JP5951121B2 - 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 - Google Patents

不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 Download PDF

Info

Publication number
JP5951121B2
JP5951121B2 JP2015515896A JP2015515896A JP5951121B2 JP 5951121 B2 JP5951121 B2 JP 5951121B2 JP 2015515896 A JP2015515896 A JP 2015515896A JP 2015515896 A JP2015515896 A JP 2015515896A JP 5951121 B2 JP5951121 B2 JP 5951121B2
Authority
JP
Japan
Prior art keywords
weight
catalyst
parts
bismuth
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015515896A
Other languages
English (en)
Other versions
JPWO2014181839A1 (ja
Inventor
佑太 中澤
佑太 中澤
芳子 勝谷
芳子 勝谷
正樹 中原
正樹 中原
英二 西村
英二 西村
白石 一男
一男 白石
竜彦 倉上
竜彦 倉上
良太 平岡
良太 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Application granted granted Critical
Publication of JP5951121B2 publication Critical patent/JP5951121B2/ja
Publication of JPWO2014181839A1 publication Critical patent/JPWO2014181839A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

この発明は、アルケンを酸化触媒の存在下に分子状酸素又は分子状酸素含有ガスにより気相酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する際に使用する複合金属酸化物触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法に関する。
プロピレンを分子状酸素により気相接触酸化して、アクロレイン及びアクリル酸を合成する触媒に関し、従来から数多くの提案がなされており、その触媒系は一般に同一系として取り扱われることが多い。そのなかで、鉄およびコバルト、ニッケルの原子比率に関する技術が特許文献1に記載されており、コバルトおよび/またはニッケルに対する鉄の原子比率を特定の範囲とすることで活性および選択性を向上させることが出来ることが記載されている。特許文献2には、コバルトおよび/またはニッケルに対する鉄の原子比率を一定にしつつ、コバルトおよびニッケルの原子比率に対するコバルトの原子比率を変化させた触媒を複数調製し、反応器内の2層以上の反応帯に充填して使用する技術が開示されている。特許文献3にはモリブデンの原子比率に対するコバルトの原子比率、鉄の原子比率に対するコバルトの原子比率を特定の値にする非担持リング触媒に関する技術が開示されている。特許文献4に鉄原料に関する技術が開示されておりモリブデン酸鉄を原料に使用することで収率の高い触媒が調製できる事が開示されている。特許文献5にはビスマス原料の一部を他の触媒構成元素を含有する乾燥粉体に添加する触媒が開示されている。特許文献6にはビスマス原料として三酸化ビスマスを使用する触媒が開示されている。特許文献7にはビスマスのモリブデンに対する原子比率、コバルトおよび/またはニッケルのモリブデンに対する原子比率、鉄のモリブデンに対する原子比率、アルカリ金属のモリブデンに対する原子比率に関する技術が開示されており、特定の結晶を含有し、かつ三酸化モリブデンを含有しない触媒が開示されている。特許文献8にはモリブデンの原子比率からコバルトの原子比率および鉄の原子比率を1.5倍したものとを差し引いた値Aの範囲を定め、さらにAに対するビスマス原子比率および鉄に対するコバルト原子比率を限定した触媒が開示されているが、ニッケルの原子比率に関する検討はなされていない。このように、従来の技術範囲では、モリブデンに対するそれぞれの元素の原子比率を最適化すべく鋭意検討されている場合が多いが、ビスマスの原子比率に対するニッケルの原子比率や、アルカリ金属成分の原子比率に対するニッケルの原子比率、アルカリ金属成分の原子比率に対するビスマスの原子比率を詳細に検討し、その効果(活性、有効収率および機械的強度)を明確にした発明は見当たらない。
日本国特開2003−164763号公報 日本国特開2003−146920号公報 日本国特表2007−511565号公報 日本国特開平1−168344号公報 日本国特表2004−516132号公報 日本国特開2007−175600号公報 日本国特開2000−169149号公報 米国特許出願公開第2013/0023699号
アルケンの部分酸化反応により対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法は既に一部工業化されているものもあるが、さらなる触媒性能の改良が求められている。例えば、同一酸化反応器を使用してアルケンから対応する不飽和アルデヒドおよび/またはカルボン酸を多く製造しようとする際には、単位触媒体積に対する原料アルケンの供給負荷が高くなり、反応浴温度を上げる必要が生じる。これは結果的に触媒層内の温度を上げることになり、経時的な触媒活性および/または選択性の低下をもたらすことから長期間の使用という観点で問題となる場合がある。触媒の活性向上は反応浴温度の低下、ランニングコストの低下、触媒の長寿命化を可能にし、目的生成物の収率向上は製造コストを大幅に低下させることが可能になる。また、この反応に用いられる触媒の成型方法が打錠成型、押し出し成型、コーティング成型その他いかなる方法であっても機械的強度が結果的に低い場合には、触媒を酸化反応器へ充填するときに触媒の粉化および触媒活性成分の剥離が発生することにより酸化反応器内を詰まらせ、反応管の異常な圧力上昇を発生させる。触媒本来の優れた活性および有効収率を発揮させるためには機械的強度の高い触媒が必要となる。そのような優れた触媒を製造するには、最適な原子比率の探索と、その結果見出した特定の原子比率を有する触媒の調合工程において、原料を溶解させ、目的とする複合金属酸化物を形成させるために使用する原料重量に対する溶媒の重量、また溶解のため溶媒に酸を加える場合には酸濃度も重要な要素となり、十分な検討が必要である。
本発明は、不飽和アルデヒドおよび/または不飽和カルボン酸製造を有利に製造するための活性及び目的生成物の収率が高く、さらに高い機械的強度をも有する優れた触媒(高性能触媒とも表記する場合がある)を提供することを課題としている。
本発明者らは、上記課題を解決するために鋭意検討した結果、触媒組成が特定の原子比率を満たすものであり、かつその触媒の調合においてモリブデン成分原料がモリブデン酸アンモニウムであり、モリブデン酸アンモニウムを溶解する溶媒が水であり、その水の重量と、またビスマス成分原料が硝酸ビスマスであり、硝酸ビスマスを溶解する溶媒が硝酸水溶液であり、その硝酸水溶液の重量と、硝酸水溶液の酸濃度とが、それぞれ特定の範囲を満たす方法で調製された複合金属酸化物触媒は、機械的強度が優れ高活性および/または目的生成物を高い収率で与えるという知見を見いだし、この発明を完成させるに至った。
すなわち、本発明は、
(1) 下記一般式(1)表される化合物を含有し、下記一般式(1)で表される化合物を調合する工程において、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量がモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して8.5倍以下であり、かつビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量が硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上であり、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度が10重量%以上である方法によって調製された、不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒。
一般式(1)
Mo12BiFeCoNi
(式中、Xはマグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)、銅(Cu)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはホウ素(B)、リン(P)、砒素(As)、アンチモン(Sb)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素であり、Zはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)からなる群より選ばれる少なくとも1種の元素であり、(a)〜(g)は各成分の原子比率を表し、hは触媒成分の酸化度で決定される数値であり、a=0.80〜2.0、b=1〜2.5、c=3〜7、d=2〜3.5、e=0〜10、f=0〜10、g=0.01〜0.10であり、hは他の元素の酸化状態を満足させる数値で表記され、d/aが1.9以上3.2以下であり、かつd/gが29以上69以下であり、かつa/gが18以上35以下である触媒。)、
(2)前記一般式(1)のe及びfが0である(1)に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、
(3)前記一般式(1)の成分を含有するスラリーを乾燥して得られる乾燥粉体を200℃以上600℃以下の温度で焼成して得られた予備焼成粉体を成型し、再度200℃以上600℃以下の温度で焼成した(1)または(2)に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、
(4)触媒の成型方法が球状担体に触媒活性成分をコーティングする方法であり、得られた触媒の平均粒径が3.0mm〜10.0mmであり、触媒活性成分の重量が触媒全体に占める割合が20〜80重量%である(1)〜(3)のいずれかに記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、
(5)(1)に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法であって、前記一般式(1)で表される化合物を調合する工程において、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量をモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して8.5倍以下とし、かつビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量を硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上とし、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度を10重量%以上とする触媒の製造方法。
(6)(1)〜(5)のいずれかに記載の触媒を使用する不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法、
に関する。
この発明によれば、アルケンから対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するための活性および/または目的生成物の収率が高く、さらに高い機械的強度をも有する優れた触媒を得ることができる。活性がより高い場合には反応温度を下げることが可能であり、熱劣化を抑制することができる。それによって安定して長期運転が可能となる。
本発明の触媒は以下の工程を経ることで調製することが出来る。
工程a)調合
一般に触媒を構成する各元素の出発原料は、モリブデン成分原料としてはモリブデン酸アンモニウムを使用した場合に高性能触媒が得られる。特にモリブデン酸アンモニウムには、ジモリブデン酸アンモニウム、テトラモリブデン酸アンモニウム、ヘプタモリブデン酸アンモニウム等、複数種類の化合物が存在するが、その中でもヘプタモリブデン酸アンモニウムを使用した場合が最も好ましい。ビスマス成分原料としては硝酸ビスマスを使用した場合に高性能な触媒が得られる。鉄、コバルト、ニッケル及びその他の元素の原料としては通常は酸化物あるいは強熱することにより酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物等又はそれらの混合物を用いることができる。例えば、鉄成分原料とコバルト成分原料及び/又はニッケル成分原料を所望の比率で10〜80℃の条件下にて水に溶解混合し、20〜90℃の条件下にて別途調合されたモリブデン成分原料およびZ成分原料水溶液もしくはスラリーと混合し、20〜90℃の条件下にて1時間程度加熱撹拌した後、ビスマス成分原料を溶解した水溶液と、必要に応じX成分原料、Y成分原料とを添加して触媒成分を含有する水溶液またはスラリーを得る。以降、両者をまとめて調合液(A)と称する。ここで、調合液(A)は必ずしもすべての触媒構成元素を含有する必要は無く、その一部の元素または一部の量を以降の工程で添加してもよい。また、調合液(A)を調合する際に各成分原料を溶解する水の量や、溶解のために硫酸や硝酸、塩酸、酒石酸、酢酸などの酸を加える場合には、原料が溶解するのに十分な水溶液中の酸濃度が例えば5重量%〜99重量%の範囲の中で適していないと調合液(A)の形態が粘土状の塊となる場合があり、これは優れた触媒にはならない。特にモリブデン成分原料を溶解させるにあたっては、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量がモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して8.5倍以下であり、かつビスマス成分原料を溶解させるにあたっては、ビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量が硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上であり、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度が10重量%以上であることが好ましい。それによって得られる調合液(A)の形態としては水溶液またはスラリーであることが、優れた触媒が得られる点で好ましい。ここで、構成元素比としては、触媒主成分の一つであるビスマスと、活性に大きく影響を及ぼすニッケルおよびアルカリ金属の比率が重要であり、ビスマスに対するニッケルの比率であるd/aが1.9以上3.2以下であり、かつアルカリ金属に対するニッケルの比率であるd/gが29以上69以下であり、かつアルカリ金属に対するビスマスの比率であるa/gが18以上35以下であることが好ましく、活性および/または目的生成物の収率が高く、さらに高い機械的強度をも有する優れた触媒となる。
工程b)乾燥
次いで上記で得られた調合液(A)を乾燥し、乾燥粉体とする。乾燥方法は、調合液(A)を完全に乾燥できる方法であれば特に制限はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固等が挙げられる。これらのうち本発明においては、スラリーから短時間に粉体又は顆粒に乾燥することができる噴霧乾燥が特に好ましい。噴霧乾燥の乾燥温度はスラリーの濃度、送液速度等によって異なるが概ね乾燥機の出口における温度が70〜150℃である。また、この際得られる乾燥粉体の平均粒径が10〜700μmとなるよう乾燥することが好ましい。こうして乾燥粉体(B)を得る。
工程c)予備焼成
得られた乾燥粉体(B)は空気流通下で200℃から600℃で、好ましくは300℃から600℃で焼成することで触媒の成型性、機械的強度、触媒性能が向上する傾向がある。焼成時間は1時間から12時間が好ましい。こうして予備焼成粉体(C)を得る。
工程d)成型
成型方法に特に制限はないが円柱状、リング状に成型する際には打錠成型機、押し出し成型機などを用いた方法が好ましい。さらに好ましくは、球状に成型する場合であり、成型機で予備焼成粉体(C)を球形に成型しても良いが、予備焼成粉体(C)(必要により成型助剤、強度向上剤を含む)を不活性なセラミック等の担体に担持させる方法が好ましい。ここで担持方法としては転動造粒法、遠心流動コーティング装置を用いる方法、ウォッシュコート方法等が広く知られており、予備焼成粉体(C)が担体に均一に担持できる方法で有れば特に限定されないが、触媒の製造効率や調製される触媒の性能を考慮した場合、より好ましくは固定円筒容器の底部に、平らな、あるいは凹凸のある円盤を有する装置で、円盤を高速で回転させることにより、容器内にチャージされた担体を、担体自体の自転運動と公転運動により激しく撹拌させ、ここに予備焼成粉体(C)並びに必要により、成型助剤および/または強度向上剤、細孔形成剤を添加することにより粉体成分を担体に担持させる方法が好ましい。尚、担持に際して、バインダーを使用するのが好ましい。用いうるバインダーの具体例としては、水やエタノール、メタノール、プロパノール、多価アルコール、高分子系バインダーのポリビニルアルコール、無機系バインダーのシリカゾル水溶液等が挙げられるが、エタノール、メタノール、プロパノール、多価アルコールが好ましく、エチレングリコール等のジオールやグリセリン等のトリオール等がより好ましい。グリセリン水溶液を適量使用することにより成型性が良好となり、機械的強度の高い、高性能触媒が得られ、具体的にはグリセリンの濃度5重量%以上の水溶液を使用した場合に特に高性能触媒が得られる。これらバインダーの使用量は、予備焼成粉体(C)100重量部に対して通常2〜80重量部である。不活性担体は、通常2〜8mm程度のものを使用し、これに予備焼成粉体(C)を担持させるが、その担持率は触媒使用条件、たとえば反応原料の空間速度、原料濃度などの反応条件を考慮して決定されるものであるが、通常20重量%から80重量%である。ここで担持率は以下の式(3)で表記される。こうして成型体(D)を得る。
式(3)
担持率(重量%)
=100×〔成型に使用した予備焼成粉体(C)の重量/(成型に使用した予備焼成粉体(C)の重量+成型に使用した不活性担体の重量+成型に使用した成型助剤と強度向上剤の重量)〕
工程e)本焼成
成型体(D)は200〜600℃の温度で1〜12時間程度焼成することで触媒活性、有効収率が向上する傾向にある。焼成温度は400℃以上600℃以下が好ましく、500℃以上600℃以下がより好ましい。流通させるガスとしては空気が簡便で好ましいが、その他に不活性ガスとして窒素、二酸化炭素、還元雰囲気にするための窒素酸化物含有ガス、アンモニア含有ガス、水素ガスおよびそれらの混合物を使用することも可能である。こうして触媒(E)を得る。焼成温度を高くすることで適宜活性を抑制することができる。そのような触媒は、例えばホットスポットが発生するような原料ガス入口側で使用することができる。
触媒(E)の機械的強度は、触媒組成の原子比率によっても大きく影響され、すなわち原子比率を調節することにより生成される化合物の種類や同じ化合物でも結晶構造の相形態が異なることに影響を受ける。また調合工程や乾燥工程で生成される複合金属酸化物粒子の直径や粒子の幾何学的構造、その凝集形態が変化するため、複合金属酸化物中の化合物結晶の強度のようなミクロな物性や例えば予備焼成粉体の粒度分布のようなマクロな物性の変化によっても影響を受ける。各工程の調製方法だけでなく原子比率の影響も含めて総括された物性が最終的に調製される触媒の機械的強度を決定する。機械的強度を表す指標である磨損度は、株式会社林理化学製錠剤磨損度試験器で測定したデータを用い算出した。その測定は、触媒を25rpmで、10分間回転させた後、ふるいの目開きが1.70mmの標準ふるいでふるい、同ふるい上の触媒重量を測定し、式(4)で求めた。磨損度の値は小さいほど機械的強度が優れていると言える。おいては、磨損度が3重量%以下であることが好ましく、より好ましくは1.5重量%以下であり、さらに好ましくは0.5重量%以下である。
(4)
磨損度(重量%)
=100×〔(触媒重量−ふるい上に残った触媒重量)/触媒重量〕
この発明によって得られる複合酸化物触媒を使用するアルケンの接触気相酸化反応は、原料ガス組成として1〜10容量%のアルケン、5〜18容量%の分子状酸素、0〜60容量%の水蒸気及び20〜70容量%の不活性ガス、例えば窒素、炭酸ガスなどからなる混合ガスを前記のようにして調製された触媒上に250〜450℃の温度範囲及び常圧〜10気圧の圧力下、0.5〜10秒の接触時間で導入することによって遂行される。本発明において、アルケンとは、その分子内脱水反応においてアルケンを生じるアルコール類、例えばターシャリーブタノールも含めたものとする。
本発明の触媒は、不飽和アルデヒドおよび/または不飽和カルボン酸の製造に使用することができる。具体的には、プロピレンを分子状酸素または分子状酸素含有ガスにより気相接触酸化しアクロレインおよびアクリル酸を製造する方法や、イソブチレンおよび/またはターシャリーブチルアルコールを分子状酸素または分子状酸素含有ガスにより気相接触酸化してメタクロレインおよびメタクリル酸を製造する方法に使用することができる。その中でも、アクロレインおよびアクリル酸の製造に使用することが好ましい。
以下、具体例を挙げて実施例を示したが、本発明はその趣旨を逸脱しない限り実施例に限定されるものでは無い。
実施例1
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム1.9重量部を純水20mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄305.1重量部、硝酸コバルト714.4重量部及び硝酸ニッケル329.4重量部を60℃に加温した純水715mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水194mlに硝酸(60重量%)46.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス中のビスマスの重量に対し3.0倍の重量)に硝酸ビスマス183.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が520℃となるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒1を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=3.0、d/g=60、a/g=20、
Mo:Bi:Fe:Co:Ni:K=12:1.0:2.0:6.5:3.0:0.050
触媒1の磨損度は0.36重量%であった。
実施例2
焼成温度を540℃とした以外は実施例1と同様にし、球状触媒2を得た。
触媒2の磨損度は0.30重量%であった。
実施例3
焼成温度を560℃とした以外は実施例1と同様にし、球状触媒3を得た。
触媒3の磨損度は0.28重量%であった。
実施例4
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3040重量部に完全溶解させた。次に、硝酸カリウム1.9重量部を純水20mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄350.8重量部、硝酸コバルト703.4重量部及び硝酸ニッケル219.6重量部を60℃に加温した純水675mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水194mlに硝酸(60重量%)46.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液に硝酸ビスマス183.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が520℃となるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒4を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=2.0、d/g=40、a/g=20、
Mo:Bi:Fe:Co:Ni:K=12:1.0:2.3:6.4:2.0:0.050
触媒4の磨損度は0.12重量%であった。
実施例5
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3040重量部に完全溶解させた。次に、硝酸カリウム1.1重量部を純水11mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄259.3重量部、硝酸コバルト769.3重量部及び硝酸ニッケル219.6重量部を60℃に加温した純水662mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水194mlに硝酸(60重量%)46.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液に硝酸ビスマス183.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が540℃となるよう焼成を行って、本発明の平均粒径5.2mmの球状触媒5を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=2.0、d/g=67、a/g=33、
Mo:Bi:Fe:Co:Ni:K=12:1.0:1.7:7.0:2.0:0.030
触媒5の磨損度は0.26重量%であった。
実施例6
焼成温度を560℃とした以外は実施例5と同様にし、球状触媒6を得た。
触媒6の磨損度は0.24重量%であった。
比較例1
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3040重量部に完全溶解させた。次に、硝酸カリウム3.8重量部を純水40mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄266.9重量部、硝酸コバルト571.5重量部及び硝酸ニッケル307.4重量部を60℃に加温した純水607mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水324mlに硝酸(60重量%)77.9重量部を加えて硝酸濃度を12重量%とした硝酸水溶液に硝酸ビスマス305.9重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が520℃となるよう焼成を行って、平均粒径5.2mmの球状触媒7を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=1.7、d/g=28、a/g=17、
Mo:Bi:Fe:Co:Ni:K=12:1.7:1.7:5.2:2.8:0.10
触媒7の磨損度は0.13重量%であった。
比較例2
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3040重量部に完全溶解させた。次に、硝酸カリウム1.9重量部を純水20mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄167.8重量部、硝酸コバルト439.6重量部及び硝酸ニッケル384.3重量部を60℃に加温した純水526mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水388mlに硝酸(60重量%)93.3重量部を加えて硝酸濃度を12重量%とした硝酸水溶液に硝酸ビスマス366.3重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が520℃となるよう焼成を行って、平均粒径5.2mmの球状触媒8を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=1.8、d/g=70、a/g=40、
Mo:Bi:Fe:Co:Ni:K=12:2.0:1.1:4.0:3.5:0.050
触媒8の磨損度は4.14重量%であった。
比較例3
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3040重量部に完全溶解させた。次に、硝酸カリウム1.9重量部を純水20mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄274.6重量部、硝酸コバルト538.5重量部及び硝酸ニッケル373.3重量部を60℃に加温した純水629mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水350mlに硝酸(60重量%)84.0重量部を加えて硝酸濃度を12重量%とした硝酸水溶液に硝酸ビスマス329.7重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が520℃となるよう焼成を行って、平均粒径5.2mmの球状触媒9を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=1.9、d/g=68、a/g=36、
Mo:Bi:Fe:Co:Ni:K=12:1.8:1.8:4.9:3.4:0.050
触媒9の磨損度は1.83重量%であった。
比較例4
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3040重量部に完全溶解させた。次に、硝酸カリウム3.0重量部を純水33mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄457.6重量部、硝酸コバルト615.5重量部及び硝酸ニッケル285.5重量部を60℃に加温した純水720mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水272mlに硝酸(60重量%)65.3重量部を加えて硝酸濃度を12重量%とした硝酸水溶液に硝酸ビスマス256.4重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が520℃となるよう焼成を行って、平均粒径5.2mmの球状触媒10を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=1.9、d/g=33、a/g=18、
Mo:Bi:Fe:Co:Ni:K=12:1.4:3.0:5.6:2.6:0.080
触媒10の磨損度は0.52重量%であった。
比較例5
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3040重量部に完全溶解させた。次に、硝酸カリウム2.3重量部を純水24mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄305.1重量部、硝酸コバルト494.6重量部及び硝酸ニッケル439.2重量部を60℃に加温した純水657mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水252mlに硝酸(60重量%)60.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液に硝酸ビスマス238.1重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が520℃となるよう焼成を行って、平均粒径5.2mmの球状触媒11を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=3.1、d/g=67、a/g=22、
Mo:Bi:Fe:Co:Ni:K=12:1.3:2.0:4.5:4.0:0.060
触媒11の磨損度は0.45重量%であった。
比較例6
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3740重量部(モリブデンの重量に対し8.6倍の重量)に完全溶解させた。次に、硝酸カリウム1.9重量部を純水20mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄305.1重量部、硝酸コバルト714.4重量部及び硝酸ニッケル329.4重量部を60℃に加温した純水715mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水204mlに硝酸(60重量%)36.0重量部を加えて硝酸濃度を9.0重量%とした硝酸水溶液(溶解させる硝酸ビスマス中のビスマスの重量に対し3.0倍の重量)に硝酸ビスマス183.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が520℃となるよう焼成を行って、平均粒径5.2mmの球状触媒12を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=3.0、d/g=60、a/g=20、
Mo:Bi:Fe:Co:Ni:K=12:1.0:2.0:6.5:3.0:0.050
触媒12の磨損度は3.89重量%であった。
比較例7
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3740重量部(モリブデンの重量に対し8.6倍の重量)に完全溶解させた。次に、硝酸カリウム1.9重量部を純水20mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄305.1重量部、硝酸コバルト714.4重量部及び硝酸ニッケル329.4重量部を60℃に加温した純水715mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水194mlに硝酸(60重量%)46.6重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス中のビスマスの重量に対し3.0倍の重量)に硝酸ビスマス183.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が520℃となるよう焼成を行って、平均粒径5.2mmの球状触媒13を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=3.0、d/g=60、a/g=20、
Mo:Bi:Fe:Co:Ni:K=12:1.0:2.0:6.5:3.0:0.050
触媒13の磨損度は0.33重量%であった。
比較例8
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム1.9重量部を純水20mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄305.1重量部、硝酸コバルト714.4重量部及び硝酸ニッケル329.4重量部を60℃に加温した純水715mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水140mlに硝酸(60重量%)33.5重量部を加えて硝酸濃度を12重量%とした硝酸水溶液(溶解させる硝酸ビスマス中のビスマスの重量に対し2.2倍の重量)に硝酸ビスマス183.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が520℃となるよう焼成を行って、平均粒径5.2mmの球状触媒14を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=3.0、d/g=60、a/g=20、
Mo:Bi:Fe:Co:Ni:K=12:1.0:2.0:6.5:3.0:0.050
触媒14の磨損度は0.33重量%であった。
比較例9
ヘプタモリブデン酸アンモニウム800重量部を60℃に加温した純水3040重量部(モリブデンの重量に対し7.0倍の重量)に完全溶解させた。次に、硝酸カリウム1.9重量部を純水20mlに溶解させて、上記溶液に加えた。次に、硝酸第二鉄305.1重量部、硝酸コバルト714.4重量部及び硝酸ニッケル329.4重量部を60℃に加温した純水715mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水204mlに硝酸(60重量%)36.0重量部を加えて硝酸濃度を9.0重量%とした硝酸水溶液(溶解させる硝酸ビスマス中のビスマスの重量に対し3.0倍の重量)に硝酸ビスマス183.2重量部を加え完全溶解させた溶液を上記溶液に加え、撹拌混合した。このスラリーをスプレードライ法にて乾燥し、得られた乾燥粉体を12時間後の温度が440℃となるよう予備焼成した。予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして30重量%グリセリン溶液を用い、不活性の球状担体に、担持量が50重量%となるように球状に担持成型した。次に12時間後の温度が520℃となるよう焼成を行って、平均粒径5.2mmの球状触媒15を得た。仕込み原料から計算される触媒は、次の原子比率を有する複合金属酸化物であった。
d/a=3.0、d/g=60、a/g=20、
Mo:Bi:Fe:Co:Ni:K=12:1.0:2.0:6.5:3.0:0.050
触媒15の磨損度は2.41重量%であった。
比較例10
焼成温度を540℃とした以外は比較例7と同様にし、球状触媒16を得た。
触媒16の磨損度は0.29重量%であった。
これより、プロピレンの酸化反応の結果を示すが、ここでプロピレン転化率、アクロレイン収率、アクリル酸収率、有効収率の定義とは、次の通りである。
プロピレン転化率(モル%)
=(反応したプロピレンのモル数/供給したプロピレンのモル数)×100
アクロレイン収率(モル%)
=(生成したアクロレインのモル数/供給したプロピレンのモル数)×100
アクリル酸収率(モル%)
=(生成したアクリル酸のモル数/供給したプロピレンのモル数)×100
有効収率(モル%)
=アクロレイン収率+アクリル酸収率
上記のようにして調製した触媒1を使用して、プロピレンの酸化反応を実施し、プロピレン転化率、アクロレイン収率、アクリル酸収率、有効収率を求めた。触媒68mlを内径28.4mmのステンレス鋼製反応管に充填し、プロピレン8容量%、空気67容量%、水蒸気25容量%の混合ガスを4秒の接触時間で導入し、プロピレンの酸化反応を実施してプロピレン転化率を97.5%となるときの反応浴温度および有効収率を求め、表1に示した。
Figure 0005951121
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本出願は、2013年5月9日付で出願された日本国特許出願(特願2013−099647)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
本発明の触媒は、不飽和アルデヒドおよび/または不飽和カルボン酸の製造に有用である。

Claims (1)

  1. 下記一般式(1)で表される化合物を含有する不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法であって、記一般式(1)で表される化合物を調合する工程において、モリブデン成分原料をモリブデン酸アンモニウムのみとし、溶解させる水の重量をモリブデン酸アンモニウム中に含まれるモリブデンの重量に対して8.5倍以下とし、かつビスマス成分原料を硝酸ビスマスのみとし、溶解させる硝酸水溶液の重量が硝酸ビスマス中に含まれるビスマスの重量に対して2.3倍以上とし、かつ硝酸ビスマスを溶解させる硝酸水溶液の硝酸濃度を10重量%以上とする触媒の製造方法。
    一般式(1)
    Mo 12 Bi Fe Co Ni
    (式中、Xはマグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)、銅(Cu)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはホウ素(B)、リン(P)、砒素(As)、アンチモン(Sb)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素であり、Zはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)からなる群より選ばれる少なくとも1種の元素であり、(a)〜(g)は各成分の原子比率を表し、hは触媒成分の酸化度で決定される数値であり、a=0.80〜2.0、b=1〜2.5、c=3〜7、d=2〜3.5、e=0〜10、f=0〜10、g=0.01〜0.10であり、hは他の元素の酸化状態を満足させる数値で表記され、d/aが1.9以上3.2以下であり、かつd/gが29以上69以下であり、かつa/gが18以上35以下である。)
JP2015515896A 2013-05-09 2014-05-08 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 Active JP5951121B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013099647 2013-05-09
JP2013099647 2013-05-09
PCT/JP2014/062390 WO2014181839A1 (ja) 2013-05-09 2014-05-08 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Publications (2)

Publication Number Publication Date
JP5951121B2 true JP5951121B2 (ja) 2016-07-13
JPWO2014181839A1 JPWO2014181839A1 (ja) 2017-02-23

Family

ID=51867316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015515896A Active JP5951121B2 (ja) 2013-05-09 2014-05-08 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Country Status (7)

Country Link
US (1) US9656248B2 (ja)
EP (1) EP2995375B1 (ja)
JP (1) JP5951121B2 (ja)
KR (1) KR101776796B1 (ja)
CN (1) CN105209168B (ja)
TW (1) TW201500341A (ja)
WO (1) WO2014181839A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3263213B1 (en) * 2015-02-27 2020-02-12 Nippon Kayaku Kabushiki Kaisha Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JP6694884B2 (ja) * 2015-07-10 2020-05-20 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2018211858A1 (ja) * 2017-05-19 2018-11-22 旭化成株式会社 アンモ酸化用触媒、及び、その製造方法、並びにアクリロニトリルの製造方法
CN111757779A (zh) * 2018-02-20 2020-10-09 日本化药株式会社 催化剂以及使用该催化剂的直接连接两段气相催化氧化方法
JP6831920B2 (ja) 2018-04-10 2021-02-17 日本化薬株式会社 不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造方法並びに不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造用触媒
KR20210029151A (ko) * 2018-07-09 2021-03-15 닛뽄 가야쿠 가부시키가이샤 촉매 및 그것을 이용한 화합물의 제조 방법
JP6912153B2 (ja) 2019-03-29 2021-07-28 日本化薬株式会社 不飽和アルデヒドの製造方法
JP6792744B1 (ja) * 2019-03-29 2020-11-25 日本化薬株式会社 触媒製造用乾燥顆粒、触媒、及び化合物の製造方法
CN113939364B (zh) * 2020-01-10 2022-09-20 日本化药株式会社 催化剂、使用该催化剂的化合物的制造方法和化合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137833A (ja) * 1984-12-10 1986-06-25 Nippon Kayaku Co Ltd メタクロレインの製造方法
JPH1028877A (ja) * 1996-05-14 1998-02-03 Nippon Kayaku Co Ltd 触媒及び不飽和アルデヒドおよび不飽和酸の製造方法
JPH10168003A (ja) * 1996-12-03 1998-06-23 Nippon Kayaku Co Ltd アクロレイン及びアクリル酸の製造方法
WO2009057463A1 (ja) * 2007-11-02 2009-05-07 Nippon Kayaku Kabushiki Kaisha 気相接触酸化反応方法
JP2012115825A (ja) * 2010-08-04 2012-06-21 Nippon Kayaku Co Ltd メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法
JP2012176938A (ja) * 2011-02-02 2012-09-13 Nippon Kayaku Co Ltd 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792620A (en) * 1983-10-14 1988-12-20 Bp Chemicals Limited Carbonylation catalysts
DE3740271A1 (de) 1987-11-27 1989-06-01 Basf Ag Verfahren zur herstellung einer fuer die gasphasenoxidation von propylen zu acrolein und acrylsaeure katalytisch aktiven masse
KR950006522B1 (ko) * 1989-12-06 1995-06-16 가부시끼가이샤 닛뽕쇼꾸바이 메타크롤레인 및 메타크릴산의 제조방법
CN1162382A (zh) * 1994-11-10 1997-10-15 英国电讯有限公司 电信网络的控制部件
DE19855913A1 (de) 1998-12-03 2000-06-08 Basf Ag Multimetalloxidmasse zur gasphasenkatalytischen Oxidation organischer Verbindungen
JP3943291B2 (ja) 1999-08-04 2007-07-11 株式会社日本触媒 アクロレインおよびアクリル酸の製造方法
CN1291781A (zh) 1999-08-30 2001-04-18 阿尔卑斯电气株式会社 转动型电气组件
DE10063162A1 (de) 2000-12-18 2002-06-20 Basf Ag Verfahren zur Herstellung einer Mo, Bi, Fe sowie Ni und/oder Co enthaltenden Multimetalloxidativmasse
ZA200200049B (en) 2001-01-25 2002-07-16 Nippon Catalytic Chem Ind Fixed-bed shell-and-tube reactor and its usage.
JP2003146920A (ja) 2001-11-07 2003-05-21 Mitsubishi Chemicals Corp アクロレインおよびアクリル酸の製造方法
JP2003164763A (ja) 2001-12-03 2003-06-10 Mitsubishi Chemicals Corp プロピレン酸化用複合酸化物触媒の製造方法
JP4242597B2 (ja) 2002-02-28 2009-03-25 株式会社日本触媒 不飽和アルデヒド合成用触媒とその製造方法、およびその触媒を用いた不飽和アルデヒドの製造方法
MY139735A (en) 2003-11-18 2009-10-30 Basf Ag Preparation of acrolein by heterogeneously catalyzed partial gas phase oxidation of propene
DE10353954A1 (de) 2003-11-18 2005-06-09 Basf Ag Verfahren zur Herstellung von Acrolein durch heterogen katalysierte partielle Gasphasenoxidation von Propen
JP4902991B2 (ja) 2005-12-27 2012-03-21 三菱レイヨン株式会社 酸化物触媒の製造方法
CN101690900A (zh) 2009-10-21 2010-04-07 中国海洋石油总公司 一种制备丙烯醛及丙烯酸催化剂的制备方法
EP2731715B1 (de) 2011-07-12 2019-12-11 Basf Se Mo, bi und fe enthaltende multimetalloxidmassen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137833A (ja) * 1984-12-10 1986-06-25 Nippon Kayaku Co Ltd メタクロレインの製造方法
JPH1028877A (ja) * 1996-05-14 1998-02-03 Nippon Kayaku Co Ltd 触媒及び不飽和アルデヒドおよび不飽和酸の製造方法
JPH10168003A (ja) * 1996-12-03 1998-06-23 Nippon Kayaku Co Ltd アクロレイン及びアクリル酸の製造方法
WO2009057463A1 (ja) * 2007-11-02 2009-05-07 Nippon Kayaku Kabushiki Kaisha 気相接触酸化反応方法
JP2012115825A (ja) * 2010-08-04 2012-06-21 Nippon Kayaku Co Ltd メタクロレインおよびメタクリル酸製造用触媒、ならびにその製造方法
JP2012176938A (ja) * 2011-02-02 2012-09-13 Nippon Kayaku Co Ltd 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Also Published As

Publication number Publication date
TW201500341A (zh) 2015-01-01
KR101776796B1 (ko) 2017-09-08
EP2995375B1 (en) 2021-02-17
KR20150131119A (ko) 2015-11-24
CN105209168B (zh) 2017-12-19
US9656248B2 (en) 2017-05-23
JPWO2014181839A1 (ja) 2017-02-23
WO2014181839A1 (ja) 2014-11-13
EP2995375A4 (en) 2016-12-28
CN105209168A (zh) 2015-12-30
EP2995375A1 (en) 2016-03-16
US20160059218A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
JP6294883B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP5951121B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、その製造方法及び不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP6674441B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP6199972B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP6694884B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP2012097014A (ja) 触媒及びアクリル酸の製造方法
JP2020073581A (ja) 不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造方法並びに不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造用触媒
WO2016147324A1 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP6238354B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160607

R150 Certificate of patent or registration of utility model

Ref document number: 5951121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250