WO2016136882A1 - 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 - Google Patents

不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 Download PDF

Info

Publication number
WO2016136882A1
WO2016136882A1 PCT/JP2016/055650 JP2016055650W WO2016136882A1 WO 2016136882 A1 WO2016136882 A1 WO 2016136882A1 JP 2016055650 W JP2016055650 W JP 2016055650W WO 2016136882 A1 WO2016136882 A1 WO 2016136882A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
catalyst
dissolved
bismuth
Prior art date
Application number
PCT/JP2016/055650
Other languages
English (en)
French (fr)
Inventor
智志 河村
元彦 杉山
良太 平岡
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to US15/553,007 priority Critical patent/US10300463B2/en
Priority to KR1020177023634A priority patent/KR102422025B1/ko
Priority to EP16755626.5A priority patent/EP3263213B1/en
Priority to CN201680011931.9A priority patent/CN107405609B/zh
Priority to JP2017502467A priority patent/JP6674441B2/ja
Publication of WO2016136882A1 publication Critical patent/WO2016136882A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/10Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons
    • C07C27/12Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons with oxygen
    • C07C27/14Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons with oxygen wholly gaseous reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a composite metal oxide for use in producing a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by vapor-phase oxidation of alkene with molecular oxygen or a molecular oxygen-containing gas in the presence of an oxidation catalyst.
  • the present invention relates to a catalyst, a method for producing the same, and a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid.
  • Patent Document 2 a plurality of catalysts in which the atomic ratio of cobalt to the atomic ratio of cobalt and nickel is changed while maintaining the atomic ratio of iron to cobalt and / or nickel constant are prepared, and two or more layers in the reactor are prepared.
  • a technique for filling and using the reaction zone is disclosed.
  • Patent Document 3 discloses a technique related to an unsupported ring catalyst in which the atomic ratio of cobalt to the atomic ratio of molybdenum and the atomic ratio of cobalt to the atomic ratio of iron are specified values.
  • Patent Document 4 discloses a catalyst obtained by using bismuth trioxide or bismuth carbonate as a bismuth raw material and treating with ultrasonic waves.
  • Patent Document 5 describes that an activity and selectivity can be improved in an oxide having a specific atomic ratio and having molybdenum and / or nickel molybdate as a main component and iron molybdate as a second component.
  • the oxide does not contain molybdenum trioxide.
  • Patent Document 6 in addition to optimizing the atomic ratio of each element to molybdenum, the atomic ratio of nickel relative to the atomic ratio of bismuth, the atomic ratio of nickel relative to the atomic ratio of alkali metal components, and the atomic ratio of alkali metal components The atomic ratio of bismuth has been studied in detail and the effect has been clarified, but no study has been made to clarify the effect of the atomic ratio on the yield.
  • Japanese Unexamined Patent Publication No. 2003-164863 Japanese Unexamined Patent Publication No. 2003-146920 Japanese National Table 2007-511565 Japanese Unexamined Patent Publication No. 2008-149263 Japanese Patent No. 4683508 International Publication No. 2014/181839
  • an object of the present invention is to provide a catalyst that can produce an unsaturated aldehyde and / or an unsaturated carboxylic acid safely and inexpensively and has a high yield of the desired product.
  • the inventors of the present invention have a catalyst composition that satisfies a specific atomic ratio, and in preparation of the catalyst, the molybdenum component raw material is ammonium molybdate and dissolves ammonium molybdate.
  • the solvent to be used is water, the weight of the water, the bismuth component raw material is bismuth nitrate, the solvent for dissolving bismuth nitrate is an aqueous nitric acid solution, the weight of the aqueous nitric acid solution, and the acid concentration of the aqueous nitric acid solution,
  • a composite metal oxide catalyst each satisfying a specific range and further prepared with a bismuth composition ratio of not less than 0.4 and less than 0.8 with respect to a molybdenum composition ratio of 12, provides a target product with high selectivity and The inventors have found the knowledge that it can be given in high yield, and have completed this invention.
  • the present invention (1) In the step of preparing the compound represented by the following general formula (1) containing the compound represented by the following general formula (1), the molybdenum component raw material is only ammonium molybdate, and the weight of water to be dissolved Is not less than 4.0 times and not more than 8.5 times the weight of molybdenum contained in ammonium molybdate, the bismuth component raw material is only bismuth nitrate, and the weight of the aqueous nitric acid solution to be dissolved is contained in bismuth nitrate.
  • catalyst For producing unsaturated aldehydes and / or unsaturated carboxylic acids prepared by a method in which the concentration of nitric acid in the aqueous nitric acid solution for dissolving bismuth nitrate is not less than 2.3 times the weight of bismuth and the concentration of nitric acid is not less than 10% by weight.
  • catalyst General formula (1) Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h (Wherein X is at least one selected from the group consisting of magnesium (Mg), calcium (Ca), manganese (Mn), copper (Cu), zinc (Zn), cerium (Ce) and samarium (Sm).
  • the catalyst molding method is a method in which a spherical carrier is coated with a catalytically active component.
  • the obtained catalyst has an average particle size of 3.0 mm to 10.0 mm, and the weight of the catalytically active component occupies the entire catalyst.
  • the molybdenum component raw material is only ammonium molybdate
  • the weight of water to be dissolved is 4.0 times or more and 8.5 times or less the weight of molybdenum contained in the ammonium molybdate
  • the bismuth component raw material Bismuth nitrate only
  • the weight of the aqueous nitric acid solution to be dissolved is 2.3 times or more the weight of the bismuth nitrate contained in the bismuth nitrate
  • the nitric acid concentration of the aqueous nitric acid solution to dissolve the bismuth nitrate is 10% by weight or more
  • the present invention it is possible to obtain a catalyst with high selectivity for producing a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid from an alkene and a high yield of the target product. As a result, long-term operation can be performed safely and stably at a low cost.
  • the catalyst of the present invention represented by the following general formula (1) can be prepared through the following steps.
  • General formula (1) Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h (Wherein X is at least one selected from the group consisting of magnesium (Mg), calcium (Ca), manganese (Mn), copper (Cu), zinc (Zn), cerium (Ce) and samarium (Sm).
  • the starting material of each element constituting the catalyst is a high performance catalyst when ammonium molybdate is used as the molybdenum component raw material.
  • ammonium molybdate includes a plurality of types of compounds such as ammonium dimolybdate, ammonium tetramolybdate, and ammonium heptamolybdate. Among these, ammonium heptamolybdate is most preferable.
  • a high-performance catalyst can be obtained when bismuth nitrate is used as the bismuth component raw material.
  • an iron component raw material, a cobalt component raw material, and / or a nickel component raw material are dissolved and mixed in water at a desired ratio under conditions of 10 to 80 ° C., and a molybdenum component separately prepared under conditions of 20 to 90 ° C.
  • a preparation liquid (A) After mixing with the raw material and the Z component raw material aqueous solution or slurry and heating and stirring for about 1 hour at 20 to 90 ° C., an aqueous solution in which the bismuth component raw material is dissolved, and the X component raw material and the Y component raw material as necessary. Addition to obtain an aqueous solution or slurry containing the catalyst component. Henceforth, both are collectively called a preparation liquid (A).
  • the preparation liquid (A) does not necessarily need to contain all the catalyst constituent elements, and a part or a part of the elements may be added in the subsequent steps.
  • the amount of water for dissolving each component raw material and when adding an acid such as sulfuric acid, nitric acid, hydrochloric acid, tartaric acid, acetic acid, it is sufficient to dissolve the raw material. If the acid concentration in the aqueous solution is not selected within a range of 5% to 99% by weight, for example, an appropriate viscosity of the preparation liquid (A) cannot be obtained, which is not preferable in terms of stable production. .
  • the molybdenum component raw material when the molybdenum component raw material is dissolved, the molybdenum component raw material is made of only ammonium molybdate, and the weight of water to be dissolved is 4.0 times or more and 8.5 times or less than the weight of molybdenum contained in the ammonium molybdate.
  • the bismuth component raw material in dissolving the bismuth component raw material, is only bismuth nitrate, and the weight of the aqueous nitric acid solution to be dissolved is 2.3 times or more with respect to the weight of bismuth contained in the bismuth nitrate.
  • the nitric acid concentration of the nitric acid aqueous solution in which bismuth is dissolved is 10% by weight or more.
  • the form of the preparation liquid (A) obtained thereby is preferably an aqueous solution or slurry in that an excellent catalyst can be obtained.
  • ammonium molybdate is sufficiently dissolved to form a uniform slurry.
  • the viscosity is too high, which is not preferable for production.
  • the ratio of bismuth which is one of the main components of the catalyst, and the ratio of nickel and alkali metal, which greatly affects the activity
  • the ratio d / a of nickel to bismuth is 2.
  • the ratio d / g which is greater than 0 and 8.8 or less, and the ratio of nickel to alkali metal is 14 or more and 100 or less
  • the ratio of a / g which is the ratio of bismuth to alkali metal, is 3.5 or more and 53.3. If it is less than 1, it becomes an excellent catalyst with high selectivity and yield of the target product.
  • a high yield can be obtained by adjusting the amount of bismuth to 0.40 or more and less than 0.80, preferably 0.45 or more and less than 0.75.
  • This effect does not depend on the packing method, and may be, for example, single layer packing, in order to consider the reaction efficiency and temperature distribution balance, etc. It can also be obtained by filling.
  • it can be handled by mixing with an inert substance and / or adjusting the particle size.
  • the drying method is not particularly limited as long as the preparation liquid (A) can be completely dried, and examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness.
  • spray drying that can be dried from the slurry into powder or granules in a short time is particularly preferable.
  • the drying temperature of spray drying varies depending on the slurry concentration, the liquid feeding speed, etc., but the temperature at the outlet of the dryer is generally 70 to 150 ° C. Further, it is preferable to dry the resulting dry powder so that the average particle size is 10 to 700 ⁇ m. A dry powder (B) is thus obtained.
  • Step c) Pre-calcination The obtained dry powder (B) is calcined at 200 ° C. to 600 ° C., preferably 300 ° C. to 600 ° C. under air flow, so that the catalyst moldability, mechanical strength, and catalyst performance are improved. There is a tendency to improve.
  • the firing time is preferably 1 hour to 12 hours.
  • the pre-fired powder (C) is obtained.
  • Step d) Molding Although there is no particular limitation on the molding method, a method using a tableting molding machine, an extrusion molding machine or the like is preferable when molding into a cylindrical shape or ring shape. More preferably, it is a case of forming into a spherical shape, and the pre-fired powder (C) may be formed into a spherical shape by a molding machine, but the pre-fired powder (C) (if necessary, a molding aid and a strength improver are added. (Including) is preferably carried on a carrier such as an inert ceramic.
  • the loading method a rolling granulation method, a method using a centrifugal fluid coating apparatus, a wash coating method, and the like are widely known, and if the pre-fired powder (C) can be uniformly supported on a carrier, although not particularly limited, when considering the production efficiency of the catalyst and the performance of the catalyst to be prepared, it is more preferable to rotate the disk at a high speed with a device having a flat or uneven disk at the bottom of the fixed cylindrical container.
  • the carrier charged in the container is vigorously stirred by the rotation and revolution of the carrier itself, and the pre-fired powder (C) and, if necessary, a molding aid and / or a strength improver, pores
  • a method in which a powder component is supported on a carrier by adding a forming agent is preferred.
  • a binder for carrying Specific examples of the binder that can be used include water, ethanol, methanol, propanol, polyhydric alcohol, polyvinyl alcohol as a polymeric binder, silica sol aqueous solution of an inorganic binder, and the like.
  • Ethanol, methanol, propanol, polyhydric alcohol A diol such as ethylene glycol or a triol such as glycerin is more preferable.
  • a diol such as ethylene glycol or a triol such as glycerin is more preferable.
  • the moldability becomes good and a high-performance catalyst with high mechanical strength is obtained.
  • the high-performance catalyst is particularly can get.
  • the amount of these binders used is usually 2 to 80 parts by weight per 100 parts by weight of the pre-fired powder (C).
  • the inert carrier is usually about 2 to 8 mm, and the pre-calcined powder (C) is supported on the inert carrier, and the loading rate depends on the conditions under which the catalyst is used, such as the reaction material space velocity and the raw material concentration. Although it is determined in consideration of the conditions, it is usually 20% by weight to 80% by weight.
  • the supporting rate is expressed by the following formula (3). In this way, a molded object (D) is obtained.
  • the formed body (D) can be dried before the main firing in step e) to evaporate a part of the used binder.
  • Loading rate (wt%) 100 ⁇ [weight of pre-fired powder (C) used for molding / (weight of pre-fired powder (C) used for molding + weight of inert carrier used for molding + molding aid used for molding) And weight of strength improver))
  • the molded body (D) tends to improve catalytic activity and effective yield by calcination at a temperature of 200 to 600 ° C. for about 1 to 12 hours.
  • the baking temperature is preferably 400 ° C. or higher and 600 ° C. or lower, and more preferably 500 ° C. or higher and 600 ° C. or lower.
  • As the gas to be circulated air is simple and preferable.
  • nitrogen, carbon dioxide, nitrogen oxide-containing gas for forming a reducing atmosphere, ammonia-containing gas, hydrogen gas and mixtures thereof may be used as the inert gas. Is possible.
  • a catalyst (E) is obtained. The activity can be appropriately suppressed by raising the firing temperature.
  • Such a catalyst can be used, for example, on the raw material gas inlet side where a hot spot is generated.
  • the catalytic gas phase oxidation reaction of the alkene using the composite oxide catalyst obtained by the present invention is carried out using a raw material gas composition of 1 to 12% by volume of alkene, 5 to 18% by volume of molecular oxygen, and 0 to 60% by volume of water vapor. And a mixed gas comprising 20 to 70% by volume of an inert gas such as nitrogen or carbon dioxide on the catalyst prepared as described above at a temperature range of 250 to 450 ° C. and a pressure of normal pressure to 10 atm. This is accomplished by introducing at a space velocity of 300-10000 hr ⁇ 1 .
  • the alkene includes alcohols that generate alkene in the intramolecular dehydration reaction, such as tertiary butanol.
  • the catalyst of the present invention can be used for the production of unsaturated aldehydes and / or unsaturated carboxylic acids.
  • Example 1 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.9 parts by weight of potassium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, 715 ml of pure water obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in. These solutions were mixed gradually with stirring.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed so as to be maintained at a maximum temperature of 530 ° C. for 4 hours, thereby obtaining a spherical catalyst 1 having an average particle diameter of 5.2 mm of the present invention.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Example 2 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.2 parts by weight of potassium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 655 in which 259.3 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 263.5 parts by weight of nickel nitrate hexahydrate were heated to 60 ° C. Dissolved in 7 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was carried out for 4 hours at a maximum temperature of 540 ° C. to obtain a spherical catalyst 2 having an average particle diameter of 5.2 mm of the present invention.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Example 3 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.9 parts by weight of potassium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 654 obtained by heating 289.8 parts by weight of ferric nitrate nonahydrate, 692.4 parts by weight of cobalt nitrate hexahydrate, and 252.5 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 4 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed so as to be maintained at a maximum temperature of 530 ° C. for 4 hours to obtain a spherical catalyst 3 having an average particle diameter of 5.2 mm of the present invention.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Example 4 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 1.1 parts by weight of rubidium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed so as to be maintained at a maximum temperature of 520 ° C. for 4 hours, thereby obtaining a spherical catalyst 4 having an average particle diameter of 5.2 mm of the present invention.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Example 5 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.9 parts by weight of cesium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.6 parts by weight of cobalt nitrate hexahydrate, and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed so as to be maintained at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 5 having an average particle diameter of 5.2 mm of the present invention.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Example 6 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.9 parts by weight of potassium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was carried out so as to be maintained at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 6 having an average particle diameter of 5.2 mm of the present invention.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Example 7 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 1.4 parts by weight of potassium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 324.9 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed so as to be maintained at a maximum temperature of 520 ° C. for 4 hours, thereby obtaining a spherical catalyst 7 having an average particle diameter of 5.2 mm of the present invention.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Example 8 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.9 parts by weight of potassium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 655 in which 259.3 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 263.5 parts by weight of nickel nitrate hexahydrate were heated to 60 ° C. Dissolved in 7 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed so as to be maintained at a maximum temperature of 520 ° C. for 4 hours, thereby obtaining a spherical catalyst 8 having an average particle diameter of 5.2 mm of the present invention.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Example 9 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 3.7 parts by weight of potassium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 611 obtained by heating 350.8 parts by weight of ferric nitrate nonahydrate, 538.5 parts by weight of cobalt nitrate hexahydrate and 263.5 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 0.0 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate dissolved)
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed so as to be maintained at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 9 having an average particle diameter of 5.2 mm of the present invention.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Example 10 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 3.7 parts by weight of potassium nitrate was dissolved in 42 ml of pure water and added to the above solution. Next, pure water 690 obtained by heating 259.3 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 324.9 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 6 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was carried out for 4 hours at a maximum temperature of 520 ° C. to obtain a spherical catalyst 10 of the present invention having an average particle size of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Example 11 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 3.7 parts by weight of potassium nitrate was dissolved in 42 ml of pure water and added to the above solution. Next, pure water 616 obtained by heating 350.8 parts by weight of ferric nitrate nonahydrate, 549.5 parts by weight of cobalt nitrate hexahydrate, and 263.5 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 8 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed so as to be maintained at a maximum temperature of 520 ° C. for 4 hours, thereby obtaining a spherical catalyst 11 having an average particle diameter of 5.2 mm of the present invention.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 1 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 3.7 parts by weight of potassium nitrate was dissolved in 42 ml of pure water and added to the above solution. Next, pure water 611 in which 274.6 parts by weight of ferric nitrate nonahydrate, 571.5 parts by weight of cobalt nitrate hexahydrate and 307.4 parts by weight of nickel nitrate hexahydrate were heated to 60 ° C. Dissolved in 4 ml. These solutions were mixed gradually with stirring.
  • an aqueous nitric acid solution in which 79.3 parts by weight of nitric acid (60% by weight) was added to 330.1 ml of pure water to make the nitric acid concentration 12% by weight (relative to the weight of bismuth in the dissolved bismuth nitrate pentahydrate)
  • This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 550 ° C. for 4 hours to obtain a spherical catalyst 12 having an average particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 2 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.9 parts by weight of cesium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 42.0 parts by weight of nitric acid (60% by weight) was added to 174.7 ml of pure water to make the nitric acid concentration 12% by weight (based on the weight of bismuth in bismuth nitrate pentahydrate to be dissolved).
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 540 ° C. for 4 hours to obtain a spherical catalyst 13 having an average particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 3 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 1.0 part by weight of potassium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 661 in which 259.3 parts by weight of ferric nitrate nonahydrate, 769.4 parts by weight of cobalt nitrate hexahydrate and 219.6 parts by weight of nickel nitrate hexahydrate were heated to 60 ° C. Dissolved in 6 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 46.6 parts by weight of nitric acid (60% by weight) was added to 194.2 ml of pure water to make the nitric acid concentration 12% by weight (2.% of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution obtained by completely adding 183.2 parts by weight of bismuth nitrate to 3 times the weight was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 540 ° C. for 4 hours to obtain a spherical catalyst 14 having an average particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 4 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 19.0 parts by weight of potassium nitrate was dissolved in 200 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 15 having a mean particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 5 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 1.5 parts by weight of cesium nitrate was dissolved in 200 ml of pure water and added to the above solution. Next, pure water 680 obtained by heating 259.3 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 263.5 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 0.0 ml. These solutions were mixed gradually with stirring.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a comparative spherical catalyst 16 having an average particle diameter of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 6 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 7.5 parts by weight of potassium nitrate was dissolved in 200 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate dissolved)
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 17 having an average particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 7 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.9 parts by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • nitric acid solution in which 39.6 parts by weight of nitric acid (60% by weight) was added to 165.0 ml of pure water to make the nitric acid concentration 12% by weight (2.
  • a solution in which 155.7 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring.
  • This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 18 having a mean particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 8 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.9 parts by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 680 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 263.5 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 0.0 ml. These solutions were mixed gradually with stirring.
  • nitric acid (60% by weight) was added to 242.7 ml of pure water to adjust the concentration of nitric acid to 12% by weight (the amount of bismuth in the bismuth nitrate pentahydrate to be dissolved was 2.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a comparative spherical catalyst 19 having an average particle diameter of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 9 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 1.8 parts by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 680 obtained by heating 149.5 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 263.5 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 0.0 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a comparative spherical catalyst 20 having an average particle diameter of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 10 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 1.4 parts by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 598 obtained by heating 228.8 parts by weight of ferric nitrate nonahydrate, 769.4 parts by weight of cobalt nitrate hexahydrate and 131.8 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a comparative spherical catalyst 21 having an average particle diameter of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 11 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 1.4 parts by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 787 in which 442.4 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate were heated to 60 ° C. Dissolved in 7 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate dissolved)
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a comparative spherical catalyst 22 having an average particle diameter of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 12 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 5.6 parts by weight of potassium nitrate was dissolved in 65 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed so as to be maintained at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 23 having an average particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 13 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 7.5 parts by weight of potassium nitrate was dissolved in 85 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 24 having an average particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 14 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 5.6 parts by weight of potassium nitrate was dissolved in 65 ml of pure water and added to the above solution. Next, pure water 680 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 0.0 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 25 having an average particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 15 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.9 parts by weight of potassium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • nitric acid 60% by weight
  • nitric acid 60% by weight
  • a solution in which 54.9 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring.
  • This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a comparative spherical catalyst 26 having an average particle diameter of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 16 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 1.2 parts by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 773 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 439.2 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 1 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a comparative spherical catalyst 27 having an average particle diameter of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 17 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.9 parts by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • an aqueous nitric acid solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the nitric acid concentration 9% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 91.6 parts by weight of bismuth nitrate was added to 3 times the weight) and completely dissolved was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a comparative spherical catalyst 28 having an average particle diameter of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • the catalyst 28 was obtained by changing the nitric acid concentration in Example 1, but the activity was significantly reduced as compared with Example 1.
  • Comparative Example 18 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 2.9 parts by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 714 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 9 ml. These solutions were mixed gradually with stirring.
  • nitric acid 15.8 parts by weight of nitric acid (60% by weight) was added to 63.1 ml of pure water to make the nitric acid concentration 12% by weight (twice the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved)
  • the solution obtained by completely adding 91.6 parts by weight of bismuth nitrate to the above solution was added to the above solution and mixed with stirring.
  • This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 29 having an average particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • the catalyst 18 was obtained by changing the weight of the nitric acid solution in Example 1, but the activity was significantly reduced as compared with Example 1.
  • Comparative Example 19 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3912 parts by weight of pure water heated to 60 ° C. (9.0 times the weight of molybdenum). Next, 2.9 parts by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 680 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 0.0 ml. These solutions were mixed gradually with stirring.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a comparative spherical catalyst 30 having an average particle diameter of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • the catalyst 19 was obtained by increasing the amount of water in which the ammonium molybdate of Example 1 was dissolved, but the activity was significantly reduced as compared with Example 1.
  • Comparative Example 20 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 0.2 part by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 680 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 714.4 parts by weight of cobalt nitrate hexahydrate and 219.6 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 0.0 ml. These solutions were mixed gradually with stirring.
  • nitric acid (60% by weight) was added to 77.7 ml of pure water to adjust the concentration of nitric acid to 12% by weight (2% of the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed so as to be maintained at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 31 having a mean particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 21 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 1.4 parts by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 779 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 901.2 parts by weight of cobalt nitrate hexahydrate and 263.5 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 0.0 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 42 parts by weight of nitric acid (60% by weight) was added to 174.7 ml of pure water to make the nitric acid concentration 12% by weight (2.3 times the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved)
  • a solution prepared by adding 164.8 parts by weight of bismuth nitrate to the above weight) was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a comparative spherical catalyst 32 having an average particle diameter of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 22 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 1.4 parts by weight of potassium nitrate was dissolved in 30 ml of pure water and added to the above solution. Next, pure water 569 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 439.6 parts by weight of cobalt nitrate hexahydrate, and 329.4 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 3 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate to be dissolved).
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a spherical catalyst 33 having an average particle diameter of 5.2 mm for comparison.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Comparative Example 23 800 parts by weight of heptamolybdate tetrahydrate was completely dissolved in 3040 parts by weight of pure water heated to 60 ° C. (7.0 times the weight of molybdenum). Next, 1.4 parts by weight of potassium nitrate was dissolved in 100 ml of pure water and added to the above solution. Next, pure water 802 obtained by heating 305.1 parts by weight of ferric nitrate nonahydrate, 879.3 parts by weight of cobalt nitrate hexahydrate and 324.9 parts by weight of nickel nitrate hexahydrate to 60 ° C. Dissolved in 3 ml. These solutions were mixed gradually with stirring.
  • nitric acid aqueous solution in which 32.6 parts by weight of nitric acid (60% by weight) was added to 135.9 ml of pure water to make the concentration of nitric acid 12% by weight (relative to the weight of bismuth in the bismuth nitrate pentahydrate dissolved)
  • a solution in which 128.2 parts by weight of bismuth nitrate was added to the above solution was added to the above solution and mixed with stirring. This slurry was dried by a spray drying method, and the obtained dry powder was pre-fired so as to be maintained at a maximum temperature of 440 ° C. for 4 hours.
  • the support rate on the inert spherical carrier was formed into a spherical shape so that the amount of the solution was 50% by weight.
  • calcination was performed at a maximum temperature of 520 ° C. for 4 hours to obtain a comparative spherical catalyst 34 having an average particle diameter of 5.2 mm.
  • the catalyst calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • reaction conditions Using the spherical catalysts 1 to 34 prepared as described above, an oxidation reaction of propylene was carried out to determine propylene conversion rate, acrolein yield, acrylic acid yield, and effective yield. 67.7 ml of the catalyst was filled in a stainless steel reaction tube having an inner diameter of 28.4 mm, a mixed gas of 8% by volume of propylene, 67% by volume of air and 25% by volume of water vapor was introduced at a space velocity of about 860 hr ⁇ 1 . Table 1 shows the reaction bath temperature and propylene conversion obtained when the effective yield is maximized by carrying out the oxidation reaction.
  • FIG. 1 shows the effective yield with respect to the propylene conversion of each of the catalysts of Examples and Comparative Examples.
  • a plot showing a high effective yield against propylene conversion was connected.
  • all the catalysts of the examples with good performance were more effective than the effective yield on this curve at the same propylene conversion. It showed a high effective yield and was confirmed to have superior activity over the comparative example.
  • the catalyst having the same atomic ratio as that of the spherical catalyst 12 corresponding to Comparative Example 1 was evaluated at various firing temperatures and reaction bath temperatures.
  • the linear approximation curve of the plot of the effective yield with respect to these propylene conversion rates was shown with the Example in FIG. All of the example catalysts with good performance showed an effective yield that was higher than the effective yield on this curve at the same propylene conversion and had superior activity.
  • a catalyst that falls outside the range of the catalyst composition of the present application did not exhibit an excellent effective yield with respect to the propylene conversion rate as in the catalyst of the present application even when the calcination conditions and reaction bath temperature conditions were changed.
  • the catalyst of the present invention is useful for the production of unsaturated aldehydes and / or unsaturated carboxylic acids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量がモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して8.5倍以下であり、かつビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量が硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上であり、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度が10重量%以上である方法によって調製される不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒。

Description

不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
 この発明は、アルケンを酸化触媒の存在下に分子状酸素又は分子状酸素含有ガスにより気相酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する際に使用する複合金属酸化物触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法に関する。
 アルケンを原料にして対応する不飽和アルデヒド、および不飽和カルボン酸を製造するための触媒の生産および製造は工業的に広く実施されている。なかでもプロピレンを分子状酸素により気相接触酸化して、アクロレイン及びアクリル酸を合成する触媒に関し、従来から数多くの提案がなされている。そのなかで、鉄およびコバルト、ニッケルの原子比率に関する技術が特許文献1に記載されており、コバルトおよび/またはニッケルに対する鉄の原子比率を特定の範囲とすることで活性および選択性を向上させることが出来ることが記載されている。特許文献2には、コバルトおよび/またはニッケルに対する鉄の原子比率を一定にしつつ、コバルトおよびニッケルの原子比率に対するコバルトの原子比率を変化させた触媒を複数調製し、反応器内の2層以上の反応帯に充填して使用する技術が開示されている。特許文献3にはモリブデンの原子比率に対するコバルトの原子比率、鉄の原子比率に対するコバルトの原子比率を特定の値にする非担持リング触媒に関する技術が開示されている。特許文献4にはビスマス原料として三酸化ビスマスまたは次炭酸ビスマスを使用し、超音波で処理して得られる触媒が開示されている。特許文献5には、特定の原子比率を成し、コバルトおよびまたはニッケルのモリブデートを主成分とし第二成分として鉄モリブデートが存在する酸化物において活性および選択性を向上させることが出来ると記載されているが酸化物内には三酸化モリブデンが含まれない限定的なものである。特許文献6には、モリブデンに対するそれぞれの元素の原子比率の最適化に加え、ビスマスの原子比率に対するニッケルの原子比率や、アルカリ金属成分の原子比率に対するニッケルの原子比率、アルカリ金属成分の原子比率に対するビスマスの原子比率を詳細に検討し、その効果を明確にしているが、収率に対する原子比率が及ぼす影響を明確化した検討は見当たらない。
日本国特開2003-164763号公報 日本国特開2003-146920号公報 日本国特表2007-511565号公報 日本国特開2008-149263号公報 日本国特許第4683508号 国際公開第2014/181839号
 上記のような手段をもって改良をはかっても、アルケンの部分酸化反応により対応する不飽和アルデヒドおよび/または不飽和カルボン酸の製造において、さらなる収率の改善が求められている。例えば、目的生成物の収率は、製造に要するアルケンの使用量を左右し製造コストに多大な影響を与える。また、低い収率で運転を継続することによって副生成物を大量に生成するため精製工程に大きな負荷を与え、精製工程にかかる時間および運転コストが上がってしまう問題が生じる。さらには副生成物の種類によっては、それらは触媒表面や触媒付近のガス流路に堆積する場合もある。これらは触媒表面の必要な反応活性点を被覆してしまうことで触媒の活性を低下させるため、無理やり活性を上げる必要が生じ反応浴温度を上げざるを得なくなる。すると、触媒が熱的ストレスを受けることとなり、寿命の低下やさらなる選択率の低下を引き起こし、収率の低下を招くことにもなる。また、系内に堆積した副生成物により系内圧力の上昇を引き起こすことでも選択率が低下し、収率低下につながることも考えられ、最悪の場合は内部圧力の急上昇によって温度異常をきたし反応が暴走することさえ考えられる。そうなると長期にわたり運転を停止し、系内清掃や触媒交換が必要になることも想定される。そこで、本発明は不飽和アルデヒドおよび/または不飽和カルボン酸を安全、安価に製造でき目的生成物の収率が高い触媒を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の原子比率を満たす触媒組成であり、かつその触媒の調合においてモリブデン成分原料がモリブデン酸アンモニウムであり、モリブデン酸アンモニウムを溶解する溶媒が水であり、その水の重量と、またビスマス成分原料が硝酸ビスマスであり、硝酸ビスマスを溶解する溶媒が硝酸水溶液であり、その硝酸水溶液の重量と、硝酸水溶液の酸濃度とが、それぞれ特定の範囲を満たし、さらにモリブデン組成比率12に対してビスマスの組成比が0.4以上0.8未満の範囲にて調製された複合金属酸化物触媒が、目的生成物を高選択率かつ高収率で与えるという知見を見いだし、この発明を完成させるに至った。
 すなわち、本発明は、
(1)下記一般式(1)で表される化合物を含有し、下記一般式(1)で表される化合物を調合する工程において、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量がモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して4.0倍以上8.5倍以下であり、かつビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量が硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上であり、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度が10重量%以上である方法によって調製された、不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、
  一般式(1)
  Mo12 Bi Fe Co Ni X Y Z O
(式中、Xはマグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)、銅(Cu)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはホウ素(B)、リン(P)、砒素(As)、アンチモン(Sb)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素であり、Zはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)からなる群より選ばれる少なくとも1種の元素であり、(a)~(g)は各成分の原子比率を表し、hは触媒成分の酸化度で決定される数値であり、a=0.40以上0.80未満、b=1.0~2.5、c=4.5~7.5、d=1.6~3.5、e=0~10、f=0~10、g=0.015~0.12であり、hは他の元素の酸化状態を満足させる数値で表記され、d/aが2.0より大きく8.8以下であり、かつd/gが14以上100以下であり、かつa/gが3.5以上53.3未満である触媒、
(2)前記一般式(1)のe及びfが0である(1)に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、
(3)前記一般式(1)の成分を含有するスラリーを乾燥して得られる乾燥粉体を200℃以上600℃以下の温度で焼成して得られた予備焼成粉体を成型し、再度200℃以上600℃以下の温度で焼成した(1)または(2)に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、
(4)触媒の成型方法が球状担体に触媒活性成分をコーティングする方法であり、得られた触媒の平均粒径が3.0mm~10.0mmであり、触媒活性成分の重量が触媒全体に占める割合が20~80重量%である(1)~(3)のいずれか一つに記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、
(5)(1)~(4)のいずれか一つに記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法であって、前記一般式(1)で表される化合物を調合する工程において、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量をモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して4.0倍以上8.5倍以下とし、かつビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量を硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上とし、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度を10重量%以上とする触媒の製造方法。
(6)(1)~(4)のいずれか一つに記載の触媒を使用する不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法、
に関する。
 この発明によれば、アルケンから対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するための選択性および目的生成物の収率が高い触媒を得ることができる。それによって安全かつ安定に低コストで長期運転が可能となる。
実施例及び比較例における各触媒のプロピレン転化率(%)に対する有効収率(%)を示す図である。 実施例における各触媒のプロピレン転化率(%)に対する有効収率(%)及び比較例1の触媒と同じ原子比率を有する触媒における焼成温度、反応浴温度を変化させて評価したプロピレン転化率(%)に対する有効収率(%)のプロットの線形近似曲線を示す図である。
 下記一般式(1)で表わされる本発明の触媒は以下の工程を経ることで調製することが出来る。
一般式(1)
  Mo12 Bi Fe Co Ni X Y Z O
(式中、Xはマグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)、銅(Cu)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはホウ素(B)、リン(P)、砒素(As)、アンチモン(Sb)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素であり、Zはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)からなる群より選ばれる少なくとも1種の元素であり、(a)~(g)は各成分の原子比率を表し、hは触媒成分の酸化度で決定される数値であり、a=0.40以上0.80未満、b=1.0~2.5、c=4.5~7.5、d=1.6~3.5、e=0~10、f=0~10、g=0.015~0.12であり、hは他の元素の酸化状態を満足させる数値で表記され、d/aが2.0より大きく8.8以下であり、かつd/gが14以上100以下であり、かつa/gが3.5以上53.3未満である触媒。好ましくは、a=0.45以上0.75未満、b=1.5~2.4、c=4.7~7.0、d=1.8~3.2、e=0~10、f=0~10、g=0.02~0.11であり、hは他の元素の酸化状態を満足させる数値で表記され、d/aが2.5より大きく7.0以下であり、かつd/gが20以上90以下であり、かつa/gが5以上25未満である触媒)、
工程a)調合
 本発明においては、触媒を構成する各元素の出発原料は、モリブデン成分原料としてはモリブデン酸アンモニウムを使用した場合に高性能触媒が得られる。特にモリブデン酸アンモニウムには、ジモリブデン酸アンモニウム、テトラモリブデン酸アンモニウム、ヘプタモリブデン酸アンモニウム等、複数種類の化合物が存在するが、その中でもヘプタモリブデン酸アンモニウムを使用した場合が最も好ましい。ビスマス成分原料としては硝酸ビスマスを使用した場合に高性能な触媒が得られる。鉄、コバルト、ニッケル及びその他の元素の原料としては通常は酸化物あるいは強熱することにより酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物等又はそれらの混合物を用いることができる。例えば、鉄成分原料とコバルト成分原料及び/又はニッケル成分原料を所望の比率で10~80℃の条件下にて水に溶解混合し、20~90℃の条件下にて別途調合されたモリブデン成分原料およびZ成分原料水溶液もしくはスラリーと混合し、20~90℃の条件下にて1時間程度加熱撹拌した後、ビスマス成分原料を溶解した水溶液と、必要に応じX成分原料、Y成分原料とを添加して触媒成分を含有する水溶液またはスラリーを得る。以降、両者をまとめて調合液(A)と称する。
 ここで、調合液(A)は必ずしもすべての触媒構成元素を含有する必要は無く、その一部の元素または一部の量を以降の工程で添加してもよい。また、調合液(A)を調合する際に各成分原料を溶解する水の量や、また硫酸や硝酸、塩酸、酒石酸、酢酸などの酸を加える場合には、原料を溶解するのに十分な水溶液中の酸濃度が例えば5重量%~99重量%の範囲の中で適する値を選択していなければ調合液(A)の適度な粘度を得ることができず、安定生産の点で好ましくない。特にモリブデン成分原料を溶解させるにあたっては、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量がモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して4.0倍以上8.5倍以下であり、かつビスマス成分原料を溶解させるにあたっては、ビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量が硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上であり、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度が10重量%以上である。それによって得られる調合液(A)の形態としては水溶液またはスラリーであることが、優れた触媒が得られる点で好ましい。モリブデン酸アンモニウムを溶解させる水の量は、溶解させる水の重量がモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して4.0倍未満の場合モリブデン酸アンモニウムが十分に溶解し均一なスラリーを形成しない上、粘度が高すぎるため製造上好ましくない。
 ここで、構成元素比としては、触媒主成分の一つであるビスマスと、活性に大きく影響を及ぼすニッケルおよびアルカリ金属の比率が重要であり、ビスマスに対するニッケルの比率であるd/aが2.0より大きく8.8以下であり、かつアルカリ金属に対するニッケルの比率であるd/gが14以上100以下であり、かつアルカリ金属に対するビスマスの比率であるa/gが3.5以上53.3未満であることにより、目的生成物の選択性と収率が高い優れた触媒となる。また、ビスマスの量を0.40以上0.80未満、好ましくは0.45以上から0.75未満にすることにより高い収率が得られる。この効果はその充填方法にもよらず、例えば単一層の充填でもよく、反応効率や温度分布のバランス等を考慮するためにそれらを多層充填することや、多層では他の組成の触媒と組み合わせて充填しても得られる。また、単一層充填、多層充填のいずれかまたはすべての層において必要があれば不活性物質と混合および/または粒径を調製することで対応することもできる。
工程b)乾燥
 次いで上記で得られた調合液(A)を乾燥し、乾燥粉体とする。乾燥方法は、調合液(A)を完全に乾燥できる方法であれば特に制限はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固等が挙げられる。これらのうち本発明においては、スラリーから短時間に粉体又は顆粒に乾燥することができる噴霧乾燥が特に好ましい。噴霧乾燥の乾燥温度はスラリーの濃度、送液速度等によって異なるが概ね乾燥機の出口における温度が70~150℃である。また、この際得られる乾燥粉体の平均粒径が10~700μmとなるよう乾燥することが好ましい。こうして乾燥粉体(B)を得る。
工程c)予備焼成
 得られた乾燥粉体(B)は空気流通下で200℃から600℃で、好ましくは300℃から600℃で焼成することで触媒の成型性、機械的強度、触媒性能が向上する傾向がある。焼成時間は1時間から12時間が好ましい。こうして予備焼成粉体(C)を得る。
工程d)成型
 成型方法に特に制限はないが円柱状、リング状に成型する際には打錠成型機、押し出し成型機などを用いた方法が好ましい。さらに好ましくは、球状に成型する場合であり、成型機で予備焼成粉体(C)を球形に成型しても良いが、予備焼成粉体(C)(必要により成型助剤、強度向上剤を含む)を不活性なセラミック等の担体に担持させる方法が好ましい。ここで担持方法としては転動造粒法、遠心流動コーティング装置を用いる方法、ウォッシュコート方法等が広く知られており、予備焼成粉体(C)が担体に均一に担持できる方法で有れば特に限定されないが、触媒の製造効率や調製される触媒の性能を考慮した場合、より好ましくは固定円筒容器の底部に、平らな、あるいは凹凸のある円盤を有する装置で、円盤を高速で回転させることにより、容器内にチャージされた担体を、担体自体の自転運動と公転運動により激しく撹拌させ、ここに予備焼成粉体(C)並びに必要により、成型助剤および/または強度向上剤、細孔形成剤を添加することにより粉体成分を担体に担持させる方法が好ましい。尚、担持に際して、バインダーを使用するのが好ましい。用いうるバインダーの具体例としては、水やエタノール、メタノール、プロパノール、多価アルコール、高分子系バインダーのポリビニルアルコール、無機系バインダーのシリカゾル水溶液等が挙げられるが、エタノール、メタノール、プロパノール、多価アルコールが好ましく、エチレングリコール等のジオールやグリセリン等のトリオール等がより好ましい。グリセリン水溶液を適量使用することにより成型性が良好となり、機械的強度の高い、高性能触媒が得られ、具体的にはグリセリンの濃度5重量%以上の水溶液を使用した場合に特に高性能触媒が得られる。これらバインダーの使用量は、予備焼成粉体(C)100重量部に対して通常2~80重量部である。不活性担体は、通常2~8mm程度のものを使用し、これに予備焼成粉体(C)を担持させるが、その担持率は触媒使用条件、たとえば反応原料の空間速度、原料濃度などの反応条件を考慮して決定されるものであるが、通常20重量%から80重量%である。ここで担持率は以下の式(3)で表記される。こうして成型体(D)を得る。成形体(D)は工程e)の本焼成前に乾燥させ、使用したバインダーの一部を蒸発させることもできる。
 式(3)
 担持率(重量%)
=100×〔成型に使用した予備焼成粉体(C)の重量/(成型に使用した予備焼成粉体(C)の重量+成型に使用した不活性担体の重量+成型に使用した成型助剤と強度向上剤の重量)〕
工程e)本焼成
 成型体(D)は200~600℃の温度で1~12時間程度焼成することで触媒活性、有効収率が向上する傾向にある。焼成温度は400℃以上600℃以下が好ましく、500℃以上600℃以下がより好ましい。流通させるガスとしては空気が簡便で好ましいが、その他に不活性ガスとして窒素、二酸化炭素、還元雰囲気にするための窒素酸化物含有ガス、アンモニア含有ガス、水素ガスおよびそれらの混合物を使用することも可能である。こうして触媒(E)を得る。焼成温度を高くすることで適宜活性を抑制することができる。そのような触媒は、例えばホットスポットが発生するような原料ガス入口側で使用することができる。
 この発明によって得られる複合酸化物触媒を使用するアルケンの接触気相酸化反応は、原料ガス組成として1~12容量%のアルケン、5~18容量%の分子状酸素、0~60容量%の水蒸気及び20~70容量%の不活性ガス、例えば窒素、炭酸ガスなどからなる混合ガスを前記のようにして調製された触媒上に250~450℃の温度範囲及び常圧~10気圧の圧力下、300~10000hr-1の空間速度で導入することによって遂行される。本発明において、アルケンとは、その分子内脱水反応においてアルケンを生じるアルコール類、例えばターシャリーブタノールも含めたものとする。
 本発明の触媒は、不飽和アルデヒドおよび/または不飽和カルボン酸の製造に使用することができる。具体的には、プロピレンを分子状酸素または分子状酸素含有ガスにより気相接触酸化しアクロレインおよびアクリル酸を製造する方法や、イソブチレンおよび/またはターシャリーブチルアルコールを分子状酸素または分子状酸素含有ガスにより気相接触酸化してメタクロレインおよびメタクリル酸を製造する方法に使用することができる。その中でも、アクロレインおよびアクリル酸の製造に使用することが好ましい。
 以下、具体例を挙げて実施例を示したが、本発明はその趣旨を逸脱しない限り実施例に限定されるものでは無い。
実施例1
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム2.9重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4重量部を60℃に加温した純水715mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水97.1mlに硝酸(60重量%)23.3重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス91.6重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度530℃で4時間保持されるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒1を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒1の原子比率はd/a=6.0、d/g=37.5、a/g=6.3、
Mo:Bi:Fe:Co:Ni:K=12:0.50:2.0:6.5:3.0:0.08
実施例2
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム2.2重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物259.3重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物263.5重量部を60℃に加温した純水655.7mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度540℃で4時間保持されるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒2を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒2の原子比率はd/a=3.4、d/g=40、a/g=12、
Mo:Bi:Fe:Co:Ni:K=12:0.7:1.7:6.5:2.4:0.06
実施例3
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム2.9重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物289.8重量部、硝酸コバルト六水和物692.4重量部及び硝酸ニッケル六水和物252.5重量部を60℃に加温した純水654.4mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度530℃で4時間保持されるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒3を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒3の原子比率はd/a=3.3、d/g=29、a/g=9、
Mo:Bi:Fe:Co:Ni:K=12:0.7:1.9:6.3:2.3:0.08
実施例4
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸ルビジウム1.1重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4重量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒4を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒4の原子比率はd/a=4.3、d/g=75、a/g=18、
Mo:Bi:Fe:Co:Ni:Rb=12:0.70:2.0:6.5:3.0:0.04
実施例5
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸セシウム2.9重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.6重量部及び硝酸ニッケル六水和物329.4重量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒5を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒5の原子比率はd/a=4.3、d/g=75、a/g=18、
Mo:Bi:Fe:Co:Ni:Cs=12:0.7:2.0:6.5:3.0:0.04
実施例6
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム2.9重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4重量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒6を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒6の原子比率はd/a=4.3、d/g=38、a/g=9、
Mo:Bi:Fe:Co:Ni:K=12:0.7:2.0:6.5:3.0:0.08
実施例7
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム1.4重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物324.9重量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒7を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒7の原子比率はd/a=4.3、d/g=75、a/g=18、
Mo:Bi:Fe:Co:Ni:K=12:0.7:2.0:6.5:3.0:0.04
実施例8
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム2.9重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物259.3重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物263.5重量部を60℃に加温した純水655.7mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒8を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒8の原子比率はd/a=3.4、d/g=30、a/g=9、
Mo:Bi:Fe:Co:Ni:K=12:0.7:1.7:6.5:2.4:0.08
実施例9
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム3.7重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物350.8重量部、硝酸コバルト六水和物538.5重量部及び硝酸ニッケル六水和物263.5重量部を60℃に加温した純水611.0mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒9を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒9の原子比率はd/a=3.4、d/g=24、a/g=7、
Mo:Bi:Fe:Co:Ni:K=12:0.7:2.3:4.9:2.4:0.1
実施例10
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム3.7重量部を純水42mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物259.3重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物324.9重量部を60℃に加温した純水690.6mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒10を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒10の原子比率はd/a=4.3、d/g=30、a/g=7、
Mo:Bi:Fe:Co:Ni:K=12:0.7:1.7:6.5:3.0:0.1
実施例11
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム3.7重量部を純水42mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物350.8重量部、硝酸コバルト六水和物549.5重量部及び硝酸ニッケル六水和物263.5重量部を60℃に加温した純水616.8mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒11を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒11の原子比率はd/a=3.4、d/g=24、a/g=7、
Mo:Bi:Fe:Co:Ni:K=12:0.7:2.3:5.0:2.4:0.1
比較例1
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム3.7重量部を純水42mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物274.6重量部、硝酸コバルト六水和物571.5重量部及び硝酸ニッケル六水和物307.4重量部を60℃に加温した純水611.4mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水330.1mlに硝酸(60重量%)79.3重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス311.4重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度550℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒12を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒12の原子比率はd/a=1.6、d/g=28、a/g=17、
Mo:Bi:Fe:Co:Ni:K=12:1.7:1.8:5.2:2.8:0.1
比較例2
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸セシウム2.9重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4重量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水174.7mlに硝酸(60重量%)42.0重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス164.8重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度540℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒13を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒13の原子比率はd/a=3.3、d/g=75、a/g=23、
Mo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:3.0:0.04
比較例3
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム1.0重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物259.3重量部、硝酸コバルト六水和物769.4重量部及び硝酸ニッケル六水和物219.6重量部を60℃に加温した純水661.6mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水194.2mlに硝酸(60重量%)46.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス183.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度540℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒14を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒14の原子比率はd/a=2、d/g=67、a/g=33、
Mo:Bi:Fe:Co:Ni:K=12:1.0:1.7:7.0:2.0:0.03
比較例4
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム19.0重量部を純水200mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4重量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水97.1mlに硝酸(60重量%)23.3重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス91.6重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒15を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒15の原子比率はd/a=6.0、d/g=6、a/g=1、
Mo:Bi:Fe:Co:Ni:K=12:0.5:2.0:6.5:3.0:0.5
比較例5
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸セシウム1.5重量部を純水200mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物259.3重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物263.5重量部を60℃に加温した純水680.0mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水97.1mlに硝酸(60重量%)23.3重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒16を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒16の原子比率はd/a=3.4、d/g=120、a/g=35、
Mo:Bi:Fe:Co:Ni:Cs=12:0.7:1.7:6.5:2.4:0.02
比較例6
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム7.5重量部を純水200mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4重量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒17を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒17の原子比率はd/a=4.3、d/g=15、a/g=4、
Mo:Bi:Fe:Co:Ni:K=12:0.7:2.0:6.5:3.0:0.2
比較例7
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム2.9重量部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4重量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水165.0mlに硝酸(60重量%)39.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス155.7重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒18を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒18の原子比率はd/a=3.3、d/g=38、a/g=11、
Mo:Bi:Fe:Co:Ni:K=12:0.9:2.0:6.5:3.0:0.08
比較例8
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム2.9重量部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物263.5重量部を60℃に加温した純水680.0mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水242.7mlに硝酸(60重量%)58.3重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス228.9重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒19を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒19の原子比率はd/a=1.8、d/g=30、a/g=16、
Mo:Bi:Fe:Co:Ni:K=12:1.3:2.0:6.5:2.4:0.08
比較例9
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム1.8重量部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物149.5重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物263.5重量部を60℃に加温した純水680.0mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒20を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒20の原子比率はd/a=3.4、d/g=48、a/g=14、
Mo:Bi:Fe:Co:Ni:K=12:0.7:0.9:6.5:2.4:0.05
比較例10
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム1.4重量部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物228.8重量部、硝酸コバルト六水和物769.4重量部及び硝酸ニッケル六水和物131.8量部を60℃に加温した純水598.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒21を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒21の原子比率はd/a=1.7、d/g=30、a/g=18、
Mo:Bi:Fe:Co:Ni:K=12:0.7:1.5:7.0:1.2:0.04
比較例11
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム重量1.4部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物442.4重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4量部を60℃に加温した純水787.7mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒22を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒22の原子比率はd/a=4.3、d/g=75、a/g=18、
Mo:Bi:Fe:Co:Ni:K=12:0.7:2.9:6.5:3.0:0.04
比較例12
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム5.6重量部を純水65mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水97.1mlに硝酸(60重量%)23.3重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス91.6重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒23を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒23の原子比率はd/a=6、d/g=20、a/g=3、
Mo:Bi:Fe:Co:Ni:K=12:0.5:2.0:6.5:3.0:0.15
比較例13
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム7.5重量部を純水85mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水97.1mlに硝酸(60重量%)23.3重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス91.6重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒24を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒24の原子比率はd/a=6、d/g=15、a/g=2.5、
Mo:Bi:Fe:Co:Ni:K=12:0.5:2.0:6.5:3.0:0.20
比較例14
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム5.6重量部を純水65mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4量部を60℃に加温した純水680.0mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒25を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒25の原子比率はd/a=4.3、d/g=20、a/g=5、
Mo:Bi:Fe:Co:Ni:K=12:0.7:2.0:6.5:3.0:0.15
比較例15
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム2.9重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水58.2mlに硝酸(60重量%)14.0重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス54.9重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒26を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒26の原子比率はd/a=10、d/g=38、a/g=4、
Mo:Bi:Fe:Co:Ni:K=12:0.3:2.0:6.5:3.0:0.08
比較例16
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム1.2重量部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物439.2量部を60℃に加温した純水773.1mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒27を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒27の原子比率はd/a=5.7、d/g=114、a/g=20、
Mo:Bi:Fe:Co:Ni:K=12:0.7:2.0:6.5:4.0:0.035
比較例17
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム2.9重量部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を9重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス91.6重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒28を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒20の原子比率はd/a=6、d/g=38、a/g=6、
Mo:Bi:Fe:Co:Ni:K=12:0.5:2.0:6.5:3.0:0.08
 触媒28は実施例1の硝酸濃度を変更することによって得たが、実施例1に比べて大幅に活性が低下してしまった。
比較例18
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム2.9重量部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4量部を60℃に加温した純水714.9mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水63.1mlに硝酸(60重量%)15.8重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2倍の重量)に硝酸ビスマス91.6重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒29を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒29の原子比率はd/a=6、d/g=38、a/g=6、
Mo:Bi:Fe:Co:Ni:K=12:0.5:2.0:6.5:3.0:0.08
 触媒18は実施例1の硝酸溶液重量を変更することによって得たが、実施例1に比べて大幅に活性が低下してしまった。
比較例19
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3912重量部(モリブデンの重量に対し9.0倍の重量)に完全溶解させた。次に、硝酸カリウム2.9重量部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物329.4量部を60℃に加温した純水680.0mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水97.1mlに硝酸(60重量%)23.3重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス91.6重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒30を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒30の原子比率はd/a=6、d/g=38、a/g=6、
Mo:Bi:Fe:Co:Ni:K=12:0.5:2.0:6.5:3.0:0.08
 触媒19は実施例1のモリブデン酸アンモニウムを溶解する水の量を増加させて得たが、実施例1に比べて大幅に活性が低下してしまった。
比較例20
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム0.2重量部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物714.4重量部及び硝酸ニッケル六水和物219.6量部を60℃に加温した純水680.0mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水77.7mlに硝酸(60重量%)18.7重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス73.3重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒31を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒31の原子比率はd/a=5、d/g=200、a/g=40、
Mo:Bi:Fe:Co:Ni:K=12:0.4:2.0:6.5:2.0:0.01
比較例21
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム1.4重量部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物901.2重量部及び硝酸ニッケル六水和物263.5量部を60℃に加温した純水779.0mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水174.7mlに硝酸(60重量%)42重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス164.8重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒32を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒32の原子比率はd/a=2.7、d/g=60、a/g=23、
Mo:Bi:Fe:Co:Ni:K=12:0.9:2.0:8.2:2.4:0.04
比較例22
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム1.4重量部を純水30mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物439.6重量部及び硝酸ニッケル六水和物329.4量部を60℃に加温した純水569.3mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒33を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒33の原子比率はd/a=4.3、d/g=75、a/g=18、
Mo:Bi:Fe:Co:Ni:K=12:0.7:2.0:4.0:3.0:0.04
比較例23
 ヘプタモリブデン酸アンモニウム四水和物800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム1.4重量部を純水100mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄九水和物305.1重量部、硝酸コバルト六水和物879.3重量部及び硝酸ニッケル六水和物324.9量部を60℃に加温した純水802.3mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水135.9mlに硝酸(60重量%)32.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス五水和物中のビスマスの重量に対し2.3倍以上の重量)に硝酸ビスマス128.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を最高温度440℃で4時間保持するよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成型した。次に最高温度520℃で4時間保持されるよう焼成を行って、比較用の平均粒径5.2mmの球状触媒34を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
球状触媒34の原子比率はd/a=4.3、d/g=75、a/g=18、
Mo:Bi:Fe:Co:Ni:K=12:0.7:2.0:8.0:3.0:0.04
 これより、プロピレンの酸化反応の結果を示すが、ここでプロピレン転化率、アクロレイン収率、アクリル酸収率、有効収率の定義とは、次の通りである。
 プロピレン転化率(モル%)
=(反応したプロピレンのモル数/供給したプロピレンのモル数)×100
 アクロレイン収率(モル%)
=(生成したアクロレインのモル数/供給したプロピレンのモル数)×100
 アクリル酸収率(モル%)
=(生成したアクリル酸のモル数/供給したプロピレンのモル数)×100
 有効収率(モル%)
=アクロレイン収率+アクリル酸収率
(反応条件)
 上記のようにして調製した球状触媒1~触媒34を使用して、プロピレンの酸化反応を実施し、プロピレン転化率、アクロレイン収率、アクリル酸収率、有効収率を求めた。触媒67.7mlを内径28.4mmのステンレス鋼製反応管に充填し、プロピレン8容量%、空気67容量%、水蒸気25容量%の混合ガスを約860hr-1の空間速度で導入し、プロピレンの酸化反応を実施して有効収率が最大となるときの反応浴温度およびプロピレン転化率を求め、表1に示した。
Figure JPOXMLDOC01-appb-T000001
 触媒の活性は、転化率が上昇すれば有効収率も同時に上昇する為、転化率に応じた有効収率によって比較する。図1に実施例と比較例の各触媒のプロピレン転化率に対する有効収率を示した。比較例の中で、プロピレン転化率に対して高い有効収率を示すプロットをつないだところ、性能が良好な実施例の触媒はいずれも、同じプロピレン転化率におけるこの曲線上の有効収率よりも高い有効収率を示し、比較例に対して優位な活性を有していることが確認された。
 また、比較例1にあたる球状触媒12と同じ原子比率の組成からなる触媒について、様々な焼成温度および反応浴温度にて評価を実施した。これらのプロピレン転化率に対する有効収率のプロットの線形近似曲線を図2に実施例と共に示した。性能が良好な実施例の触媒はいずれも、同じプロピレン転化率におけるこの曲線上の有効収率よりも高い有効収率を示し、優位な活性を有していた。換言すると、本願触媒組成の範囲から外れる触媒は、焼成条件や反応浴温度条件を変化させても、本願触媒のようなプロピレン転化率に対する優れた有効収率を示さなかった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2015年2月27日付で出願された日本国特許出願(2015-037574)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明の触媒は、不飽和アルデヒドおよび/または不飽和カルボン酸の製造に有用である。

Claims (6)

  1.  下記一般式(1)表される化合物を含有し、下記一般式(1)で表される化合物を調合する工程において、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量がモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して4.0倍以上8.5倍以下であり、かつビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量が硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上であり、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度が10重量%以上である方法によって調製された、不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、
      一般式(1)
      Mo12 Bi Fe Co Ni X Y Zg 
    (式中、Xはマグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)、銅(Cu)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはホウ素(B)、リン(P)、砒素(As)、アンチモン(Sb)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素であり、Zはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)からなる群より選ばれる少なくとも1種の元素であり、(a)~(g)は各成分の原子比率を表し、hは触媒成分の酸化度で決定される数値であり、a=0.40以上0.80未満、b=1.0~2.5、c=4.5~7.5、d=1.6~3.5、e=0~10、f=0~10、g=0.015~0.12であり、hは他の元素の酸化状態を満足させる数値で表記され、d/aが2.0より大きく8.8以下であり、かつd/gが14以上100以下であり、かつa/gが3.5以上53.3未満である。)。
  2.  前記一般式(1)のe及びfが0である請求項1に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒。
  3.  前記一般式(1)の成分を含有するスラリーを乾燥して得られる乾燥粉体を200℃以上600℃以下の温度で焼成して得られた予備焼成粉体を成型し、再度200℃以上600℃以下の温度で焼成した請求項1または2に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒。
  4.  触媒の成型方法が球状担体に触媒活性成分をコーティングする方法であり、得られた触媒の平均粒径が3.0mm~10.0mmであり、触媒活性成分の重量が触媒全体に占める割合が20~80重量%である請求項1~3のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒。
  5.  請求項1~4のいずれか1項に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法であって、前記一般式(1)で表される化合物を調合する工程において、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量をモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して4.0倍以上8.5倍以下とし、かつビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量を硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上とし、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度を10重量%以上とする触媒の製造方法。
  6.  請求項1~4のいずれか1項に記載の触媒を使用する不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。
PCT/JP2016/055650 2015-02-27 2016-02-25 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 WO2016136882A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/553,007 US10300463B2 (en) 2015-02-27 2016-02-25 Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
KR1020177023634A KR102422025B1 (ko) 2015-02-27 2016-02-25 불포화 알데히드 및/또는 불포화 카본산 제조용 촉매 및 그의 제조 방법 그리고 불포화 알데히드 및/또는 불포화 카본산의 제조 방법
EP16755626.5A EP3263213B1 (en) 2015-02-27 2016-02-25 Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
CN201680011931.9A CN107405609B (zh) 2015-02-27 2016-02-25 用于制造不饱和醛和/或不饱和羧酸的催化剂及其制造方法以及不饱和醛和/或不饱和羧酸的制造方法
JP2017502467A JP6674441B2 (ja) 2015-02-27 2016-02-25 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015037574 2015-02-27
JP2015-037574 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136882A1 true WO2016136882A1 (ja) 2016-09-01

Family

ID=56789566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055650 WO2016136882A1 (ja) 2015-02-27 2016-02-25 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Country Status (6)

Country Link
US (1) US10300463B2 (ja)
EP (1) EP3263213B1 (ja)
JP (1) JP6674441B2 (ja)
KR (1) KR102422025B1 (ja)
CN (1) CN107405609B (ja)
WO (1) WO2016136882A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198763A1 (ja) 2018-04-10 2019-10-17 日本化薬株式会社 不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造方法並びに不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造用触媒
WO2020203606A1 (ja) 2019-03-29 2020-10-08 日本化薬株式会社 触媒製造用乾燥顆粒、触媒、及び化合物の製造方法
WO2020203266A1 (ja) 2019-03-29 2020-10-08 日本化薬株式会社 不飽和アルデヒドの製造方法
WO2021141133A1 (ja) 2020-01-10 2021-07-15 日本化薬株式会社 触媒、触媒の充填方法、および触媒を用いた化合物の製造方法
WO2021141134A1 (ja) 2020-01-10 2021-07-15 日本化薬株式会社 触媒、それを用いた化合物の製造方法及び化合物
WO2022065116A1 (ja) 2020-09-24 2022-03-31 日本化薬株式会社 触媒前駆体、それを用いた触媒、化合物の製造方法及び触媒の製造方法
WO2022186032A1 (ja) 2021-03-03 2022-09-09 日本化薬株式会社 触媒、およびそれを用いた気相酸化反応による化合物の製造方法
WO2023100855A1 (ja) 2021-11-30 2023-06-08 日本化薬株式会社 触媒、及びそれを用いた化合物の製造方法
WO2023100856A1 (ja) 2021-11-30 2023-06-08 日本化薬株式会社 触媒、及びそれを用いた化合物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114289030A (zh) * 2021-11-12 2022-04-08 中海油天津化工研究设计院有限公司 一种丙烯氧化制丙烯醛催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683508B2 (ja) * 1998-12-03 2011-05-18 ビーエーエスエフ ソシエタス・ヨーロピア 複合金属酸化物材料、その製造方法、それの使用方法、それを含有する触媒および触媒の使用方法
CN102451710A (zh) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 由丙烯氧化法制丙烯醛催化剂及其制备方法
JP2012115825A (ja) * 2010-08-04 2012-06-21 Nippon Kayaku Co Ltd メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法
JP2012176938A (ja) * 2011-02-02 2012-09-13 Nippon Kayaku Co Ltd 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2014181839A1 (ja) * 2013-05-09 2014-11-13 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792620A (en) * 1983-10-14 1988-12-20 Bp Chemicals Limited Carbonylation catalysts
DE3930533C1 (ja) * 1989-09-13 1991-05-08 Degussa Ag, 6000 Frankfurt, De
JP3793317B2 (ja) * 1996-05-14 2006-07-05 日本化薬株式会社 触媒及び不飽和アルデヒドおよび不飽和酸の製造方法
JP3775872B2 (ja) * 1996-12-03 2006-05-17 日本化薬株式会社 アクロレイン及びアクリル酸の製造方法
JP3943311B2 (ja) * 2000-05-19 2007-07-11 株式会社日本触媒 不飽和アルデヒドおよび不飽和カルボン酸の製造方法
JP2003146920A (ja) 2001-11-07 2003-05-21 Mitsubishi Chemicals Corp アクロレインおよびアクリル酸の製造方法
JP2003164763A (ja) 2001-12-03 2003-06-10 Mitsubishi Chemicals Corp プロピレン酸化用複合酸化物触媒の製造方法
DE10353954A1 (de) 2003-11-18 2005-06-09 Basf Ag Verfahren zur Herstellung von Acrolein durch heterogen katalysierte partielle Gasphasenoxidation von Propen
MY139735A (en) 2003-11-18 2009-10-30 Basf Ag Preparation of acrolein by heterogeneously catalyzed partial gas phase oxidation of propene
CN1939589A (zh) * 2005-09-30 2007-04-04 住友化学株式会社 制备用于制备不饱和醛和不饱和羧酸的催化剂的方法以及制备不饱和醛和不饱和羧酸的方法
JP2008149263A (ja) 2006-12-18 2008-07-03 Mitsubishi Rayon Co Ltd モリブデン、ビスマス、及び鉄含有酸化物触媒の製造方法
US8481448B2 (en) * 2010-07-19 2013-07-09 Saudi Basic Industries Corporation Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683508B2 (ja) * 1998-12-03 2011-05-18 ビーエーエスエフ ソシエタス・ヨーロピア 複合金属酸化物材料、その製造方法、それの使用方法、それを含有する触媒および触媒の使用方法
JP2012115825A (ja) * 2010-08-04 2012-06-21 Nippon Kayaku Co Ltd メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法
CN102451710A (zh) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 由丙烯氧化法制丙烯醛催化剂及其制备方法
JP2012176938A (ja) * 2011-02-02 2012-09-13 Nippon Kayaku Co Ltd 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2014181839A1 (ja) * 2013-05-09 2014-11-13 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198763A1 (ja) 2018-04-10 2019-10-17 日本化薬株式会社 不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造方法並びに不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造用触媒
US11254634B2 (en) 2018-04-10 2022-02-22 Nippon Kayaku Kabushiki Kaisha Method for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid and catalyst for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid
JP6792744B1 (ja) * 2019-03-29 2020-11-25 日本化薬株式会社 触媒製造用乾燥顆粒、触媒、及び化合物の製造方法
WO2020203266A1 (ja) 2019-03-29 2020-10-08 日本化薬株式会社 不飽和アルデヒドの製造方法
WO2020203606A1 (ja) 2019-03-29 2020-10-08 日本化薬株式会社 触媒製造用乾燥顆粒、触媒、及び化合物の製造方法
WO2021141133A1 (ja) 2020-01-10 2021-07-15 日本化薬株式会社 触媒、触媒の充填方法、および触媒を用いた化合物の製造方法
WO2021141134A1 (ja) 2020-01-10 2021-07-15 日本化薬株式会社 触媒、それを用いた化合物の製造方法及び化合物
WO2022065116A1 (ja) 2020-09-24 2022-03-31 日本化薬株式会社 触媒前駆体、それを用いた触媒、化合物の製造方法及び触媒の製造方法
KR20230073177A (ko) 2020-09-24 2023-05-25 닛뽄 가야쿠 가부시키가이샤 촉매 전구체, 그것을 이용한 촉매, 화합물의 제조 방법 및 촉매의 제조 방법
WO2022186032A1 (ja) 2021-03-03 2022-09-09 日本化薬株式会社 触媒、およびそれを用いた気相酸化反応による化合物の製造方法
KR20230150817A (ko) 2021-03-03 2023-10-31 닛뽄 가야쿠 가부시키가이샤 촉매 및, 그것을 이용한 기상 산화 반응에 의한 화합물의 제조 방법
WO2023100855A1 (ja) 2021-11-30 2023-06-08 日本化薬株式会社 触媒、及びそれを用いた化合物の製造方法
WO2023100856A1 (ja) 2021-11-30 2023-06-08 日本化薬株式会社 触媒、及びそれを用いた化合物の製造方法

Also Published As

Publication number Publication date
EP3263213A4 (en) 2018-08-01
JP6674441B2 (ja) 2020-04-01
US20180029018A1 (en) 2018-02-01
US10300463B2 (en) 2019-05-28
JPWO2016136882A1 (ja) 2017-12-07
CN107405609A (zh) 2017-11-28
CN107405609B (zh) 2020-09-29
KR20170125827A (ko) 2017-11-15
KR102422025B1 (ko) 2022-07-15
EP3263213A1 (en) 2018-01-03
EP3263213B1 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
WO2016136882A1 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP6294883B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP5951121B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP6668207B2 (ja) アクリル酸製造用触媒
KR101819465B1 (ko) 불포화 알데히드 및/또는 불포화 카본산의 제조 방법
WO2013073691A1 (ja) メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法
KR102612311B1 (ko) 아크롤레인, 메타크롤레인, 아크릴산, 또는 메타크릴산의 제조 방법
JP5680373B2 (ja) 触媒及びアクリル酸の製造方法
KR20200122302A (ko) 촉매 및 그것을 이용한 직결 2단 접촉 기상 산화 방법
WO2020203266A1 (ja) 不飽和アルデヒドの製造方法
JP6504774B2 (ja) アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
WO2019198763A1 (ja) 不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造方法並びに不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造用触媒
JP2015120133A (ja) アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
JP6067013B2 (ja) アクリル酸製造用触媒およびこの触媒を使用することによってアクリル酸を製造するための方法
WO2016147324A1 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP6238354B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP6534328B2 (ja) アクリル酸製造用触媒の製造方法とその触媒、ならびに該触媒を用いたアクリル酸の製造方法
JP2023112677A (ja) 触媒、およびそれを用いた気相酸化反応による化合物の製造方法
JP2011102247A (ja) アクロレインおよび/またはアクリル酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502467

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016755626

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177023634

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE