鋼板と板厚の小さな鋼板を組み合わせたテーラードブランク材を用いてなる、熱間プレス部材を対象とするものである。
 ただし、本発明の対象には、同じ板厚の鋼板により構成されるテーラードブランク材を用いてなる、熱間プレス部材も含まれる。
 次に、上記しためっき鋼板の表面に形成するめっき層について説明する。
 本発明では、テーラードブランク材を構成する各めっき鋼板のめっき層を、従来多く用いられているAl系めっきではなく、Zn系めっきとしている。
 これにより、テーラードブランク材とするための接合において、溶接金属中にめっき層からAlが混入することが抑制され、めっき層が付着したままでの溶接が可能となる。
 すなわち、Alは、融点が660℃、沸点が2513℃であるため、レーザまたはプラズマでの溶接時には、溶融するものの蒸散しない。このため、Al系めっき鋼板を用いる場合には、めっき層を予め除去しないと、レーザまたはプラズマ溶接などによる接合時に、溶融したAlが溶接金属中に混入する。
 一方、Zn系めっき鋼板を用いる場合、Znは、沸点が907℃と比較的低温であるため、レーザまたはプラズマ溶接中に、溶接金属からの熱伝導により、レーザまたはプラズマアークの到達前に蒸散する。このため、Znは、溶接金属中に混入せず、熱間プレス後の冷却における溶接金属の焼き入れ性に影響しない。
 よって、テーラードブランク材を構成する鋼板に、Zn系めっき鋼板を用いる場合には、Al系めっき鋼板の場合のように予めめっき層を除去する工程を加えることを必要とせず、めっき層が付着したままでの溶接が可能となる。
 ここに、めっき鋼板のZn系めっき層としては、純Znめっき層や溶融亜鉛めっき層、合金化溶融亜鉛めっき層、所定量のNiを含有させたZn-Ni合金めっき層などが挙げられる。
 なお、純Znめっき層において、Zn以外の成分は不可避的不純物である。また、溶融亜鉛めっき層には、Zn以外にAl:0.01~1.0質量%および不可避的不純物が含まれる。合金化溶融亜鉛めっき層には、Zn以外にAl:0.01~1.0質量%、Fe:7~15質量%および不可避的不純物が含まれる。
 さらに、純Znめっき層や溶融亜鉛めっき層、合金化溶融亜鉛めっき層を形成する場合の好適な鋼板片面当たりのめっきの付着量は、特に限定されるものではないが、30~90g/m2の範囲とすることが好ましい。鋼板片面当たりのめっきの付着量が30g/m2未満になると塗装後耐食性の劣化が懸念される。一方、鋼板片面当たりのめっきの付着量が90g/m2を超えると、密着性が低下し、また、コストの増加を招く。さらに、溶融亜鉛めっき層や合金化溶融亜鉛めっき層の場合には、テーラードブランク材とするための接合中に、溶接金属中に混入するAl量が増加し、溶接金属の強度低下が懸念される。
 このため、純Znめっき層や溶融亜鉛めっき層、合金化溶融亜鉛めっき層における鋼板片面当たりのめっきの付着量は、30~90g/m2の範囲とすることが好ましい。より好ましくは50~70g/m2の範囲である。
 また、上記したZn系めっき層のなかでも、所定量のNiを含有させたZn-Ni合金めっき層とすることが好適である。
 すなわち、Znがレーザまたはプラズマ溶接時の熱で蒸散するのに対して、Niはその融点が高いために溶接時の熱でも蒸散することなく、溶接金属中に取り込まれる。ここで、Niは次式(1)に示すとおり、炭素当量Ceqを増加させる元素である。このため、テーラードブランク材とするための接合時に、Niがめっき層から溶接金属中に混入し、溶接金属の炭素当量が接合される鋼板そのものよりも高くなる。その結果、熱間プレス時の溶接金属の焼き入れ性が高まり、熱間プレス後の溶接金属(熱間プレス部材の部位間の接合部)で高い強度が得られるようになるのである。
 Ceq=[%C]+[%Mn]/6+([%Cu]+[%Ni])/15+([%Cr]+[%Mo]+[%V])/5・・・(1)
 ただし、[%M]は、M元素の含有量(質量%)を示す。
 加えて、このZn-Ni合金めっき層については、以下の要件を満足させることが重要である。
Zn-Ni合金めっき層に含まれるNi量:10質量%以上25質量%以下
 上記したように、めっき層中に含まれるNiは、テーラードブランク材とするためのレーザ溶接またはプラズマ溶接時に、溶接金属中に取り込まれ、熱間プレス後の冷却時における溶接金属(熱間プレス部材の部位間の接合部)の焼き入れ性を高めて、熱間プレス後の溶接金属の高強度化に寄与する。
 また、Zn-Ni合金めっき層に含まれるNi量を10~25質量%とすることにより、Ni2Zn11、NiZn3、Ni5Zn21のいずれかの結晶構造を有する融点が881℃と高いγ相が形成されるので、加熱過程におけるめっき層表面での酸化亜鉛形成反応を最小限に抑制することができる。さらに、熱間プレス後にも、めっき層はγ相として残存するため、Znの犠牲防食効果により優れた穴あき耐食性を発揮する。
 なお、Ni量が10~25質量%におけるγ相の形成は、Ni-Zn合金の平衡状態図とは必ずしも一致しないが、これは電気めっき法などで行われるめっき層の形成反応が非平衡で進行するためと考えられる。また、Ni2Zn11、NiZn3、Ni5Zn2のγ相は、X線回折法やTEM(Transmission Electron Microscopy)を用いた電子線回折法により確認できる。
 ここに、Zn-Ni合金めっき層に含まれるNi量が10質量%未満では、めっき層から溶接金属へのNi混入による焼き入れ性の向上効果が少ない。特に、熱間プレス部材の溶接金属(熱間プレス部材の部位間の接合部)における最も薄い部分の厚さが、熱間プレス部材の部位のうちの最も薄い部位の厚さの0.8倍に満たない場合には、熱間プレス後の溶接金属において十分な強度が得られなくなる。一方、Ni量が25質量%を超えると、めっき層中のZnが減少する一方、Feよりもイオン化傾向の低いNiが増加するため、塗装後耐食性(めっきに傷がついたときの耐食性)が低下する。また、材料コストの増加といった問題も生じる。
 従って、Zn-Ni合金めっき層に含まれるNi量は10質量%以上25質量%以下とする。好ましくは11質量%以上15質量%以下である。
 なお、Zn-Ni合金めっき層において、ZnおよびNi以外の成分は不可避的不純物である。
鋼板片面当たりのめっきの付着量:10g/m2以上90g/m2以下
 鋼板片面当たりのめっきの付着量が10g/m2未満になると、テーラードブランク材とするための接合時に、十分な量のNiが溶接金属中に取り込まれず、溶接金属の焼き入れ性向上効果が不十分となる。また、塗装後耐食性の劣化も懸念される。このため、鋼板片面当たりのめっきの付着量は10g/m2以上とする。好ましくは11g/m2以上である。
 一方、鋼板片面当たりのめっきの付着量が90g/m2を超えると、塗装後耐食性の向上効果が飽和し、コストの増加を招く。このため、鋼板片面当たりのめっきの付着量は90g/m2以下とする。好ましくは70g/m2以下である。
 また、上記Zn-Niめっきにおいては、Niプレめっきが施されていても良い。
 なお、めっき層の形成方法は特に限定されず、電気めっきなど公知の方法を用いればよい。また、めっき付着量は、めっきを例えば塩酸などにより溶解し、その溶解液を原子吸光分析法やICP発光分光分析法にて分析してZn付着量やNi付着量をそれぞれ定量することにより、求めることができる。
 さらに、めっき鋼板の下地鋼板の成分組成は特に限定されるものではないが、熱間プレス部材の各部位における引張強さを1180MPa以上とし、かつ溶接金属においても十分な強度を得るとともに、高い強度を必要とする部位を形状凍結性良く成形する観点からは、炭素含有量および炭素当量が高い成分組成とすることが好ましい。
 特に、質量%で、C:0.15~0.5質量%、Si:0.05~2.0質量%、Mn:0.5~3質量%、P:0.1質量%以下、S:0.05質量%以下、Al:0.1質量%以下、N:0.01質量%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する熱延鋼板および冷延鋼板とすることが好ましい。
 以下、これらの好適成分組成について説明する。なお、以下の成分組成を表す「%」は、特に断らない限り「質量%」を意味するものとする。
C:0.15~0.5%
 Cは、鋼の強度を向上させる元素であり、熱間プレス部材の各部位における引張強さ(TS)を1180MPa以上にするには、その量を0.15%以上とすることが好ましい。一方、C量が0.5%を超えると、鋼板のブランキング加工性が著しく低下する。したがって、C量は0.15~0.5%の範囲とする。
Si:0.05~2.0%
 Siは、Cと同様、鋼の強度を向上させる元素であり、熱間プレス部材の各部位における引張強さ(TS)を1180MPa以上にするには、その量を0.05%以上とすることが好ましい。一方、Si量が2.0%を超えると、熱間圧延時に赤スケールと呼ばれる表面欠陥の発生が著しく増大する。また、圧延荷重が増大し、熱延鋼板の延性の劣化を招く。さらに、Si量が2.0%を超えると、Znめっき処理を施す際に、めっき処理性に悪影響を及ぼす場合がある。したがって、Si量は0.05~2.0%の範囲とする。
Mn:0.5~3%
 Mnは、フェライト変態を抑制して焼き入れ性を向上させるのに有効な元素である。また、Mnは、Ac変態点を低下させるので、熱間プレス前の加熱温度を低下させるのにも有効な元素である。このような効果の発現には、Mn量を0.5%以上とする必要がある。一方、Mn量が3%を超えると、偏析して鋼板および熱間プレス部材の各部位における諸特性の均一性が低下する。したがって、Mn量は0.5~3%の範囲とする。
P:0.1%以下
 P量が0.1%を超えると、Pが偏析して、鋼板および熱間プレス部材の各部位における諸特性の均一性が低下する。また、靭性も著しく低下する。したがって、P量は0.1%以下とする。ただし、過度の脱P処理は精錬コストの高騰を招くため、P量は0.001%以上とすることが好ましい。
S:0.05%以下
 S量が0.05%を超えると、熱間プレス部材の各部位における靭性が低下する。したがって、S量は0.05%以下とする。ただし、過度の脱S処理は精錬コストの高騰を招くため、S量は0.0001%以上とすることが好ましい。
Al:0.1%以下
 Al量が0.1%を超えると、鋼板のブランキング加工性や焼き入れ性を低下させる。したがって、Al量は0.1%以下とする。なお、Alは脱酸剤として作用する元素であり、このような効果を発現させる観点からは、Al量は0.005%以上とすることが好ましい。
N:0.01%以下
 N量が0.01%を超えると、熱間圧延時や熱間プレス前の加熱時にAlNの窒化物を形成し、鋼板のブランキング加工性や焼き入れ性を低下させる。したがって、N量は0.01%以下とする。ただし、過度の脱N処理は精錬コストの高騰を招くため、N量は0.0001%以上とすることが好ましい。
 以上、基本成分について説明したが、必要に応じて、Cr、Ti、BおよびSbから選ばれた少なくとも1種の元素を適宜含有させることができる。
Cr:0.01~1%
 Crは、鋼を強化するとともに、焼き入れ性を向上させるのに有効な元素である。こうした効果の発現のためには、Cr量を0.01%以上とすることが好ましい。一方、Cr量が1%を超えると、著しいコスト高を招く。したがって、Cr量の上限は1%とすることが好ましい。
Ti:0.2%以下
 Tiは、鋼を強化するとともに、細粒化により靭性を向上させるのに有効な元素である。また、次に述べるBよりも優先して窒化物を形成するため、固溶Bによる焼き入れ性の向上効果を発現させるのに有効な元素でもある。このような効果の発現には、Ti量を0.01%以上とすることが好ましい。ただし、Ti量が0.2%を超えると、熱間圧延時の圧延荷重が極端に増大し、また、熱間プレス部材の靭性が低下する。したがって、Ti量の上限は0.2%とすることが好ましい。
B:0.0005~0.08%
 Bは、熱間プレス後の冷却時における焼き入れ性の向上や熱間プレス後の靭性の向上に有効な元素である。こうした効果の発現には、B量を0.0005%以上とすることが好ましい。一方、B量が0.08%を超えると、熱間圧延時の圧延荷重が極端に増大し、また、熱間圧延後にマルテンサイト相やベイナイト相が生じて鋼板の割れなどが生じる。従って、B量の上限は0.08%とすることが好ましい。
Sb:0.003~0.03%
 Sbは、熱間プレス前に鋼板を加熱してから熱間プレスの一連の処理によって鋼板を冷却するまでの間に、鋼板表層部に生じる脱炭層を抑制する効果を有する。このような効果の発現には、Sb量を0.003%以上とすることが好ましい。一方、Sb量が0.03%を超えると、圧延荷重の増大を招き、生産性を低下させる。したがって、Sb量は0.003~0.03%とすることが好ましい。
 上記以外の成分はFeおよび不可避的不純物である。
 以上、テーラードブランク材を構成するめっき鋼板について説明した。
 また、本発明では、熱間プレス部材の溶接金属(熱間プレス部材の部位間の接合部)における最も薄い部分の厚さをtwとし、熱間プレス部材の部位のうちの最も薄い部位の厚さをt0としたとき、tw/t0について、めっき鋼板の表面に形成しためっき層の種類に応じて、以下の関係を満足させることが重要である。
tw/t0≧0.9(めっき鋼板の表面に形成しためっき層が、純Znめっき層や溶融亜鉛めっき層、合金化溶融亜鉛めっき層などといったZn系めっき層である場合)
 テーラードブランク熱間プレス部材では、溶接金属(熱間プレス部材の部位間の接合部)で破断しないことが求められる。
 ここに、テーラードブランク熱間プレス部材では、引張強さと断面積の積によって、負担可能な負荷を求めることができる。このため、溶接金属の引張強さとその最薄部における断面積との積と、熱間プレス部材の各部位における引張強さとその断面積の積のうち、値が小さい方で破断が生じることとなる。
 なお、特に、板厚の異なる鋼板同士を接合したテーラードブランク材では、通常、溶接金属は成形時に直接金型と接触しないため、焼き入れ時の冷却速度が遅くなったり、冷却開始温度が低くなったりする。このため、溶接金属では、引張強さが低下しやすく、溶接金属で破断するおそれが高い。
 この点、本発明のテーラードブランク熱間プレス部材では、Alの含有量が少ないZn系めっき鋼板を素材として用いており、テーラードブランク材を得る際の鋼板の接合時におけるAlの混入を抑制して、熱間プレス後の溶接金属の強度低下を抑制している。
 ただし、熱間プレス部材の溶接金属(熱間プレス部材の部位間の接合部)における最も薄い部分の厚さtwが、熱間プレス部材の部位のうちの最も薄い部位の厚さt0の0.9倍未満になると、溶接金属において、やはり破断が生じ易くなる。
 このため、素材とするめっき鋼板の表面に形成しためっき層が、純Znめっき層や溶融亜鉛めっき層、合金化溶融亜鉛めっき層などといったZn系めっき層である場合、熱間プレス部材の部位間の接合部における最も薄い部分の厚さtwと、熱間プレス部材の部位のうちの最も薄い部位の厚さt0については、tw/t0≧0.9の関係を満足させるものとする。好ましくはtw/t0≧1.0である。
tw/t0≧0.8(めっき鋼板の表面に形成しためっき層がZn-Ni合金めっき層であり、このZn-Ni合金めっき層が、10質量%以上25質量%以下のNiを含み、かつ鋼板片面当たりの付着量が10g/m2以上90g/m2以下である場合)
 めっき鋼板の表面に形成しためっき層が、Zn系めっき層のなかでも、Zn-Ni合金めっき層である場合、前述したとおり、テーラードブランク材を得るための接合中に、Niがめっき層から溶接金属に混入するため、熱間プレス後の冷却において、溶接金属に焼きが入りやすくなる。その結果、熱間プレス部材の溶接金属(熱間プレス部材の部位間の接合部)において十分な引張強さが得られるようになり、溶接金属での破断を一層有効に抑制することが可能となる。
 ただし、tw/t0が0.8未満になると、溶接金属において、やはり破断が生じ易くなる。
 このため、めっき鋼板の表面に形成しためっき層がZn-Ni合金めっき層であり、このZn-Ni合金めっき層が、10質量%以上25質量%以下のNiを含み、かつ鋼板片面当たりの付着量が10g/m2以上90g/m2以下である場合には、tw/t0≧0.8の関係を満足させるものとする。好ましくはtw/t0≧1.0である。
 また、テーラードブランク材とするための接合は、レーザ溶接またはプラズマ溶接などを用いればよいが、上記したZn-Ni合金めっき層を有するめっき鋼板を素材として用いる場合には、TIG溶接が先行するレーザ溶接とのレーザアークハイブリッド溶接を適用することが好ましい。
 というのは、TIG溶接が先行するレーザ溶接とのレーザアークハイブリッド溶接とすることにより、先行するTIG溶接のアークによって鋼板の表面付近、特に、めっき層が広く溶融し、一方で、溶接金属部はレーザ溶接により狭く制限される。これにより、めっき層から溶接金属中に混入するNi量を増加させることができ、より有利に溶接金属の焼き入れ性を向上させることが可能となるからである。
 なお、これらの接合条件は、ハンピングなく、貫通溶接される条件であれば特に限定されない。例えば、めっき鋼板間の溶接をレーザ溶接とする場合、隙間を0~0.3mmとしてこれらの鋼板同士をレーザ照射面と反対側で合わせて突き合わせ、レーザ出力:2.0~6.0kW、焦点位置:厚板側の鋼板表面を中心に±1.5mmの範囲、溶接速度:2.0~6.0m/min、シールドガス:ArまたはHeの条件で溶接すればよい。
 また、TIG溶接が先行するレーザ溶接とのレーザアークハイブリッド溶接とする場合には、先行するTIG溶接を、後退角:0度~60度、電極-厚板側の鋼板間の距離:10~20mm、アーク電流:80A~200A(DCRP)、シールドガス:HeまたはAr、狙い位置:レーザ照射位置~レーザ照射位置の前方10mmとし、レーザ溶接は、レーザ出力:2.0~6.0kW、溶接速度:2.0~6.0m/min、シールドガス:ArまたはHe、焦点位置:厚板側の鋼板表面を中心に±1.5mmの範囲の条件で溶接すればよい。
 さらに、熱間プレス条件としては、Ac3変態点以上1000℃以下の温度域に加熱後、放冷し、600℃以上の温度で熱間プレスすることが好ましい。
 ここに、熱間プレス前の加熱温度をAc3変態点以上とするのは、熱間プレス後の急冷でマルテンサイト相などの硬質相を形成し、部材の高強度化を図るためである。また、熱間プレス前の加熱温度の上限を1000℃としたのは、1000℃を超えるとめっき層表面において多量の酸化物層が形成し、抵抗スポット溶接時に通電経路の形成を阻害する分厚い酸化物層となるためである。なお、ここでいう加熱温度とは鋼板の最高到達温度のことをいう。
 また、Ac3変態点は次式(2)により求めることができる。
 Ac3 =937.2-476.5[%C]+56[%Si]-19.7[%Mn]-16.3[%Cu]-26.6[%Ni]-4.9[%Cr]+38.1[%Mo]+124.8[%V]+136.3[%Ti]+198.4[%Al]+3315[%B]・・・(2)
 ただし、[%M]は、M元素の含有量(質量%)を示す。
 さらに、熱間プレス前の加熱時の平均昇温速度を60℃/s以上にすると、めっき層表面における厚い酸化物層の生成をより有利に抑制でき、抵抗スポット溶接性をより向上できる。
 ここで、めっき層表面における酸化物層の生成は、鋼板が高温条件下に晒される高温滞留時間が長くなるほど増大する。したがって、平均昇温速度が速いほど、高温滞留時間を短くすることができ、この結果、めっき層表面での酸化物層の生成を抑制できる。
 なお、加熱温度(鋼板の最高到達温度)における保持時間は特に限定されるものではないが、酸化物層の生成を抑制するためには短時間とする方が好適である。好ましくは120s以下、より好ましくは60s以下、さらに好ましくは10s以下である。また、保持時間を0秒としてもよい(保持しなくてもよい)。
 さらに、熱間プレス前の加熱方法としては、電気炉やガス炉などによる加熱、火炎加熱、通電加熱、高周波加熱、誘導加熱などが挙げられる。特に、平均昇温速度を60℃/s以上にするには、通電加熱、高周波加熱、誘導加熱などが好適である。
 ついで、加熱したテーラードブランク材を放冷し、600℃以上の温度で熱間プレスを行う。というのは、上述のような成分系の鋼板では、600℃未満まで放冷されると、熱間プレス前にフェライト相の形成が開始し、十分な引張強さを得ることができなくなるからである。
 なお、熱間プレスの開始温度の上限については特に限定されるものではないが、通常、800℃程度である。
 下地鋼板として、質量%で、C:0.23%、Si:0.25%、Mn:1.2%、P:0.01%、S:0.01%、Al:0.03%、N:0.005%、Cr:0.2%、Ti:0.02%、B:0.0022%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、Ac3変態点が833℃の種々の板厚になる冷延鋼板(鋼種a)、および質量%で、C:0.23%、Si:0.25%、Mn:2.0%、P:0.02%、S:0.01%、Al:0.03%、N:0.004%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、Ac3変態点が808℃の種々の板厚になる冷延鋼板(鋼種b)を作製し、これらの冷延鋼板の表面に合金化溶融Znめっき(GA)、電気Zn合金メッキ(Zn-Ni)、Al-Siめっき(Al-10%Si)を施し、種々のめっき鋼板を準備した。
 なお、電気Zn合金メッキ鋼板に関しては、めっき中のNi量および目付量を種々変化させた。
 ついで、得られためっき鋼板から150×250mmの試験片を採取し、表1のような板厚になる同種のめっき鋼板(ここでは、板厚の厚い方を鋼板A、薄い方を鋼板Bとする。なお、板厚が同じ場合には、任意に鋼板A、鋼板Bを決定する。)を、図1に示すようにレーザ照射面と反対側の面で合わせて突き合わせ、レーザ溶接またはTIG溶接が先行するレーザ溶接とのレーザアークハイブリッド溶接を施すことにより、テーラードブランク材を作製した。図1中、符号1は鋼板A(熱間プレス部材において、鋼板Aより形成された部位、以下、部位Aともいう)、2は鋼板B(熱間プレス部材において、鋼板Bより形成された部位、以下、部位Bともいう)、3は溶接金属(部位Aと部位Bとの接合部)であり、tAは鋼板Aの板厚、tBは鋼板Bの板厚、twは熱間プレス後に得られる熱間プレス部材の部位Aと部位Bとの接合部における最も薄い部分の厚さ、t0は部位Bの厚さである。
 なお、レーザ溶接は、集光径:0.6mmのYAGレーザを用い、レーザ出力:3.0kW、溶接速度3m/min、シールドガス:Ar(20L/min)、焦点位置:厚板側の鋼板(鋼板A)表面の条件で行った。また、TIG溶接が先行するレーザ溶接とのレーザアークハイブリッド溶接は、先行するTIG溶接を、後退角:60度、電極-鋼板間の距離:15mm、アーク電流:100A(DCRP)、シールドガス:Ar(20L/min)、狙い位置:レーザ照射位置と同じ、の条件とし、レーザ溶接は、集光径:0.6mmのYAGレーザを用い、レーザ出力:3.0kW、溶接速度3m/min、シールドガス:Ar(20L/min)、焦点位置:厚板側の鋼板(鋼板A)表面の条件で行った。また、接合部の厚さは、鋼板間の隙間を0~0.4mmの範囲で変化させることにより、調整した。
 かくして得られたテーラードブランク材に、以下の条件にて熱間プレスを施し、熱間プレス部材を得た。
 すなわち、各テーラードブランク材を電気炉にて大気中で900℃まで180秒かけて加熱し(厚板側の鋼板(鋼板A)温度にて測定)、当該温度で保持することなく、電気炉から取り出し、大気中で700℃まで空冷した後、直ちに金型で挟み込むことにより熱間プレスを行い、図1のような形状の熱間プレス部材を得た。
 ついで得られた熱間プレス部材の部位Aと部位Bから、それぞれJIS Z2241 5号の形状の引張試験片を切出し、部位Aと部位Bの引張強さを測定した。測定結果を表1に示す。
 また、部位Aと部位Bとの接合部からJIS Z3121 1A号に準じた突き合わせ溶接継手の引張試験片を採取し、さらにその両側から接合部の断面形状観察用の試料を採取した。そして、この断面形状観察用の試料から、溶接金属(部位Aと部位Bとの接合部)の最も薄い部分の厚さtw(mm)を測定し、このtw(mm)と部位Bの厚さt0(mm)とから、tw/t0を求めた。このtw/t0の値を表1に示す。
 さらに、上記のようにして得た突き合わせ溶接継手の引張試験片について、10mm/minの引張速度で引張試験を行い、部位Bで破断したものを合格、溶接金属(部位Aと部位Bとの接合部)で破断したものを不合格と判定した。結果を表1に示す。
 さらに、得られたテーラードブランク熱間プレス部材の塗装後耐食性評価を行った。
 まず、熱間プレス部材の部位Aおよび部位Bからそれぞれ70mm×150mmの試験片を採取し、化成処理、電着塗装を施した。化成処理は、日本パーカライジング株式会社製PB-L3020を使用して標準条件で行った。電着塗装は、関西ペイント株式会社製GT-10を使用し、電圧200Vで塗装後、170℃で20分間の焼付けを行う条件で行い、膜厚を20μmとした。次に、得られた電着塗装試験片にカッターナイフによりクロスカット傷を入れ、傷を入れていない面、および、端部をシールした後、JIS Z2371(2000)に準拠して480時間の塩水噴霧試験を行った。そして、試験後の試験片を水洗・乾燥し、セロハン粘着テープにより傷部の剥離試験を行い、片側最大剥離幅を測定した。
 得られた片側最大幅から、塗装後耐食性を以下の基準で評価し、○であれば合格と判定した。
 ○:片側最大剥離幅≦5mm
 ×:片側最大剥離幅>5mm
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、発明例となるNo.1~5、7~9、16~18、21~25ではいずれも、引張試験において、部位Bで破断し、溶接金属での破断は見られなかった。また、塗装後耐食性についても、良好な結果が得られた。
 一方、めっき鋼板として、GA(合金化溶融亜鉛めっき)鋼板を用いたもののうち、tw/t0≧0.9の関係を満足しないNo.10では、溶接金属において十分な強度が得られず、引張試験において溶接金属で破断した。
 また、めっき鋼板として、Al-Siめっき鋼板を用いたNo.11~15ではいずれも、溶接金属において十分な強度が得られず、引張試験において溶接金属で破断した。加えて、塗装後耐食性も十分なものとは言えなかった。
 さらに、めっき鋼板としてZn-Ni合金めっき層を有するめっき鋼板を使用する場合であっても、めっき付着量やNi量が適正範囲に満たないNo.19および20では、溶接金属において十分な強度が得られず、引張試験において溶接金属で破断した。また、塗装後耐食性も十分なものとは言えなかった。
 1:鋼板A(部位A)
 2:鋼板B(部位B)
 3:溶接金属(部位Aと部位Bとの接合部)

Claims (4)

  1.  2枚以上のめっき鋼板が端部同士を突き合わせて接合されたテーラードブランク材を用いてなる、熱間プレス部材であって、
     前記めっき鋼板の表面におけるめっき層がいずれもZn系めっき層であり、
     また、上記熱間プレス部材は、上記各めっき鋼板より形成された2以上の部位と、少なくとも1つの上記部位間の接合部とをそなえ、
     上記接合部における最も薄い部分の厚さをtwとし、上記部位のうちの厚さが最も薄い部位の厚さをt0としたとき、tw/t0≧0.9の関係を満足し、
     上記部位の引張強さがいずれも1180MPa以上である、熱間プレス部材。
  2.  請求項1に記載の熱間プレス部材を製造するための方法であって、
     Zn系めっき層を有する2枚以上のめっき鋼板を素材とし、該めっき鋼板の端部同士を突き合わせて、レーザ溶接またはプラズマ溶接により接合することにより、テーラードブランク材を得る工程と、
     上記テーラードブランク材を、Ac変態点~1000℃の温度域に加熱後、冷却し、600℃以上の温度で熱間プレスする工程、
    とをそなえる、熱間プレス部材の製造方法。
  3.  2枚以上のめっき鋼板が端部同士を突き合わせて接合されたテーラードブランク材を用いてなる、熱間プレス部材であって、
     上記めっき鋼板の表面におけるめっき層がいずれもZn-Ni合金めっき層であり、該Zn-Ni合金めっき層は、10質量%以上25質量%以下のNiを含み、かつ鋼板片面当たりの付着量が10g/m2以上90g/m2以下であり、
     また、上記熱間プレス部材は、上記各めっき鋼板より形成された2以上の部位と、少なくとも1つの上記部位間の接合部とをそなえ、
     上記接合部における最も薄い部分の厚さをtwとし、上記部位のうちの厚さが最も薄い部位の厚さをt0としたとき、tw/t0≧0.8の関係を満足し、
     上記部位の引張強さがいずれも1180MPa以上である、熱間プレス部材。
  4.  請求項3に記載の熱間プレス部材を製造するための方法であって、
     10質量%以上25質量%以下のNiを含み、かつ鋼板片面当たりの付着量が10g/m2以上90g/m2以下であるZn-Ni合金めっき層を有する2枚以上のめっき鋼板を素材とし、該めっき鋼板の端部同士を突き合わせて、TIG溶接が先行するレーザ溶接とのレーザアークハイブリッド溶接により接合することにより、テーラードブランク材を得る工程と、
     前記テーラードブランク材を、Ac変態点~1000℃の温度域に加熱後、冷却し、600℃以上の温度で熱間プレスする工程、
    とをそなえる、熱間プレス部材の製造方法。
     
PCT/JP2016/001175 2015-03-05 2016-03-03 熱間プレス部材およびその製造方法 WO2016139953A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016531728A JP6164367B2 (ja) 2015-03-05 2016-03-03 熱間プレス部材
US15/551,375 US11168378B2 (en) 2015-03-05 2016-03-03 Hot-pressed member and manufacturing method therefor
CN201680013861.0A CN107405667A (zh) 2015-03-05 2016-03-03 热冲压构件及其制造方法
KR1020177026504A KR102037648B1 (ko) 2015-03-05 2016-03-03 열간 프레스 부재 및 그 제조 방법
EP16758649.4A EP3266533B1 (en) 2015-03-05 2016-03-03 Hot-pressed member
MX2017011320A MX2017011320A (es) 2015-03-05 2016-03-03 Miembro termo-prensado y metodo de fabricacion para el mismo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-044027 2015-03-05
JP2015044027 2015-03-05

Publications (1)

Publication Number Publication Date
WO2016139953A1 true WO2016139953A1 (ja) 2016-09-09

Family

ID=56848824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001175 WO2016139953A1 (ja) 2015-03-05 2016-03-03 熱間プレス部材およびその製造方法

Country Status (7)

Country Link
US (1) US11168378B2 (ja)
EP (1) EP3266533B1 (ja)
JP (1) JP6164367B2 (ja)
KR (1) KR102037648B1 (ja)
CN (1) CN107405667A (ja)
MX (1) MX2017011320A (ja)
WO (1) WO2016139953A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018534143A (ja) * 2015-09-21 2018-11-22 ウイスコ テイラード ブランクス ゲゼルシャフト ミット ベシュレンクテル ハフツングWISCO Tailored Blanks GmbH 焼入れ可能な鋼製でアルミニウムまたはアルミニウム−シリコン系の被覆を備えた半完成板金製品を製作するためのレーザ溶接方法
JP2019014936A (ja) * 2017-07-06 2019-01-31 新日鐵住金株式会社 熱間プレス用めっき鋼板とその製造方法、ならびに熱間プレス成形部材およびその製造方法
JP2019014935A (ja) * 2017-07-06 2019-01-31 新日鐵住金株式会社 熱間プレス用鋼板とその製造方法、ならびに熱間プレス成形部材およびその製造方法
WO2022215228A1 (ja) 2021-04-08 2022-10-13 日本製鉄株式会社 ホットスタンプ用鋼板及びホットスタンプ部材

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210262075A1 (en) * 2018-06-22 2021-08-26 Nippon Steel Corporation Steel sheet, tailored blank, hot stamped product, steel pipe, hollow hot stamped product, and method of manufacturing steel sheet
DE102018212810A1 (de) * 2018-08-01 2020-02-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Schweißen eines verzinkten Kraftfahrzeugbauteils
KR20200040565A (ko) * 2018-10-10 2020-04-20 현대자동차주식회사 동시성형 핫스탬핑 방법 및 핫스탬핑 제품
CN112935481B (zh) * 2021-03-31 2022-07-26 沈阳大学 一种1800MPa级超高强度热成形钢板氩弧焊接工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021968A (ja) * 2003-07-02 2005-01-27 Taiyo Nippon Sanso Corp 鋼板のレーザ溶接方法および複合板材
JP2012101270A (ja) * 2010-11-12 2012-05-31 Mitsubishi Heavy Ind Ltd 溶接方法およびこれを用いた船舶
JP2012197505A (ja) * 2011-03-10 2012-10-18 Jfe Steel Corp 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867319A (ja) 1971-12-18 1973-09-14
SE435527B (sv) 1973-11-06 1984-10-01 Plannja Ab Forfarande for framstellning av en detalj av herdat stal
JP3223172B2 (ja) 1999-02-25 2001-10-29 本田技研工業株式会社 アルミメッキ鋼板からなるレーザー溶接体の溶接方法
JP4132950B2 (ja) 2001-06-29 2008-08-13 新日本製鐵株式会社 高温成形に適し高温成形後に高強度となるアルミもしくはアルミ−亜鉛めっき鋼板およびその製造方法
JP4316842B2 (ja) 2002-07-26 2009-08-19 アイシン高丘株式会社 テーラードブランクプレス成形品の製造方法
JP2006021216A (ja) * 2004-07-07 2006-01-26 Nippon Steel Corp テーラードブランクプレス成形部品の製造方法
JP4867319B2 (ja) 2005-12-05 2012-02-01 住友金属工業株式会社 熱間プレス用テーラードブランク材ならびに熱間プレス部材およびその製造方法
WO2007118939A1 (fr) 2006-04-19 2007-10-25 Arcelor France Procede de fabrication d'une piece soudee a tres hautes caracteristiques mecaniques a partir d'une tole laminee et revetue
FR2903623B1 (fr) 2006-07-12 2008-09-19 L'air Liquide Procede de soudage hybride laser-arc de pieces metalliques aluminiees
US7650547B2 (en) 2007-02-28 2010-01-19 Verigy (Singapore) Pte. Ltd. Apparatus for locating a defect in a scan chain while testing digital logic
US10100381B2 (en) * 2011-06-07 2018-10-16 Jfe Steel Corporation Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet
CA2866466C (en) 2012-03-28 2016-10-25 Nippon Steel & Sumitomo Metal Corporation Tailored blank for hot stamping, hot stamped member, and methods for manufacturing same
JP5316664B2 (ja) 2012-03-28 2013-10-16 新日鐵住金株式会社 ホットスタンプ用のテーラードブランク
WO2014005041A1 (en) 2012-06-29 2014-01-03 Shiloh Industries, Inc. Welded blank assembly and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021968A (ja) * 2003-07-02 2005-01-27 Taiyo Nippon Sanso Corp 鋼板のレーザ溶接方法および複合板材
JP2012101270A (ja) * 2010-11-12 2012-05-31 Mitsubishi Heavy Ind Ltd 溶接方法およびこれを用いた船舶
JP2012197505A (ja) * 2011-03-10 2012-10-18 Jfe Steel Corp 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018534143A (ja) * 2015-09-21 2018-11-22 ウイスコ テイラード ブランクス ゲゼルシャフト ミット ベシュレンクテル ハフツングWISCO Tailored Blanks GmbH 焼入れ可能な鋼製でアルミニウムまたはアルミニウム−シリコン系の被覆を備えた半完成板金製品を製作するためのレーザ溶接方法
JP2019014936A (ja) * 2017-07-06 2019-01-31 新日鐵住金株式会社 熱間プレス用めっき鋼板とその製造方法、ならびに熱間プレス成形部材およびその製造方法
JP2019014935A (ja) * 2017-07-06 2019-01-31 新日鐵住金株式会社 熱間プレス用鋼板とその製造方法、ならびに熱間プレス成形部材およびその製造方法
WO2022215228A1 (ja) 2021-04-08 2022-10-13 日本製鉄株式会社 ホットスタンプ用鋼板及びホットスタンプ部材
KR20230154955A (ko) 2021-04-08 2023-11-09 닛폰세이테츠 가부시키가이샤 핫 스탬프용 강판 및 핫 스탬프 부재

Also Published As

Publication number Publication date
EP3266533B1 (en) 2022-02-23
US11168378B2 (en) 2021-11-09
KR102037648B1 (ko) 2019-10-29
JPWO2016139953A1 (ja) 2017-04-27
KR20170118866A (ko) 2017-10-25
EP3266533A4 (en) 2018-07-25
US20180030568A1 (en) 2018-02-01
JP6164367B2 (ja) 2017-07-19
EP3266533A1 (en) 2018-01-10
MX2017011320A (es) 2018-01-23
CN107405667A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
JP6164367B2 (ja) 熱間プレス部材
US20220176490A1 (en) Method for manufacturing equal-strength steel thin-wall welding component with aluminum or aluminum alloy plating
JP4724780B2 (ja) 急速加熱ホットプレス用アルミめっき鋼板、その製造方法、及びこれを用いた急速加熱ホットプレス方法
CN109563588B (zh) 具有电阻焊接部的汽车用构件
WO2019003451A1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
JP5700394B2 (ja) 耐食性に優れる自動車シャシ部材およびその製造法
JP7311040B2 (ja) Fe系電気めっき鋼板の製造方法及び合金化溶融亜鉛めっき鋼板の製造方法
EP3900866A1 (en) Spot welding member
US20200340124A1 (en) A method for the manufacture of a coated steel sheet
WO2022097734A1 (ja) Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及びFe系電気めっき鋼板の製造方法
WO2020158285A1 (ja) 熱間プレス部材、熱間プレス部材用冷延鋼板、およびそれらの製造方法
JP2020179413A (ja) スポット溶接部材
JP7311042B2 (ja) 亜鉛めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及び亜鉛めっき鋼板の製造方法
JP7241889B2 (ja) 接合部品及びその製造方法
JP5421062B2 (ja) 焼入れ用鋼板および高強度部材
JP2011167742A (ja) 合金化アルミめっき鋼板またはアルミ合金層を有するプレス部品のスポット溶接方法
RU2764247C1 (ru) Способ сварки для изготовления сборной конструкции из по меньшей мере двух металлических подложек
JP7311043B2 (ja) 合金化亜鉛めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及び合金化亜鉛めっき鋼板の製造方法
JP5323552B2 (ja) スポット溶接継手の十字引張強度に優れた焼入れ用鋼板
JP6671846B2 (ja) テーラードブランク熱間プレス部材
WO2022249651A1 (ja) 抵抗スポット溶接部材およびその抵抗スポット溶接方法
WO2023139923A1 (ja) プロジェクション溶接継手およびプロジェクション溶接方法
WO2024203603A1 (ja) ホットスタンプ用亜鉛系めっき鋼板およびその製造方法
WO2024127865A1 (ja) 抵抗スポット溶接継手の製造方法
JP2004002933A (ja) 抵抗溶接性に優れたアルミニウムめっき鋼板とアルミニウムめっき鋼板を用いた加工部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016531728

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758649

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/011320

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177026504

Country of ref document: KR

Kind code of ref document: A