WO2016136531A1 - 焼結体および切削工具 - Google Patents

焼結体および切削工具 Download PDF

Info

Publication number
WO2016136531A1
WO2016136531A1 PCT/JP2016/054393 JP2016054393W WO2016136531A1 WO 2016136531 A1 WO2016136531 A1 WO 2016136531A1 JP 2016054393 W JP2016054393 W JP 2016054393W WO 2016136531 A1 WO2016136531 A1 WO 2016136531A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
sialon
cutting
hard phase
particles
Prior art date
Application number
PCT/JP2016/054393
Other languages
English (en)
French (fr)
Inventor
健太朗 千原
久木野 暁
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CA2943503A priority Critical patent/CA2943503A1/en
Priority to US15/300,155 priority patent/US20170173703A1/en
Priority to CN201680001041.XA priority patent/CN106232554A/zh
Priority to EP16755278.5A priority patent/EP3109219B1/en
Priority to KR1020167027946A priority patent/KR20170120485A/ko
Publication of WO2016136531A1 publication Critical patent/WO2016136531A1/ja
Priority to US15/958,643 priority patent/US10870154B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/12Boron nitride
    • B23C2226/125Boron nitride cubic [CBN]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a sintered body for cutting a nickel-base heat-resistant alloy and a cutting tool including the sintered body, and more particularly, to a sintered body for cutting a nickel-base heat-resistant alloy formed of coarse crystal grains.
  • the present invention relates to a bonded body and a cutting tool including such a sintered body.
  • Nickel-based heat-resistant alloy is an alloy based on nickel and added with chromium, iron, niobium, molybdenum, etc., and has excellent high-temperature characteristics such as heat resistance, corrosion resistance, oxidation resistance, and creep resistance. Although it is suitably used for heat-resistant applications such as automobile engines and industrial turbines, it is a material that is difficult to cut.
  • a cutting tool for cutting such a nickel-base heat-resistant alloy As a cutting tool for cutting such a nickel-base heat-resistant alloy, a cutting tool including a sintered body containing cubic boron nitride which has the second highest strength after diamond and high wear resistance has been proposed.
  • Patent Document 1 As a sintered body to be included in the cutting tool as described above, for example, International Publication No. 00/47537 (Patent Document 1) has a high-pressure phase boron nitride of 50 volume% to 78 volume%, and the balance is from the binder phase. A high crater resistance high strength sintered body is disclosed.
  • Patent Document 2 discloses a high-hardness and high-strength sintered product obtained by sintering hard particles in which high-pressure boron nitride particles are covered with a coating layer and a binder phase that integrates the hard particles. Disclosure is disclosed. Japanese Patent Laid-Open No.
  • Patent Document 3 includes cubic boron nitride, a first compound, and a second compound, and the content of cubic boron nitride is 35 volume% or more and 93 volume%. % Or less of the sintered body is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-226262
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2011-140415
  • an object of the present invention is to solve the above problems and provide a sintered body having high fracture resistance in addition to high wear resistance and a cutting tool including such a sintered body.
  • the sintered body according to an embodiment of the present invention includes cubic boron nitride particles as hard phase particles, and has a thermal conductivity of less than 20 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 , E112- 13 is a sintered body for cutting a nickel-base heat-resistant alloy formed of crystal grains having a coarse particle size of 5 or less.
  • a cutting tool according to another aspect of the present invention is a cutting tool including the sintered body of the above aspect.
  • a sintered body according to an embodiment of the present invention includes cubic boron nitride particles as hard phase particles, and has a thermal conductivity of less than 20 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 , the American Society for Testing and Materials Standard (hereinafter referred to as “American Society for Testing Materials”).
  • This is a sintered body for cutting a nickel-base heat-resistant alloy formed of crystal grains having a coarse particle size of 5 or less as specified in E112-13. Since the sintered body of this embodiment has a thermal conductivity of less than 20 W ⁇ m ⁇ 1 ⁇ K ⁇ 1, it is formed of coarse crystal grains having a particle size number of 5 or less as defined in ASTM E112-13. Fracture resistance when cutting a nickel-base heat-resistant alloy is increased, and high fracture resistance is provided in addition to high wear resistance derived from cubic boron nitride particles.
  • the sintered body according to the present embodiment includes a binder and heterogeneous hard phase particles including at least one selected from the group consisting of silicon nitride, sialon, and alumina in addition to cubic boron nitride particles as hard phase particles. Further can be included. Such a sintered body further includes, as a hard phase particle, a heterogeneous hard phase particle including at least one selected from the group consisting of silicon nitride, sialon, and alumina in addition to cubic boron nitride particles.
  • the ratio V BN / V H of the volume V BN of the cubic boron nitride particles to the volume V H of the different hard phase particles can be 0.5 or more and 1.5 or less.
  • Such a sintered body has high wear resistance by setting the volume V BN ratio V BN / V H of cubic boron nitride particles to the volume V H of different hard phase particles to 0.5 to 1.5. High fracture resistance.
  • the sialon can include cubic sialon.
  • Such a sintered body has higher wear resistance by containing cubic sialon having low reactivity with metal and higher hardness than ⁇ -sialon and ⁇ -sialon.
  • the sialon can further include at least one of ⁇ -type sialon and ⁇ -type sialon, and the total intensity of main peaks of X-ray diffraction of each of ⁇ -type sialon, ⁇ -type sialon, and cubic sialon.
  • the peak intensity ratio Rc of the intensity of the main peak of the X-ray diffraction of cubic sialon can be 20% or more.
  • Such a sintered body includes cubic sialon and at least one of ⁇ -type sialon and ⁇ -type sialon, and in terms of the intensity of the main peak of X-ray diffraction, ⁇ -type sialon, ⁇ -type sialon, and cubic-type sialon.
  • the binder includes at least one element of titanium, zirconium, aluminum, nickel, and cobalt, nitrides, carbides, oxides, carbonitrides, borides of such elements, and It can contain at least 1 sort (s) chosen from the group which consists of those solid solutions.
  • a sintered body has higher fracture resistance because the bond between the different hard phase particles and the cubic boron nitride particles is strengthened by the binder and the fracture toughness of the sintered body is increased.
  • the content of the hard phase particles in the sintered body can be 60% by volume or more and 90% by volume or less.
  • Such a sintered body has a high balance between high wear resistance and high fracture resistance.
  • the Vickers hardness of the sintered body can be 20 GPa or more.
  • Such a sintered body has high wear resistance because its Vickers hardness is 20 GPa or more.
  • the nickel-base heat-resistant alloy can be Inconel (registered trademark) 718.
  • Such a sintered body has high wear resistance even in the cutting of Inconel (Registered Trademark) 718, which is a crystal grain having a coarse particle size of 5 or less as defined in ASTM E112-13, which is a typical example of a nickel-based heat-resistant alloy. In addition to the properties, it has high fracture resistance.
  • a cutting tool according to another embodiment of the present invention is a cutting tool including the sintered body according to the above-described embodiment. Since the cutting tool of the present embodiment includes the sintered body according to the above-described embodiment, the cutting of nickel-based heat-resistant alloy formed of coarse crystal grains having a particle size number of 5 or less as defined in ASTM E112-13. In processing, the fracture resistance is increased, and high fracture resistance is provided in addition to high wear resistance.
  • a sintered body according to an embodiment of the present invention includes cubic boron nitride particles as hard phase particles, and has a thermal conductivity of less than 20 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 , an American Society for Testing and Materials Standard (ASTM). ) Is a sintered body for cutting a nickel-base heat-resistant alloy formed of crystal grains having a coarse particle size of 5 or less as specified in E112-13. As the particle size number becomes smaller, the crystal particles become coarser.
  • the particle size number of 5 or less corresponds to a crystal particle size of about 50 ⁇ m or more. Since the sintered body of this embodiment has a thermal conductivity of less than 20 W ⁇ m ⁇ 1 ⁇ K ⁇ 1, it is formed of coarse crystal grains having a particle size number of 5 or less as defined in ASTM E112-13. Fracture resistance when cutting a nickel-base heat-resistant alloy is increased, and high fracture resistance is provided in addition to high wear resistance.
  • the present inventors develop a sintered body having high fracture resistance when cutting a nickel-base heat-resistant alloy formed of coarse crystal grains having a grain size number of 5 or less as defined in ASTM E112-13. Therefore, first, regarding cutting tools including a sintered body containing cubic boron nitride particles having high wear resistance, the relationship between the cutting resistance received by the cutting blade when cutting a nickel-based heat-resistant alloy and the damage to the cutting blade I investigated. As a result, when cutting nickel-base heat-resistant alloys, cutting is performed with much higher cutting resistance than hardened steel, which is also a difficult-to-cut material, resulting in contact with hard chips. When observing from the flank side of the tool, it was found that deep boundary damage having a V shape occurred. Further, it has been found that the strength of the cutting edge is lowered by the boundary damage progressing to the inside of the cutting blade.
  • the present inventors consider that the cause of the occurrence of the boundary damage as described above is that the edge temperature during cutting is lowered because of the high thermal conductivity of the cubic boron nitride particles forming the cutting edge. It was.
  • a sintered body containing a large amount of cubic boron nitride particles having the highest thermal conductivity next to diamond particles has a three-dimensional network in which the cubic boron nitride particles contained therein are connected to each other by causing necking in the sintered body. Since the structure is formed, the heat conduction increases through the three-dimensional network structure.
  • the sintered body contains a metal binder such as cobalt (Co) or aluminum (Al) as a binder for cubic boron nitride particles
  • the sintered body is coupled with the high thermal conductivity of the metal binder itself.
  • the thermal conductivity of the bonded body is 70 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the present inventors have found that the thermal conductivity of the sintered body increases. It has been found that the cutting resistance increases when a Ni-based heat-resistant alloy such as Inconel (registered trademark) is cut. When cutting a Ni-base heat-resistant alloy, the temperature of the contact portion between the work material (workpiece) and the cutting edge of the cutting tool rises to about 700 ° C., so that the work material at the contact portion softens and deforms. This causes a decrease in cutting force, and the cutting resistance decreases accordingly.
  • a Ni-based heat-resistant alloy such as Inconel (registered trademark)
  • the cutting edge temperature during cutting is reduced. Since it is maintained at a low temperature, it is considered that the cutting resistance is increased without softening the work material.
  • the present inventors investigated the relationship between the thermal conductivity and the cutting resistance of the sintered body containing cubic boron particles that form the cutting blade of the cutting tool. It has been found that the higher the thermal conductivity of the formed sintered body, the higher the cutting resistance and the greater the damage to the cutting blade.
  • the inventors of the present invention As the particle size of the crystal particles of the nickel-based heat-resistant alloy becomes coarse, It turned out that the cutting resistance in the case of a cutting process becomes high.
  • the cutting resistance in the case of a cutting process becomes high.
  • the nickel-base heat-resistant alloy is a material that is difficult to soften during cutting.
  • the cutting resistance increases as the thermal conductivity of the sintered body forming the cutting blade of the cutting tool increases. It may be missing.
  • a material for a cutting tool is often required to have a high thermal conductivity in order to prevent plastic deformation (thermal deformation) or thermal cracking of the cutting tool itself.
  • the present inventors as described above, in the cutting of nickel-base heat-resistant alloys formed of coarse crystal grains having a particle size number of 5 or less as defined by ASTM E112-13, are as described above. With the increase in thermal conductivity, the boundary damage of the cutting edge of the cutting blade increases, and coupled with the increase in cutting resistance, it has been found that the cutting edge of the cutting edge tends to be broken, so the conventional idea is On the contrary, it was examined to reduce the thermal conductivity of the sintered body containing cubic boron nitride particles.
  • the cubic boron nitride particles used as a raw material have a finer particle diameter, and an inorganic compound such as TiN, TiC, TiAlN, or AlB 2 is used as a binder. It was found that the thermal conductivity can be lowered.
  • the average particle diameter of the cubic boron nitride particle powder is preferably 1.5 ⁇ m or less.
  • the formation of necking between the cubic boron nitride particles in the sintered body is suppressed, and the sintered body We succeeded in reducing the thermal conductivity.
  • the cutting edge temperature of the tool during cutting of nickel-base heat-resistant alloy can be maintained at a high temperature, the cutting resistance is reduced by softening the work material, and the boundary damage of the cutting edge of the cutting edge is also reduced. Combined with this, it becomes possible to suppress the chipping of the cutting edge of the cutting tool, and the present invention has been completed.
  • the sintered body according to this embodiment includes cubic boron nitride particles, but has low thermal conductivity, so that the sintered body is formed of coarse crystal grains having a grain size number of 5 or less as defined in ASTM E112-13. From the viewpoint of increasing fracture resistance when cutting a nickel-base heat-resistant alloy, the sintered body has a thermal conductivity of less than 20 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 and less than 15 W ⁇ m ⁇ 1 ⁇ K ⁇ 1. preferable.
  • the thermal conductivity of the sintered body is obtained as follows. A sample for thermal conductivity measurement having a diameter of 18 mm and a thickness of 1 mm is cut out from the sintered body, and specific heat and thermal diffusivity are measured using a laser flash method thermal constant measuring apparatus. The thermal conductivity is calculated by multiplying the thermal diffusivity by the specific heat and the density of the sintered body.
  • the sintered body according to the present embodiment includes a binder and heterogeneous hard phase particles including at least one selected from the group consisting of silicon nitride, sialon, and alumina in addition to cubic boron nitride particles as hard phase particles. Furthermore, it is preferable to include.
  • Such a sintered body contains at least one kind of particles selected from the group consisting of silicon nitride, sialon, and alumina, a heterogeneous hard phase particle, cubic boron nitride particles, and a binder. Fracture resistance when cutting nickel-base heat-resistant alloy formed with crystal grains with coarse grain size of 5 or less as specified in E112-13 is high, and in addition to high wear resistance, it has high fracture resistance. Prepare.
  • the sintered body includes at least one selected from the group consisting of silicon nitride, sialon, and alumina, which are different kinds of crystal particles having lower thermal conductivity than the cubic boron nitride particles. Since the dissimilar hard phase particles to be included are added to the sintered body, necking formation between the cubic boron nitride particles in the sintered body is suppressed, and the thermal conductivity of the sintered body is lowered.
  • the ratio V BN / V H of the volume V BN of the cubic boron nitride particles to the volume V H of the different hard phase particles may be 0.5 or more and 1.5 or less. preferable.
  • Such a sintered body has a high wear resistance by setting the ratio V BN / V H of the volume V BN of the cubic boron nitride particles to the volume V H of the different hard phase particles to 0.5 to 1.5. With high fracture resistance. If the ratio V BN / V H is less than 0.5, the hardness of the sintered body is lowered because of the small amount of cubic boron nitride particles having high hardness, and the wear resistance of the cutting tool using the sintered body is reduced.
  • the different hard phase particles and the cubic boron nitride particles are added in a predetermined amount in a powder state and mixed before sintering.
  • X-ray diffraction is performed before and after sintering, there is no significant change in the peak intensity ratio between the different hard phase particles and cubic boron nitride particles, and the different hard phase particles and cubic boron nitride particles added in powder form. It was confirmed that the volume ratio was maintained as it was in the sintered body.
  • the BN ratio V BN / V H can be calculated.
  • a cross section of the sintered body mirror-polished using a CP (cross section polisher) apparatus is observed with an SEM (scanning electron microscope), and EDX (energy dispersive type) X-ray analysis) is used to examine the elements constituting the crystal particles, identify the different hard phase particles and cubic boron nitride particles, determine their area ratios, and consider them as volume ratios.
  • a ratio V BN / V H of volume V BN of cubic boron nitride particles to volume V H of phase particles can be calculated.
  • the sialon preferably includes cubic sialon.
  • Such a sintered body has higher wear resistance by containing cubic sialon having low reactivity with metal and higher hardness than ⁇ -sialon and ⁇ -sialon.
  • the sialon further includes at least one of an ⁇ -type sialon and a ⁇ -type sialon, and is cubic with respect to the total intensity of the main peaks of the X-ray diffraction of each of the ⁇ -type sialon, the ⁇ -type sialon, and the cubic sialon.
  • the peak intensity ratio Rc hereinafter also referred to as the peak intensity ratio Rc of cubic sialon
  • the peak intensity ratio Rc of cubic sialon is 20% or more.
  • Such a sintered body includes cubic sialon and at least one of ⁇ -type sialon and ⁇ -type sialon, and in terms of the intensity of the main peak of X-ray diffraction, ⁇ -type sialon, ⁇ -type sialon, and cubic-type sialon.
  • the peak intensity ratio Rc of cubic sialon By setting the peak intensity ratio Rc of cubic sialon to each sum to 20% or more, it has high wear resistance and high fracture resistance.
  • the peak intensity ratio Rc of the cubic sialon is an index corresponding to the ratio of cubic sialon to the different hard phase particles.
  • the peak intensity ratio Rc of such cubic sialon is such that a diamond grindstone (hereinafter referred to as No. 400 diamond grindstone) formed with diamond abrasive grains passing through the sintered body through a sieve of No. 400 (interval of sieve mesh of 38 ⁇ m). )) And the X-ray diffraction pattern obtained by measuring the surface ground surface using Cu-K ⁇ characteristic X-rays, and the peak intensity Ic (311 ) of the (311) plane which is the main peak of cubic sialon.
  • No. 400 diamond grindstone formed with diamond abrasive grains passing through the sintered body through a sieve of No. 400 (interval of sieve mesh of 38 ⁇ m).
  • the peak intensity ratio Rc of cubic sialon can be calculated by the following equation (I). If the peak intensity ratio Rc of the cubic sialon is less than 20%, the hardness of the sintered body may be lowered and the wear resistance may be lowered.
  • the binder is at least one element selected from titanium (Ti), zirconium (Zr), aluminum (Al), nickel (Ni), and cobalt (Co), and a nitride of the element. And at least one selected from the group consisting of carbides, oxides, carbonitrides, borides, and solid solutions thereof.
  • Such a sintered body has high fracture resistance because the bond between the different hard phase particles and the cubic boron nitride particles is strengthened by the binder and the fracture toughness of the sintered body is increased.
  • examples of the binder include metal elements such as Al, Ni, and Co, intermetallic compounds such as TiAl, compounds such as TiN, ZrN, TiCN, TiAlN, Ti 2 AlN, TiB 2 , and AlB 2 .
  • metal elements such as Al, Ni, and Co
  • intermetallic compounds such as TiAl, compounds such as TiN, ZrN, TiCN, TiAlN, Ti 2 AlN, TiB 2 , and AlB 2 .
  • the bond between the different hard phase particles and the cubic boron nitride particles in the sintered body is strengthened.
  • the fracture toughness of the binder itself is large, the fracture toughness of the sintered body is also increased, so that the fracture resistance is increased.
  • the content of the hard phase particles in the sintered body (this means the content of the cubic boron particles when the hard phase particles include cubic boron nitride particles).
  • the hard phase particles include the different hard phase particles and the cubic boron nitride particles, it means the total content of the different hard phase particles and the cubic boron nitride particles. If the hard phase particles do not contain different hard phase particles, and the content of the different hard phase particles is 0% by volume, the different hard phase particles and the cubic boron nitride particles can be used regardless of the presence or absence of the different hard phase particles.
  • the total content can be defined as 60% by volume or more and 90% by volume or less.
  • Such a sintered body has a high balance between high wear resistance and high fracture resistance. If the content of the hard phase particles (the total content of the different hard phase particles and cubic boron nitride particles) is less than 60% by volume, the hardness of the sintered body may decrease and the wear resistance may decrease. . When the hard phase particle content (total content of different hard phase particles and cubic boron nitride particles) exceeds 90% by volume, the fracture toughness of the sintered body may be reduced, and the fracture resistance may be reduced. .
  • different types of hard phase particles, cubic boron nitride particles, and a binder are added in a predetermined amount in a powder state and mixed before sintering.
  • X-ray diffraction is performed before and after sintering, there is no significant change in the peak intensity ratio of the heterogeneous hard phase particles, cubic boron nitride particles and the binder, and the heterogeneous hard phase particles and cubic type added in powder form. It was confirmed that the volume ratio of the boron nitride particles and the binder was maintained as it was in the sintered body.
  • the cross section of the sintered body mirror-polished using a CP apparatus or the like is observed with an SEM, the elements constituting the crystal particles are examined using EDX, the different hard phase particles, cubic boron nitride
  • the volume ratio of the different hard phase particles, cubic boron nitride particles, and the binder contained in the sintered body is also determined by determining the area ratio by specifying the particles and the binder and considering the area ratio as the volume ratio. be able to.
  • the Vickers hardness of the sintered body is preferably 20 GPa or more, and more preferably 22 GPa or more.
  • Such a sintered body has high wear resistance because its Vickers hardness is 20 GPa or more. When the Vickers hardness is less than 20 GPa, the wear resistance may be lowered.
  • the Vickers hardness of the sintered body of the present embodiment is obtained by polishing the sintered body embedded in the bakelite resin for 30 minutes using 9 ⁇ m and 3 ⁇ m diamond abrasive grains, respectively, and then using a Vickers hardness meter on the polished surface of the sintered body. Then, it can be measured by pushing a diamond indenter with a load of 10 kgf.
  • the Vickers hardness HVHO is obtained from the indentation generated by pressing the diamond indenter. Further, the crack length propagating from the indentation is measured, and the fracture toughness value is measured by an IF (Indentation Fracture) method in accordance with JIS R 1607: 2010 (room temperature fracture toughness test method for fine ceramics). Ask for.
  • the nickel-based heat-resistant alloy is preferably Inconel (registered trademark) 718.
  • Such a sintered body is also used in the cutting of Inconel (Registered Trademark) 718 formed of crystal grains having a coarse particle size of 5 or less as defined in ASTM E112-13, which is a representative example of a nickel-based heat-resistant alloy.
  • ASTM E112-13 which is a representative example of a nickel-based heat-resistant alloy.
  • it has high fracture resistance.
  • Inconel (registered trademark) 718 is mainly composed of 50 to 55% by mass of nickel (Ni), 17 to 21% by mass of chromium (Cr), 4.75 to 5.50% by mass of niobium (Nb).
  • An aircraft jet engine that is an alloy containing 2.80 to 3.30% by mass of molybdenum (Mo) and about 12 to 24% by mass of iron (Fe), and has excellent high-temperature strength due to an Nb compound generated by age hardening. It is used for various high-temperature structural members.
  • Mo molybdenum
  • Fe iron
  • the method for producing the sintered body according to the present embodiment is not particularly limited, but from the viewpoint of efficiently producing a sintered body having high fracture resistance in addition to high wear resistance, dissimilar hard phase particle powder is produced.
  • a step of mixing, a step of mixing the different hard phase particle powder, the cubic boron nitride particle powder and the binder powder, and a sintering step is produced.
  • the ⁇ -type sialon represented by the chemical formula of Si 6-Z Al Z O Z N 8-Z (Z is greater than 0 and 4.2 or less) is composed of silica (SiO 2 ), alumina (Al 2 O 3 ) and carbon (C ) As a starting material, and can be synthesized using a carbon reduction nitriding method under a general nitrogen atmosphere at atmospheric pressure.
  • ⁇ -sialon powder can be obtained by using a high-temperature nitridation synthesis method that applies the nitridation reaction of metal silicon in a nitrogen atmosphere at atmospheric pressure or higher, represented by the following formula (II).
  • Si powder (average particle size 0.5 to 45 ⁇ m, purity 96% or more, more preferably 99% or more), SiO 2 powder (average particle size 0.1 to 20 ⁇ m) and Al powder (average particle size 1 to 75 ⁇ m) Are weighed according to the desired Z value, and then mixed with a ball mill, a shaker mixer, or the like to prepare a raw material powder for ⁇ -sialon synthesis.
  • nitride (II) aluminum nitride (AlN) or alumina (Al 2 O 3 ) can be used in appropriate combination as the Al component.
  • the temperature at which the ⁇ -type sialon particle powder is synthesized is preferably 2300 to 2700 ° C.
  • the pressure of the nitrogen gas with which the container for synthesizing the ⁇ -type sialon particle powder is 1.5 MPa or more.
  • a combustion synthesis apparatus or a HIP (hot isostatic pressing) apparatus is suitable.
  • Commercially available ⁇ -type sialon particle powder and ⁇ -type sialon particle powder may also be used.
  • the ⁇ -type sialon particle powder and the ⁇ -type sialon particle powder are treated at a temperature of 1800 to 2000 ° C. and a pressure of 40 to 60 GPa to transform a part thereof into a cubic sialon, thereby forming a cubic crystal.
  • C-type sialon particle powder containing type sialon can be obtained.
  • the cubic pressure sialon and the ⁇ sialon and / or the ⁇ sialon are controlled by setting the impact pressure to about 40 GPa and the temperature to 1800 to 2000 ° C. Can be obtained.
  • the ratio of the cubic sialon to the different hard phase particles can be controlled by changing the impact pressure and temperature.
  • the heterogeneous hard phase particle powder produced as described above and the cubic boron nitride particle powder having an average particle size of 0.1 to 3 ⁇ m were added to titanium (Ti), zirconium (Zr), aluminum (Al), nickel (Ni ) And at least one element selected from the group consisting of cobalt (Co), at least one element selected from the group consisting of elemental nitrides, carbides, oxides, carbonitrides, borides, and solid solutions thereof. Add material powder and mix.
  • binder powder examples include metal element powders such as Al, Ni, and Co having an average particle diameter of 0.01 to 1 ⁇ m, intermetallic compound powders such as TiAl having an average particle diameter of 0.1 to 20 ⁇ m, and an average particle diameter of 0.05.
  • a compound powder of ⁇ 2 ⁇ m such as TiN, ZrN, TiCN, TiAlN, Ti 2 AlN, TiB 2 and AlB 2 is preferably used.
  • the binder powder is preferably added in an amount of 10 to 40% by volume based on the total of the different hard phase particle powder, cubic boron nitride particle powder and binder powder.
  • the fracture toughness of the sintered body may be reduced and the fracture resistance may be reduced. If the added amount exceeds 40% by volume, the hardness of the sintered body may be reduced. May decrease and wear resistance may decrease.
  • silicon nitride or alumina balls with a diameter of about 3 to 10 mm are used as media, and ball mill mixing is performed for a short time within 12 hours in a solvent such as ethanol, or an ultrasonic homogenizer or wet jet mill is used.
  • the mixed slurry in which the different hard phase particle powder, the cubic boron nitride particle powder, and the binder powder are uniformly dispersed can be obtained by mixing using the mediumless mixing apparatus.
  • the mixed slurry obtained as described above is dried by natural drying, a spray dryer or a slurry dryer to obtain a mixed powder.
  • a cutting tool according to another embodiment of the present invention is a cutting tool including the sintered body according to the first embodiment. Since the cutting tool of the present embodiment includes the sintered body according to the first embodiment, cutting of a nickel-base heat-resistant alloy formed of coarse crystal grains having a particle size number of 5 or less as defined in ASTM E112-13 In this case, the fracture resistance is increased, and in addition to high wear resistance, it has high fracture resistance.
  • the cutting tool of this embodiment can be suitably used for cutting difficult-to-work materials such as heat-resistant alloys at a high speed.
  • Nickel-based heat-resistant alloys used for aircraft and automobile engine parts are difficult-to-work materials that have high cutting strength due to high high-temperature strength, and the cutting tools are subject to wear and fracture.
  • This cutting tool exhibits excellent wear resistance and fracture resistance even in the cutting of nickel-base heat-resistant alloys.
  • Inconel (registered trademark) 718 used for aircraft engine parts an excellent tool life is exhibited by setting the cutting speed to 100 m / min or more.
  • Example 1 ⁇ -type silicon nitride particle powder (SN-F1, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 2 ⁇ m), ⁇ -type sialon particle powder (Zibo Hengshi Technology Development Co., Ltd. Z-2, average particle size) 2 ⁇ m) and ⁇ -type alumina particle powder (TM-D manufactured by Daimei Chemical Co., Ltd., average particle size 0.1 ⁇ m), c-type sialon particle powder synthesized by the method shown below was used.
  • a mixture obtained by mixing 500 g of ⁇ -type sialon particle powder and 9500 g of copper powder acting as a heat sink was sealed in a steel pipe, and then the temperature was 1900 ° C. and the impact pressure was 40 GPa.
  • a c-type sialon particle powder containing cubic sialon was synthesized by impact compression using an amount of explosive set as described above. After impact compression, the mixed powder in the steel pipe was taken out, and copper powder was removed by acid cleaning to obtain a synthetic powder.
  • the synthetic particle powder was analyzed using a scanning speed of 1 step / second, and cubic sialon (JCPDS card: 01-074-3494) and ⁇ -sialon (JCPDS card: 01-077-0755) were identified. It was done.
  • the peak intensity Ic (311) of the (311) plane which is the main peak of cubic sialon
  • the peak intensity I ⁇ (200 ) of the (200) plane which is the main peak of ⁇ -sialon.
  • the peak intensity ratio Rc of cubic sialon calculated from the above formula (I) was 95%.
  • Sample No. for each of 1-1 to 1-13 a total amount of 30 g of different types of hard phase particle powder and cubic boron nitride particle powder (Showa Denko SBN-F G1-3, average particle size 2 ⁇ m) was used as a binder. TiN powder (TiN-01 manufactured by Nippon Shin Metals Co., Ltd., average particle diameter of 1 ⁇ m) was added at a ratio shown in Table 1. Sample No. In 1-3 and 1-4, both ⁇ -type sialon particle powder and c-type sialon particle powder were added, and the ratio of c-type sialon particles in the sialon contained in the sintered body was changed. Here, Sample No.
  • the addition amount (volume%) of the binder powder is based on the total amount of the different hard phase particles, cubic boron nitride particles and binder in the sintered body shown in Table 1.
  • the volume ratio (volume%) of the binder was the same.
  • Sample No. for each of 1-1 to 1-13, the composition of the different hard phase particle powder and the cubic boron nitride particle powder is cubic nitriding with respect to the volume V H of the different hard phase particles in the sintered body shown in Table 1.
  • the volume ratio of the boron particles was set to the same volume ratio as the ratio V BN / V H of the volume V BN .
  • sample No. 2 was prepared by mixing only cubic boron nitride particles and binder TiN powder without adding different hard phase particles. 1-14 was produced. Sample No. In No. 1-14, fine cubic boron nitride particle powder (SBN-F G-1, manufactured by Showa Denko KK, average particle size: 1 ⁇ m) was used as the cubic boron nitride particle powder.
  • SBN-F G-1 fine cubic boron nitride particle powder
  • sample No. 2 was prepared by mixing only cubic boron nitride particle powder and binder Co powder (HMP manufactured by Umicore) without adding the different hard phase particle powder. 1-15 was produced. Sample No. In No. 1-15, no. The same ones as 1-1 to 1-13 were used.
  • the sintering powder of 1-1 to 1-15 is vacuum sealed in a high melting point metal capsule having a diameter of 20 mm, and then heated to 1500 ° C. while being pressurized to a pressure of 5 GPa using a belt type ultra-high pressure press. Thus, a sintered body was produced.
  • sample no. In any sintered body of 1-1 to 1-13, the ratio V BN / V H of the volume V BN of the cubic boron nitride particles to the volume V H of the different hard phase particles in the sintered body is the powder It almost coincided with the ratio of the volume of the cubic boron nitride particle powder to the volume of the different hard phase particle powder at the time of blending.
  • the content of hard phase particles in the sintered body (total content of different hard phase particles and cubic boron nitride particles) (volume%) is: It almost coincided with the mixing ratio of hard phase particle powder (total mixing ratio of different hard phase particle powder and cubic boron nitride particle powder) (volume%).
  • a sample for thermal conductivity measurement having a diameter of 18 mm and a thickness of 1 mm was cut out from the sintered body, and the specific heat and thermal diffusivity were measured using a laser flash method thermal constant measuring device (LFA447 manufactured by NETZCH).
  • the thermal conductivity was calculated by multiplying the thermal diffusivity by the specific heat and the density of the sintered body. The results are shown in Table 1.
  • a sample for hardness measurement was cut out from the sintered body and embedded in a bakelite resin, and then the sample was polished for 30 minutes using 9 ⁇ m and 3 ⁇ m diamond abrasive grains.
  • a Vickers hardness tester HV-112 manufactured by AKASHI
  • HV10 Vickers hardness HV10 was determined from the indentation generated by pushing the diamond indenter.
  • the crack length propagating from the indentation was measured, and the fracture toughness value was determined by the IF method in accordance with JIS R 1607: 2010 (room temperature fracture toughness (toughness test method for fine ceramics)). The results are shown in Table 1.
  • the dissimilar hard phase particles constituting the sintered body were ⁇ -type silicon nitride particles, and the Vickers hardness was 21.0 GPa. As a result, tool life was reached due to wear at a cutting distance of 0.4 km.
  • the dissimilar hard phase particles constituting the sintered body were ⁇ -type sialon particles, and the Vickers hardness stopped at 21.2 GPa. As a result, tool life was reached due to wear at a cutting distance of 0.4 km.
  • the cubic hard sialon particles are included in the heterogeneous hard phase particles constituting the sintered body, but the peak strength ratio Rc of the cubic sialon is not sufficient at 15%, and the Vickers hardness is 22.4 GPa. I stopped at. As a result, tool life was reached due to wear at a cutting distance of 0.4 km.
  • the thermal conductivity is as large as 22 W ⁇ m ⁇ 1 ⁇ K ⁇ 1, and the ratio V of the volume V BN of cubic boron nitride particles to the volume V H of different hard phase particles constituting the sintered body V Since BN / V H was as large as 1.6, the thermal conductivity was 22 W / m ⁇ K.
  • cutting resistance increased with a decrease in the cutting edge temperature of the tool at the time of cutting, and coupled with an increase in the boundary damage of the cutting edge, the cutting edge of the tool was lost, leading to a tool life at a cutting distance of 0.2 km.
  • sample no. 1-15 had a thermal conductivity of 35 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the cutting resistance increased with a decrease in the cutting edge temperature of the tool at the time of cutting, and coupled with an increase in the boundary damage of the cutting edge, the cutting edge of the tool was lost, and the tool life was reached at a cutting distance of 0.1 km.
  • Sample No. For each of 2-1 to 2-10, the total amount of the different hard phase particle powder, the cubic boron nitride particle powder and the binder powder is added to 30 g of the different hard phase particle powder and the cubic boron nitride particle powder.
  • the binder powder shown in Table 2 was blended so that the content of the binder powder with respect to was 20 volume%.
  • sample no. For each of 2-1 to 2-10, the blending of the different hard phase particle powder and the cubic boron nitride particle powder was performed by adding the volume of the cubic boron nitride particles to the volume V H of the different hard phase particles in the sintered body. was set to be the same volume as 1 is the ratio V BN / V H of V BN.
  • TiCN powder TiN-TiC 50/50 manufactured by Nippon Shin Metal Co., Ltd., average particle size 1 ⁇ m
  • TiN powder TiN-01 manufactured by Nippon Shin Metal Co., Ltd., average particle size 1 ⁇ m
  • TiAl powder Kyoritsu Material TiAl
  • Al powder 300 F from Minalco
  • Co powder HMP from Umicore
  • ZrN powder ZrN-1 from Nippon Shin Metals
  • Ti 2 AlN powder average particle size 1 ⁇ m
  • the ceramic components TiN, TiCN, and Ti 2 AlN were used in a mass ratio of 2 while the metal component Co or Al was used in a mixing ratio of 1.
  • the volume ratio of the different hard phase particles, cubic boron nitride particles and binder contained in the sintered body is specified in the same manner as in Example 1. did.
  • sample no. In any of the sintered bodies 2-1 to 2-10, the ratio V BN / V H of the volume V BN of the cubic boron nitride particles to the volume V H of the different hard phase particles in the sintered body is approximately 1.
  • the content of hard phase particles in the sintered body total content of different hard phase particles and cubic boron nitride particles was approximately 80% by volume.
  • the sintered compact is processed into a brazing tip shape of DNGA150412 type (ISO model number), and turning of Inconel (Registered Trademark) 713C of coarse crystal grains having a grain size number 2 as defined in ASTM E112-13.
  • Tool life was evaluated.
  • the outer diameter cylindrical turning test was conducted under the following conditions, and the cutting distance at which either the flank wear amount or the chipping amount of the tool edge reached 0.2 mm first was determined, and this cutting distance was defined as the tool life (km). .
  • the results are shown in Table 2.
  • Table 2 also shows the life factor of whether the cause of reaching the tool life is due to wear or due to chipping.
  • the cutting conditions in the present example are as follows.
  • Work material Inconel (Registered Trademark) 713C (Solubilized and age-hardened material, Rockwell hardness HRC equivalent to 40, grain size number 2 as defined in ASTM E112-13)
  • Tool shape DNGA150412 type (ISO model number)
  • Blade shape chamfer angle -20 ° x width 0.1mm
  • Cutting speed 150 m / min ⁇ Incision: 0.2mm ⁇
  • Wet conditions water-soluble oil
  • Sample No. having a thermal conductivity of less than 20 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 , particularly 10 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more and less than 20 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the sintered bodies of 2-1 to 2-10 had a long tool life with a cutting distance of 0.5 to 1.2 km.
  • Sample No. in which the binder is a ceramic or intermetallic binder.
  • the thermal conductivity and Vickers hardness can be well balanced, resulting in a cutting distance of 0.7 km or more leading to the tool life due to wear or chipping.
  • the thermal conductivity and Vickers hardness can be well balanced, resulting in a cutting distance of 0.7 km or more leading to the tool life due to wear or chipping.

Abstract

 焼結体は、硬質相粒子として立方晶型窒化ホウ素粒子を含み、熱伝導率が20W・m-1・K-1未満である、アメリカ材料試験協会規格のE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工するための焼結体である。切削工具は、上記の焼結体を含む切削工具である。これにより、高い耐摩耗性に加えて高い耐欠損性を備える焼結体およびかかる焼結体を含む切削工具が提供される。

Description

焼結体および切削工具
 本発明は、ニッケル基耐熱合金を切削加工するための焼結体およびかかる焼結体を含む切削工具に関し、特に、粒度が粗い結晶粒子で形成されるニッケル基耐熱合金を切削加工するための焼結体およびかかる焼結体を含む切削工具に関する。
 ニッケル基耐熱合金は、ニッケルをベースとしてクロム、鉄、ニオブ、モリブデンなどを加えた合金であって、耐熱性、耐食性、耐酸化性、耐クリープ性などの高温特性に優れ、航空機のジェットエンジン、自動車のエンジン、産業用タービンなどの耐熱性用途に好適に用いられるが、切削が困難な材料である。
 このようなニッケル基耐熱合金を切削するための切削工具として、ダイヤモンドに次ぐ高い強度を有し耐摩耗性が高い立方晶型窒化ホウ素を含有する焼結体を含む切削工具が提案されている。
 上記のような切削工具に含まれるべき焼結体として、たとえば、国際公開第00/47537号(特許文献1)は、高圧相型窒化ホウ素が50体積%~78体積%と残部が結合相からなる高耐クレータ性高強度焼結体を開示する。また、特開2000-226262号公報(特許文献2)は、高圧型窒化ホウ素粒子を被覆層で覆った硬質粒子と、この硬質粒子を一体化する結合相とを焼結した高硬度高強度焼結体を開示する。また、特開2011-140415号公報(特許文献3)は、立方晶型窒化ホウ素と、第1化合物と、第2化合物とを含み、立方晶型窒化ホウ素の含有量が35体積%以上93体積%以下である焼結体を開示する。
国際公開第00/47537号 特開2000-226262号公報 特開2011-140415号公報
 国際公開第00/47537号(特許文献1)、特開2000-226262号公報(特許文献2)および特開2011-140415号公報(特許文献3)に開示される焼結体は、被切削材を切削する際の耐摩耗性は高いが、耐欠損性が高くないという問題点があった。切削工具の欠損は、高い寸法精度と表面性状を要求される航空機のジェットエンジン、自動車のエンジンなどの部品の切削加工において重要な問題となる。特に、アメリカ材料試験協会規格(以下、ASTMともいう)のE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削する際には、切削工具の切削刃部分に境界損傷と呼ばれる欠損が生じやすいという問題点があった。
 そこで、上記の問題点を解決して、高い耐摩耗性に加えて高い耐欠損性を備える焼結体およびかかる焼結体を含む切削工具を提供することを目的とする。
 本発明のある態様にかかる焼結体は、硬質相粒子として立方晶型窒化ホウ素粒子を含み、熱伝導率が20W・m-1・K-1未満である、アメリカ材料試験協会規格のE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工するための焼結体である。
 本発明の別の態様にかかる切削工具は、上記態様の焼結体を含む切削工具である。
 上記によれば、高い耐摩耗性に加えて高い耐欠損性を備える焼結体およびかかる焼結体を含む切削工具を提供できる。
 <本発明の実施形態の説明>
 本発明のある実施形態にかかる焼結体は、硬質相粒子として立方晶型窒化ホウ素粒子を含み、熱伝導率が20W・m-1・K-1未満である、アメリカ材料試験協会規格(以下、ASTMともいう)のE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工するための焼結体である。本実施形態の焼結体は、熱伝導率が20W・m-1・K-1未満であるため、ASTMのE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工する際の耐欠損性が高くなり、立方晶型窒化ホウ素粒子に由来する高い耐摩耗性に加えて高い耐欠損性を備える。
 本実施形態にかかる焼結体は、結合材と、硬質相粒子として立方晶型窒化ホウ素粒子以外に窒化ケイ素、サイアロンおよびアルミナからなる群から選ばれる少なくとも1種を含む異種硬質相粒子と、をさらに含むことができる。かかる焼結体は、結合材と、硬質相粒子として、立方晶型窒化ホウ素粒子以外に、窒化ケイ素、サイアロンおよびアルミナからなる群から選ばれる少なくとも1種を含む異種硬質相粒子と、をさらに含むことにより、ASTMのE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工する際の耐欠損性が高くなり、高い耐摩耗性に加えて高い耐欠損性を備える。
 本実施形態にかかる焼結体において、異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHを0.5以上1.5以下とすることができる。かかる焼結体は、異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBN比VBN/VHを0.5以上1.5以下とすることにより、高い耐摩耗性とともに高い耐欠損性を備える。
 本実施形態にかかる焼結体において、上記サイアロンは立方晶型サイアロンを含むことができる。かかる焼結体は、金属との反応性が低くかつα型サイアロンおよびβ型サイアロンに比べて硬度が高い立方晶型サイアロンを含むことにより、より高い耐摩耗性を備える。
 ここで、上記サイアロンは、さらにα型サイアロンおよびβ型サイアロンの少なくとも1種を含むことができ、α型サイアロン、β型サイアロンおよび立方晶型サイアロンのそれぞれのX線回折のメインピークの強度の合計に対する、立方晶型サイアロンのX線回折のメインピークの強度のピーク強度比率Rcを20%以上とすることができる。かかる焼結体は、立方晶型サイアロンと、α型サイアロンおよびβ型サイアロンの少なくとも1種とを含み、X線回折のメインピークの強度に関して、α型サイアロン、β型サイアロンおよび立方晶型サイアロンのそれぞれの合計に対する立方晶型サイアロンの比率を20%以上とすることにより、高い耐摩耗性とともに高い耐欠損性とを備える。
 本実施形態にかかる焼結体において、上記結合材は、チタン、ジルコニウム、アルミニウム、ニッケルおよびコバルトの少なくとも1種の元素、かかる元素の窒化物、炭化物、酸化物、炭窒化物、ホウ化物、およびそれらの固溶体からなる群から選ばれる少なくとも1種を含むことができる。かかる焼結体は、上記結合材により異種硬質相粒子と立方晶型窒化ホウ素粒子との結合が強固となり、焼結体の破壊靭性が増大するため、より高い耐欠損性を備える。
 本実施形態にかかる焼結体において、焼結体中の硬質相粒子の含有率を、60体積%以上90体積%以下とすることができる。かかる焼結体は、高い耐摩耗性と高い耐欠損性とをバランスよく備える。
 本実施形態にかかる焼結体において、焼結体のビッカース硬度を20GPa以上とすることができる。かかる焼結体は、そのビッカース硬度が20GPa以上であるため、高い耐摩耗性を備える。
 本実施形態にかかる焼結体において、上記ニッケル基耐熱合金をインコネル(登録商標)718とすることができる。かかる焼結体は、ニッケル基耐熱合金の代表例であるASTMのE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子のインコネル(登録商標)718の切削加工においても、高い耐摩耗性に加えて高い耐欠損性を備える。
 本発明の別の実施形態にかかる切削工具は、上記の実施形態にかかる焼結体を含む切削工具である。本実施形態の切削工具は、上記の実施形態にかかる焼結体を含むため、ASTMのE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金の切削加工において、耐欠損性が高くなり、高い耐摩耗性に加えて高い耐欠損性を備える。
 <本発明の実施形態の詳細>
 [実施形態1:焼結体]
 {焼結体}
 本発明のある実施形態にかかる焼結体は、硬質相粒子として立方晶型窒化ホウ素粒子を含み、熱伝導率が20W・m-1・K-1未満である、アメリカ材料試験協会規格(ASTM)のE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工するための焼結体である。なお、かかる粒度番号が小さくなるにつれて、その結晶粒子は粗大になる。本実施形態の焼結体による切削加工の対象となるニッケル基耐熱合金について、上記粒度番号が5以下とは、その結晶粒子径が約50μm以上に相当する。本実施形態の焼結体は、熱伝導率が20W・m-1・K-1未満であるため、ASTMのE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工する際の耐欠損性が高くなり、高い耐摩耗性に加えて高い耐欠損性を備える。
 本発明者らは、ASTMのE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工する際の耐欠損性が高い焼結体を開発するため、まず、高い耐摩耗性を有する立方晶型窒化ホウ素粒子を含む焼結体を含む切削工具について、ニッケル基耐熱合金を切削するときに切削刃が受ける切削抵抗と切削刃の損傷との関係を調べた。その結果、ニッケル基耐熱合金を切削する際に、同じく難削材料である焼入鋼などと比べてもはるかに切削抵抗が高い状態で切削が行われることで、硬度の高い切屑との接触により、工具の逃げ面側から観察するとV字形状を呈する深い境界損傷が生じていることを見出した。また、この境界損傷が切削刃の内部に進展することにより、刃先の強度が低下することを見出した。
 本発明者らは、上記のような境界損傷の発生原因は、切削刃を形成する立方晶型窒化ホウ素粒子の熱伝導率が高いため、切削時の刃先温度が低くなることにある、と考えた。
 ダイヤモンド粒子に次いで高い熱伝導率を有する立方晶型窒化ホウ素粒子を多く含む焼結体は、その中に含まれる立方晶型窒化ホウ素粒子同士が焼結体中でネッキングを起こして連なり3次元網目状構造が形成されていることから、かかる3次元網目状構造を経由して熱伝導が増大する。特に、焼結体中に、立方晶型窒化ホウ素粒子の結合材としてコバルト(Co)やアルミニウム(Al)などの金属結合材が含まれる場合、金属結合材自体の高い熱伝導性と相まって、焼結体の熱伝導率は70W・m-1・K-1となる。
 本発明者らは、切削工具の切削刃を形成する立方晶型ホウ素粒子を含有する焼結体の熱伝導率と切削抵抗の関係を調べた結果、焼結体の熱伝導率が高くなるにつれて、インコネル(登録商標)などのNi基耐熱合金を切削したときの切削抵抗が増大することを見出した。Ni基耐熱合金を切削する場合においては、被削材(ワーク)と切削工具の刃先との接触部分の温度が700℃程度まで上昇することによって、接触部分の被削材が軟化して変形応力の低下が生じ、これに伴って切削抵抗が減少する。しかしながら、立方晶型ホウ素粒子を多く含みそれらの3次元網目状構造が形成された焼結体で形成されている冷却能の高い切削工具を用いて切削加工を行うと、切削時の刃先温度が低温に維持されるため、被削材が軟化せずに切削抵抗が増大すると考えられる。
 上記のように、本発明者らは、切削工具の切削刃を形成する立方晶型ホウ素粒子を含有する焼結体の熱伝導率と切削抵抗の関係を調べた結果、切削工具の切削刃を形成する焼結体の熱伝導率が高いほど、切削抵抗が高く、切削刃の損傷が大きくなることを見出した。
 さらに、本発明者らは、結晶粒子の粒度が異なる複数のニッケル基耐熱合金を被削材として網羅的に切削加工を行った結果、ニッケル基耐熱合金の結晶粒子の粒度が粗くなるにしたがって、切削加工の際の切削抵抗が高くなることが分かった。特に、アメリカ材料試験協会規格のE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されているニッケル基耐熱合金の切削においては、極めて短期で、摩耗が進む前に欠損により、寿命に達することを見出した。このようにニッケル基耐熱合金は切削時に軟化しにくい材料であり、上述のように、切削工具の切削刃を形成する焼結体の熱伝導率が高くなるにつれて切削抵抗が増大するため、刃先が欠損することが考えられる。
 一般的に切削工具の材料については、切削工具自体の塑性変形(熱変形)や熱亀裂を防止する目的で、高い熱伝導率が求められることが多い。しかしながら、本発明者らは、ASTMのE112-13の規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金の切削加工においては、上記のように、切削工具の材料の熱伝導率の増大に伴って切削刃の刃先の境界損傷が大きくなり、切削抵抗が増大することと相まって、切削刃の刃先が欠損し易くなることを見出したことから、従来の発想とは逆に、立方晶型窒化ホウ素粒子を含む焼結体の熱伝導率を低下させることを検討した。
 上記の検討の結果、原料として用いる立方晶型窒化ホウ素粒子粉末の粒子径をより細かく、かつ結合材としてTiN、TiC、TiAlN、または、AlB2などの無機化合物を用いることにより、焼結体の熱伝導率を低下できることが分かった。ここで、立方晶型窒化ホウ素粒子粉末の平均粒子径は、1.5μm以下が好ましい。
 または、焼結体中に立方晶型窒化ホウ素粒子より熱伝導率が低い結晶粒子を添加することにより、焼結体中での立方晶型窒化ホウ素粒子同士のネッキング形成を抑制し、焼結体の熱伝導率を低下させることに成功した。これに伴い、ニッケル基耐熱合金の切削加工において切削時の工具の刃先温度を高温に保つことができ、被削材を軟化させることにより切削抵抗が低下し、切削刃の刃先の境界損傷も低減することと相まって、切削工具の切削刃の刃先の欠損を抑制することが可能になり、本発明を完成させたものである。
 本実施形態にかかる焼結体は、立方晶窒化ホウ素粒子を含みつつも熱伝導率が低いことにより、ASTMのE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工する際の耐欠損性が高くする観点から、焼結体熱伝導率が20W・m-1・K-1未満であり、15W・m-1・K-1未満が好ましい。また、ASTMのE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工する際の耐摩耗性および耐欠損性をバランスよく高くする観点から、5W・m-1・K-1以上20W・m-1・K-1未満が好ましく、10W・m-1・K-1以上20W・m-1・K-1未満がより好ましく、10W・m-1・K-1以上15W・m-1・K-1未満がさらに好ましい。
 ここで、焼結体の熱伝導率は以下のようにして求める。焼結体から直径18mm、厚み1mmの熱伝導率測定用試料を切り出し、レーザフラッシュ法熱定数測定装置を用いて比熱と熱拡散率を測定する。熱拡散率に比熱と焼結体の密度を乗じて熱伝導率を算出する。
 本実施形態にかかる焼結体は、結合材と、硬質相粒子として立方晶型窒化ホウ素粒子以外に窒化ケイ素、サイアロンおよびアルミナからなる群から選ばれる少なくとも1種を含む異種硬質相粒子と、をさらに含むことが好ましい。かかる焼結体は、窒化ケイ素、サイアロンおよびアルミナからなる群から選ばれる少なくとも1種の粒子である異種硬質相粒子と、立方晶型窒化ホウ素粒子と、結合材と、を含むことにより、ASTMのE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工する際の耐欠損性が高くなり、高い耐摩耗性に加えて高い耐欠損性を備える。かかる焼結体は、立方晶型窒化ホウ素粒子に加えて、立方晶型窒化ホウ素粒子より熱伝導率が低い異種の結晶粒子である窒化ケイ素、サイアロンおよびアルミナからなる群から選ばれる少なくとも1種を含む異種硬質相粒子が焼結体中に添加されているため、焼結体中での立方晶型窒化ホウ素粒子同士のネッキング形成が抑制され、焼結体の熱伝導率が低下する。
 本実施形態にかかる焼結体において、異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHを、0.5以上1.5以下とすることが好ましい。かかる焼結体は、異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHを、0.5以上1.5以下とすることにより、高い耐摩耗性とともに高い耐欠損性を備える。比VBN/VHが0.5未満であると、硬度の高い立方晶型窒化ホウ素粒子が少ないために焼結体の硬度が低下し、焼結体を用いた切削工具の耐摩耗性が低下する場合がある。一方、比VBN/VHが1.5を超えると、焼結体中に熱伝導率の高い立方晶型窒化ホウ素粒子が過剰に存在するため、熱伝導率を20W・m-1・K-1未満に抑えることができない場合がある。
 本実施形態にかかる焼結体において、異種硬質相粒子と立方晶型窒化ホウ素粒子とは、焼結する前にそれぞれ粉末の状態で所定量を添加し、混合する。焼結の前後でX線回折を行うと、異種硬質相粒子と立方晶型窒化ホウ素粒子のピーク強度比に大きな変化はなく、粉末の状態で添加した異種硬質相粒子と立方晶型窒化ホウ素粒子の体積比率が、焼結体においてもほぼそのまま維持されていることが確認された。したがって、焼結体のX線回折を行ない、異種硬質相粒子と立方晶型窒化ホウ素粒子のX線回折ピーク強度比から、異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHを算出することができる。上記のX線回折以外にも、CP(クロスセクションポリッシャー)装置(日本電子社製)などを用いて鏡面研磨した焼結体断面をSEM(走査型電子顕微鏡)で観察し、EDX(エネルギー分散型X線分析)を用いて結晶粒子を構成する元素を調べ、異種硬質相粒子および立方晶型窒化ホウ素粒子を特定することによってそれらの面積比率を求め、体積比率とみなすというやり方によっても、異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHを算出することができる。
 本実施形態にかかる焼結体において、上記サイアロンは立方晶型サイアロンを含むことが好ましい。かかる焼結体は、金属との反応性が低くかつα型サイアロンおよびβ型サイアロンに比べて硬度が高い立方晶型サイアロンを含むことにより、より高い耐摩耗性を備える。
 ここで、上記サイアロンは、さらにα型サイアロンおよびβ型サイアロンの少なくとも1種を含み、α型サイアロン、β型サイアロンおよび立方晶型サイアロンのそれぞれのX線回折のメインピークの強度の合計に対する、立方晶型サイアロンのX線回折のメインピークの強度のピーク強度比率Rc(以下、立方晶型サイアロンのピーク強度比率Rcともいう。)が20%以上とすることが好ましい。かかる焼結体は、立方晶型サイアロンと、α型サイアロンおよびβ型サイアロンの少なくとも1種とを含み、X線回折のメインピークの強度に関して、α型サイアロン、β型サイアロンおよび立方晶型サイアロンのそれぞれの合計に対する立方晶型サイアロンのピーク強度比率Rcを20%以上とすることにより、高い耐摩耗性とともに高い耐欠損性とを備える。
 上記の立方晶型サイアロンのピーク強度比率Rcは、異種硬質相粒子に占める立方晶型サイアロンの割合に相当する指標である。かかる立方晶型サイアロンのピーク強度比率Rcは、焼結体を400番(篩の目の間隔が38μm)の篩を通過するダイヤモンド砥粒で成形されたダイヤモンド砥石(以下、400番のダイヤモンド砥石という。)を用いて平面研削し、Cu-Kαの特性X線を用いて平面研削面を測定したX線回折パターンから、立方晶型サイアロンのメインピークである(311)面のピーク強度Ic(311)と、α型サイアロンのメインピークである(201)面のピーク強度Iα(201)と、β型サイアロンのメインピークである(200)面のピーク強度Iβ(200)を求めることができる。これらのピーク強度の値を用いて、立方晶型サイアロンのピーク強度比率Rcは下記の(I)式により算出できる。立方晶型サイアロンのピーク強度比率Rcが20%未満では、焼結体の硬度が低下し、耐摩耗性が低下する場合がある。
  Rc=Ic(311)/(Ic(311)+Iα(201)+Iβ(200)))×100  … (I)
 本実施形態にかかる焼結体において、上記結合材は、チタン(Ti)、ジルコニウム(Zr)、アルミニウム(Al)、ニッケル(Ni)およびコバルト(Co)の少なくとも1種の元素、元素の窒化物、炭化物、酸化物、炭窒化物、ホウ化物、およびそれらの固溶体からなる群から選ばれる少なくとも1種を含むことが好ましい。かかる焼結体は、上記結合材により異種硬質相粒子と立方晶型窒化ホウ素粒子との結合が強固となり、焼結体の破壊靭性が増大するため、高い耐欠損性を備える。
 ここで、上記結合材は、たとえば、Al、Ni、Coなどの金属元素、TiAlなどの金属間化合物、TiN、ZrN、TiCN、TiAlN、Ti2AlN、TiB2、AlB2などの化合物などが、好適に用いられる。かかる結合材を含有することにより、焼結体中の異種硬質相粒子と立方晶型窒化ホウ素粒子との結合が強固になる。加えて、結合材自体の破壊靭性が大きい場合には焼結体の破壊靭性も増大するため、耐欠損性が増大する。
 本実施形態にかかる焼結体において、焼結体中の硬質相粒子の含有率(これは、硬質相粒子として立方晶型窒化ホウ素粒子を含む場合は立方晶型ホウ素粒子の含有率を意味し、硬質相粒子として異種硬質相粒子と立方晶型窒化ホウ素粒子とを含む場合は異種硬質相粒子と立方晶型窒化ホウ素粒子の合計含有率を意味する。したがって、硬質相粒子の含有率は、硬質相粒子が異種硬質相粒子を含まない場合に異種硬質相粒子の含有率が0体積%と考えると、異種硬質相粒子の有無を問わず、異種硬質相粒子と立方晶型窒化ホウ素粒子の合計含有率と定義できる。)は、60体積%以上90体積%以下であることが好ましい。かかる焼結体は、高い耐摩耗性と高い耐欠損性とをバランスよく備える。硬質相粒子の含有率(異種硬質相粒子と立方晶型窒化ホウ素粒子の合計含有率)が60体積%未満であると、焼結体の硬度が低下し、耐摩耗性が低下する場合がある。硬質相粒子の含有率(異種硬質相粒子と立方晶型窒化ホウ素粒子の合計含有率)が90体積%を超えると、焼結体の破壊靭性が低下し、耐欠損性が低下する場合がある。
 本実施形態にかかる焼結体において、異種硬質相粒子、立方晶型窒化ホウ素粒子および結合材は、焼結する前にそれぞれ粉末の状態で所定量を添加し、混合する。焼結の前後でX線回折を行うと、異種硬質相粒子、立方晶型窒化ホウ素粒子および結合材のピーク強度比に大きな変化はなく、粉末の状態で添加した異種硬質相粒子、立方晶型窒化ホウ素粒子および結合材の体積比率が、焼結体においてもほぼそのまま維持されていることが確認された。上記のX線回折以外にも、CP装置などを用いて鏡面研磨した焼結体断面をSEM観察し、EDXを用いて結晶粒子を構成する元素を調べ、異種硬質相粒子、立方晶型窒化ホウ素粒子および結合材を特定することによってその面積比率を求め、体積比率とみなすというやり方によっても、焼結体に含まれる異種硬質相粒子、立方晶型窒化ホウ素粒子および結合材の体積比率を特定することができる。
 本実施形態にかかる焼結体において、焼結体のビッカース硬度は20GPa以上であることが好ましく、22GPa以上であることがより好ましい。かかる焼結体は、そのビッカース硬度が20GPa以上であるため、高い耐摩耗性を備える。ビッカース硬度が20GPa未満になると、耐摩耗性が低下する場合がある。
 本実施形態の焼結体のビッカース硬度は、ベークライト樹脂に埋め込んだ焼結体を9μmと3μmのダイヤモンド砥粒を用いてそれぞれ30分間研磨した後、焼結体の研磨面にビッカース硬度計を用いて、10kgfの荷重でダイヤモンド圧子を押し込むことにより測定できる。ダイヤモンド圧子を押し込むことによって生じた圧痕からビッカース硬度HVH0を求める。さらに、圧痕から伝播している亀裂長さを測定し、JIS R 1607:2010(ファインセラミックスの室温破壊じん(靱)性試験方法)に準拠したIF(Indentation Fracture;圧子圧入)法により破壊靭性値を求める。
 本実施形態にかかる焼結体において、上記ニッケル基耐熱合金はインコネル(登録商標)718であることが好ましい。かかる焼結体は、ニッケル基耐熱合金の代表例であるASTMのE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるインコネル(登録商標)718の切削加工においても、高い耐摩耗性に加えて高い耐欠損性を備える。
 ここで、インコネル(登録商標)718は、主に、50~55質量%のニッケル(Ni)、17~21質量%のクロム(Cr)、4.75~5.50質量%のニオブ(Nb)、2.80~3.30質量%のモリブデン(Mo)および約12~24質量%の鉄(Fe)などを含む合金であり、時効硬化処理により生じるNb化合物によって高温強度に優れ、航空機ジェットエンジン、各種高温構造部材に使用されている。一方で、切削加工の観点では、工具材料との親和性が高いために工具の摩耗が促進さえ、被削材の高温強度が強いために欠損が生じやすい難削材料である。
 {焼結体の製造方法}
 本実施形態にかかる焼結体の製造方法は、特に制限はないが、高い耐摩耗性に加えて高い耐欠損性を備える焼結体を効率よく製造する観点から、異種硬質相粒子粉末を作製する工程と、異種硬質相粒子粉末と立方晶型窒化ホウ素粒子粉末と結合材粉末とを混合する工程と、焼結工程と、を備える。以下、工程順に説明する。
 (異種硬質相粒子粉末を作製する工程)
 異種硬質相粒子粉末として、平均粒径が5μm以下の窒化ケイ素粒子粉末およびアルミナ粒子粉末に加えて、以下の方法に示して合成されるβ型サイアロン粒子粉末とc型サイアロン粒子粉末を用いることができる。
 Si6-ZAlZZ8-Z(Zは0より大きく4.2以下)の化学式で示されるβ型サイアロンは、シリカ(SiO2)、アルミナ(Al23)と炭素(C)を出発原料として、一般的な大気圧の窒素雰囲気下での炭素還元窒化法を用いて合成することができる。
 また、下記の(II)式で示される、大気圧以上の窒素雰囲気下での金属シリコンの窒化反応を応用した高温窒化合成法を用いることによっても、β型サイアロンの粉末を得ることができる。
  3(2-0.5Z)Si+ZAl+0.5ZSiO2 +(4-0.5Z)N2
  → Si6-ZAlZZ8-Z  ・・・ (II)
 Si粉末(平均粒径0.5~45μm、純度96%以上、より好ましくは純度99%以上)、SiO2粉末(平均粒径0.1~20μm)およびAl粉末(平均粒径1~75μm)を所望のZ値に応じて秤量した後、ボールミルやシェイカーミキサーなどで混合し、β型サイアロン合成用の原料粉末を準備する。このとき上記の(II)式以外にも、Al成分として窒化アルミニウム(AlN)やアルミナ(Al23)を適宜組み合わせて用いることも可能である。β型サイアロン粒子粉末を合成する温度としては、2300~2700℃が好ましい。また、β型サイアロン粒子粉末を合成する容器に充填する窒素ガスの圧力は1.5MPa以上であることが好ましい。このようなガス圧に耐え得る合成装置としては、燃焼合成装置、あるいはHIP(熱間静水圧プレス)装置が適している。また、市販のα型サイアロン粒子粉末やβ型サイアロン粒子粉末を用いてもよい。
 次に、α型サイアロン粒子粉末やβ型サイアロン粒子粉末を1800~2000℃の温度かつ40~60GPaの圧力で処理することにより、その一部を立方晶型サイアロンに相変態させることにより、立方晶型サイアロンを含むc型サイアロン粒子粉末を得ることができる。たとえば、相変態のための処理に衝撃圧縮プロセスを用いる場合には、衝撃圧力を40GPa程度とし、温度を1800~2000℃とすることによって、立方晶型サイアロンとα型サイアロンおよび/またはβ型サイアロンが混在した異種硬質相粒子粉末を得ることができる。このとき、衝撃圧力と温度を変化させることにより、異種硬質相粒子に占める立方晶型サイアロンの比率を制御することができる。
 (異種硬質相粒子粉末と立方晶型窒化ホウ素粒子粉末と結合材粉末とを混合する工程)
 上記のようにして作製された異種硬質相粒子粉末および平均粒径0.1~3μmの立方晶型窒化ホウ素粒子粉末に、チタン(Ti)、ジルコニウム(Zr)、アルミニウム(Al)、ニッケル(Ni)およびコバルト(Co)からなる群より選ばれる少なくとも1種の元素、元素の窒化物、炭化物、酸化物、炭窒化物、ホウ化物、およびそれらの固溶体からなる群から選ばれる少なくとも1種の結合材粉末を添加して混合する。結合材粉末としては、たとえば平均粒径0.01~1μmのAl、Ni、Coなどの金属元素粉末、平均粒径0.1~20μmのTiAlなどの金属間化合物粉末、平均粒径0.05~2μmのTiN、ZrN、TiCN、TiAlN、Ti2AlN、TiB2、AlB2などの化合物粉末が好適に用いられる。結合材粉末は、異種硬質相粒子粉末、立方晶型窒化ホウ素粒子粉末および結合材粉末の合計に対して10~40体積%添加することが好ましい。結合材粉末の添加量が10体積%未満であると、焼結体の破壊靭性が低下して耐欠損性が低下する場合があり、添加量が40体積%を超えると、焼結体の硬度が低下して耐摩耗性が低下する場合がある。
 混合に際しては、メディアとしてφ3~10mm程度の窒化ケイ素製またはアルミナ製のボールを用いて、エタノールなどの溶媒中で12時間以内の短時間のボールミル混合を行うか、超音波ホモジナイザーや湿式ジェットミルなどのメディアレス混合装置を用いて混合することにより、異種硬質相粒子粉末、立方晶型窒化ホウ素粒子粉末および結合材粉末が均一分散された混合スラリーを得ることができる。上記のようにして得られた混合スラリーを、自然乾燥、スプレードライヤーあるいはスラリードライヤーなどにより乾燥させて、混合粉末を得る。
 (焼結工程)
 油圧プレスなどを用いて混合粉末を成形した後、ベルト型超高圧プレス装置などの高圧発生装置を用いて、3~7GPaの圧力下、1200~1800℃の温度で焼結する。焼結に先立って混合粉末の成形体を予備焼結し、ある程度緻密化させたものを焼結することも可能である。また、SPS(放電プラズマ焼結)装置を用いて、30~200MPaの圧力下、1200~1600℃の温度に保持することによっても焼結することができる。
 [実施形態2:切削工具]
 本発明の別の実施形態にかかる切削工具は、上記の実施形態1にかかる焼結体を含む切削工具である。本実施形態の切削工具は、実施形態1にかかる焼結体を含むため、ASTMのE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金の切削加工において、耐欠損性が高くなり、高い耐摩耗性に加えて高い耐欠損性を備える。本実施形態の切削工具は、耐熱合金などの難加工性材料を、高速度で切削加工するのに好適に用いることができる。航空機や自動車のエンジン部品に使用されるニッケル基耐熱合金は、高い高温強度を有しているために切削抵抗が高く、切削工具が摩耗、欠損しやすい難加工性材料であるが、本実施形態の切削工具は、ニッケル基耐熱合金の切削加工においても、優れた耐摩耗性および耐欠損性を発揮する。とりわけ、航空機エンジン部品に用いられるインコネル(登録商標)718の切削加工において、切削速度を100m/min以上とすることで優れた工具寿命を発揮する。
 (実施例1)
異種硬質相粒子として、β型窒化ケイ素粒子粉末(電気化学工業社製SN-F1、平均粒径2μm)、β型サイアロン粒子粉末(Zibo Hengshi Technology Development Co.,Ltd製Z-2、平均粒径2μm)、およびα型アルミナ粒子粉末(大明化学社製TM-D、平均粒径0.1μm)に加えて、以下に示される方法によって合成されるc型サイアロン粒子粉末を用いた。
 c型サイアロン粒子粉末の作製については、β型サイアロン粒子粉末500gと、ヒートシンクとして作用する銅粉末9500gと、を混合して得られた混合物を鋼管に封入した後、温度1900℃、衝撃圧力40GPaとなるように設定した量の爆薬を用いて衝撃圧縮することにより、立方晶型サイアロンを含むc型サイアロン粒子粉末を合成した。衝撃圧縮後鋼管内の混合粉末を取り出し、酸洗浄により銅粉を除去して合成粉末を得た。X線回折装置(パナリティカル社製X’Pert Powder、Cu-Kα線、2θ-θ法、電圧×電流:45kV×40A、測定範囲:2θ=10~80°、スキャンステップ:0.03°、スキャン速度:1ステップ/秒)を用いて、合成粒子粉末を分析したところ、立方晶型サイアロン(JCPDSカード:01-074-3494)とβ型サイアロン(JCPDSカード:01-077-0755)が同定された。合成粒子粉末のX線回折パターンから、立方晶型サイアロンのメインピークである(311)面のピーク強度Ic(311)と、β型サイアロンのメインピークである(200)面のピーク強度Iβ(200)を求め、上記の(I)式から算出した立方晶型サイアロンのピーク強度比率Rcは95%であった。
 試料No.1-1~1-13のそれぞれについて、異種硬質相粒子粉末と立方晶型窒化ホウ素粒子粉末(昭和電工社製SBN-F G1-3、平均粒径2μm)の合計量30gに、結合材としてTiN粉末(日本新金属社製TiN-01、平均粒径1μm)を表1に示す割合で添加した。試料No.1-3および1-4は、β型サイアロン粒子粉末とc型サイアロン粒子粉末をともに添加し、焼結体に含まれるサイアロン中のc型サイアロン粒子の比率を変化させた。ここで、試料No.1-1~1-15のそれぞれについて、結合材粉末の添加量(体積%)は、表1に示す焼結体中の異種硬質相粒子、立方晶型窒化ホウ素粒子および結合材の合計量に対する結合材の体積比率(体積%)と同じとした。また、試料No.1-1~1-13のそれぞれについて、異種硬質相粒子粉末および立方晶型窒化ホウ素粒子粉末の配合は、表1に示す焼結体中の異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHと同じ体積比になるようにした。配合後の試料No.1-1~1-13の粉末をそれぞれ、60ミリリットルのエタノールおよびφ6mmの窒化ケイ素ボール200gと共に、容量150ミリリットルのポリスチレン製ポットに投入し、12時間のボールミル混合を行い、混合スラリーを調整した。ポットから取り出した混合スラリーを自然乾燥させた後、目開き45μmの篩を通して焼結用粉末を作製した。
 また、異種硬質相粒子粉末を添加せず、立方晶型窒化ホウ素粒子粉末と結合材のTiN粉末のみを混合した試料No.1-14を作製した。試料No.1-14においては、立方晶型窒化ホウ素粒子粉末として、微細な立方晶型窒化ホウ素粒子粉末(昭和電工社製SBN-F G-1、平均粒径1μm)を用いた。
 また、異種硬質相粒子粉末を添加せず、立方晶型窒化ホウ素粒子粉末と結合材のCo粉末(Umicore社製HMP)のみを混合した試料No.1-15を作製した。試料No.1-15においては、立方晶型窒化ホウ素粒子粉末として、No.1-1~1-13と同じものを用いた。
 上述のようにして作製した試料No.1-1~1-15の焼結用粉末を、直径φ20mmの高融点金属カプセルに真空封入した後、ベルト型超高圧プレス装置を用いて圧力5GPaに加圧しながら、温度1500℃に通電加熱して焼結体を作製した。
 焼結体の表面を400番のダイヤモンド砥石を用いて平研研削した後、上記X線回折装置を用いて上記研削面のX線回折を行った。得られた回折パターンから、立方晶型サイアロンの(311)面のピーク強度Ic(311)とβ型サイアロンの(200)面のピーク強度Iβ(200)を求め、立方晶型サイアロンのピーク強度比率Rc(Rc=Ic(311)/(Ic(311)+Iβ(200))×100)を算出した。その結果、立方晶型サイアロンを加えた試料No.1-3~1-7のいずれの焼結体においても、立方晶型サイアロンのピーク強度比率Rcの値は焼結の前後でほとんど変化がなかった。
 焼結体の断面をCP装置を用いて鏡面研磨した後、FE-SEM(電界放射型走査型電子顕微鏡)を用いて焼結体の組織を観察し、FE-SEMに付属のEDX(エネルギー分散型X線分光法)を用いて焼結体の組織の結晶粒子を構成する元素を調べ、上記のSEM画像における異種硬質相粒子、立方晶型窒化ホウ素粒子および結合材を特定した。このSEM画像を三谷商事社製WinROOFを用いて画像処理することにより、異種硬質相粒子、立方晶型窒化ホウ素粒子および結合材の面積比率を求め、この面積比率を体積比率とみなすというやり方によって、焼結体に含まれる異種硬質相粒子、立方晶型窒化ホウ素粒子および結合材の体積比率を特定した。その結果、試料No.1-1~1-13のいずれの焼結体においても、焼結体中の異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHは、粉末配合時の異種硬質相粒子粉末の体積に対する立方晶型窒化ホウ素粒子粉末の体積の比にほぼ一致していた。また、試料No.1-1~1-15のいずれの焼結体においても、焼結体中の硬質相粒子の含有率(異種硬質相粒子と立方晶型窒化ホウ素粒子の合計含有率)(体積%)は、硬質相粒子粉末の配合比率(異種硬質相粒子粉末と立方晶型窒化ホウ素粒子粉末の合計配合比率)(体積%)にほぼ一致していた。
 焼結体から直径18mm、厚み1mmの熱伝導率測定用試料を切り出し、レーザフラッシュ法熱定数測定装置(NETZCH社製LFA447)を用いて比熱と熱拡散率を測定した。熱拡散率に比熱と焼結体の密度を乗じて熱伝導率を算出した。その結果を表1に示した。
 焼結体から硬度測定用の試料を切り出し、ベークライト樹脂に埋め込んだ後、試料を9μmと3μmのダイヤモンド砥粒を用いてそれぞれ30分間研磨した。試料の研磨面にビッカース硬度計(AKASHI社製HV-112)を用いて、10kgfの荷重でダイヤモンド圧子を押し込み、ダイヤモンド圧子を押し込むことによって生じた圧痕からビッカース硬度HV10を求めた。さらに、圧痕から伝播している亀裂長さを測定し、JIS R 1607:2010(ファインセラミックスの室温破壊じん(靱)性試験方法)に準拠したIF法により破壊靭性値を求めた。その結果を表1に示した。
 次に、焼結体をDNGA150412型(ISO型番)のロウ付けチップ形状に加工し、アメリカ材料試験協会規格(ASTM)のE112-13に規定する粒度番号5の粗い粒度の結晶粒子のインコネル(登録商標)718(大同スペシャルメタル社製)の旋削加工における工具寿命を評価した。下記の条件で外径円筒旋削試験を行い、工具刃先の逃げ面摩耗量または欠損量のいずれかが、先に0.2mmに達する切削距離を求め、かかる切削距離を工具寿命(km)とした。その結果を表1に示した。工具寿命に到った原因が摩耗によるものか、あるいは欠損によるものかという寿命要因についても表1に記載した。
 <切削条件>
 本実施例における切削条件は以下のとおりである。
・被削材:インコネル(登録商標)718(溶態化・時効硬化処理材、ロックウェル硬度HRC(先端半径0.2mmかつ先端角120°のダイヤモンド円錐を使い150kgfの負荷をかけたもの)が41相当品、ASTMのE112-13に規定する粒度番号5の粒度)
・工具形状:DNGA150412型(ISO型番)
・刃先形状:チャンファー角度-20°×幅0.1mm
・切削速度:200m/min
・切り込み:0.3mm
・送り速度:0.2mm/rev
・湿式条件(水溶性油剤)
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、熱伝導率が22W・m-1・K-1である試料No.1-7の焼結体は切削距離が0.2kmで工具寿命に到り、また、熱伝導率が35W・m-1・K-1である試料No.1-15の焼結体は切削距離が0.1kmで工具寿命に到った。熱伝導率が20W・m-1・K-1未満である試料No.1-1~1-6および1-8~1-14の焼結体は、切削距離が0.3~1.0kmで工具寿命に到り、試料No.1-7または1-15の焼結体に比べて工具寿命が1.5~10倍に大きく延びた。
 試料No.1-1においては、焼結体を構成する異種硬質相粒子がβ型窒化ケイ素粒子であり、ビッカース硬度が21.0GPaに止まった。その結果、切削距離0.4kmで摩耗により工具寿命に到った。
 試料No.1-2においては、焼結体を構成する異種硬質相粒子がβ型サイアロン粒子であり、ビッカース硬度が21.2GPaに止まった。その結果、切削距離0.4kmで摩耗により工具寿命に到った。
 試料No.1-3においては、焼結体を構成する異種硬質相粒子に立方晶型サイアロン粒子が含まれるが、立方晶型サイアロンのピーク強度比率Rcが15%と充分ではなく、ビッカース硬度が22.4GPaに止まった。その結果、切削距離0.4kmで摩耗により工具寿命に到った。
 試料No.1-5においては、焼結体を構成する異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHが0.4と小さいため破壊靱性が低く、切削距離0.3kmで欠損により工具寿命に到った。
 試料No.1-7においては、熱伝導率が22W・m-1・K-1と大きく、焼結体を構成する異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHが1.6と大きいため、熱伝導率が22W/m・Kとなった。その結果、切削時の工具の刃先温度の低下に伴い切削抵抗が増大し、刃先の境界損傷の増大と相まって、工具の刃先が欠損することにより切削距離0.2kmで工具寿命に到った。
 試料No.1-8においては、焼結体中の硬質相粒子の含有率(異種硬質相粒子と立方晶型窒化ホウ素粒子の合計含有率)が95体積%と大きいため、破壊靭性が4.8MPa・m1/2となった。その結果、工具の刃先が欠損することにより切削距離0.3kmで工具寿命に到った。
 試料No.1-12においては、焼結体中の硬質相粒子の含有率(異種硬質相粒子と立方晶型窒化ホウ素粒子の合計含有率)が55体積%と小さいため、ビッカース硬度が19.6GPaに止まった。その結果、切削距離0.3kmで摩耗により工具寿命に到った。
 試料No.1-13においては、焼結体を構成する異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHが0.4と小さいため熱伝導率が極めて低く、切削距離0.3kmで摩耗により工具寿命に到った。
 試料No.1-14においては、微粒な立方晶窒化ホウ素粒子と、結合材としてTiN粉末と、を用いたため、熱伝導率が20W・m-1・K-1未満となり、試料No.1-15よりも長い工具寿命を示した。しかし、焼結体に異種硬質相粒子を含まないため破壊靱性が低く、切削距離0.3kmで欠損により工具寿命に到った。
 これに対して、焼結体を構成する異種硬質相粒子の立方晶型サイアロンのピーク強度比率Rc、焼結体を構成する異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の比VBN/VH、および/または焼結体中の硬質相粒子の含有率(異種硬質相粒子と立方晶型窒化ホウ素粒子の合計含有率)を適切な範囲に制御した試料No.1-4、1-6、および1-9~1-11では、ビッカース硬度と破壊靭性をうまくバランスさせることができ、結果として、摩耗もしくは欠損により工具寿命に到る切削距離を0.5km以上に延ばすことができた。
 一方、異種硬質相粒子を含まない試料No.1-15は、熱伝導率が35W・m-1・K-1となった。その結果、切削時の工具の刃先温度の低下に伴い切削抵抗が増大し、刃先の境界損傷の増大と相まって、工具の刃先が欠損することにより切削距離0.1kmで工具寿命に到った。
 (実施例2)
 実施例1と同様にして衝撃圧縮で合成した立方晶型サイアロンのピーク強度比率Rcが95%のc型サイアロン粒子粉末を、試料No.2-1~2-10の焼結体の作製に用いる異種硬質相粒子粉末とした。立方晶型窒化ホウ素粒子粉末には、実施例1の試料No.1-1~1-13で用いたものと同じ立方晶型窒化ホウ素粒子粉末(昭和電工社製SBN-F G1-3)を用いた。
 試料No.2-1~2-10のそれぞれについて、異種硬質相粒子粉末と立方晶型窒化ホウ素粒子粉末の合計量30gに、異種硬質相粒子粉末、立方晶型窒化ホウ素粒子粉末および結合材粉末の合計量に対する結合材粉末の含有率が20体積%となるように、表2に示す結合材粉末を配合した。このとき、試料No.2-1~2-10のそれぞれについて、異種硬質相粒子粉末および立方晶型窒化ホウ素粒子粉末の配合は、焼結体中の異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHである1と同じ体積比になるようにした。また、結合材粉末としてTiCN粉末(日本新金属社製TiN-TiC 50/50、平均粒径1μm)、TiN粉末(日本新金属社製TiN-01、平均粒径1μm) 、TiAl粉末(共立マテリアル社製TiAl)、Al粉末(ミナルコ社製300F)、Co粉末(Umicore社製HMP)、ZrN粉末(日本新金属社製ZrN-1)、およびTi2AlN粉末(平均粒径1μm)を使用した。試料2-8~2-10においては、セラミックス成分のTiN、TiCN、Ti2AlNを質量比で2に対し、金属成分であるCoもしくはAlを1とした配合比で併用した。
 上記の配合後の試料No.2-1~2-10の粉末をそれぞれ、60ミリリットルのエタノールおよびφ6mmの窒化ケイ素ボール200gとともに、容量150ミリリットルのポリスチレン製ポットに投入し、12時間のボールミル混合を行い、スラリーを調整した。ポットから取り出したスラリーを自然乾燥させた後、目開き45μmの篩を通して焼結用粉末を作製した。
 上述のようにして作製した試料No.2-1~2-10の焼結用粉末を、直径φ20mmの高融点金属カプセルに真空封入した後、ベルト型超高圧プレス装置を用いて圧力5GPaに加圧しながら、温度1500℃に通電加熱して焼結体を作製した。
 焼結体の表面を400番のダイヤモンド砥石を用いて平研研削した後、X線回折装置を用いて研削面のX線回折を行った。得られた回折パターンから、立方晶型サイアロンの(311)面のピーク強度Ic(311)とβ型サイアロンの(200)面のピーク強度Iβ(200)を求め、立方晶型サイアロンのピーク強度比率Rc(Ic(311)/(Ic(311)+Iβ(200))×100)を算出した。その結果を、表2に示した。
 CP装置を用いて焼結体の断面を鏡面研磨した後、実施例1と同様のやり方によって、焼結体に含まれる異種硬質相粒子、立方晶型窒化ホウ素粒子および結合材の体積比率を特定した。その結果、試料No.2-1~2-10のいずれの焼結体においても、焼結体中の異種硬質相粒子の体積VHに対する立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHはほぼ1であった。また、焼結体中の硬質相粒子の含有率(異種硬質相粒子と立方晶型窒化ホウ素粒子の合計含有率)は、ほぼ80体積%であった。
 焼結体から直径18mm、厚み1mmの熱伝導率測定用試料を切り出し、実施例1と同様にして、試料No.2-1~2-10のそれぞれの焼結体の熱伝導率を算出した。その結果を表2に示した。
 焼結体から硬度測定用の試料を切り出し、実施例1と同様にして、試料No.2-1~2-10のそれぞれの焼結体のビッカース硬度HV10と破壊靭性値を求めた。その結果を表2に示した。
 次に、焼結体をDNGA150412型(ISO型番)のロウ付けチップ形状に加工し、ASTMのE112-13に規定する粒度番号2の粗い粒度の結晶粒子のインコネル(登録商標)713Cの旋削加工における工具寿命を評価した。下記の条件で外径円筒旋削試験を行い、工具刃先の逃げ面摩耗量または欠損量のいずれかが、先に0.2mmに達する切削距離を求め、かかる切削距離を工具寿命(km)とした。その結果を表2に示した。工具寿命に到った原因が摩耗によるものか、あるいは欠損によるものかという寿命要因についても表2に記載した。
 <切削条件>
 本実施例における切削条件は以下のとおりである。
・被削材:インコネル(登録商標)713C(溶態化・時効硬化処理材、ロックウェル硬度HRCが40相当品、ASTMのE112-13に規定する粒度番号2の粒度)
・工具形状:DNGA150412型(ISO型番)
・刃先形状:チャンファー角度-20°×幅0.1mm
・切削速度:150m/min
・切り込み:0.2mm
・送り速度:0.1mm/rev
・湿式条件(水溶性油剤)
Figure JPOXMLDOC01-appb-T000002
 表2を参照して、熱伝導率が20W・m-1・K-1未満、特に10W・m-1・K-1以上20W・m-1・K-1未満である試料No.2-1~2-10の焼結体は、切削距離が0.5~1.2kmの長い工具寿命を有していた。
 結合材に金属成分を用いた試料No.2-4および2-5では、焼結体の破壊靱性が高いものの、熱伝導率が比較的高いため、欠損により工具寿命が切削距離0.5kmであった。
 これに対して、結合材がセラミックスもしくは金属間結合材である試料No.2-1~2-3、2-6および2-7では、熱伝導率とビッカース硬度をうまくバランスさせることができ、結果として、摩耗もしくは欠損により工具寿命に到る切削距離を0.7km以上に延ばすことができた。
 また、これに対して、結合材にセラミックスと金属成分を併用した試料No.2-8~2-10では、ビッカース硬度と破壊靱性に優れるため、工具寿命に到る切削距離が1.0km以上となった。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 上述のように、立方晶型窒化ホウ素粒子を含有する焼結体は、硬度と靱性に優れる立方晶型窒化ホウ素粒子と、熱伝導率の低いセラミックス粒子を共存させることにより、切削抵抗が高く、軟化しにくいニッケル基耐熱合金などの難削材料の切削加工において耐摩耗性に優れるという特長に加え、切削工具の刃先の耐欠損性を向上させる工具材料を提供するものである。実施例においてはインコネル(登録商標)の切削における効果を開示したが、本焼結体は、インコネル(登録商標)などの耐熱合金以外に、チタン(Ti)などの難削材料の切削加工においても、優れた耐摩耗性と耐欠損性を発揮し、特に高速切削加工への適用が可能である。

Claims (10)

  1.  硬質相粒子として立方晶型窒化ホウ素粒子を含み、熱伝導率が20W・m-1・K-1未満である、アメリカ材料試験協会規格のE112-13に規定する粒度番号が5以下の粗い粒度の結晶粒子で形成されるニッケル基耐熱合金を切削加工するための焼結体。
  2.  前記焼結体は、結合材と、前記硬質相粒子として前記立方晶型窒化ホウ素粒子以外に窒化ケイ素、サイアロンおよびアルミナからなる群から選ばれる少なくとも1種を含む異種硬質相粒子と、をさらに含む請求項1に記載の焼結体。
  3.  前記異種硬質相粒子の体積VHに対する前記立方晶型窒化ホウ素粒子の体積VBNの比VBN/VHが、0.5以上1.5以下である請求項2に記載の焼結体。
  4.  前記サイアロンは立方晶型サイアロンを含む請求項2または請求項3に記載の焼結体。
  5.  前記サイアロンは、さらにα型サイアロンおよびβ型サイアロンの少なくとも1種を含み、前記α型サイアロン、前記β型サイアロンおよび前記立方晶型サイアロンのそれぞれのX線回折のメインピークの強度の合計に対する、前記立方晶型サイアロンのX線回折のメインピークの強度のピーク強度比率Rcが20%以上である請求項4に記載の焼結体。
  6.  前記結合材は、チタン、ジルコニウム、アルミニウム、ニッケルおよびコバルトの少なくとも1種の元素、前記元素の窒化物、炭化物、酸化物、炭窒化物、ホウ化物、およびそれらの固溶体からなる群から選ばれる少なくとも1種を含む請求項2から請求項5のいずれか1項に記載の焼結体。
  7.  前記焼結体中の前記硬質相粒子の含有率が、60体積%以上90体積%以下である請求項1から請求項6のいずれか1項に記載の焼結体。
  8.  前記焼結体のビッカース硬度が20GPa以上である請求項1から請求項7のいずれか1項に記載の焼結体。
  9.  前記ニッケル基耐熱合金がインコネル(登録商標)718である請求項1から請求項8のいずれか1項に記載の焼結体。
  10.  請求項1から請求項9のいずれか1項に記載の焼結体を含む切削工具。
PCT/JP2016/054393 2015-02-26 2016-02-16 焼結体および切削工具 WO2016136531A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2943503A CA2943503A1 (en) 2015-02-26 2016-02-16 Sintered body and cutting tool
US15/300,155 US20170173703A1 (en) 2015-02-26 2016-02-16 Sintered body and cutting tool
CN201680001041.XA CN106232554A (zh) 2015-02-26 2016-02-16 烧结体及切削工具
EP16755278.5A EP3109219B1 (en) 2015-02-26 2016-02-16 Use of sintered body and cutting tool
KR1020167027946A KR20170120485A (ko) 2015-02-26 2016-02-16 소결체 및 절삭 공구
US15/958,643 US10870154B2 (en) 2015-02-26 2018-04-20 Sintered body and cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-037074 2015-02-26
JP2015037074A JP6048522B2 (ja) 2015-02-26 2015-02-26 焼結体および切削工具

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/300,155 A-371-Of-International US20170173703A1 (en) 2015-02-26 2016-02-16 Sintered body and cutting tool
US15/958,643 Continuation US10870154B2 (en) 2015-02-26 2018-04-20 Sintered body and cutting tool

Publications (1)

Publication Number Publication Date
WO2016136531A1 true WO2016136531A1 (ja) 2016-09-01

Family

ID=56788425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054393 WO2016136531A1 (ja) 2015-02-26 2016-02-16 焼結体および切削工具

Country Status (7)

Country Link
US (2) US20170173703A1 (ja)
EP (1) EP3109219B1 (ja)
JP (1) JP6048522B2 (ja)
KR (1) KR20170120485A (ja)
CN (1) CN106232554A (ja)
CA (1) CA2943503A1 (ja)
WO (1) WO2016136531A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346751B1 (ja) 2022-03-08 2023-09-19 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686358A (zh) * 2017-08-17 2018-02-13 武汉钢铁有限公司 一种塞隆‑bn复相陶瓷材料及其制备方法、应用
CN108101547A (zh) * 2017-12-22 2018-06-01 北京富兴凯永兴光电技术有限公司 光学镀膜材料及其制作方法
CN112521160A (zh) * 2020-12-29 2021-03-19 山东硅纳新材料科技有限公司 一种B4C/h-BN高温复相陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111261A1 (ja) * 2010-03-12 2011-09-15 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
JP2011189421A (ja) * 2010-03-12 2011-09-29 Sumitomo Electric Hardmetal Corp 立方晶窒化硼素焼結体工具
JP2014217933A (ja) * 2013-05-10 2014-11-20 住友電工ハードメタル株式会社 cBN切削工具
JP2015044723A (ja) * 2013-08-29 2015-03-12 住友電気工業株式会社 焼結体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109070A (ja) * 1994-10-05 1996-04-30 Toshiba Tungaloy Co Ltd 工具用高硬度焼結体およびその製造方法
ZA997490B (en) 1998-12-04 2000-06-05 Sumitomo Electric Industries High hardness and strength sintered body.
JP2000226262A (ja) 1998-12-04 2000-08-15 Sumitomo Electric Ind Ltd 高硬度高強度焼結体
CA2361717C (en) 1999-02-12 2008-07-15 Sumitomo Electric Industries, Ltd. Highly crater-resistant high-strength sintered material
IL137548A (en) 2000-07-27 2006-08-01 Cerel Ceramic Technologies Ltd Wear and thermal resistant material produced from super hard particles bound in a matrix of glassceramic by electrophoretic deposition
WO2005056495A1 (en) * 2003-12-03 2005-06-23 Diamond Innovations, Inc. Cubic boron nitride sintered body and method for making the same
US7758976B2 (en) 2005-10-04 2010-07-20 Sumitomo Electric Hardmetal Corp. cBN sintered body for high surface integrity machining and cBN sintered body cutting tool
CN101583451B (zh) * 2007-01-15 2011-06-29 住友电工硬质合金株式会社 cBN烧结体和由cBN烧结体制成的工具
JP5499718B2 (ja) 2010-01-06 2014-05-21 住友電気工業株式会社 焼結体および焼結体を用いた切削工具
US20130291446A1 (en) * 2012-05-02 2013-11-07 Sumitomo Electric Hardmetal Corp. Tool made of cubic boron nitride sintered body
US9187376B2 (en) * 2012-12-21 2015-11-17 Sumitomo Electric Industries, Ltd. Sintered compact, cutting tool formed using sintered compact, and method for manufacturing sintered compact
JP5880598B2 (ja) * 2014-03-06 2016-03-09 住友電気工業株式会社 焼結体および焼結体を用いた切削工具
JP5725441B2 (ja) 2014-05-19 2015-05-27 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
JP6265103B2 (ja) * 2014-10-23 2018-01-24 住友電気工業株式会社 焼結体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111261A1 (ja) * 2010-03-12 2011-09-15 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
JP2011189421A (ja) * 2010-03-12 2011-09-29 Sumitomo Electric Hardmetal Corp 立方晶窒化硼素焼結体工具
JP2014217933A (ja) * 2013-05-10 2014-11-20 住友電工ハードメタル株式会社 cBN切削工具
JP2015044723A (ja) * 2013-08-29 2015-03-12 住友電気工業株式会社 焼結体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109219A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346751B1 (ja) 2022-03-08 2023-09-19 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体

Also Published As

Publication number Publication date
JP6048522B2 (ja) 2016-12-21
EP3109219A4 (en) 2017-11-08
KR20170120485A (ko) 2017-10-31
CN106232554A (zh) 2016-12-14
CA2943503A1 (en) 2016-09-01
US20170173703A1 (en) 2017-06-22
US10870154B2 (en) 2020-12-22
US20180236561A1 (en) 2018-08-23
EP3109219A1 (en) 2016-12-28
EP3109219B1 (en) 2020-12-30
JP2016160108A (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5664795B2 (ja) 立方晶窒化硼素焼結体
JP5189504B2 (ja) 複合焼結体
JP6703757B2 (ja) サーメット、及び切削工具
JP6265103B2 (ja) 焼結体
US10875100B2 (en) Sintered body and cutting tool
US10870154B2 (en) Sintered body and cutting tool
JP6032409B2 (ja) 立方晶窒化ほう素基超高圧焼結体を工具基体とする切削工具、表面被覆切削工具
JP2011116597A (ja) 焼結体および回転工具
JP2008208027A (ja) cBN焼結体
JP6283985B2 (ja) 焼結体
JP4229750B2 (ja) 立方晶窒化硼素焼結体
JP4560604B2 (ja) 立方晶窒化硼素基焼結材及びその製造方法
JP5499717B2 (ja) 焼結体および焼結体を用いた切削工具
JP6365228B2 (ja) 焼結体
JP5880267B2 (ja) SiAlON基粒子、焼結体および工具
JP2014141359A (ja) サイアロン基焼結体
JP2006137623A (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体並びにそれらの製造方法
WO2017199752A1 (ja) 工具
JP4636574B2 (ja) 工具用セラミック基焼結材及びその製造方法
JP2008168369A (ja) アルミナ含有サーメット工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2943503

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2016755278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016755278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15300155

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167027946

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE