WO2022215228A1 - ホットスタンプ用鋼板及びホットスタンプ部材 - Google Patents

ホットスタンプ用鋼板及びホットスタンプ部材 Download PDF

Info

Publication number
WO2022215228A1
WO2022215228A1 PCT/JP2021/014907 JP2021014907W WO2022215228A1 WO 2022215228 A1 WO2022215228 A1 WO 2022215228A1 JP 2021014907 W JP2021014907 W JP 2021014907W WO 2022215228 A1 WO2022215228 A1 WO 2022215228A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
surface treatment
treatment film
hot stamping
steel sheet
Prior art date
Application number
PCT/JP2021/014907
Other languages
English (en)
French (fr)
Inventor
優貴 鈴木
健太 上西
宗士 藤田
雅裕 布田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US18/277,550 priority Critical patent/US20240044012A1/en
Priority to EP21936032.8A priority patent/EP4265350A4/en
Priority to JP2023512605A priority patent/JPWO2022215228A1/ja
Priority to CN202180096658.5A priority patent/CN117222774A/zh
Priority to KR1020237034077A priority patent/KR20230154955A/ko
Priority to PCT/JP2021/014907 priority patent/WO2022215228A1/ja
Publication of WO2022215228A1 publication Critical patent/WO2022215228A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/005Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt

Definitions

  • the present invention relates to a hot stamping steel sheet and a hot stamping member.
  • hot stamping method also called hot pressing method, hot pressing method, high temperature pressing method, die quenching method.
  • the material to be formed is heated to a high temperature to transform it into a structure called austenite (austenitization), the steel plate softened by heating is pressed and formed, and after forming, it is cooled.
  • austenite austenite
  • the material is once heated to a high temperature and softened, so that the material can be easily pressed.
  • the mechanical strength of the material can be enhanced by the quenching effect of cooling after molding. Therefore, by this hot stamping method, a molded article having good shape fixability and high mechanical strength can be obtained.
  • Patent Document 1 describes a component in which at least two types of Zn-based plated steel sheets with different steel components are joined.
  • Patent Document 2 describes a technique of differentiating the average cooling rate and the cooling stop temperature depending on the location of the steel sheet to create different structures after cooling.
  • Patent Document 3 describes a technique for enhancing ductility by tempering a part of the steel after martensitic transformation by controlling the temperature of the mold.
  • Patent Document 1 In order to manufacture the parts as described in Patent Document 1, it is required to manufacture steel sheets with different strengths, which increases the manufacturing load and increases the joining process. necessary and not economical.
  • Patent Document 2 if the method described in Patent Document 2 is used, it is economically disadvantageous because two types of molds for cooling are required, and it becomes difficult to ensure robustness in manufacturing. , unfavorable.
  • Patent Document 3 Even if the technique described in Patent Document 3 is used, it is difficult to ensure robustness of manufacturing as in Patent Document 2, which is not preferable.
  • the current situation is that there is a desire for a technology that can perform hot stamping while suppressing cost increases and ensuring product robustness.
  • an object of the present invention is to provide a steel sheet for hot stamping suitable for manufacturing parts having portions with different strengths by hot stamping, and a steel sheet for hot stamping. and a hot stamping member having different parts.
  • the present inventors conducted extensive studies and found that a surface treatment film with a high emissivity is applied to a part of the surface of the steel plate. The idea was to increase the rate of temperature rise (rate of temperature rise).
  • the present invention is based on the above knowledge obtained by the present inventors, and the gist of the present invention is as follows.
  • the treated film contains carbon black and one or more oxides selected from the group consisting of Zr oxide, Zn oxide, and Ti oxide, and the carbon black and the oxide are , the surface treatment film is dispersed throughout the surface treatment film, the surface treatment film has a silica content of 0 to 0.3 g / m 2 , and the carbon black and the oxide adhesion amount are each X CB (g/m 2 ) and X Oxide (g/m 2 ), a steel sheet for hot stamping that satisfies the following formula (1).
  • the adhesion amount X CB of the carbon black is 0.030 g/m 2 or more, and the adhesion amount X Oxide of the oxide is 0.030 g/m 2 or more.
  • [1] to [3] The steel plate for hot stamping according to any one of .
  • [5] The steel sheet for hot stamping according to any one of [1] to [4], wherein the emissivity of the surface treatment film at a wavelength of 8.0 ⁇ m at 700° C. is 60% or more.
  • the surface of the steel sheet has a portion having a surface treatment film and a portion not having the surface treatment film, and the surface treatment film is composed of Zr oxide, Zn oxide, and Ti oxidation
  • the surface treatment film contains one or more oxides selected from the group consisting of substances, and the adhesion amount X Oxide of the oxide is 0.030 g / m 2 or more, and the surface treatment film has a silica content is between 0 and 0.3 g/m 2 .
  • FIG. 4 is a diagram schematically showing the start time and completion time of austenitization in a film-coated region and a non-coated region during hot stamp heating.
  • FIG. 2 is a diagram schematically showing a coated portion and its central portion (P1) and an uncoated portion and its central portion (P2) on the surface of a steel sheet for hot stamping.
  • Step plate for hot stamping The steel sheets for hot stamping according to embodiments of the present invention described below are suitable for manufacturing parts having portions with different strengths.
  • Such a steel sheet for hot stamping has a portion having a surface treatment film having an emissivity of 60% or more at a wavelength of 8.0 ⁇ m at 25° C. and a portion having no such surface treatment film on the surface of the steel sheet. It is what I did.
  • the emissivity at a wavelength of 8.0 ⁇ m at 25° C. can be increased to 60% or more by applying the surface treatment film to a portion of the steel sheet as described above.
  • the type of steel sheet that serves as the base material is not particularly limited.
  • Examples of such steel sheets include various hot-rolled steel sheets, cold-rolled steel sheets, and plated steel sheets.
  • Galvanized steel sheets include, for example, steel sheets subjected to hot-dip aluminum plating, hot-dip galvanizing, alloyed hot-dip galvanizing, electro-galvanizing, etc., but are limited to these galvanized steel sheets as long as they can be applied to hot stamping. not a thing
  • a specific surface treatment film is applied only to a portion of the steel plate surface to increase the heating rate of the film-coated portion during hot stamping heating. After the film-coated portion reaches a temperature of Ac3 or higher and the non-coated portion reaches a temperature of less than Ac3, the steel plate is hot-stamped to locally harden the film-coated portion (martensite structure). make it possible to
  • a surface treatment film with high emissivity is applied to part of the steel plate surface.
  • Specific methods for applying the surface treatment film include methods such as coating and lamination, but are not limited to these methods.
  • the surface treatment film as described above may be applied to only one side of the steel sheet, or may be applied to both sides of the steel sheet.
  • the emissivity at a wavelength of 8.0 ⁇ m at 25° C. in the region provided with the surface treatment film on the surface of the steel sheet is 60% or more.
  • the emissivity at a wavelength of 8.0 ⁇ m at 25° C. of the region provided with the surface treatment film is preferably 70% or more, more preferably 80% or more.
  • the emissivity measurement method can be carried out as described in the Japanese Industrial Standard JIS R 1801 (2002).
  • the sample is set in a Fourier transform infrared spectrophotometer, the radiation intensity is measured at a wavelength of 8.0 ⁇ m at 25° C., and the emissivity is calculated.
  • a surface treatment film When applying a surface treatment film only to a part of the steel plate surface by painting, for example, an organic or inorganic treatment liquid containing carbon black and metal oxide is applied to a part of the steel plate surface with a roll coater or a curtain coater. After coating, a surface treatment film can be applied by drying the volatile components in the treatment liquid. Also, by coating a part of the steel sheet with a polyester tape or another material and then coating the steel sheet with the treatment liquid, a film can be applied to any part of the surface of the steel sheet.
  • the emissivity at a wavelength of 8.0 ⁇ m at 25° C. of the portion provided with the surface treatment film is 60% or more. If the emissivity at a wavelength of 8.0 ⁇ m at 25° C. is less than 60%, the difference in temperature rise rate from that of the portion to which the surface treatment film is not applied becomes small. As a result, it is not possible to ensure the hardness difference after heating and cooling in hot stamping, and the degree of freedom in the timing of removing the steel sheet from the heating furnace to ensure it is reduced, which imposes a burden on manufacturing, making it lightweight as an automobile part. It becomes difficult to achieve both reduction and safety performance.
  • the emissivity at a wavelength of 8.0 ⁇ m at 25° C. is preferably 80% or more.
  • the emissivity at a wavelength of 8.0 ⁇ m at 25° C. is 80% or more, it becomes easier to secure the above hardness difference, and it becomes possible to further reduce the load on manufacturing.
  • the surface treatment film according to the present embodiment contains carbon black and specific metal oxides as detailed below. Moreover, the surface treatment film according to the present embodiment may further contain a binder component, various additives, and the like, if necessary. Furthermore, the surface treatment film according to the present embodiment may contain no silica or may contain silica within a certain range. A desired emissivity can be achieved by adjusting the contents of carbon black and metal oxides, the thickness of the surface treatment film, and the like.
  • the surface treatment film according to the present embodiment contains carbon black and one or more oxides selected from the group consisting of Zr oxide, Zn oxide, and Ti oxide. Moreover, the carbon black and the oxide are dispersed throughout the surface treatment film. Further, when the carbon black adhesion amount is represented by X CB (g/m 2 ) and the oxide adhesion amount is represented by X Oxide (g/m 2 ), the surface treatment film according to the present embodiment is expressed by the following formula ( 1) is satisfied.
  • Equation 1 defines the relational expression between the rate of increase (%) of the rate of temperature increase (°C/s) and the adhesion amount of carbon black and oxides. More specifically, with regard to the rate of increase in temperature increase rate, carbon black functions as a heat absorbing material in the range up to 700 ° C., and in the range of 700 ° C. or higher, Zr oxide and Zn oxide that remain even in such a temperature range , Ti oxide functions as a heat absorbing material.
  • the surface treatment film according to the present embodiment can be formed by applying a treatment liquid containing carbon black and specific oxides to desired portions of the steel sheet.
  • a treatment liquid containing carbon black and specific oxides to desired portions of the steel sheet.
  • carbon black and oxides are dispersed throughout the surface treatment film. Since the carbon black and the oxide are dispersed throughout the surface treatment film, the emissivity of the surface treatment film at a wavelength of 8.0 ⁇ m at 25° C. can be made uniform throughout the film.
  • the part to which the surface treatment film according to the present embodiment is applied is hot stamped, the surface treatment film as a whole can be evenly heated.
  • Such a distribution state of carbon black and oxides is obtained by analyzing the surface treatment film with an electron probe microanalyzer (EPMA), an element derived from carbon black (e.g., C), and an oxide derived from This can be confirmed by surface analysis of the elements (that is, Zr, Zn, and Ti).
  • EPMA electron probe microanalyzer
  • the surface treatment film according to the present embodiment satisfies the relationship expressed by the above formula (1) between the carbon black adhesion amount X CB and the oxide adhesion amount X Oxide , so that the wavelength at 25° C. is 8.5.
  • the emissivity at 0 ⁇ m becomes 60% or more, and the difference in the rate of temperature rise from the portion where the surface treatment film does not exist becomes remarkable. If the value defined by the middle term of the above formula (1) is less than 118.9, the amounts of carbon black and oxide attached are insufficient, and the above emissivity cannot be achieved.
  • the value defined by the middle term of the above formula (1) is preferably 119.0 or more, more preferably 170.0 or more, and even more preferably 220.0 or more.
  • the value defined by the middle term of the above formula (1) exceeds 332.0, the adhesion of the coating is lowered, which is not preferable.
  • the value defined by the middle term in formula (1) is preferably 330.0 or less, more preferably 310.0 or less, and even more preferably 300.0 or less.
  • the carbon black adhesion amount X CB in the surface treatment film can be measured as follows by cross-sectional analysis of the surface treatment film using a transmission electron microscope (TEM). . That is, the range of the region represented by the film thickness ⁇ 5 ⁇ m is subjected to cross-sectional analysis by TEM-EDS analysis, and the film thickness of the surface treatment film and the area ratio occupied by particles having a carbon content of 70% by mass or more are determined. Measure. When the film thickness is d ( ⁇ m) and the area ratio is a (%), the value represented by d ⁇ a is the carbon black adhesion amount X CB (g/m 2 ).
  • TEM transmission electron microscope
  • the adhesion amount X Oxide of the oxide of at least one of Zr, Zn, and Ti in the surface treatment film is Zr oxide, Zn oxide, and Ti oxide (that is, ZrO 2 , ZnO, TiO 2 ). means the amount of metal Zr, metal Zn, and metal Ti attached per unit area.
  • the amount X Oxide of these oxides is determined by elemental analysis from the surface of the surface treatment film using a fluorescent X-ray analyzer (ZSX Primus manufactured by RIGAKU Co., Ltd.) to quantify metal Zr, metal Zn and metal Ti. can ask.
  • the steel sheet for hot stamping according to the present embodiment has the characteristics described above, so that the emissivity at a wavelength of 8.0 ⁇ m at 700° C. can be 60% or more. Substances contained in the surface treatment film, which are characteristic for realizing the above emissivity, will be described in more detail below.
  • the carbon black adhesion amount X CB in the surface treatment film is preferably 0.030 g/m 2 or more.
  • the adhesion amount X CB is more preferably 0.100 g/m 2 or more.
  • the upper limit of the adhesion amount XCB is a value determined by the above formula (1).
  • the adhesion amount X CB is preferably 0.800 g/m 2 or less, more preferably 0.600 g/m 2 or less.
  • the surface treatment film more preferably contains 5.0 to 40.0% by volume of carbon black.
  • Carbon black has the effect of increasing the rate of temperature rise particularly in the region up to 700°C.
  • the thickness of the surface treatment film may vary locally due to factors such as the roughness and waviness of the steel sheet, or the difference in volatilization speed of volatile components such as water in the treatment liquid during film formation. At this time, if the carbon black content is 5.0% by volume or more, the difference between the portion that looks black due to the carbon black and the other portion can be suppressed, and the design can be maintained, which is preferable in terms of appearance.
  • the carbon black content in the surface treatment film is 40.0% by volume or less, it is possible to suppress deterioration in paint adhesion after hot stamp heating. Although the mechanism is not clear, it is speculated that by suppressing the remaining carbon black or compounds derived from carbon black oxides, etc., the hindrance of bonding between the paint and the substrate is suppressed. be done.
  • carbon black disappears when heated to high temperatures. Therefore, by including carbon black in the surface treatment film, it is possible to maintain performance after hot stamping, such as adhesion after painting.
  • the carbon black content in the surface treatment film is 5.0% by volume or more.
  • the carbon black content in the surface treatment film is 8.0% by volume or more.
  • the carbon black content in the surface treatment film is 40.0% by volume or less.
  • the carbon black content in the surface treatment film is 30.0% by volume or less. By setting the carbon black content in the surface treatment film to 30.0% by volume or less, it is possible to further reduce the cost of the film.
  • the total adhesion amount X Oxide of Zr oxide, Zn oxide, and Ti oxide in the surface treatment film is 0.030 g / m 2 or more at the part to which the surface treatment film is applied.
  • the adhesion amount X Oxide is more preferably 0.060 g/m 2 or more.
  • the upper limit of the adhesion amount X Oxide is a value determined by the above formula (1).
  • the adhesion amount X Oxide is preferably 0.500 g/m 2 or less, more preferably 0.300 g/m 2 or less.
  • the surface treatment film more preferably contains 1.0 to 30.0% by volume of Zr oxide, Zn oxide and Ti oxide in total. Oxides of these elements (that is, metal oxides of Zr, Zn, and Ti) remain in the surface treatment film even when heated to a high temperature of 700°C or higher, where the effect of carbon black is reduced. . As a result, since these metal oxides have a higher emissivity than the steel plate surface or the plated surface at a high temperature of 700 ° C. or higher, the amount of heat input due to radiant heat from the heating atmosphere is reduced. growing. As a result, even at a high temperature of 700° C. or higher, the effect of increasing the rate of temperature increase can be maintained.
  • the content of these metal oxides is 1.0% by volume or more, the effect of increasing the rate of temperature increase can be sufficiently obtained. More preferably, the content of these metal oxides is 3.0% by volume or more. On the other hand, when the content of these metal oxides is 30% by volume or less, the film cost can be suppressed, which is economically preferable. More preferably, the content of these metal oxides is 25.0% by volume or less.
  • the content (% by volume) of various compounds such as carbon black and metal oxides in the surface treatment film was determined by observing the cross section with a scanning electron microscope (SEM) by polishing after embedding the sample in resin. , can be calculated from the area ratio of the cross section. Compounds can also be estimated by quantitative analysis using the EDX function attached to the SEM.
  • SEM scanning electron microscope
  • the ratio X Oxide /X CB between the carbon black adhesion amount X CB (g/m 2 ) and the oxide adhesion amount X Oxide (g/m 2 ) is 0 .20 or more and 200.00 or less.
  • the ratio X Oxide /X CB is more preferably 0.40 to 10.00, still more preferably 0.60 to 5.00.
  • the surface treatment film according to the present embodiment can contain various binder components and additives in addition to the above carbon black and metal oxides.
  • the binder component that can be contained in the surface treatment film according to this embodiment is preferably a water-dispersible or water-soluble resin.
  • the content of the binder component selected from water-dispersible or water-soluble resins is preferably 40% by volume or more with respect to the total volume of the surface treatment film.
  • the binder component selected from water-dispersible or water-soluble resins various known water-dispersible or water-soluble resins can be used.
  • water-dispersible or water-soluble resins include polyurethane resins, polyester resins, acrylic resins, epoxy resins, fluorine resins, polyamide resins, polyolefin resins, and hydrolyzed/condensed silane coupling agents. Examples thereof include the resulting polymer compound.
  • the binder component is one or more selected from the group consisting of polyester resins, polyurethane resins, polyolefin resins, acrylic resins, epoxy resins, fluororesins, and polyamide resins.
  • the total content of the used some resin is treated as content of a binder component.
  • the polyurethane resin is preferably a polyether-based polyurethane resin.
  • a polyether-based polyurethane resin can prevent the occurrence of hydrolysis due to acid or alkali compared to a polyester-based polyurethane resin, and is harder than a polycarbonate-based polyurethane resin. This is because, by suppressing the formation of a brittle film, it is possible to ensure adhesion during processing and corrosion resistance of the processed portion.
  • the content of the polyurethane resin a calibration curve showing the relationship between the content and the intensity of the characteristic absorption was prepared using a sample of which the content was known in advance. The content can be specified from the intensity.
  • the surface treatment film according to the present embodiment contains additives such as a leveling agent, a water-soluble solvent, a metal stabilizer, an etching inhibitor, etc., as additives during the preparation of the treatment solution before forming the film, within a range that does not impair the effects of the present invention. It is possible to contain various additives such as
  • leveling agents include nonionic or cationic surfactants, such as polyethylene oxide or polypropylene oxide adducts, acetylene glycol compounds, and the like.
  • water-soluble solvents examples include alcohols such as ethanol, isopropyl alcohol, t-butyl alcohol and propylene glycol; cellosolves such as ethylene glycol monobutyl ether and ethylene glycol monoethyl ether; esters such as ethyl acetate and butyl acetate; and ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone.
  • alcohols such as ethanol, isopropyl alcohol, t-butyl alcohol and propylene glycol
  • cellosolves such as ethylene glycol monobutyl ether and ethylene glycol monoethyl ether
  • esters such as ethyl acetate and butyl acetate
  • ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone.
  • metal stabilizers examples include chelate compounds such as EDTA (ethylenediaminetetraacetic acid) and DTPA (diethylenetriaminepentaacetic acid).
  • etching inhibitors include amine compounds such as ethylenediamine, triethylenepentamine, guanidine and pyrimidine.
  • the surface treatment film according to the present embodiment may contain no silica or may contain silica within a certain range. More specifically, in the surface treatment film according to this embodiment, the silica content is 0 to 0.3 g/m 2 . If the silica content exceeds 0.3 g/m 2 , the effect of raising the temperature cannot be expected, but the cost becomes high, which is not preferable from the economic point of view. In addition, since silica is a substance with low electrical conductivity, a silica content exceeding 0.3 g/m 2 is not preferable in terms of weldability after hot stamping. When silica is contained in the surface treatment film, the smaller the content of silica, the better.
  • the silica content of the surface treatment film is more preferably 0.10 g/m 2 or less, still more preferably 0.05 g/m 2 or less.
  • the film thickness of the surface treatment film containing the above components is preferably 0.5 to 5.0 ⁇ m, for example.
  • the emissivity at a wavelength of 8.0 ⁇ m at 25° C. can more reliably be 60% or more.
  • the film thickness of the surface treatment film is more preferably 1.0 to 3.0 ⁇ m.
  • the hot stamping steel sheet according to the present embodiment preferably has a metal plating layer at least partly between the base steel sheet and the surface treatment film on one or both sides of the hot stamping steel sheet.
  • a metal plating layer By having a metal plating layer, the post-coating corrosion resistance after hot stamping can be further improved.
  • the presence of the metal plating layer can prevent the formation of iron scales due to heating during hot stamping. Iron scale contaminates the heating furnace and adheres to the rolls used for transportation, thus becoming a burden on production. Therefore, when iron scale is formed, a process such as shot blasting is required to remove the iron scale, which is economically unfavorable.
  • the type of metal plating layer is not particularly limited.
  • Examples of metal plating that constitutes such a metal plating layer include aluminum plating, Al-Si plating, zinc plating, alloyed zinc plating, Zn-Ni plating, Zn-Al-Mg plating, and Zn-Al-Mg-Si plating. etc.
  • the method for forming the metal plating layer includes hot dip plating, electroplating, physical vapor deposition, chemical vapor deposition, etc., but is not particularly limited.
  • the base material steel sheet of the steel sheet for hot stamping according to the present embodiment is not particularly limited as long as it is a steel sheet that can be suitably used for the hot stamping method.
  • the chemical composition is mass%, C: 0.10 to 0.40%, Si: 0.01 to 0.60%, Mn: 0 .50-3.00%, P: 0.05% or less, S: 0.020% or less, Al: 0.10% or less, Ti: 0.01-0.10%, B: 0.0001-0 0.0100%, N: 0.010% or less, and the balance being Fe and impurities.
  • examples of the form of the base material steel plate include steel plates such as hot-rolled steel plates and cold-rolled steel plates.
  • the chemical composition of the base steel sheet will be described in detail below. In the following description of the chemical composition of the base steel sheet, the notation of "%” means “% by mass” unless otherwise specified.
  • [C: 0.10 to 0.40%] C is contained to ensure the desired mechanical strength.
  • the C content is preferably 0.10% or more.
  • the C content is more preferably 0.20% or more.
  • the C content is preferably 0.40% or less.
  • the C content is more preferably 0.35% or less.
  • Si is one of the strength-improving elements that improve mechanical strength, and like C, it is contained to ensure the desired mechanical strength.
  • the Si content is preferably 0.01% or more.
  • the Si content is more preferably 0.10% or more.
  • Si is also an easily oxidizable element, when the Si content is 0.60% or less, the wettability during hot dip Al plating decreases due to the influence of the Si oxide formed on the surface layer of the steel sheet. It is suppressed, and the occurrence of non-plating can be suppressed. Therefore, the Si content is preferably 0.60% or less.
  • the Si content is more preferably 0.40% or less.
  • Mn is one of the strengthening elements that strengthen steel and is also one of the elements that improve hardenability. Furthermore, Mn is an element effective in preventing hot embrittlement caused by S, which is one of the impurities. These effects are sufficiently obtained when the Mn content is 0.50% or more. Therefore, the Mn content is preferably 0.50% or more in order to reliably exhibit the above effects. The Mn content is more preferably 0.80% or more. On the other hand, since Mn is an austenite-forming element, when the Mn content is 3.00% or less, the residual austenite phase does not become too large, and the decrease in strength is suppressed. Therefore, the Mn content is preferably 3.00% or less. The Mn content is more preferably 1.50% or less.
  • P is an impurity contained in steel.
  • the P content is 0.05% or less, it is possible to suppress the deterioration of the toughness of the base material of the hot-stamped compact due to the segregation of P contained in the steel sheet at the grain boundaries of the steel sheet. A decrease in delayed fracture resistance can be suppressed. Therefore, the P content is preferably 0.05% or less, and it is preferable to reduce the P content as much as possible.
  • S is an impurity contained in steel.
  • the S content is 0.020% or less, it is possible to suppress the deterioration of the toughness of the steel sheet due to the formation of sulfides by the S contained in the steel sheet, and to suppress the deterioration of the resistance to delayed fracture of the steel sheet. Therefore, the S content is preferably 0.020% or less, and it is preferable to reduce the S content as much as possible.
  • Al 0.10% or less
  • Al is commonly used for the purpose of deoxidizing steel.
  • the Al content of the steel sheet is preferably 0.10% or less, more preferably 0.05% or less, and even more preferably 0.01% or less.
  • Ti 0.01 to 0.10%
  • the Ti content is one of the strength-enhancing elements.
  • the Ti content is preferably 0.01% or more in order to reliably exhibit the above effects.
  • the Ti content is more preferably 0.03% or more.
  • the Ti content is preferably 0.10% or less.
  • the Ti content is more preferably 0.08% or less.
  • B has the effect of acting during quenching and improving the strength.
  • the B content is preferably 0.0001% or more.
  • the B content is more preferably 0.0010% or more.
  • the B content is preferably 0.0100% or less.
  • the B content is more preferably 0.0040% or less.
  • N is an impurity contained in steel.
  • the N content is 0.010% or less, the formation of nitrides due to N contained in the steel sheet is suppressed, and a decrease in toughness of the steel sheet can be suppressed.
  • B is contained in the steel sheet, the N contained in the steel sheet is suppressed from bonding with B to reduce the amount of solid solution B, and the decrease in the hardenability improvement effect of B can be suppressed. Therefore, the N content is preferably 0.010% or less, and more preferably as low as possible.
  • the base steel sheet of the steel sheet for hot stamping according to the present embodiment further includes Cr, Mo, Ni, Co, Cu, Mo, V, Nb, Sn, W, Ca, REM, O, Elements such as Sb may be contained.
  • Cr 0 to 1.00%
  • Cr is an element that improves the hardenability of the steel sheet.
  • the Cr content is preferably 0.01% or more.
  • the Cr content is preferably 1.00% or less.
  • Ni and Co are elements that improve the hardenability of steel and ensure stable strength of steel plate members after hardening.
  • the Ni content is preferably 0.10% or more, and the Co content is preferably 0.10% or more.
  • the Ni content and the Co content are each 2.00% or less, economic efficiency can be enhanced while sufficiently obtaining the above effects. Therefore, when Ni is included, the Ni content is preferably 2.00% or less, and the Co content is preferably 2.00% or less.
  • Cu is an element that enhances the hardenability of steel and makes it possible to stably ensure the strength of steel plate members after hardening. Cu also improves pitting resistance in corrosive environments.
  • the Cu content is preferably 0.100% or more in order to sufficiently exhibit such effects.
  • the content of Cu is preferably 1.000% or less.
  • Mo is an element that enhances the hardenability of steel and makes it possible to stably ensure the strength of steel plate members after hardening.
  • the Mo content is preferably 0.10% or more.
  • Mo content is preferably 1.00% or less.
  • V is an element that enhances the hardenability of steel and makes it possible to stably secure the strength of steel plate members after hardening.
  • the V content is preferably 0.10% or more.
  • the V content is preferably 1.00% or less.
  • Nb is an element that enhances the hardenability of steel and makes it possible to stably secure the strength of steel plate members after hardening.
  • the Nb content is preferably 0.01% or more.
  • the Nb content is preferably 1.00% or less.
  • Sn is an element that improves pitting corrosion resistance in corrosive environments.
  • the Sn content is preferably 0.01% or more in order to sufficiently exhibit such effects.
  • the Sn content is preferably 1.00% or less.
  • W is an element that enhances the hardenability of steel and makes it possible to stably secure the strength of steel plate members after hardening. W also improves pitting resistance in corrosive environments. In order to fully exhibit such effects, the W content is preferably 0.01% or more. On the other hand, when the W content is 1.00% or less, economic efficiency can be enhanced while sufficiently obtaining the above effects. Therefore, when W is included, the W content is preferably 1.00% or less.
  • Ca is an element that has the effect of refining inclusions in steel and improving toughness and ductility after quenching.
  • the Ca content is preferably 0.001% or more, more preferably 0.002% or more.
  • the content of Ca is preferably 0.010% or less, more preferably 0.004% or less.
  • REM 0-0.30%
  • REM is an element that has the effect of refining inclusions in steel and improving toughness and ductility after quenching.
  • the REM content is preferably 0.001% or more, more preferably 0.002% or more.
  • the REM content is preferably 0.30% or less, more preferably 0.20% or less.
  • REM refers to a total of 17 elements of Sc, Y and lanthanoids, and the content of REM above means the total content of these elements.
  • REMs are added to molten steel using, for example, Fe--Si--REM alloys, which include, for example, Ce, La, Nd, Pr.
  • O is not an essential element and is contained as an impurity in steel, for example.
  • O is an element that causes the deterioration of the properties of the steel sheet, such as forming an oxide and becoming a starting point of fracture.
  • oxides existing near the surface of the steel sheet may cause surface flaws and deteriorate the appearance quality. Therefore, the lower the O content, the better.
  • the O content is preferably 0.0070% or less.
  • the lower limit of the O content is not particularly limited, and may be 0%, but the practical lower limit of the O content in terms of refining is 0.0005%.
  • the lower limit of the Sb content is not particularly limited, and may be 0%.
  • Sb is an effective element for improving wettability and adhesion of plating. In order to obtain this effect, it is preferable to contain 0.001% or more of Sb.
  • the Sb content is preferably 0.100% or less
  • the balance other than the above components is Fe and impurities.
  • the base material steel plate may also contain other impurities that may be mixed during the manufacturing process or the like.
  • impurities include, for example, Zn (zinc).
  • the portion of the steel plate having the above chemical composition that has been given a surface treatment film can be made into a hot stamped member having a tensile strength of approximately 1000 MPa or more by heating and quenching by the hot stamping method.
  • press working can be performed in a state of being softened at a high temperature, so that molding can be easily performed.
  • the steel plate for hot stamping according to the present embodiment does not require the use of a plurality of steel plates, compared to the method of hot stamping after welding different steel plates or the method of changing the cooling rate depending on the part by controlling the temperature of the mold. , Preliminary welding equipment and processes are not required. In addition, equipment for changing the temperature of the mold and its running cost are not required. Therefore, it is economically preferable.
  • a part having portions with different strengths in this way can be manufactured using a steel plate for hot stamping having a region where a surface treatment film is applied to a part of the surface as described above.
  • a surface treatment film is applied to a part of the surface of a metal material such as a coiled steel plate, and parts with different emissivity are formed in advance.
  • the steel sheet for hot stamping according to the present embodiment is obtained by performing various processing such as cutting and punching with a press.
  • the steel sheet for hot stamping according to the present embodiment can also be obtained by applying a surface treatment film to a steel sheet that has been cut or punched by a press.
  • the emissivity can be changed continuously by changing the film thickness of the surface treatment film.
  • the steel plate for hot stamping to which the surface treatment film is applied as described above is hot stamped.
  • heating devices include electric heating furnaces, gas heating furnaces, far-infrared furnaces, and general heating devices equipped with infrared heaters.
  • the area to which the surface treatment film is applied (film-coated area) has an increased emissivity, and the heat transfer effect due to radiation is large, so the temperature rise rate is high. The temperature rise rate is slow.
  • the film-coated portion which is rapidly heated to a high temperature, is heated to a temperature higher than the Ac3 point at which the metal structure transforms into the austenite phase.
  • the non-coated part has a slow temperature rise rate, even if the coated part reaches the temperature of Ac 3 point or higher, the temperature should be kept below Ac 3 point so that the metal structure does not completely transform into an austenite single phase. can be done.
  • the heating device and the like to be used may be appropriately controlled so as to realize the above state.
  • the heated steel plate is shaped and cooled.
  • the portion heated to the Ac3 point temperature or higher where the metal structure of the steel transforms into the austenite phase is quenched to increase its strength, while it is heated to a temperature below the Ac3 point temperature to complete the transformation to the austenite single phase.
  • the strength is relatively low at the site where it is not.
  • a part that is, a hot stamped member
  • the difference in strength between the portions with different strengths can be measured by Vickers hardness ( Load F: 50 kgf, 1 kgf is about 9.8 N.), it can be 150 Hv or more.
  • the hot stamped member obtained as described above has a portion having the surface treatment film and a portion not having the surface treatment film on the surface of the steel sheet.
  • the surface treatment film contains one or more oxides selected from the group consisting of Zr oxide, Zn oxide, and Ti oxide, and the amount of oxide adhesion X Oxide is 0.030 g. /m 2 or more. Further, such a surface treatment film has a silica content of 0 to 0.3 g/m 2 .
  • the carbon black present in the surface treatment film of the steel sheet for hot stamping used as the material for the hot stamping member disappears through the hot stamping process, leaving the metal oxide.
  • the adhesion amount X Oxide of the oxide present in the surface treatment film of the hot stamping member depends on the adhesion amount of the oxide in the surface treatment film of the hot stamping steel plate used as the material, but the upper limit is roughly 0.600 g/ m2 .
  • Such a hot stamped member has a maximum hardness HVmax and a minimum It is preferable that a portion exhibiting a hardness HVmin exists and a hardness difference ⁇ HV between the maximum hardness HVmax and the minimum hardness HVmin is 150 or more.
  • both the portion exhibiting the maximum hardness HVmax and the portion exhibiting the minimum hardness HVmin are made of a common material (that is, the hot stamping steel sheet according to the present embodiment).
  • the "common member” is the ratio of the content of specific elements (for example, C, Si, Mn, P, S, Al, Ti, B, N) in the 0.05 mm field of view near the center of the plate thickness ( ratio between members) is anywhere within the range of 0.80 times to 1.2 times.
  • members having the same composition when confirmed at the center of plate thickness and manufactured through the same manufacturing process are the “common members” as used herein.
  • such a common material may be composed of a single steel plate, or a plurality of identical steel plates (that is, the hot stamping steel plate according to the present embodiment) joined by some method. can be anything.
  • a steel plate with high mechanical strength meaning various properties related to mechanical deformation and destruction such as tensile strength, yield point, elongation, reduction of area, hardness, impact value, fatigue strength, etc.
  • Table 1 shows the chemical composition of the base steel sheet before plating, which was used in the steel sheets for hot stamping shown in the following examples.
  • a surface treatment film was applied to the base material steel plates (steel Nos. S1 to S18) having the chemical compositions shown in Table 1. More specifically, as shown in FIG. 2, a steel plate having a width of 100 mm, a length of 200 mm, and a thickness of 1.2 mm is provided with a surface treatment film on one or both sides of the upper 100 mm of the 200 mm in the length direction. The other 100 mm was treated as a non-coated portion without applying a surface treatment film.
  • water-based acrylic resins as binder components, compounds such as commercially available carbon black, TiO 2 , ZrO 2 , ZnO, Fe 2 O 3 , Fe 3 O 4 , CuO, SiO 2 , TiC, TiN, SiC and SiN was applied to a part of the base steel plate using an industrial inkjet printer, and dried to give a surface treatment film.
  • silica was added to some of the aqueous treatment liquids. The film thickness of the surface treatment film was within the range of 1.0 to 2.5 ⁇ m, and when both surfaces were coated, the same type of coating was applied to both surfaces.
  • thermocouples were connected to the central portion (P1) of the portion to which the surface treatment film was applied (film portion) and the center portion (P2) of the portion without the film (non-film portion) shown in FIG. , so that the temperature at each position can be measured. Then, the steel plate was heated in an electric heating furnace with a set temperature of 900°C, and the steel plate was removed from the heating furnace when the temperature of the film-applied portion reached 880°C. The steel plate was rapidly cooled in a flat die to obtain a hot stamped member.
  • the portion to which the surface treatment film is applied becomes the portion exhibiting the maximum hardness HVmax, and the surface treatment film is not applied.
  • the portion (non-coated portion) exhibits the minimum hardness HVmin.
  • some base steel sheets are subjected to Al-10 mass% Si plating, Zn plating, or Al plating by hot dip plating, and then the above surface treatment film is applied, or electroplating After applying Zn-3 mass % Ni plating by the method, the above surface treatment film was applied.
  • the coating amount was adjusted to 70 g/m 2 per side by the gas wiping method.
  • the coating weight on one side was adjusted to 20 g/m 2 .
  • the film composition of the site to which the surface treatment film was applied and the difference in Vickers hardness between P1 and P2 of the resulting hot stamped member were investigated, and in some examples, further appearance, paint adhesion, corrosion resistance after painting investigated.
  • the evaluation method for each evaluation item was as follows.
  • Tables 2, 3, 4, and 5 show the evaluation results obtained in Examples 1 to 4, which were carried out under the above conditions.
  • Example 1 In Table 2 shown below, A1 to 21 are examples, and a1 to a3 are comparative examples.
  • the total content of the compounds other than the binder component in the aqueous treatment liquid was within the range of 2 to 50% by volume with respect to the volume of the entire solid content.
  • a water-based treatment liquid having a solid content concentration of 10 to 40% by mass was applied to a steel plate so as to have a liquid film thickness of 3 ⁇ m to 25 ⁇ m, followed by drying to obtain a film.
  • the atmosphere during drying was air or nitrogen atmosphere, and the temperature was 100 to 300°C.
  • the total content of the compounds in the aqueous treatment liquid is the total content of the compounds in the surface treatment film obtained after drying.
  • the emissivity value at a wavelength of 8.0 ⁇ m was adjusted by adjusting the content of the compound and the adhesion amount of the surface treatment film.
  • the emissivity at 25° C. and a wavelength of 8.0 ⁇ m in the coated portion P1 is as small as 58, 56, and 58%, and the difference in hardness between the coated portion P1 and the non-coated portion P2 of the hot stamping member. had a Vickers hardness of ⁇ HV of less than 150 (grade 1). Since the coatings a1 to a3 have an emissivity of less than 60% at a wavelength of 8.0 ⁇ m at 25° C., there is a large difference in the rate of temperature increase during heating between the coated portion P1 and the non-coated portion P2. Therefore, it is presumed that the structure of the hot stamped member did not have a Vickers hardness difference of ⁇ HV of 150 or more.
  • invention examples A1 to A21 had an emissivity of 60% or more at 25°C and a wavelength of 8.0 ⁇ m.
  • the difference in hardness between the coated portion and the uncoated portion of the hot stamped member was HV 150 or more and less than 200 (mark 2) in terms of Vickers hardness.
  • Example 2 In Table 3, in Invention Example B1, carbon black (CB) was 2.7% by volume in the surface treatment film, and TiO 2 was 0.6% by volume in the surface treatment film. As a result, the emissivity at 25° C. and a wavelength of 8.0 ⁇ m in the coated portion was 86%, and the hardness difference between the coated portion and the non-coated portion of the hot stamping member was HV 150 or more and less than 200 in Vickers hardness (grade 2). became. The paint adhesion was rated 3, but the appearance was rated 1.
  • Example 3 In Table 4, Invention Example C1 in which the content of Zn oxide in the surface treatment film was 0.2% by volume, Invention Example C2 in which the content of Ti oxide in the surface treatment film was 0.3% by volume, And, compared to Invention Example C6 in which the content of Ti oxide in the surface treatment film was 37.5% by volume, as in Invention Examples C3 to C5, the content of Ti oxide and Zr oxide in the surface treatment film was reduced. By setting the content to 1.0 to 30.0% by volume, the difference in hardness between the film-coated and non-coated regions of the hot stamping member was further increased (grade 3).
  • the reason for the large hardness difference is that the emissivity of the oxide is higher than that of the compound on the steel plate surface, and the presence of the interface between the steel plate surface and the oxide particles prevents the reflection of infrared rays to the sample.
  • the reason for this is thought to be that the difference in heating rate from the non-coated portion increased due to the increase in the amount of heat input.
  • Example 4 In Table 5, in Example D1, the emissivity at the coated portion at 700° C. and the wavelength of 8.0 ⁇ m was 56%, and the hardness difference between the coated portion and the non-coated portion of the hot stamping member was HV 150 or higher. It became less than 200 (rating 2). On the other hand, in invention examples D2 to D6 in which the emissivity at the coated portion at 700° C. and the wavelength of 8.0 ⁇ m is 60% or more, the hardness difference between the coated portion and the non-coated portion of the hot stamping member is HV200 or more ( A score of 3) was obtained.
  • Example 5 In Table 6, as is clear from a comparison of Invention Examples E1 to E5 and E6, the corrosion resistance after painting was "1" in Invention Example E6 without plating, whereas Al-10 mass% Si, or The corrosion resistance after painting was improved to "2" or "3" in invention examples E1 to E5 having Zn-3% by mass Ni plating.
  • the present invention it is possible to rapidly heat a region provided with a surface treatment film having an increased emissivity at a wavelength of 8.0 ⁇ m at 25° C. by increasing heat transfer by radiation.
  • a surface treatment film having an increased emissivity at a wavelength of 8.0 ⁇ m at 25° C. By making a difference in hardenability, it is possible to provide portions having different strengths in a hot stamped member from a single steel plate. Therefore, industrial applicability is high.

Abstract

25℃における波長8.0μmでの放射率が60%以上である表面処理皮膜を有する部位と、前記表面処理皮膜を有していない部位とを表面に有するホットスタンプ用鋼板であって、前記表面処理皮膜は、カーボンブラックと、Zr酸化物、Zn酸化物、及び、Ti酸化物からなる群より選択される1種以上の酸化物とを含有し、かつ、前記カーボンブラック及び前記酸化物は、前記表面処理皮膜の全体に分散して存在し、前記表面処理皮膜は、シリカの含有量が0~0.3g/mであり、前記カーボンブラック及び前記酸化物の付着量を各々XCB(g/m)、XOxide(g/m)とするとき、下記式を満足するものである。 118.9≦24280/{6700/(100+76×XCB)+18000/(130+65×XOxide)}≦332.0

Description

ホットスタンプ用鋼板及びホットスタンプ部材
 本発明は、ホットスタンプ用鋼板及びホットスタンプ部材に関する。
 近年、環境保護及び地球温暖化の防止のために、化学燃料の消費を抑制する要請が高まっており、この要請は、様々な製造業に対して影響を与えている。例えば、移動手段として日々の生活や活動に欠かせない自動車についても例外ではなく、車体の軽量化などによる燃費の向上等が求められている。しかしながら、自動車では単に車体の軽量化を実現することは安全性の低下につながる可能性があるので、製品品質上許されない。そのため、車体の軽量化を行う場合には、適切な安全性を確保する必要がある。
 自動車の構造の多くは、鉄、特に鋼板により形成されており、鋼板の重量を低減することが、車体の軽量化にとって重要である。また、このような鋼板に対する要請は、自動車製造業のみならず、様々な製造業でも同様になされている。このような要請に対し、単に鋼板の重量を低減するのであれば、鋼板の板厚を薄くすることが考えられる。しかしながら、鋼板の板厚を薄くすることは、構造物の強度の低下につながる。そのため、近年、鋼板の機械的強度を高めることにより、それ以前に使用されていた鋼板より薄くしても鋼板によって構成される構造物の機械的強度を維持又は高めることが可能な鋼板について、研究開発が行われている。
 一般的に、高い機械的強度を有する材料は、曲げ加工等の成形加工において、形状凍結性が低下する傾向にある。そのため、複雑な形状に加工する場合、加工そのものが困難となる。この成形性についての問題を解決する手段の一つとして、いわゆる「ホットスタンプ法(熱間プレス法、ホットプレス法、高温プレス法、ダイクエンチ法とも呼ばれる。)」が挙げられる。このホットスタンプ法では、成形対象である材料を高温に加熱してオーステナイトと呼ばれる組織に変態(オーステナイト化)させ、加熱により軟化した鋼板に対してプレス加工を行って成形し、成形後に冷却する。このホットスタンプ法によれば、材料を一旦高温に加熱して軟化させるので、その材料を容易にプレス加工することができる。更に、成形後の冷却による焼入れ効果により、材料の機械的強度を高めることができる。従って、このホットスタンプ法により、良好な形状凍結性と高い機械的強度とを有した成形品を得ることができる。
 一方、部品によっては、強度の高い部分と低い部分とを併せ持つことが求められる場合がある。これは、人員保護のために高い強度が必要な一方で、人員を保護すべき以外の部分で衝突時のエネルギーを吸収するために、比較的低強度にする必要があるためである。
 上記のような観点から、例えば以下の特許文献1には、鋼成分の異なる少なくとも2種のZn系めっき鋼板を接合した部品が記載されている。また、以下の特許文献2には、鋼板の場所によって平均冷却速度及び冷却停止温度に差異を設けて、冷却後の組織を作り分ける技術が記載されている。また、以下の特許文献3には、金型の温度を制御することによりマルテンサイト変態後に一部の場所を焼き戻すことで、延性を高める技術が記載されている。
国際公開第2016/139953号 特開2014-161854号公報 特開2016- 41440号公報
 しかしながら、上記特許文献1に記載されているような部品を製造するためには、強度の異なる鋼板を製造することが求められるため、製造上の負荷が増加するのに加えて、接合する工程が必要となり、経済的ではない。
 また、上記特許文献2に記載されているような方法を用いると、冷却用の金型が2種類必要となるため経済的に不利であったり、製造のロバスト性の確保が難しくなったりするため、好ましくない。
 また、上記特許文献3に記載されている技術を用いた場合であっても、上記特許文献2と同様に製造のロバスト性の確保が難しくなるため、好ましくない。
 このように、コストの増加の抑制、及び、製品のロバスト性の確保を実現しながら、ホットスタンプ加工を行うことが可能な技術が希求されている現状にある。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、ホットスタンプ加工により強度の異なる部分を持つ部品の製造に適したホットスタンプ用鋼板と、強度の異なる部分を有するホットスタンプ部材と、を提供することにある。
 上記課題を解決して強度の異なる部分を有する金属部品を製造するために、本発明者らが鋭意検討を行った結果、鋼板の表面の一部に高放射率の表面処理皮膜を付与することにより、温度上昇速度(昇温速度)を高めることに着想した。
 鋼板の一部に放射率を高める表面処理皮膜を付与することで、ホットスタンプ加熱時の昇温速度に差異を設けることができる。このような特徴を有するホットスタンプ用鋼板は、皮膜が付与された部分はオーステナイト化が完了し、それ以外の部分はオーステナイト化が未完了のまま、加熱炉から取り出され、金型により急速に冷却される。その結果、皮膜が付与された部分とそれ以外の部分とで焼き入れ性に差が生じ、強度の異なる部分を有する鋼板由来の部品を製造することが可能となる。
 本発明は、本発明者らにより得られた上記の知見に基づきなされたものであり、本発明の要旨とするところは、以下の通りである。
[1]25℃における波長8.0μmでの放射率が60%以上である表面処理皮膜を有する部位と、前記表面処理皮膜を有していない部位と、を鋼板の表面に有し、前記表面処理皮膜は、カーボンブラックと、Zr酸化物、Zn酸化物、及び、Ti酸化物からなる群より選択される1種以上の酸化物と、を含有し、かつ、前記カーボンブラック及び前記酸化物は、前記表面処理皮膜の全体に分散して存在し、前記表面処理皮膜は、シリカの含有量が0~0.3g/mであり、前記カーボンブラック及び前記酸化物の付着量を各々XCB(g/m)、XOxide(g/m)とするとき、下記式(1)を満足する、ホットスタンプ用鋼板。
 118.9≦24280/{6700/(100+76×XCB)+18000/(130+65×XOxide)}≦332.0 ・・・ 式(1)
[2]前記表面処理皮膜は、前記カーボンブラックを5.0~40.0体積%含有し、前記酸化物を1.0~30.0体積%含有する、[1]に記載のホットスタンプ用鋼板。
[3]前記カーボンブラックの付着量XCB(g/m)と前記酸化物の付着量XOxide(g/m)との比率XOxide/XCBは、0.20以上200.00以下である、[1]又は[2]に記載のホットスタンプ用鋼板。
[4]前記カーボンブラックの付着量XCBは、0.030g/m以上であり、前記酸化物の付着量XOxideは、0.030g/m以上である、[1]~[3]の何れか1つに記載のホットスタンプ用鋼板。
[5]前記表面処理皮膜の700℃における波長8.0μmでの放射率は、60%以上である、[1]~[4]の何れか1つに記載のホットスタンプ用鋼板。
[6]前記ホットスタンプ用鋼板の片面又は両面において、前記鋼板の基材と前記表面処理皮膜との間に、金属めっき層を有する、[1]~[5]の何れか1つに記載のホットスタンプ用鋼板。
[7]鋼板の表面に、表面処理皮膜を有する部位と、前記表面処理皮膜を有していない部位と、を有し、前記表面処理皮膜は、Zr酸化物、Zn酸化物、及び、Ti酸化物からなる群より選択される1種以上の酸化物を含有し、かつ、前記酸化物の付着量XOxideは、0.030g/m以上であり、前記表面処理皮膜は、シリカの含有量が0~0.3g/mである、ホットスタンプ部材。
[8]JIS Z 2244(2009)で規定されるビッカース硬度を測定したときに、最大硬度HVmaxを示す部位と、最小硬度HVminを示す部位と、が存在し、かつ、前記最大硬度HVmaxと前記最小硬度HVminとの硬度差ΔHVが、150以上である、[7]に記載のホットスタンプ部材。
[9]前記最大硬度HVmaxを示す部位と、前記最小硬度HVminを示す部位の双方は、共通の素材で構成された領域内に存在する、[8]に記載のホットスタンプ部材。
 以上説明したように本発明によれば、強度の異なる部分を有する部品の製造に適したホットスタンプ用鋼板及び強度の異なる部分を有するホットスタンプ部材を提供することが可能となる。
ホットスタンプ加熱時の有皮膜部位と無皮膜部位におけるオーステナイト化の開始時間・完了時間を模式的に示した図である。 ホットスタンプ用鋼板の表面における有皮膜部位及びその中心部(P1)、並びに、無皮膜部位及びその中心部(P2)を模式的に示した図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。
(ホットスタンプ用鋼板)
 以下で説明する、本発明の実施形態に係るホットスタンプ用鋼板は、強度の異なる部分を有する部品の製造に適したものである。かかるホットスタンプ用鋼板は、25℃における波長8.0μmでの放射率が60%以上である表面処理皮膜を有する部位と、かかる表面処理皮膜を有していない部位と、を鋼板の表面に有したものである。本実施形態では、上記のように鋼板の一部に表面処理皮膜を付与することにより、25℃における波長8.0μmでの放射率を60%以上に高めることができる。
 本実施形態に係るホットスタンプ用鋼板において、母材となる鋼板(母材鋼板)の種類は、特に限定されるものではない。このような鋼板として、例えば、各種の熱延鋼板、冷延鋼板、及び、めっき鋼板を挙げることができる。めっき鋼板には、例えば、溶融アルミニウムめっき、溶融亜鉛めっき、合金化溶融亜鉛めっき、電気亜鉛めっきなどが施された鋼板があるが、ホットスタンプに適用できるのであれば、これらめっき鋼板に限定されるものではない。
 従来、自動車用骨格部品などとして用いられる鋼板の多くは、熱延鋼板や冷延鋼板、又は、アルミニウムや亜鉛等のめっきが施されためっき鋼板であった。これら鋼板は、放射率が低いために、波長8.0μm前後の輻射加熱に対する昇温速度は低い。
 本実施形態では、図1に模式的に示す通り、鋼板表面の一部にのみ特定の表面処理皮膜を付与することで、ホットスタンプ加熱時の有皮膜部分の加熱速度を高める。有皮膜部分がAc3点以上の温度となり、かつ、無皮膜部分がAc3点未満の温度に到達した後、鋼板をホットスタンプすることにより、有皮膜部分を局部的に焼入れ組織(マルテンサイト組織)とすることを可能とする。
 本実施形態では、鋼板表面の一部に対し、放射率の高い表面処理皮膜を付与する。表面処理皮膜を付与する具体的な手法としては、塗装・ラミネートなどの方法があるが、これらの手法に限定されるものではない。上記のような表面処理皮膜は、鋼板の片面のみに付与してもよいし、鋼板の両面に付与してもよい。鋼板の表面のうち、表面処理皮膜を付与した領域の25℃における波長8.0μmでの放射率は、60%以上である。表面処理皮膜を付与した領域の25℃における波長8.0μmでの放射率は、好ましくは70%以上であり、更に好ましくは80%以上である。
 なお、放射率の測定法は、日本産業規格のJIS R 1801(2002)に記載の通り実施することが可能である。この場合、フーリエ変換赤外分光光度計に試料をセットし、25℃において波長8.0μmでの放射強度を測定して、放射率を算出する。
 また、測定波長を8.0μmに設定した放射温度計を用いて、25℃において着目する部位の放射強度を測定し、黒体の放射強度に対する比から放射率を算出することも可能である。
 塗装により鋼板表面の一部にのみ表面処理皮膜を付与する際には、例えばカーボンブラック及び金属酸化物を含む有機系もしくは無機系の処理液を、鋼板表面の一部にロールコーターやカーテンコーターで塗装した後に、処理液中の揮発成分を乾燥させることによって、表面処理皮膜を付与することができる。また、鋼板の一部をポリエステルテープや他の素材によって被覆したうえで上記処理液を用いた塗装に供することにより、鋼板表面の任意の部分に皮膜を付与することができる。
 特にインクジェットによる塗装では、任意の位置に高い精度で処理液を塗布することができる上に、膜厚を連続的に変更することも可能である。
<表面処理皮膜>
 本実施形態に係るホットスタンプ用鋼板において、表面処理皮膜を付与した部分の25℃における波長8.0μmでの放射率は、60%以上である。25℃における波長8.0μmでの放射率が60%未満になると、表面処理皮膜を付与していない部分との昇温速度の差が小さくなる。これにより、ホットスタンプでの加熱・冷却後の硬度差が確保できなかったり、確保するための加熱炉からの鋼板取り出しタイミングの自由度が低くなり製造に負荷がかかったりして、自動車部品として軽量化と安全性能の両立が難しくなる。25℃における波長8.0μmでの放射率は、80%以上であることが好ましい。25℃における波長8.0μmでの放射率が80%以上となることで、上記の硬度差をより確保しやすくなったり、製造への負荷をより削減したりすることが可能となる。なお、表面処理皮膜を付与した部分の25℃における波長8.0μmでの放射率は、高ければ高いほどよく、その上限値を規定するものではなく、100%であってもよい。
 25℃における波長8.0μmでの放射率を60%以上とするために、本実施形態に係る表面処理皮膜は、以下で詳述するようなカーボンブラック及び特定の金属酸化物を含有する。また、本実施形態に係る表面処理皮膜は、必要に応じて、バインダー成分や各種の添加剤等を更に含有してもよい。更に、本実施形態に係る表面処理皮膜は、シリカを含有していなくともよいし、ある範囲内でシリカを含有していてもよい。カーボンブラック及び金属酸化物等の含有量や、表面処理皮膜の膜厚等を調整することで、所望の放射率を実現することが可能となる。
 より詳細には、本実施形態に係る表面処理皮膜は、カーボンブラックと、Zr酸化物、Zn酸化物、及び、Ti酸化物からなる群より選択される1種以上の酸化物と、を含有し、かつ、カーボンブラック及び上記酸化物は、表面処理皮膜の全体に分散して存在している。また、カーボンブラックの付着量をXCB(g/m)と表し、酸化物の付着量をXOxide(g/m)と表すとき、本実施形態に係る表面処理皮膜は、下記式(1)で表される関係を満足する。
 
 118.9≦24280/{6700/(100+76×XCB)+18000/(130+65×XOxide)}≦332.0 ・・・ 式(1)
 
 上記(式1)は、昇温速度(℃/s)の増加の倍率(%)と、カーボンブラック及び酸化物の付着量との関係式を規定したものである。より詳細には、昇温速度の増加の倍率に関し、700℃までの範囲ではカーボンブラックが熱吸収材として機能し、700℃以上の範囲では、かかる温度域でも残存するZr酸化物、Zn酸化物、Ti酸化物が熱吸収材として機能することを、定式化したものである。
 先だって簡単に言及したように、本実施形態に係る表面処理皮膜は、カーボンブラック及び特定の酸化物を含有する処理液を鋼板の所望の部位に塗布することで、形成することができる。その結果、本実施形態に係る表面処理皮膜では、カーボンブラック及び酸化物が、表面処理皮膜の全体に分散して存在するようになる。カーボンブラック及び酸化物が、表面処理皮膜の全体に分散して存在することで、表面処理皮膜の25℃における波長8.0μmでの放射率を、皮膜全体で均一なものとすることができる。その結果、本実施形態に係る表面処理皮膜が付与されている部位をホットスタンプした際に、表面処理皮膜の全体としてムラのない加熱が可能となる。
 このようなカーボンブラック及び酸化物の分布状態は、表面処理皮膜を、電子プローブマイクロアナライザ(Electron Probe Micro Analyzer:EPMA)により、カーボンブラックに由来する元素(例えば、C)や、酸化物に由来する元素(すなわち、Zr、Zn、Ti)について面分析することで、確認することができる。
 なお、カーボンブラックを含有する処理液、及び、酸化物を含有する処理液を別個に準備し、これら処理液を別々に塗布することで積層皮膜を形成した場合には、カーボンブラック及び酸化物は、皮膜の全体に分散して存在するようにはならない。また、このように複数の処理液を用いて皮膜を形成しようとすると、一層目の皮膜が形成された後に二層目の皮膜を形成しなければならないため、製造設備が大型化するとともに、製造コストも増加してしまう。
 また、本実施形態に係る表面処理皮膜は、カーボンブラックの付着量XCB及び酸化物の付着量XOxideが上記式(1)で表される関係を満足することで、25℃における波長8.0μmでの放射率が60%以上となって、表面処理皮膜が存在しない部位との昇温速度の違いが顕著なものとなる。上記式(1)の中央の項で規定される値が118.9未満となる場合には、カーボンブラック及び酸化物の付着量が不足し、上記のような放射率を実現することができない。上記式(1)の中央の項で規定される値は、好ましくは119.0以上であり、より好ましくは170.0以上であり、更に好ましくは220.0以上である。一方、上記式(1)の中央の項で規定される値が332.0を超える場合には、皮膜の密着性が低下するため好ましくない。上記式(1)の中央の項で規定される値は、好ましくは330.0以下であり、より好ましくは310.0以下であり、更に好ましくは300.0以下である。
 ここで、表面処理皮膜におけるカーボンブラックの付着量XCBは、透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いた表面処理皮膜の断面分析により、以下のようにして測定することが可能である。すなわち、膜厚×5μmで表される領域の範囲について、TEM-EDS分析で断面分析し、表面処理皮膜の膜厚と、炭素含有率が70質量%以上となる粒子が占める面積率と、を測定する。膜厚をd(μm)とし、面積率をa(%)としたときに、d×aで表される値が、カーボンブラックの付着量XCB(g/m)となる。
 また、表面処理皮膜におけるZr、Zn、Tiのうち少なくとも1種の元素の酸化物の付着量XOxideは、Zr酸化物、Zn酸化物、Ti酸化物(すなわち、ZrO、ZnO、TiO)が、金属Zr、金属Zn、金属Tiとして単位面積あたりに付着している量を意味する。これら酸化物の付着量XOxideは、蛍光X線分析装置(RIGAKU社製、ZSX Primus)を用いて、表面処理皮膜の表面から元素分析し、金属Zr、金属Zn及び金属Tiを定量することで求めることができる。
 本実施形態に係るホットスタンプ用鋼板は、上記のような特徴を有することで、700℃における波長8.0μmでの放射率を、60%以上とすることが可能となる。以下、上記のような放射率の実現にあたって特徴的な、表面処理皮膜が含有する物質について、より詳細に説明する。
≪カーボンブラック≫
 鋼板の表面のうち、表面処理皮膜の付与された部位において、表面処理皮膜におけるカーボンブラックの付着量XCBは、0.030g/m以上であることが好ましい。付着量XCBを0.030g/m以上とすることで、700℃までの領域における昇温速度を、確実に大きくすることが可能となる。付着量XCBは、より好ましくは0.100g/m以上である。一方、付着量XCBの上限値は、上記式(1)により定まる値となる。付着量XCBは、好ましくは0.800g/m以下であり、より好ましくは0.600g/m以下である。
 また、表面処理皮膜は、カーボンブラックを5.0~40.0体積%含有することがより好ましい。カーボンブラックは、700℃までの領域において特に昇温速度を大きくする効果がある。鋼板の粗度やうねり、あるいは、皮膜形成時に処理液中の水などの揮発性成分の揮発する速度差等等により、表面処理皮膜の厚みが局所的に異なる場合がある。この際、カーボンブラックの含有量が5.0体積%以上であることで、カーボンブラックにより黒く見える部分とそれ以外の部分での差を抑制して意匠性を保つことができ、外観上好ましい。一方、表面処理皮膜中のカーボンブラックの含有量が40.0体積%以下であることで、ホットスタンプ加熱した後の塗料密着性の低下を抑制できる。そのメカニズムは明らかではないが、残存したカーボンブラック又はカーボンブラックの酸化物等に由来する化合物の残存を抑制することにより、塗料と基材との結合が妨げられることが抑制されているものと推察される。
 また、カーボンブラックの主成分が炭素、水素、酸素であるために、カーボンブラックは、高温に加熱されることで消失する。そのため、表面処理皮膜中にカーボンブラックを含有させることで、塗装後密着性等のホットスタンプ後の性能を維持することができる。
 カーボンブラックの含有量が5.0体積%以上であることで、表面処理皮膜の下層に位置する鋼板又はめっき層の酸化が抑制されるために、塗料(処理剤)を塗布した際の反応性が確保されて強固な結合ができ、塗料密着性が保たれる。また、放射率を高めることができ、昇温速度を大きくすることができる。表面処理皮膜中のカーボンブラックの含有量は、8.0体積%以上であることが更に好ましい。表面処理皮膜中のカーボンブラックの含有量を8.0体積%以上とすることで、更に一層昇温速度を高めることが可能となる。一方、表面処理皮膜中のカーボンブラックの含有量が40.0体積%以下であることで、放射率を高める効果を十分に得つつ、皮膜コストの上昇を抑制できる。表面処理皮膜中のカーボンブラックの含有量は、30.0体積%以下であることが更に好ましい。表面処理皮膜中のカーボンブラックの含有量を30.0体積%以下とすることで、皮膜コストをより一層抑制することが可能となる。
≪金属酸化物≫
 鋼板の表面のうち、表面処理皮膜の付与された部位において、表面処理皮膜におけるZr酸化物、Zn酸化物、及び、Ti酸化物の合計の付着量XOxideは、0.030g/m以上であることが好ましい。付着量XOxideを0.03g/m以上とすることで、700℃以上の領域における昇温速度を、確実に大きくすることが可能となる。付着量XOxideは、より好ましくは0.060g/m以上である。一方、付着量XOxideの上限値は、上記式(1)により定まる値となる。付着量XOxideは、好ましくは0.500g/m以下であり、より好ましくは0.300g/m以下である。
 また、表面処理皮膜は、Zr酸化物、Zn酸化物、及び、Ti酸化物を、合計で1.0~30.0体積%含有することがより好ましい。これらの元素の酸化物(すなわち、Zr、Zn、Tiの金属酸化物)は、カーボンブラックの効果が小さくなる700℃以上の高温に加熱された場合であっても、表面処理皮膜中に残存する。その結果、表面処理皮膜を付与された部位において、これらの金属酸化物が700℃以上の高温において鋼板表面又はめっき表面に比べて高い放射率であるために、加熱雰囲気からの輻射熱による入熱量が大きくなる。これにより、700℃以上の高温下であっても昇温速度を大きくする効果を維持することが可能となる。これらの金属酸化物の含有量が1.0体積%以上であることで、昇温速度を高める効果を十分に得ることができる。これらの金属酸化物の含有量は、3.0体積%以上であることが更に好ましい。一方、これらの金属酸化物の含有量が30体積%以下であることで、皮膜コストを抑制でき、経済的に好ましい。これらの金属酸化物の含有量は、25.0体積%以下であることが更に好ましい。
 なお、表面処理皮膜中でのカーボンブラックや金属酸化物等の各種化合物の含有率(体積%)は、試料を樹脂に埋込後、研磨により断面を走査型電子顕微鏡(SEM)にて観察し、断面に占める面積率より算出することができる。また、化合物は、SEMに付属のEDX機能を用いて定量分析することにより推定することができる。
 本実施形態に係る表面処理皮膜において、上記のカーボンブラックの付着量XCB(g/m)と酸化物の付着量XOxide(g/m)との比率XOxide/XCBは、0.20以上200.00以下であることが好ましい。比率XOxide/XCBが上記の範囲内となることで、表面処理皮膜が付与された部位のより適切な加熱が可能となる。比率XOxide/XCBは、より好ましくは0.40~10.00であり、更に好ましくは0.60~5.00である。
 また、本実施形態に係る表面処理皮膜には、上記カーボンブラック及び金属酸化物以外に、各種のバインダー成分や添加剤を含有させることができる。
≪バインダー成分≫
 本実施形態に係る表面処理皮膜に含有されうるバインダー成分は、水分散性又は水溶解性の樹脂であることが好ましい。水分散性又は水溶解性の樹脂から選択されるバインダー成分の含有量は、表面処理皮膜の全体積に対して、40体積%以上であることが好ましい。
 水分散性又は水溶解性の樹脂から選択されるバインダー成分としては、水分散性又は水溶解性を示す公知の各種の樹脂を用いることが可能である。このような水分散性又は水溶解性を示す樹脂として、例えば、ポリウレタン樹脂、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、フッ素樹脂、ポリアミド樹脂、ポリオレフィン樹脂、シランカップリング剤を加水分解・縮重合して得られるポリマー化合物などが挙げられる。かかるバインダー成分は、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、アクリル樹脂、エポキシ樹脂、フッ素樹脂、及び、ポリアミド樹脂からなる群より選択される1種又は2種以上であることが、より好ましい。なお、バインダー成分として複数の樹脂を用いる場合、用いた複数の樹脂の合計含有量を、バインダー成分の含有量として扱う。
 なお、バインダー成分としてポリウレタン樹脂を用いる場合、ポリウレタン樹脂は、ポリエーテル系のポリウレタン樹脂であることが好ましい。ポリエーテル系のポリウレタン樹脂を用いることで、ポリエステル系のポリウレタン樹脂と比較して、酸やアルカリによる加水分解の発生を防止することができるからであり、ポリカーボネート系のポリウレタン樹脂と比較して、硬くて脆い皮膜の形成を抑制することで、加工時の密着性や加工部の耐食性を担保することができるからである。
 ポリウレタン樹脂が含有されているか否かは、赤外分光法により得られる赤外吸収スペクトルにおいて、3330cm-1(N-H伸縮)、1730cm-1(C=O伸縮)、1530cm-1(C-N)、1250cm-1(C-O)の特性吸収が観測されるか否かに基づいて、判断することができる。また、ポリウレタン樹脂の含有量についても、予め含有量が既知のサンプルを用いて、含有量と特性吸収の強度との関係を示した検量線を作成しておくことで、得られた特性吸収の強度から含有量を特定することができる。
 また、上記のポリウレタン樹脂以外の樹脂についても、各樹脂に特有の官能基に由来する特性吸収に着目することで、上記ポリウレタン樹脂と同様に、含有の有無及び含有量を判断することが可能である。
≪添加剤≫
 本実施形態に係る表面処理皮膜には、本発明の効果を損なわない範囲で、皮膜形成前の処理液作製時の添加剤として、レベリング剤、水溶性溶剤、金属安定化剤、エッチング抑制剤等といった各種の添加剤を含有させることが可能である。
 レベリング剤としては、ノニオン系又はカチオン系の界面活性剤として、例えば、ポリエチレンオキサイド又はポリプロピレンオキサイド付加物や、アセチレングリコール化合物等が挙げられる。
 水溶性溶剤としては、例えば、エタノール、イソプロピルアルコール、t-ブチルアルコール及びプロピレングリコール等のアルコール類、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル等のセロソルブ類、酢酸エチル、酢酸ブチル等のエステル類、アセトン、メチルエチルケトン及びメチルイソブチルケトン等のケトン類等が挙げられる。
 金属安定化剤としては、例えば、EDTA(エチレンジアミン四酢酸)、DTPA(ジエチレントリアミン五酢酸)等のキレート化合物が挙げられる。
 エッチング抑制剤としては、例えば、エチレンジアミン、トリエチレンペンタミン、グアニジン及びピリミジン等のアミン化合物類が挙げられる。
 なお、上記のバインダー成分や添加剤の含有量についても、カーボンブラックや金属酸化物の場合と同様にして、測定することが可能である。
≪シリカ≫
 本実施形態に係る表面処理皮膜は、先だって言及したように、シリカを含有していなくともよく、ある範囲内でシリカを含有していてもよい。より詳細には、本実施形態に係る表面処理皮膜において、シリカの含有量は、0~0.3g/mである。シリカを0.3g/mを超えて含有する場合、温度上昇効果が望めない一方で高コストとなるため、経済性の点で好ましくない。また、シリカは電気伝導性が低い物質であるため、シリカを0.3g/mを超えて含有する場合、ホットスタンプ後の溶接性の点で好ましくない。シリカを含有させる場合における表面処理皮膜のシリカの含有量は、小さければ小さいほどよい。表面処理皮膜のシリカの含有量は、より好ましくは0.10g/m以下であり、更に好ましくは0.05g/m以下である。
≪表面処理皮膜の膜厚≫
 以上のような成分を含有する表面処理皮膜の膜厚は、例えば、0.5~5.0μmとすることが好ましい。表面処理皮膜の膜厚を上記の範囲内とすることで、25℃における波長8.0μmでの放射率について、より確実に60%以上とすることができる。表面処理皮膜の膜厚は、より好ましくは、1.0~3.0μmである。
<金属めっき層>
 本実施形態に係るホットスタンプ用鋼板は、かかるホットスタンプ用鋼板の片面又は両面において、母材鋼板と上記表面処理皮膜との間の少なくとも一部に、金属めっき層を有することが好ましい。金属めっき層を有することにより、ホットスタンプ後の塗装後耐食性をより一層向上させることができる。また、金属めっき層が存在することで、ホットスタンプの際に、加熱により鉄スケールが生成するのを防ぐことができる。鉄スケールは、加熱炉を汚染させたり、搬送のために用いられるロールに付着したりするため、製造上の負荷になる。そのため、鉄スケールが生成した場合には、鉄スケールを除去するためにショットブラスト等の工程が必要となり、経済上好ましくない。
 金属めっき層の種別は、特に限定されない。かかる金属めっき層を構成する金属めっきとしては、例えば、アルミめっき、Al-Siめっき、亜鉛めっき、合金化亜鉛めっき、Zn-Niめっき、Zn-Al-Mgめっき、Zn-Al-Mg―Siめっき等がある。
 また、金属めっき層を形成させる方法は、溶融めっき法、電気めっき法、物理蒸着、化学蒸着等が挙げられるが、特に限定されるものではない。
<母材鋼板>
 次に、本実施形態に係るホットスタンプ用鋼板の母材鋼板は、ホットスタンプ法に好適に利用可能な鋼板であれば、特に制限はない。本実施形態に係るホットスタンプ用鋼板に適用可能な鋼板として、例えば、化学成分が質量%で、C:0.10~0.40%、Si:0.01~0.60%、Mn:0.50~3.00%、P:0.05%以下、S:0.020%以下、Al:0.10%以下、Ti:0.01~0.10%、B:0.0001~0.0100%、N:0.010%以下を含有し、残部がFe及び不純物からなる鋼板を例示できる。また、母材鋼板の形態としては、例えば熱延鋼板や冷延鋼板などの鋼板を例示できる。以下、母材鋼板の化学成分について、詳細に説明する。なお、以下の母材鋼板の化学成分に関する説明において、「%」の表記は、特に断りのない限り「質量%」を意味する。
[C:0.10~0.40%]
 Cは、目的とする機械的強度を確保するために含有される。C含有量が0.10%以上であることで、十分な機械的強度の向上が得られ、Cを含有する効果が十分に得られる。そのため、C含有量は、0.10%以上であることが好ましい。C含有量は、より好ましくは0.20%以上である。一方、C含有量が0.40%以下であることで、鋼板の強度を硬化向上させつつ、伸び、絞りの低下を抑制できる。そのため、C含有量は、0.40%以下であることが好ましい。C含有量は、より好ましくは0.35%以下である。
[Si:0.01~0.60%]
 Siは、機械的強度を向上させる強度向上元素の一つであり、Cと同様に、目的とする機械的強度を確保するために含有される。Si含有量が0.01%以上であることで、強度向上効果が十分に発揮され、十分な機械的強度の向上が得られる。そのため、Si含有量は、0.01%以上であることが好ましい。Si含有量は、より好ましくは0.10%以上である。一方、Siは易酸化性元素でもあるため、Si含有量が0.60%以下であることで、鋼板表層に形成したSi酸化物の影響による、溶融Alめっきを行う際の濡れ性の低下が抑制され、不めっきの発生が抑制できる。そのため、Si含有量は、0.60%以下であることが好ましい。Si含有量は、より好ましくは0.40%以下である。
[Mn:0.50~3.00%]
 Mnは、鋼を強化させる強化元素の1つであり、焼入れ性を高める元素の1つでもある。更に、Mnは、不純物の1つであるSによる熱間脆性を防止するのにも有効な元素である。Mn含有量が0.50%以上であることで、これらの効果が十分に得られる。そのため、上記効果を確実に発現させるために、Mn含有量は、0.50%以上であることが好ましい。Mn含有量は、より好ましくは0.80%以上である。一方、Mnはオーステナイト形成元素であるため、Mn含有量が3.00%以下であることで、残留オーステナイト相が多くなり過ぎず、強度の低下が抑制される。そのため、Mn含有量は、3.00%以下であることが好ましい。Mn含有量は、より好ましくは1.50%以下である。
[P:0.05%以下]
 Pは、鋼中に含まれる不純物である。P含有量が0.05%以下であることで、鋼板に含まれるPが鋼板の結晶粒界に偏析してホットスタンプされた成形体の母材の靭性を低下させることを抑制でき、鋼板の耐遅れ破壊性の低下を抑制できる。そのため、P含有量は0.05%以下であることが好ましく、P含有量はできる限り少なくすることが好ましい。
[S:0.020%以下]
 Sは、鋼中に含まれる不純物である。S含有量が0.020%以下であることで、鋼板に含まれるSが硫化物を形成して鋼板の靭性を低下させることを抑制でき、鋼板の耐遅れ破壊性の低下を抑制できる。そのため、S含有量は0.020%以下であることが好ましく、S含有量はできる限り少なくすることが好ましい。
[Al:0.10%以下]
 Alは、一般に鋼の脱酸目的で使用される。一方、Al含有量が0.10%以下であることで、鋼板のAc3点の上昇が抑制されるため、ホットスタンプの際に鋼の焼入れ性確保に必要な加熱温度を低減でき、ホットスタンプ製造上望ましい。従って、鋼板のAl含有量は、0.10%以下が好ましく、より好ましくは0.05%以下であり、更に好ましくは0.01%以下である。
[Ti:0.01~0.10%]
 Tiは、強度強化元素の1つである。Ti含有量が0.01%以上であることで、強度向上効果や耐酸化性向上効果が十分に得られる。そのため、上記効果を確実に発現させるために、Ti含有量は、0.01%以上であることが好ましい。Ti含有量は、より好ましくは0.03%以上である。一方、Ti含有量が0.10%以下であることで、例えば炭化物や窒化物の形成が抑制され、鋼の軟質化を抑制でき、目的とする機械的強度を十分に得ることができる。従って、Ti含有量は、0.10%以下であることが好ましい。Ti含有量は、より好ましくは0.08%以下である。
[B:0.0001~0.0100%]
 Bは、焼入れ時に作用して強度を向上させる効果を有する。B含有量が0.0001%以下であることで、このような強度向上効果が十分に得られる。そのため、B含有量は、0.0001%以上であることが好ましい。B含有量は、より好ましくは0.0010%以上である。一方、B含有量が0.0100%以下であることで、介在物の形成が低減されて鋼板の脆化が抑制され、疲労強度の低下を抑制できる。そのため、B含有量は、0.0100%以下であることが好ましい。B含有量は、より好ましくは0.0040%以下である。
[N:0.010%以下]
 Nは、鋼中に含まれる不純物である。N含有量が0.010%以下であることで、鋼板に含まれるNによる窒化物の形成が抑制されて、鋼板の靭性低下を抑制できる。更に、鋼板中にBが含有される場合に、鋼板に含まれるNがBと結合して固溶B量を減少させることが抑制され、Bの焼入れ性向上効果の低下が抑制できる。そのため、N含有量は、0.010%以下であることが好ましく、N含有量はできる限り少なくすることがより好ましい。
 また、本実施形態に係るホットスタンプ用鋼板の母材鋼板は、更に、任意添加元素として、Cr、Mo、Ni、Co、Cu、Mo、V、Nb、Sn、W、Ca、REM、O、Sbのような元素を含有してもよい。
[Cr:0~1.00%]
 Crは、鋼板の焼入れ性を向上させる元素である。かかる効果を十分に得るためには、Cr含有量を0.01%以上とすることが好ましい。一方、Cr含有量を1.00%以下とすることで、その効果を十分に得つつ、コストの上昇を抑制できる。そのため、含有させる場合のCr含有量は、1.00%以下とすることが好ましい。
[Ni:0~2.00%]
[Co:0~2.00%]
 Ni及びCoは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、Ni含有量を0.10%以上とすることが好ましく、Co含有量を0.10%以上とすることが好ましい。一方、Ni含有量及びCo含有量がそれぞれ2.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のNi含有量は、2.00%以下とすることが好ましく、Co含有量は2.00%以下とすることが好ましい。
[Cu:0~1.000%]
 Cuは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。また、Cuは、腐食環境において耐孔食性を向上させる。かかる効果を十分に発現させるためには、Cu含有量を0.100%以上とすることが好ましい。一方、Cu含有量が1.000%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のCu含有量は、1.000%以下とすることが好ましい。
[Mo:0~1.00%]
 Moは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、Mo含有量を0.10%以上とすることが好ましい。一方、Mo含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のMo含有量は、1.00%以下とすることが好ましい。
[V:0~1.00%]
 Vは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、V含有量を0.10%以上とすることが好ましい。一方、V含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のV含有量は、1.00%以下とすることが好ましい。
[Nb:0~1.00%]
 Nbは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。かかる効果を十分に発現させるためには、Nb含有量を0.01%以上とすることが好ましい。一方、Nb含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のNb含有量は、1.00%以下とすることが好ましい。
[Sn:0~1.00%]
 Snは、腐食環境において耐孔食性を向上させる元素である。かかる効果を十分に発現させるためには、Sn含有量を0.01%以上とすることが好ましい。一方、Sn含有量が1.00%以下であることで、粒界強度の低下が抑制され、靭性の低下を抑制できる。そのため、含有させる場合のSn含有量は、1.00%以下とすることが好ましい。
[W:0~1.00%]
 Wは、鋼の焼入れ性を高め、かつ、焼入れ後の鋼板部材の強度を安定して確保することを可能にする元素である。また、Wは、腐食環境において耐孔食性を向上させる。かかる効果を十分に発現させるためには、W含有量を0.01%以上とすることが好ましい。一方、W含有量が1.00%以下であることで、上記の効果を十分に得つつ、経済性が高められる。そのため、含有させる場合のW含有量は、1.00%以下とすることが好ましい。
[Ca:0~0.010%]
 Caは、鋼中の介在物を微細化し、焼入れ後の靱性及び延性を向上させる効果を有する元素である。かかる効果を十分に発現させるためには、Ca含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。一方、Ca含有量が0.010%以下であることで、その効果を十分に得つつ、コストを抑制できる。そのため、含有させる場合のCa含有量は、0.010%以下とすることが好ましく、0.004%以下とすることがより好ましい。
[REM:0~0.30%]
 REMは、Caと同様に鋼中の介在物を微細化し、焼入れ後の靱性及び延性を向上させる効果を有する元素である。かかる効果を十分に発現させるためには、REM含有量を0.001%以上とすることが好ましく、0.002%以上とすることがより好ましい。一方、REM含有量が0.30%以下であることで、その効果を十分に得つつ、コストを抑制できる。そのため、含有させる場合のREM含有量は、0.30%以下とすることが好ましく、0.20%以下とすることがより好ましい。
 ここで、REMは、Sc、Y及びランタノイドの合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を意味する。REMは、例えば、Fe-Si-REM合金を使用して溶鋼に添加され、この合金には、例えば、Ce、La、Nd、Prが含まれる。
[O:0.0070%以下]
 Oは必須元素ではなく、例えば鋼中に不純物として含有される。Oは、酸化物を形成し破壊の起点になるなど鋼板の特性劣化をもたらす元素である。また、鋼板の表面の近傍に存在する酸化物は、表面疵の原因となり、外観品位を劣化させる場合もある。このため、O含有量は低ければ低いほど良い。特に、O含有量を0.0070%以下とすることで、特性の劣化を抑制できるため、O含有量は0.0070%以下が好ましい。O含有量の下限は、特に限定するものではなく、0%としてもよいが、実操業上、精錬上のO含有量の実質的な下限は0.0005%である。
[Sb:0.100%以下]
 Sb含有量の下限は、特に限定するものではなく、0%としてもよい。Sbはめっきの濡れ性や密着性を向上させるのに有効な元素である。この効果を得るため、Sbは0.001%以上含有させることが好ましい。一方、Sb含有量を0.100%以下とすることで、製造時に発生する疵を抑制し、また靭性の低下を抑制できる。そのため、Sbの含有量は、0.100%以下であることが好ましい
 上記成分以外の残部は、Fe及び不純物である。母材鋼板は、その他、製造工程などで混入してしまう不純物を含んでもよい。かかる不純物としては、例えば、Zn(亜鉛)が挙げられる。
 以上、本実施形態に係るホットスタンプ用鋼板の母材鋼板の化学成分の一例について、詳細に説明した。
 上記の化学成分を有する鋼板の表面処理皮膜を付与した部位は、ホットスタンプ法による加熱・焼入れにより、約1000MPa以上の引張強度を有するホットスタンプ部材とすることができる。また、ホットスタンプ法においては、高温で軟化した状態でプレス加工を行うことができるので、容易に成形することができる。
 本実施形態に係るホットスタンプ用鋼板は、異種の鋼板を溶接してからホットスタンプする場合や金型の温度制御によって冷却速度を部位により変化させる方法と比較すると、複数の鋼板を用いる必要がなく、予め溶接する設備・工程も不要である。また、金型の温度を変更するための設備やそのランニングコストも不要である。そのため、経済的に好ましい。
<強度の異なる部分を有するホットスタンプ部材の製造>
 自動車用の骨格部品では、一部の強度を高くし、その他の部分では、衝突時のエネルギーを吸収する目的で、強度を低くする場合がある。このように強度の異なる部分を有する部品は、上記のような、表面処理皮膜が表面の一部に付与された領域が形成されたホットスタンプ用鋼板を用いて製造できる。
 まず、例えばコイル状の鋼板等の金属素材の表面の一部に対して表面処理皮膜を付与し、放射率の異なる部位を予め形成しておく。そして、切断やプレスで打抜く等の各種加工を施すことで、本実施形態に係るホットスタンプ用鋼板を得る。また、切断やプレスで打抜く等した鋼板に表面処理皮膜を付与することでも、本実施形態に係るホットスタンプ用鋼板を得ることができる。また、表面処理皮膜の膜厚を変化させることで、放射率を連続的に変化させることができる。
 例えば以上のようにして表面処理皮膜を付与したホットスタンプ用鋼板を、ホットスタンプする。加熱装置としては、例えば、電気加熱炉、ガス加熱炉や、遠赤外炉、赤外線ヒータを備えた通常の加熱装置、等がある。図1に示す通り、表面処理皮膜を付与した部位(有皮膜部位)は放射率が高められ、輻射による伝熱効果が大きいために昇温速度が速いが、その他の部位(無皮膜部位)の昇温速度は遅い。速く加熱されて高温になった有皮膜部位は、金属組織がオーステナイト相に変態するAc3点以上の温度以上に昇温される。一方、無皮膜部位は、昇温速度が遅いために、有皮膜部位がAc3点以上の温度に達しても、金属組織が完全にオーステナイト単相に変態しないAc3点未満の温度に留めておくことができる。本実施形態では、上記のような状態が実現されるように、用いる加熱装置等を適切に制御すればよい。
 次に、加熱した鋼板を、成形及び冷却する。鋼材の金属組織がオーステナイト相に変態するAc3点温度以上にまで昇温された部位は、焼入れされて強度が高くなる一方で、Ac3点温度未満の温度に加熱されオーステナイト単相に変態を完了していない部位は、相対的に強度は低くなる。その結果、強度の異なる部分を有する部品(すなわち、ホットスタンプ部材)を得ることができ、更には強度の異なる部分間での強度の差を、JIS Z 2244(2009)で規定されるビッカース硬度(荷重F:50kgf、1kgfは、約9.8Nである。)で150Hv以上とすることもできる。
 前述したように、表面処理皮膜の膜厚を変化させることで昇温速度も連続的に変化することを利用して、硬度も連続的に変化させることが可能となる。表面処理皮膜の膜厚が大きい部位は、昇温速度が大きいために最もオーステナイト化が進行し、冷却時の焼き入れ時にマルテンサイトの生成により、強度が高くなる。一方で、膜厚が小さい部位では、加熱時のオーステナイト相比率が低くなり、厚い部位に比べるとマルテンサイトの生成量が少なくなるために強度が低くなる。また、皮膜が付与されていない部位は、加熱時のオーステナイト相比率が更に低くなり、更にマルテンサイトの生成量が少なくなって、更に強度が低くなる。
 このように、本実施形態に係るホットスタンプ用鋼板において、表面処理皮膜を付与する部位や膜厚を適切に制御することで、かかるホットスタンプ用鋼板を用いてホットスタンプ部材を製造する際に、強度の異なる部分を、任意に作り分けることができる。
<ホットスタンプ部材>
 以上のようにして得られるホットスタンプ部材は、鋼板の表面に、表面処理皮膜を有する部位と、表面処理皮膜を有していない部位と、を有している。かかる表面処理皮膜は、Zr酸化物、Zn酸化物、及び、Ti酸化物からなる群より選択される1種以上の酸化物を含有し、かつ、酸化物の付着量XOxideは、0.030g/m以上である。また、かかる表面処理皮膜は、シリカの含有量が0~0.3g/mである。ホットスタンプ部材の素材として用いられたホットスタンプ用鋼板の表面処理皮膜中に存在したカーボンブラックは、ホットスタンプの工程を経ることで消失し、上記金属酸化物が残存するようになる。ホットスタンプ部材の表面処理皮膜中に存在する酸化物の付着量XOxideは、素材として用いたホットスタンプ用鋼板の表面処理皮膜中の酸化物の付着量に依存するが、その上限値は、概ね0.600g/mである。
 かかるホットスタンプ部材は、JIS Z 2244(2009)で規定されるビッカース硬度(荷重F:50kgf、1kgfは、約9.8Nである。)を測定したときに、最大硬度HVmaxを示す部位と、最小硬度HVminを示す部位と、が存在し、かつ、最大硬度HVmaxと最小硬度HVminとの硬度差ΔHVが、150以上であることが好ましい。
 ここで、上記の説明からも明らかなように、最大硬度HVmaxを示す部位と、最小硬度HVminを示す部位の双方は、共通の素材(すなわち、本実施形態に係るホットスタンプ用鋼板)で構成された領域内に存在することとなる。ここで、「共通の部材」とは、板厚中心付近の0.05mm視野における特定元素(例えば、C、Si、Mn、P、S、Al、Ti、B、N)の含有量の比率(部材間の比率)がどこでも0.80倍~1.2倍の範囲内となる場合をいう。例えば、板厚中心で確認した際の組成が同一であり、かつ、同じ製造工程を経て製造されたものは、ここでいう「共通の部材」となる。なお、かかる共通の素材は、1枚の鋼板で構成されたものであってもよいし、複数枚の同一の鋼板(すなわち、本実施形態に係るホットスタンプ用鋼板)が何らかの方法で接合されたものであってもよい。
 以下、本発明の実施例について説明するが、実施例における条件は、本発明の実施可能性及び効果を確認するために採用した一条件例にすぎず、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 母材鋼板としては、高い機械的強度(引張強度、降伏点、伸び、絞り、硬さ、衝撃値、疲れ強さ等の機械的な変形及び破壊に関する諸性質を意味する。)を有する鋼板を使用することが好ましい。以下の実施例に示したホットスタンプ用鋼板に使用した、めっき前の母材鋼板の化学成分を、以下の表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示した化学成分を有する母材鋼板(鋼No.S1~S18)に対し、表面処理皮膜を付与した。より詳細には、図2に示すように、幅100mm×長さ200mm、板厚1.2mmの鋼板において、長さ方向200mmのうち上半分の100mmには表面処理皮膜を片面又は両面に付与して有皮膜部位とし、それ以外の100mmには表面処理皮膜を付与せず無皮膜部位とした。
 バインダー成分である水系アクリル樹脂に加えて、市販のカーボンブラックや、TiO,ZrO,ZnO,Fe,Fe,CuO,SiO,TiC,TiN,SiC,SiN等の化合物を少なくとも1種以上添加した水系処理液を、母材鋼板の一部に産業用インクジェットプリンタを用いて塗布し、乾燥することで表面処理皮膜を付与した。また、一部の水系処理液には、上記成分に加えて、更にシリカを含有させた。表面処理皮膜の膜厚は1.0~2.5μmの範囲内とし、両面に付与する場合には両面とも同種の皮膜を付与した。
 その後、図2に示す表面処理皮膜を付与した部位(有皮膜部位)の中心部(P1)、及び、皮膜なしの部位(無皮膜部位)の中心部(P2)にそれぞれ熱電対を接続して、各位置の温度を測定できるようにした。そして、設定温度900℃の電気加熱炉において鋼板を加熱し、皮膜を付与した部位が880℃に到達した時点で、加熱炉から鋼板を取り出した。鋼板を平金型で急速に冷却して、ホットスタンプ部材を得た。なお、上記の表面処理皮膜を付与した部位(有皮膜部位)が、製造されたホットスタンプ部材のビッカース硬度を測定した際に、最大硬度HVmaxを示す部位となり、上記の表面処理皮膜を付与しなかった部位(無皮膜部位)が、製造されたホットスタンプ部材のビッカース硬度を測定した際に、最小硬度HVminを示す部位となる。
 放射温度計を用いて、25℃における波長8.0μmでの、表面処理皮膜を付与した部位の中心部P1における放射強度を測定し、黒体の放射強度に対する比から放射率(%)を算出した。
 なお、一部の母材鋼板には、溶融めっき法により、Al―10質量%Siめっき、Znめっき、もしくは、Alめっきを施した上で上記の表面処理皮膜を付与するか、又は、電気めっき法によりZn-3質量%Niめっきを施した上で上記の表面処理皮膜を付与した。溶融めっき法の場合、めっき浴に母材鋼板を浸漬させた後、ガスワイピング法で付着量を片面あたり70g/mに調整した。電気めっき法の場合、片面付着量を20g/mに調整した。
 表面処理皮膜を付与した部位の皮膜組成、及び、得られたホットスタンプ部材のP1とP2におけるビッカース硬度の差を調査し、一部の実施例では、更に、外観、塗料密着性、塗装後耐食性を調査した。
 各評価項目の評価方法は、以下の通りとした。
(1)強度特性
(評点)
 日本産業規格 JIS Z 2244(2009)に記載された方法を用いて、表面処理皮膜を付与した部位の中心部P1と表面処理皮膜を付与していない部位の中心部P2におけるビッカース硬度を、鋼板断面から測定した(荷重F:50kgf)。P1とP2の硬度差により強度特性を評価し、硬度差がHv150以上の場合、異強度を有した優れた強度特性を有する部材とした。
  3:ビッカース硬度の差ΔHVがHv200以上
  2:ビッカース硬度の差ΔHVがHv150以上200未満
  1:ビッカース硬度の差ΔHVがHv150未満
(2)外観
(評点)
 日本産業規格JIS Z 8781-4(2013)に記載される方法でCIE 1976 L*a*b*色空間を5か所測定し、任意の2箇所を比較した場合のL*値の比率(RL*=L*値1/L*値2)を評価した。
  2:0.5~2.0
  1:0.5未満又は2.0超
(3)塗料密着性
 試料に対し、リン酸化成処理、及び、厚み15μmの電着塗装を施し、170℃で20分間焼き付けて塗膜を付与した。その後、60℃の脱イオン水に200時間浸漬後にカッターで1mm間隔の碁盤目を100個切り、碁盤目部の剥離した部分の個数を目視で測定することで、剥離した部分の面積率を算出した。算出した面積率に基づいて、評点付けを行った。
(評点)
  3:剥離面積0%以上10%未満
  2:剥離面積10%以上70%未満
  1:剥離面積70%以上100%以下
(4)塗装後耐食性
 (3)と同様に付与した塗膜にカッターで疵を入れ、自動車技術会制定のJASO M609に規定する方法で行った。腐食試験180サイクル後のカット疵からの塗膜膨れの幅(片側最大値)を計測した。
(評点)
  3:膨れ幅0mm以上1.5mm未満
  2:膨れ幅1.5mm以上3mm未満
  1:膨れ幅3mm以上
 上記のもとで実施した実施例1~4にて得られた評価結果を、それぞれ表2、3、4、5に示した。
<実施例1>
 以下に示す表2において、A1~21が実施例であり、a1~a3が比較例である。
 本実施例1では、水系処理液を調整する際に、バインダー成分以外の化合物として、カーボンブラック、窒化チタン、炭化チタン、酸化チタン、酸化鉄、酸化銅、酸化ジルコニウム、窒化ケイ素、酸化コバルト、酸化スズの少なくとも何れかを用いた。水系処理液における、バインダー成分以外の化合物の合計含有量は、固形分全体の体積に対して、2~50体積%の範囲内となるようにした。水系処理液の固形分濃度を10~40質量%とし、鋼板上に3μm~25μmの液膜厚みとなるように塗布した後、乾燥させることで皮膜を得た。乾燥時の雰囲気は、大気又は窒素雰囲気とし、温度は100~300℃とした。水系処理液における化合物の合計含有量が、乾燥後に得られる表面処理皮膜における化合物の合計含有量となる。本実施例では、化合物の含有量、及び、表面処理皮膜の付着量を調整することで、波長8.0μmでの放射率の値を調整した。
Figure JPOXMLDOC01-appb-T000002
 
 比較例a1~a3では、有皮膜部位P1における25℃、波長8.0μmでの放射率が、58、56、58%と小さく、ホットスタンプ部材の有皮膜部位P1と無皮膜部位P2の硬度差は、ビッカース硬度でΔHV150未満(評点1)であった。a1~a3の皮膜は、25℃における波長8.0μmでの放射率が60%未満であるため、有皮膜部位P1と無皮膜部位P2との間で加熱時の昇温速度に大きな差異が生じずに、ホットスタンプ部材の組織でもビッカース硬度差ΔHV150以上の差異が生じなかったものと推定される。
 一方、発明例A1~A21では、25℃、波長8.0μmでの放射率が60%以上であった。その結果、ホットスタンプ部材の有皮膜部位と無皮膜部位の硬度差は、ビッカース硬度でHV150以上200未満(評点2)となった。
<実施例2>
 表3において、発明例B1では、カーボンブラック(CB)を表面処理皮膜中で2.7体積%とし、TiOを表面処理皮膜中で0.6体積%とした。その結果、有皮膜部位における25℃、波長8.0μmでの放射率は86%となり、ホットスタンプ部材の有皮膜部位と無皮膜部位の硬度差は、ビッカース硬度HV150以上200未満(評点2)となった。塗料密着性は、評点3であったものの、外観は、評点1であった。また、カーボンブラックを表面処理皮膜中で4.0体積%とし、TiOを表面処理皮膜中で1.0体積%とした発明例B2では、有皮膜部位における25℃、波長8.0μmでの放射率は80%となり、ホットスタンプ部材の有皮膜部位と無皮膜部位の硬度差がビッカース硬度HV150以上200未満(評点2)となった。カーボンブラックを表面処理皮膜中で58.3体積%とし、ZnOを表面処理皮膜中で1.2体積%とした発明例B5と、カーボンブラックを表面処理皮膜中で47.3体積%とし、ZnOを表面処理皮膜中で1.0体積%とした発明例B6では、有皮膜部位における25℃、波長8.0μmでの放射率はそれぞれ88%、90%となり、外観は、評点2であった。また、塗料密着性は、評点2であった。
 一方、カーボンブラックを表面処理皮膜中で5.0体積%~40.0体積%とした発明例B3~B4では、有皮膜部位における、25℃、波長8.0μmでの放射率は82%、86%となり、ホットスタンプ部材の有皮膜部位と無皮膜部位の硬度差がビッカース硬度HV200以上(評点3)となった上、外観が評点2、塗料密着性が評点3となった。
 以上の結果より、発明例B3~B4のように、カーボンブラックを5.0体積%~40.0体積%含むことで、強度特性のみならず、外観と塗料密着性が共に優れた成形体が得られた。
Figure JPOXMLDOC01-appb-T000003
 
<実施例3>
 表4において、表面処理皮膜中のZn酸化物の含有量を0.2体積%とした発明例C1、表面処理皮膜中のTi酸化物の含有量を0.3体積%とした発明例C2、及び、表面処理皮膜中のTi酸化物の含有量を37.5体積%とした発明例C6に比べて、発明例C3~C5のように、表面処理皮膜中のTi酸化物,Zr酸化物の含有量を1.0~30.0体積%とすることで、ホットスタンプ部材の有皮膜部位と無皮膜部位の硬度差が更に大きくなった(評点3)。硬度差が大きくなったのは、酸化物の輻射率が鋼板表面の化合物に比べて大きいこと、及び、鋼板表面と酸化物粒子との界面の存在により赤外線の反射が妨げられることで試料への入熱量が大きくなるために、無皮膜部位との加熱速度差が大きくなったこと、が要因と考えられる。
Figure JPOXMLDOC01-appb-T000004
 
<実施例4>
 表5において、発明例D1では、有皮膜部位における700℃、波長8.0μmでの放射率は56%であり、ホットスタンプ部材の有皮膜部位と無皮膜部位の硬度差は、ビッカース硬度HV150以上200未満(評点2)となった。一方、有皮膜部位における700℃、波長8.0μmでの放射率が60%以上である発明例D2~D6では、ホットスタンプ部材の有皮膜部位と無皮膜部位の硬度差がビッカース硬度HV200以上(評点3)となった。
Figure JPOXMLDOC01-appb-T000005
 
<実施例5>
 表6において、発明例E1~E5とE6を比較すると明らかなように、めっきの無い発明例E6では塗装後耐食性が「1」であったのに対して、Al-10質量%Si、又は、Zn-3質量%Niのめっきを有する発明例E1~E5では塗装後耐食性が「2」又は「3」に向上した。
Figure JPOXMLDOC01-appb-T000006
 
 上述したように、本発明によれば、鋼板の所望の部分に表面処理皮膜を付与してホットスタンプすることにより、得られたホットスタンプ部材において強度の異なる部分を形成することができた。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明によれば、25℃における波長8.0μmでの放射率を高めた表面処理皮膜を付与した領域において、輻射による伝熱を増加させることにより、急速に加熱することが可能となる。焼き入れ性に差をつけることにより、1枚の鋼板からホットスタンプ部材中で強度の異なる部位を設けることができる。そのため、産業上の利用可能性が高い。
 

Claims (9)

  1.  25℃における波長8.0μmでの放射率が60%以上である表面処理皮膜を有する部位と、前記表面処理皮膜を有していない部位と、を鋼板の表面に有し、
     前記表面処理皮膜は、カーボンブラックと、Zr酸化物、Zn酸化物、及び、Ti酸化物からなる群より選択される1種以上の酸化物と、を含有し、かつ、前記カーボンブラック及び前記酸化物は、前記表面処理皮膜の全体に分散して存在し、
     前記表面処理皮膜は、シリカの含有量が0~0.3g/mであり、
     前記カーボンブラック及び前記酸化物の付着量を各々XCB(g/m)、XOxide(g/m)とするとき、下記式(1)を満足する、ホットスタンプ用鋼板。
     
     118.9≦24280/{6700/(100+76×XCB)+18000/(130+65×XOxide)}≦332.0 ・・・ 式(1)
     
  2.  前記表面処理皮膜は、前記カーボンブラックを5.0~40.0体積%含有し、前記酸化物を1.0~30.0体積%含有する、請求項1に記載のホットスタンプ用鋼板。
  3.  前記カーボンブラックの付着量XCB(g/m)と前記酸化物の付着量XOxide(g/m)との比率XOxide/XCBは、0.20以上200.00以下である、請求項1又は2に記載のホットスタンプ用鋼板。
  4.  前記カーボンブラックの付着量XCBは、0.030g/m以上であり、前記酸化物の付着量XOxideは、0.030g/m以上である、請求項1~3の何れか1項に記載のホットスタンプ用鋼板。
  5.  前記表面処理皮膜の700℃における波長8.0μmでの放射率は、60%以上である、請求項1~4の何れか1項に記載のホットスタンプ用鋼板。
  6.  前記ホットスタンプ用鋼板の片面又は両面において、前記鋼板の基材と前記表面処理皮膜との間に、金属めっき層を有する、請求項1~5の何れか1項に記載のホットスタンプ用鋼板。
  7.  鋼板の表面に、表面処理皮膜を有する部位と、前記表面処理皮膜を有していない部位と、を有し、
     前記表面処理皮膜は、Zr酸化物、Zn酸化物、及び、Ti酸化物からなる群より選択される1種以上の酸化物を含有し、かつ、前記酸化物の付着量XOxideは、0.030g/m以上であり、
     前記表面処理皮膜は、シリカの含有量が0~0.3g/mである、ホットスタンプ部材。
  8.  JIS Z 2244(2009)で規定されるビッカース硬度を測定したときに、最大硬度HVmaxを示す部位と、最小硬度HVminを示す部位と、が存在し、かつ、前記最大硬度HVmaxと前記最小硬度HVminとの硬度差ΔHVが、150以上である、請求項7に記載のホットスタンプ部材。
  9.  前記最大硬度HVmaxを示す部位と、前記最小硬度HVminを示す部位の双方は、共通の素材で構成された領域内に存在する、請求項8に記載のホットスタンプ部材。
     
PCT/JP2021/014907 2021-04-08 2021-04-08 ホットスタンプ用鋼板及びホットスタンプ部材 WO2022215228A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/277,550 US20240044012A1 (en) 2021-04-08 2021-04-08 Steel sheet for hot stamping and hot-stamped member
EP21936032.8A EP4265350A4 (en) 2021-04-08 2021-04-08 STEEL SHEET FOR HOT STAMPING AND HOT STAMPED ELEMENT
JP2023512605A JPWO2022215228A1 (ja) 2021-04-08 2021-04-08
CN202180096658.5A CN117222774A (zh) 2021-04-08 2021-04-08 热冲压用钢板和热冲压构件
KR1020237034077A KR20230154955A (ko) 2021-04-08 2021-04-08 핫 스탬프용 강판 및 핫 스탬프 부재
PCT/JP2021/014907 WO2022215228A1 (ja) 2021-04-08 2021-04-08 ホットスタンプ用鋼板及びホットスタンプ部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014907 WO2022215228A1 (ja) 2021-04-08 2021-04-08 ホットスタンプ用鋼板及びホットスタンプ部材

Publications (1)

Publication Number Publication Date
WO2022215228A1 true WO2022215228A1 (ja) 2022-10-13

Family

ID=83545767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014907 WO2022215228A1 (ja) 2021-04-08 2021-04-08 ホットスタンプ用鋼板及びホットスタンプ部材

Country Status (6)

Country Link
US (1) US20240044012A1 (ja)
EP (1) EP4265350A4 (ja)
JP (1) JPWO2022215228A1 (ja)
KR (1) KR20230154955A (ja)
CN (1) CN117222774A (ja)
WO (1) WO2022215228A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048504A1 (ja) * 2022-08-29 2024-03-07 日本製鉄株式会社 ホットスタンプ用アルミニウムめっき鋼板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149084A (ja) * 2010-01-25 2011-08-04 Nippon Steel Corp 昇温特性に優れた熱間プレス用Alめっき鋼板及びその製造方法
JP2011152589A (ja) * 2009-08-06 2011-08-11 Nippon Steel Corp ホットスタンプ加工に用いる異強度部分を持つ金属加工品の製造に適した輻射伝熱加熱用鋼板及びその製造方法
JP2012144773A (ja) * 2011-01-12 2012-08-02 Nippon Steel Corp 輻射伝熱加熱用金属板及びその製造方法、並びに異強度部分を持つ金属加工品及びその製造方法
JP2014161854A (ja) 2013-02-21 2014-09-08 Kobe Steel Ltd 熱間プレス成形品およびその製造方法
JP2016041440A (ja) 2014-08-18 2016-03-31 株式会社豊田中央研究所 プレス成形品および熱間プレス成形方法
WO2016139953A1 (ja) 2015-03-05 2016-09-09 Jfeスチール株式会社 熱間プレス部材およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137239B2 (ja) * 1998-10-01 2001-02-19 大日本塗料株式会社 模様プレコートメタルの製造方法
DE102011001140A1 (de) * 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Stahlflachprodukt, Verfahren zum Herstellen eines Stahlflachprodukts und Verfahren zum Herstellen eines Bauteils
JP6551519B2 (ja) * 2015-03-31 2019-07-31 日本製鉄株式会社 溶融亜鉛系めっき鋼板
EP3733321A4 (en) * 2018-04-06 2021-10-20 Nippon Steel Corporation LAYERED BLANK FOR HOT STAMPING, PROCESS FOR MANUFACTURING A MULTI-LAYER HOT STAMPING BODY AND MULTI-LAYER HOT STAMPING MOLDED BODY

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152589A (ja) * 2009-08-06 2011-08-11 Nippon Steel Corp ホットスタンプ加工に用いる異強度部分を持つ金属加工品の製造に適した輻射伝熱加熱用鋼板及びその製造方法
JP2011149084A (ja) * 2010-01-25 2011-08-04 Nippon Steel Corp 昇温特性に優れた熱間プレス用Alめっき鋼板及びその製造方法
JP2012144773A (ja) * 2011-01-12 2012-08-02 Nippon Steel Corp 輻射伝熱加熱用金属板及びその製造方法、並びに異強度部分を持つ金属加工品及びその製造方法
JP2014161854A (ja) 2013-02-21 2014-09-08 Kobe Steel Ltd 熱間プレス成形品およびその製造方法
JP2016041440A (ja) 2014-08-18 2016-03-31 株式会社豊田中央研究所 プレス成形品および熱間プレス成形方法
WO2016139953A1 (ja) 2015-03-05 2016-09-09 Jfeスチール株式会社 熱間プレス部材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4265350A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048504A1 (ja) * 2022-08-29 2024-03-07 日本製鉄株式会社 ホットスタンプ用アルミニウムめっき鋼板

Also Published As

Publication number Publication date
EP4265350A4 (en) 2024-03-06
JPWO2022215228A1 (ja) 2022-10-13
US20240044012A1 (en) 2024-02-08
KR20230154955A (ko) 2023-11-09
EP4265350A1 (en) 2023-10-25
CN117222774A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
JP6836600B2 (ja) ホットスタンプ部材
KR101974182B1 (ko) 열간 프레스용 도금 강판 및 도금 강판의 열간 프레스 방법
WO2020108594A1 (zh) 一种冷弯性能优良的锌系镀覆热成型钢板或钢带及其制造方法
JP6376140B2 (ja) 自動車部品及び自動車部品の製造方法
JP6042445B2 (ja) 熱間プレス用めっき鋼板、めっき鋼板の熱間プレス方法及び自動車部品
KR20180122731A (ko) 프레스 경화 방법
JP6406475B1 (ja) 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法
JP5098864B2 (ja) 塗装後耐食性に優れた高強度自動車部材およびホットプレス用めっき鋼板
JP6125313B2 (ja) めっき鋼板の熱間プレス方法
WO2022215228A1 (ja) ホットスタンプ用鋼板及びホットスタンプ部材
WO2022215229A1 (ja) ホットスタンプ用鋼板及びホットスタンプ部材
WO2024048504A1 (ja) ホットスタンプ用アルミニウムめっき鋼板
JP6708310B2 (ja) めっき鋼板、めっき鋼板コイル、熱間プレス成形品の製造方法、及び自動車部品
JP2014043628A (ja) 溶融亜鉛めっき鋼板および製造方法
TW201837206A (zh) 表面處理鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512605

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021936032

Country of ref document: EP

Effective date: 20230718

WWE Wipo information: entry into national phase

Ref document number: 18277550

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/011098

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2301006363

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20237034077

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034077

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE