WO2016136426A1 - 電流制御装置及び電源システム - Google Patents

電流制御装置及び電源システム Download PDF

Info

Publication number
WO2016136426A1
WO2016136426A1 PCT/JP2016/053473 JP2016053473W WO2016136426A1 WO 2016136426 A1 WO2016136426 A1 WO 2016136426A1 JP 2016053473 W JP2016053473 W JP 2016053473W WO 2016136426 A1 WO2016136426 A1 WO 2016136426A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switches
semiconductor
voltage
semiconductor switch
drain
Prior art date
Application number
PCT/JP2016/053473
Other languages
English (en)
French (fr)
Inventor
一輝 増田
炳秀 鄭
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN201680010747.2A priority Critical patent/CN107251432A/zh
Priority to DE112016000881.3T priority patent/DE112016000881T5/de
Priority to US15/552,400 priority patent/US10230366B2/en
Publication of WO2016136426A1 publication Critical patent/WO2016136426A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0054Gating switches, e.g. pass gates

Definitions

  • the present invention relates to a current control device for controlling a current flowing between the other ends of two semiconductor switches by turning on or off two semiconductor switches whose one ends are connected to each other substantially simultaneously, and the current control device
  • a power supply system comprising:
  • the vehicle is equipped with a power supply system in which the battery supplies power to the load.
  • a power supply system in which a battery supplies power to a load
  • the other end of one semiconductor switch is connected to the positive electrode of the battery, and the other end of the other semiconductor switch is connected to one end of a load.
  • the current flowing from the battery to the load is controlled by turning on or off the two semiconductor switches substantially simultaneously.
  • Patent Document 1 discloses a current control device that controls the current flowing between the other ends of two semiconductor switches by turning on or off two semiconductor switches having one end connected to each other substantially simultaneously. ing.
  • the current control device described in Patent Document 1 includes two N-channel FETs (Field Effect Transistor), and each of the two FETs functions as a semiconductor switch.
  • the source of one FET is connected to the source of the other FET.
  • a common voltage is applied to the gates of the two FETs.
  • the two FETs are turned on or off substantially simultaneously. As a result, the current flowing through the drains of the two FETs is controlled.
  • a current control device that controls the current by turning the two semiconductor switches on and off at approximately the same time is required for a current control device that generates a small amount of heat even when a large current flows through the two semiconductor switches. It has been.
  • a current control device that generates a small amount of heat a current control device that includes two semiconductor switches with low on-resistance can be considered.
  • the size of a semiconductor switch having a small on-resistance is generally large.
  • the current control device including two semiconductor switches having the same withstand voltage between both ends and a small on-resistance is large and is not suitable as a current control device mounted on a vehicle having a limited space.
  • a large-sized semiconductor switch is expensive, there is a problem that a manufacturing cost is increased in a current control device including two semiconductor switches having low on-resistance.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a small current control device that generates a small amount of heat and can be manufactured at low cost, and a power supply system including the current control device. Is to provide.
  • the current control device includes a switch control unit that turns on or off two semiconductor switches whose one ends are connected to each other substantially simultaneously, and the switch control unit turns on or off the two semiconductor switches. Accordingly, in the current control device for controlling the current flowing between the other ends of the two semiconductor switches, the withstand voltages between the two semiconductor switches are different from each other, and the two semiconductor switches are connected to each of the two capacitors. One end is connected.
  • one end of each of the two semiconductor switches is connected to each other.
  • One end of one capacitor is connected to the other end of one of the two semiconductor switches, and one end of another capacitor is connected to the other end of the two semiconductor switches.
  • the semiconductor switch is an FET, for example, the source of one semiconductor switch is connected to the source of the other semiconductor switch.
  • the withstand voltage between both ends of each of the two semiconductor switches is different.
  • the on-resistance of a semiconductor switch is generally larger as the withstand voltage is higher. Accordingly, the combined resistance of the on-resistances of the two semiconductor switches is small because the withstand voltages of the two semiconductor switches are different. Thereby, the amount of heat generated when current flows through the other ends of the two semiconductor switches is small.
  • a semiconductor switch having a low breakdown voltage between both ends is small and inexpensive. For this reason, the device is small and manufactured inexpensively.
  • the current control device includes one or a plurality of second semiconductor switches connected in parallel to one of the two semiconductor switches, and each of the one or the plurality of second semiconductor switches is connected in parallel. And having the same breakdown voltage as that of the semiconductor switch connected to the switch, the switch controller turns on or off the two semiconductor switches and the one or more second semiconductor switches substantially simultaneously.
  • one or a plurality of second semiconductor switches are connected in parallel to one of the two semiconductor switches.
  • the breakdown voltage between both ends of the semiconductor switch connected in parallel and the second semiconductor switch is substantially the same.
  • the current flowing between the other ends of the two semiconductor switches is controlled by turning on or off the two semiconductor switches and the one or more second semiconductor switches substantially simultaneously.
  • the resistance between both ends of the semiconductor switch that is, the combined resistance of the on-resistance of the semiconductor switch and the second semiconductor switch is larger than the on-resistance of the semiconductor switch. small. Furthermore, the resistance between both ends of the semiconductor switch is smaller as the number of second semiconductor switches connected in parallel is larger. As a matter of course, when the resistance between both ends of the semiconductor switch is small, the resistance between the other ends of the two semiconductor switches is also small. For this reason, when two semiconductor switches and one or a plurality of second semiconductor switches are on, the resistance between the other ends of the two semiconductor switches is smaller and the heat generation amount of the device is smaller.
  • the number of the second semiconductor switches connected in parallel to one of the two semiconductor switches is the number of the second semiconductor switches connected in parallel to the other semiconductor switch. 2 is different from the number of semiconductor switches.
  • the number of second semiconductor switches connected in parallel to a semiconductor switch having a high breakdown voltage between both ends and a semiconductor switch having a low breakdown voltage between both ends is provided.
  • Many second semiconductor switches are connected in parallel.
  • the on-resistance of a semiconductor switch having a high breakdown voltage between both ends is large.
  • the second semiconductor switch having a higher breakdown voltage between both ends than the second semiconductor switch connected in parallel to the semiconductor switch having a higher breakdown voltage between both ends. Connect semiconductor switches in parallel.
  • a semiconductor switch having a low breakdown voltage between both ends is generally inexpensive. Accordingly, when many second semiconductor switches are connected in parallel to a semiconductor switch having a low breakdown voltage between both ends, each of the two semiconductor switches and the two semiconductor switches in a state where one or a plurality of semiconductor switches are on. A device having a smaller resistance between the other ends can be realized at low cost.
  • a power supply system includes the above-described current control device, the two capacitors, and a load fed by the two capacitors, and different voltages are applied to the two capacitors.
  • the load is powered.
  • the two semiconductor switches By turning the two semiconductor switches on or off substantially simultaneously, the current flowing between the other ends of the two semiconductor switches is controlled.
  • the voltages applied to the two power storage devices are different, and the withstand voltage across the two semiconductor switches is a value corresponding to the voltage applied to each of the two power storage devices.
  • the present invention it is possible to realize a small current control device that can be manufactured at low cost with a small calorific value, and further, it is possible to realize a power supply system including the current control device.
  • FIG. 1 is a block diagram illustrating a configuration of a main part of a power supply system according to Embodiment 1.
  • FIG. It is a voltage waveform which shows an example of the voltage fluctuation in the drain of a semiconductor switch.
  • FIG. 10 is a block diagram illustrating a configuration of a main part of a power supply system according to a second embodiment.
  • FIG. 10 is a block diagram illustrating a main configuration of a power supply system according to a third embodiment.
  • FIG. 10 is a block diagram illustrating a main configuration of a power supply system according to a fourth embodiment.
  • FIG. 1 is a block diagram showing a main configuration of a power supply system 1 according to the first embodiment.
  • the power supply system 1 is preferably mounted on a vehicle, and includes a generator 10, a first battery 11, a DCDC converter 12, a second battery 13, a load 14, a control unit 15, a current sensor 16, and two semiconductor switches 20, 30. Is provided.
  • Each of the two semiconductor switches 20 and 30 is an N-channel FET (Field-Effect-Transistor).
  • the diodes 21 and 31 are parasitic diodes of the semiconductor switches 20 and 30, respectively.
  • the cathode is connected to the drain of the semiconductor switch 20, and the anode is connected to the source of the semiconductor switch 20.
  • the diode 31 the cathode is connected to the drain of the semiconductor switch 30, and the anode is connected to the source of the semiconductor switch 30.
  • the source of the semiconductor switch 20 is connected to the source of the semiconductor switch 30.
  • One end of each of the generator 10 and the DCDC converter 12 and the positive electrode of the first capacitor 11 are connected to the drain of the semiconductor switch 20.
  • the drain of the semiconductor switch 30 is connected to the other end of the DCDC converter 12, the positive electrode of the second capacitor 13, and one end of the load 14.
  • the two semiconductor switches 20 and 30 connect between the positive electrodes of the first capacitor 11 and the second capacitor 13.
  • the other ends of the generator 10 and the load 14 and the negative electrodes of the first capacitor 11 and the second capacitor 13 are grounded.
  • the gates of the semiconductor switches 20 and 30 are connected to the control unit 15 separately.
  • the control unit 15 is further connected to the current sensor 16.
  • each of the semiconductor switches 20 and 30 when the voltage applied from the control unit 15 to the gate is equal to or higher than a certain voltage, a current can flow between the drain and the source. Further, when the voltage applied from the control unit 15 to the gate is less than a certain voltage, no current flows between the drain and the source. Accordingly, each of the semiconductor switches 20 and 30 is on when the voltage applied to the gate is equal to or higher than a certain voltage, and is off when the voltage applied to the gate is less than the certain voltage.
  • the generator 10 generates AC power in conjunction with an engine (not shown) mounted on the vehicle.
  • the generator 10 rectifies the generated AC power to DC power, and outputs a DC voltage related to the rectified DC power to one end of the DCDC converter 12 as an output voltage. Further, the generator 10 applies an output voltage to the first battery 11.
  • the generator 10 receives from the control unit 15 a reduction instruction that instructs the output voltage to decrease.
  • the generator 10 normally outputs an output voltage lower than the output voltage being output.
  • the output voltage that the generator 10 normally outputs is referred to as a normal voltage
  • the output voltage that the generator 10 to which the lowering instruction is input is temporarily output is referred to as a temporary voltage.
  • Each of the normal voltage and the temporary voltage is constant.
  • the generator 10 is further input from the control unit 15 with a release instruction for instructing the release of the decrease in the output voltage.
  • the generator 10 returns the output voltage from the temporary voltage to the normal voltage.
  • the first battery 11 is, for example, a capacitor. When the output voltage of the generator 10 is applied to the first battery 11, the first battery 11 stores power. When the generator 10 is not generating power, the first battery 11 outputs an output voltage to one end of the DCDC converter 12.
  • the DCDC converter 12 transforms the output voltage output from the generator 10 or the first battery 11.
  • the transformed voltage transformed by the DCDC converter 12 is applied from the DCDC converter 12 to the second battery 13 and the load 14.
  • the DCDC converter 12 receives from the control unit 15 a start instruction for instructing start of transformation and a stop instruction for instructing stop of transformation.
  • start instruction is input from the control unit 15
  • the DCDC converter 12 starts the above-described transformation. Further, the DCDC converter 12 stops the transformation when the stop instruction is input.
  • the current flowing through the DCDC converter 12 is limited.
  • the second battery 13 is, for example, a lead storage battery.
  • the load 14 is an electric device mounted on the vehicle.
  • a voltage transformation voltage is applied from the DCDC converter 12 to each of the second battery 13 and the load 14.
  • the second battery 13 stores power and the load 14 is supplied with power.
  • the generator 10 when the two semiconductor switches 20 and 30 are on and the DCDC converter 12 stops the transformation, when the generator 10 is generating power, the generator 10 outputs the output voltage to the two semiconductor switches. The voltage is applied to the second battery 13 and the load 14 via 20 and 30. In the same case, when the generator 10 is not generating power, the first capacitor 13 applies the output voltage to the second capacitor 13 and the load 14 via the two semiconductor switches 20 and 30. By applying the output voltage output from the generator 10 or the first capacitor 11, the second capacitor 13 stores electricity and the load 14 is fed.
  • the second capacitor 13 applies an output voltage to the load 14. Thereby, the load 14 is supplied with power.
  • the current sensor 16 detects the output current output from the other end of the DCDC converter 12 or the drain of the semiconductor switch 30 and outputs current information indicating the magnitude of the detected current to the control unit 15.
  • the control unit 15 has a CPU (Central Processing Unit) and executes processing by executing a control program stored in a ROM (Read Only Memory) (not shown). Based on the magnitude of the current indicated by the current information input from the current sensor 16, the control unit 15 adjusts the output voltage of the generator 10, operates and stops the DCDC converter 12, and controls each of the semiconductor switches 20 and 30. Control on and off.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • the control unit 15 adjusts the output voltage of the generator 10 to a normal voltage or a temporary voltage by outputting a decrease instruction and a release instruction to the generator 10.
  • the control unit 15 controls the operation and stop of the DCDC converter 12 by outputting a start instruction and a stop instruction to the DCDC converter 12. Further, the control unit 15 controls on and off of the semiconductor switches 20 and 30 by adjusting the voltages applied to the gates of the semiconductor switches 20 and 30.
  • control unit 15 When the engine is operating, the control unit 15 normally adjusts the output voltage of the generator 10 to the normal voltage, transforms the DCDC converter 12, and turns off the two semiconductor switches 20 and 30. .
  • the state of the power supply system 1 at this time is described as a normal state below.
  • the generator 10 When the power supply system 1 is in a normal state, the generator 10 outputs a normal voltage, and a transformed voltage is applied from the DCDC converter 12 to the second capacitor 13 and the load 14. At this time, a normal voltage is applied to the first capacitor 11 from the generator 10 to store the first capacitor 11, and a transformed voltage is applied to the second capacitor 13 from the DCDC converter 12 to store the second capacitor 13. .
  • the normal voltage is different from the transformer voltage. Specifically, the normal voltage is higher than the transformed voltage.
  • the normal voltage is, for example, 24 volts, and the transformed voltage is, for example, 12 volts.
  • the control unit 15 determines whether the output current of the DCDC converter 12 is equal to or higher than the upper limit current based on the magnitude of the current indicated by the current information input from the current sensor 16. Determine.
  • the upper limit current is equal to or less than the maximum current that can flow through the DCDC converter 12.
  • control unit 15 determines that the output current of the DCDC converter 12 is equal to or higher than the upper limit current when the power supply system 1 is in the normal state, the control unit 15 reduces the output voltage of the generator 10 from the normal voltage to the temporary voltage, and the DCDC The converter 12 stops the transformation and turns on the two semiconductor switches 20 and 30 simultaneously or substantially simultaneously.
  • the state of the power supply system 1 at this time is described as a direct power supply state below.
  • each of the second battery 13 and the load 14 is directly supplied with power by the generator 10 or the first battery 13 via the drains of the two semiconductor switches 20 and 30.
  • the generator 10 is generating power
  • a temporary voltage is applied from the generator 10 to the second battery 13 and the load 14.
  • the second battery 13 stores power and the load 14 is supplied with power.
  • the generator 10 is not generating power
  • the output voltage is applied from the first capacitor 13 to the second capacitor 13 and the load 14.
  • the second battery 13 stores power and the load 14 is supplied with power.
  • the power supply system 1 is in a direct power supply state, it is possible to supply a current exceeding the aforementioned maximum current from the generator 10 or the first battery 13 to the load 14.
  • the power supply system 1 when the power supply system 1 is in the normal state, when the output current of the DCDC converter 12 exceeds the upper limit current, the power supply system 1 is switched from the normal state to the direct power supply state and supplies power to the load 14. to continue. Therefore, even when the load 14 needs to supply a current greater than the maximum current that can flow through the DCDC converter 12, power can be continuously supplied to the load 14.
  • a current is output from the drain of the semiconductor switch 30.
  • the control unit 15 determines that the output current output from the drain of the semiconductor switch 30 is the lower limit current based on the magnitude of the current indicated by the current information input from the current sensor 16. It is judged whether it is less than.
  • the lower limit current is less than or equal to the upper limit current. For example, the upper limit current is 100A and the lower limit current is 90A.
  • control unit 15 determines that the output current output from the drain of the semiconductor switch 30 is less than the lower limit current when the power supply system 1 is in the direct power supply state, the control unit 15 sets the two semiconductor switches 20 and 30 simultaneously or substantially. At the same time, the DCDC converter 12 is started to turn off, and the output voltage of the generator 10 is returned from the temporary voltage to the normal voltage. Thereby, the power supply system 1 returns to a normal state.
  • the control unit 15 functions as a switch control unit.
  • the generator 10 When the engine is stopped, the generator 10 will not generate electricity.
  • the control unit 15 causes the DCDC converter 12 to stop the transformation and turns off the two semiconductor switches 20 and 30. Therefore, when the engine is stopped, the load 14 is supplied with power from the second battery 13 and is not supplied with power from the generator 10 and the first battery 11.
  • control unit 15 controls the current flowing between the drains of the two semiconductor switches 20 and 30 by turning on or off the two semiconductor switches 20 and 30 simultaneously or substantially simultaneously.
  • the control unit 15 and the two semiconductor switches 20 and 30 function as a current control device.
  • the source of the semiconductor switch 20 is connected to the source of the semiconductor switch 30.
  • the anode of the diode 21 is connected to the anode of the diode 31. Therefore, when the two semiconductor switches 20 and 30 are off, no current flows between the drains of the semiconductor switches 20 and 30.
  • FIG. 2 is a voltage waveform showing an example of voltage fluctuation at the drain of the semiconductor switch 20.
  • the voltage waveform in FIG. 2 shows voltage fluctuations that occur at the drain of the semiconductor switch 20 when disturbance noise is applied to the normal voltage Vn when the voltage across the first capacitor 11 is the normal voltage Vn.
  • the voltage generated at the drain of the semiconductor switch 20 rapidly increases by ⁇ Vn. To do. Thereafter, the voltage across the first capacitor 11 returns to the normal voltage Vn.
  • the voltage (Vn + ⁇ Vn) is the maximum value of the voltage at the drain of the semiconductor switch 20. For this reason, the breakdown voltage between the drain and source of the semiconductor switch 20 may be (Vn + ⁇ Vn) or more.
  • Vn + ⁇ Vn the voltage at the drain of the semiconductor switch 20 may become a voltage (Vn + ⁇ Vn).
  • the voltage at the drain of the semiconductor switch 30 varies in the same manner as the voltage at the drain of the semiconductor switch 20 when disturbance noise is added to the transformed voltage Vc when the voltage across the second capacitor 13 is the transformed voltage Vc. , ⁇ c increases rapidly. Thereafter, the voltage across the second capacitor 13 returns to the transformed voltage Vc.
  • the voltage (Vc + ⁇ Vc) is the maximum value of the voltage at the drain of the semiconductor switch 30. For this reason, the breakdown voltage between the drain and the source of the semiconductor switch 30 may be (Vc + ⁇ Vc) or more.
  • the voltage at the drain of the semiconductor switch 30 may become the voltage (Vc + ⁇ Vc) when disturbance noise is added to the transformed voltage Vc.
  • the transformed voltage Vc is less than the normal voltage Vn. For this reason, the voltage (Vc + ⁇ Vc) is less than the voltage (Vn + ⁇ Vn). Since the voltage (Vc + ⁇ Vc) is less than the voltage (Vn + ⁇ Vn), in the power supply system 1, a semiconductor switch whose breakdown voltage between the drain and the source is lower than the breakdown voltage between the drain and the source of the semiconductor switch 20 is used as the semiconductor switch 30. .
  • the voltage (Vn + ⁇ Vn) is 48 volts and the voltage (Vc + ⁇ Vc) is 24 volts.
  • a semiconductor switch having a withstand voltage between the drain and the source of 50 volts is used as the semiconductor switch 20, and a semiconductor with a withstand voltage between the drain and the source is, for example, 25 volts. Use a switch.
  • the withstand voltage between the drain and the source of the semiconductor switch 20 is a value corresponding to the voltage applied to the first capacitor 11, and the withstand voltage between the drain and the source of the semiconductor switch 30 is the second. This is a value corresponding to the voltage applied to the battery 13.
  • the on-resistance is generally higher as the breakdown voltage between the drain and source is higher. This is because, in a semiconductor switch having a high breakdown voltage between the drain and source, the channel length is secured to prevent the punch-through phenomenon, and the carrier concentration of the epitaxial layer is lowered to prevent the reach-through phenomenon. It is.
  • the two semiconductor switches 20 and 30 have different withstand voltages between the drain and the source. For this reason, the combined resistance of the on-resistances of the two semiconductor switches 20 and 30 is obtained when two semiconductor switches having a withstand voltage between the drain and the source (Vn + ⁇ Vn) are used instead of the two semiconductor switches 20 and 30. Is smaller than the combined resistance of the on-resistances of the two semiconductor switches.
  • the combined resistance of the on resistances of the two semiconductor switches 20 and 30 is small, the resistance between the other ends of the two semiconductor switches 20 and 30 is small. Therefore, in the current control device having the control unit 15 and the two semiconductor switches 20 and 30, the amount of heat generated when a current flows through the drains of the two semiconductor switches 20 and 30 is small.
  • a semiconductor switch having a low breakdown voltage between the drain and the source is generally small and inexpensive.
  • the semiconductor switch 30 is small and inexpensive because the breakdown voltage between the drain and the source is low. For this reason, the current control device having the control unit 15 and the two semiconductor switches 20 and 30 is small and manufactured at low cost.
  • the source of the semiconductor switch 20 is connected to the source of the semiconductor switch 30.
  • the drain of the semiconductor switch 20 may be connected to the drain of the semiconductor switch 30.
  • FIG. 3 is a block diagram showing a main configuration of the power supply system 1 according to the second embodiment.
  • power supply system 1 in the second embodiment is also suitably mounted on the vehicle.
  • the power supply system 1 in the second embodiment includes all the components included in the power supply system 1 in the first embodiment.
  • the generator 10, the first battery 11, the DCDC converter 12, the second battery 13, the load 14, the control unit 15, and the current sensor 16 are connected in the same manner as in the first embodiment.
  • the drain of the semiconductor switch 20 is connected to the drain of the semiconductor switch 30.
  • One end of each of the generator 10 and the DCDC converter 12 and the positive electrode of the first capacitor 11 are connected to the source of the semiconductor switch 20.
  • the source of the semiconductor switch 30 is connected to the other end of the DCDC converter 12, the positive electrode of the second capacitor 13, and one end of the load 14.
  • the two semiconductor switches 20 and 30 connect between the positive electrodes of the first capacitor 11 and the second capacitor 13.
  • the gates of the semiconductor switches 20 and 30 are connected to the control unit 15 separately.
  • the cathode and anode of the diode 21 are connected to the drain and source of the semiconductor switch 20, respectively.
  • the cathode and anode of the diode 31 are connected to the drain and source of the semiconductor switch 30, respectively. Therefore, the cathode of the diode 21 is connected to the cathode of the diode 31. For this reason, when the two semiconductor switches 20 and 30 are OFF, no current flows between the sources of the semiconductor switches 20 and 30.
  • the generator 10, the first capacitor 11, the DCDC converter 12, the second capacitor 13, the load 14, the control unit 15, and the current sensor 16 operate in the same manner as in the first embodiment. These actions can be described by replacing the drain and source of the semiconductor switch 20 and replacing the drain and source of the semiconductor switch 30 in the description of the first embodiment.
  • the semiconductor switches 20 and 30 are turned on and off by the control unit 15 in the same manner as in the first embodiment.
  • the voltage (Vn + ⁇ Vn) is the maximum value of the voltage at the source of the semiconductor switch 20. For this reason, the breakdown voltage between the drain and the source of the semiconductor switch 30 may be (Vn + ⁇ Vn) or more.
  • a voltage (Vn + ⁇ Vn) may be applied between the drain and source of the semiconductor switch 30.
  • the voltage (Vc + ⁇ Vc) is the maximum value of the voltage at the source of the semiconductor switch 30. For this reason, the breakdown voltage between the drain and the source of the semiconductor switch 20 may be (Vc + ⁇ Vc) or more.
  • a voltage (Vc + ⁇ Vc) may be applied between the drain and source of the semiconductor switch 20.
  • the transformed voltage Vc is usually less than the voltage Vn. For this reason, the voltage (Vc + ⁇ Vc) is less than the voltage (Vn + ⁇ Vn). Since the voltage (Vc + ⁇ Vc) is less than the voltage (Vn + ⁇ Vn), in the power supply system 1 in the second embodiment, as the semiconductor switch 20, the breakdown voltage between the drain and the source is lower than the breakdown voltage between the drain and the source of the semiconductor switch 30. A semiconductor switch is used.
  • the withstand voltage between the drain and the source of the semiconductor switch 20 is a value corresponding to the voltage applied to the second capacitor 13, and the withstand voltage between the drain and the source of the semiconductor switch 30 is This is a value corresponding to the voltage applied to the first battery 11.
  • the two semiconductor switches 20 and 30 have different withstand voltages between the drain and the source. The amount of heat is small. By connecting a semiconductor switch in parallel to each of the semiconductor switches 20 and 30, the amount of heat generation can be further reduced.
  • FIG. 4 is a block diagram showing a main configuration of the power supply system 4 according to the third embodiment.
  • power supply system 4 is also preferably mounted on the vehicle. Similar to the power supply system 1, the power supply system 4 includes a generator 10, a first capacitor 11, a DCDC converter 12, a second capacitor 13, a load 14, a control unit 15, a current sensor 16, and two semiconductor switches 20 and 30. These are connected in the same manner as in the first embodiment.
  • the power supply system 4 further includes M (M: natural number) semiconductor switches 40, 40,..., 40 and N (N: natural number) semiconductor switches 50, 50,. .
  • M natural number
  • N natural number
  • Each of the semiconductor switches 40 and 50 is an N-channel FET. In the following, when simply described as N, it means the number of semiconductor switches 40, not N channels.
  • a diode 41 which is a parasitic diode, is connected to each of the M semiconductor switches 40, 40,.
  • the cathode is connected to the drain of the semiconductor switch 40, and the anode is connected to the source of the semiconductor switch 40.
  • a diode 51 which is a parasitic diode, is connected to each of the N semiconductor switches 50, 50,.
  • the cathode is connected to the drain of the semiconductor switch 50, and the anode is connected to the source of the semiconductor switch 50.
  • the drain is connected to the drain of the semiconductor switch 20, and the source is connected to the source of the semiconductor switch 20.
  • the drain is connected to the drain of the semiconductor switch 30 and the source is connected to the source of the semiconductor switch 30.
  • the M semiconductor switches 40, 40,..., 40 are connected in parallel to the semiconductor switch 20, and the N semiconductor switches 50, 50,. Connected in parallel. .., 40 and N semiconductor switches 50, 50,..., 50 each function as a second semiconductor switch.
  • each of the semiconductor switches 40 and 50 when the voltage applied from the control unit 15 to the gate is equal to or higher than a certain voltage, a current can flow between the drain and the source. Further, when the voltage applied from the control unit 15 to the gate is less than a certain voltage, no current flows between the drain and the source. Therefore, each of the semiconductor switches 40 and 50 is turned on when the voltage applied to the gate is equal to or higher than a certain voltage, and is turned off when the voltage applied to the gate is less than the certain voltage.
  • the control unit 15 adjusts the voltages applied to the gates of the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50,. Control on and off.
  • the control unit 15 M semiconductor switches 40, 40,..., 40 and N semiconductor switches 50, 50,. 50 is also turned on or off simultaneously or substantially simultaneously. In other words, the control unit 15 turns on or substantially simultaneously turns on the semiconductor switches 20 and 30, the M semiconductor switches 40, 40,..., And the N semiconductor switches 50, 50,. Turn off.
  • turning on the two semiconductor switches 20 and 30 in the first embodiment means that in the third embodiment, the semiconductor switches 20 and 30, the M semiconductor switches 40, 40,. This corresponds to turning on the semiconductor switches 50, 50,.
  • turning off the two semiconductor switches 20 and 30 in the first embodiment means that in the third embodiment, the semiconductor switches 20 and 30, the M semiconductor switches 40, 40,. This corresponds to turning off the semiconductor switches 50, 50,.
  • control unit 15 turns on or off the two semiconductor switches 20 and 30 as in the first embodiment.
  • the generator 10, the first capacitor 11, the DCDC converter 12, the second capacitor 13, the load 14, and the current sensor 16 operate in the same manner as in the first embodiment.
  • the control unit 15 When the engine is operating, the control unit 15 usually adjusts the output voltage of the generator 10 to the normal voltage and causes the DCDC converter 12 to perform transformation. Further, the control unit 15 turns off the two semiconductor switches 20, 30, the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50,. . At this time, the power supply system 4 is in a normal state, and the normal state of the power supply system 4 corresponds to the normal state of the power supply system 1.
  • control unit 15 determines that the output current of the DCDC converter 12 is equal to or higher than the upper limit current when the power supply system 4 is in the normal state
  • the control unit 15 decreases the output voltage of the generator 10 from the normal voltage to the temporary voltage, and the DCDC The converter 12 stops the transformation. Further, the control unit 15 simultaneously or substantially simultaneously operates the two semiconductor switches 20 and 30, the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50,. turn on.
  • the power supply system 4 is in the direct power supply state, and the direct power supply state of the power supply system 4 corresponds to the direct power supply state of the power supply system 1.
  • the control unit 15 When the power supply system 4 is in a normal state and when the power supply system 4 is in a direct power supply state, the control unit 15 performs the same processing as in the first embodiment. Regarding the processing of the control unit 15 in the third embodiment, not only the semiconductor switches 20 and 30, but also the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50,.
  • the second embodiment is different from the first embodiment in that it is turned on or off simultaneously or substantially simultaneously.
  • the generator 10 When the engine is stopped, the generator 10 will not generate electricity.
  • the control unit 15 causes the DCDC converter 12 to stop the transformation, so that two semiconductor switches 20, 30, M semiconductor switches 40, 40,..., 40 and N semiconductor switches 50, 50,..., 50 are turned off. Therefore, when the engine is stopped, the load 14 is fed by the second battery 13 and is not fed by the generator 10 and the first battery 11.
  • the anodes of the diodes 21, 41, 41,..., 41 are connected to the anodes of the diodes 31, 51, 51,. Therefore, when the two semiconductor switches 20, 30, the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50,. No current flows between the 30 drains.
  • the voltage (Vn + ⁇ Vn) is the maximum value of the voltage at the drains of the semiconductor switch 20 and the M semiconductor switches 40, 40,. Therefore, the withstand voltage between the drains and the sources of the M semiconductor switches 40, 40,..., 40 may be (Vn + ⁇ Vn) or more.
  • the breakdown voltage between the drain and the source in each of the M semiconductor switches 40, 40,..., 40 is that of the semiconductor switch 20 connected in parallel to each of the M semiconductor switches 40, 40,.
  • the breakdown voltage between the drain and the source is the same or substantially the same.
  • the voltage (Vc + ⁇ Vc) is the maximum value of the voltage at the drains of the semiconductor switch 30 and the N semiconductor switches 50, 50,. Therefore, the breakdown voltage between the drains and the sources of the N semiconductor switches 50, 50,..., 50 may be (Vc + ⁇ Vc) or more.
  • the breakdown voltage between the drain and the source in each of the N semiconductor switches 50, 50,... 50 is that of the semiconductor switch 20 connected in parallel to each of the N semiconductor switches 50, 50,.
  • the breakdown voltage between the drain and the source is the same or substantially the same.
  • the control unit 15, the two semiconductor switches 20, 30, the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50,. Functions as a control device. Even in this current control device, the withstand voltages between the drain and the source in each of the two semiconductor switches 20 and 30 are different. For this reason, the current control device in the third embodiment also has the same effect as in the first embodiment.
  • the combined resistance of the on-resistance of the semiconductor switch 20 and the M semiconductor switches 40, 40,..., 40 is smaller than the on-resistance of the semiconductor switch 20.
  • the combined resistance of the on-resistance of the semiconductor switch 30 and the N semiconductor switches 50, 50,... 50 is smaller than the on-resistance of the semiconductor switch 30. Therefore, when the two semiconductor switches 20, 30, the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50,.
  • the resistance between the drains of the switches 20 and 30 is smaller than the resistance between the drains of the two semiconductor switches 20 and 30 in the first embodiment. Therefore, the amount of heat generated in the current control device in the third embodiment is smaller than the amount of heat generated in the current control device in the first embodiment.
  • the on-resistance is higher as the withstand voltage between the drain and the source is higher. Therefore, the ON resistances of the semiconductor switch 20 and the M semiconductor switches 40, 40,..., 40 are higher than the ON resistances of the semiconductor switch 30 and the N semiconductor switches 50, 50,. large.
  • the width of the resistance that is lowered by connecting the semiconductor switch 40 to the semiconductor switch 20 in parallel can be reduced by connecting the semiconductor switch 50 to the semiconductor switch 30 in parallel. It is larger than the width of the decreasing resistance.
  • the on-resistance of each of the semiconductor switches 20 and 40 is 10 ohms
  • the combined resistance of the on-resistances of the semiconductor switches 20 and 40 is 5 ohms. Therefore, by connecting the semiconductor switch 40 to the semiconductor switch 20 in parallel, the resistance between the drains of the semiconductor switches 20 and 30 is reduced by 5 ohms.
  • the on-resistance of each of the semiconductor switches 30 and 50 is 6 ohms
  • the combined resistance of the on-resistances of the semiconductor switches 30 and 50 is 3 ohms. Therefore, by connecting the semiconductor switch 50 to the semiconductor switch 30 in parallel, the resistance between the drains of the semiconductor switches 20 and 30 is reduced by 3 ohms.
  • a semiconductor switch having a low breakdown voltage between the drain and the source is generally inexpensive.
  • the number M of semiconductor switches 40 connected in parallel to the semiconductor switch 20 is different from the number N of semiconductor switches 50 connected in parallel to the semiconductor switch 30.
  • N is larger than M
  • the two semiconductor switches 20, 30, the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50 When N is larger than M, the two semiconductor switches 20, 30, the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50,.
  • the number M of semiconductor switches 40 connected in parallel to the semiconductor switch 20 may be the same as the number N of semiconductor switches 50 connected in parallel to the semiconductor switch 30. Even in this case, the two semiconductor switches 20, 30, the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50,. A current control device in which the resistance between the other ends of the two semiconductor switches 20 and 30 is smaller than that of the current control device in the first embodiment is realized.
  • the source of the semiconductor switch 20 is connected to the source of the semiconductor switch 30.
  • the drain of the semiconductor switch 20 may be connected to the drain of the semiconductor switch 30.
  • FIG. 5 is a block diagram showing a main configuration of the power supply system 4 according to the fourth embodiment.
  • power supply system 4 in the fourth embodiment is also suitably mounted on the vehicle.
  • the power supply system 4 in the fourth embodiment includes all components included in the power supply system 4 in the third embodiment.
  • the generator 10, the first battery 11, the DCDC converter 12, the second battery 13, the load 14, the control unit 15, and the current sensor 16 are connected in the same manner as in the third embodiment.
  • the drain of the semiconductor switch 20 is connected to the drain of the semiconductor switch 30.
  • One end of each of the generator 10 and the DCDC converter 12 and the positive electrode of the first capacitor 11 are connected to the source of the semiconductor switch 20.
  • the source of the semiconductor switch 30 is connected to the other end of the DCDC converter 12, the positive electrode of the second capacitor 13, and one end of the load 14.
  • the two semiconductor switches 20 and 30 connect between the positive electrodes of the first capacitor 11 and the second capacitor 13.
  • the gates of the semiconductor switches 20 and 30 are connected to the control unit 15 separately.
  • the drain and the source are connected to the drain and the source of the semiconductor switch 20, respectively.
  • the drain and the source are connected to the drain and the source of the semiconductor switch 30.
  • the cathode and anode of the diode 21 are connected to the drain and source of the semiconductor switch 20, respectively.
  • the connection relationship between the diode 31 and the semiconductor switch 30, the connection relationship between the diode 41 and the semiconductor switch 40, and the connection relationship between the diode 51 and the semiconductor switch 50 are the same as the connection relationship between the diode 21 and the semiconductor switch 20, respectively.
  • the cathodes of the diodes 21, 41, 41,..., 41 are connected to the cathodes of the diodes 31, 51, 51,. Therefore, in the case where the two semiconductor switches 20, 30, the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50,. , 30 no current flows between the sources.
  • the generator 10, the first capacitor 11, the DCDC converter 12, the second capacitor 13, the load 14, the control unit 15, and the current sensor 16 operate in the same manner as in the third embodiment.
  • the drain and source of the semiconductor switch 20 are replaced, the drain and source of the semiconductor switch 30 are replaced, the drain and source of the semiconductor switch 40 are replaced, and the drain and source of the semiconductor switch 50 are replaced. Swap the source.
  • the withstand voltage between the drain and the source of the semiconductor switch 30 may be (Vn + ⁇ Vn) or more, and the withstand voltage between the drain and the source of the semiconductor switch 20 is (Vc + ⁇ Vc) or more. Good. Therefore, in the power supply system 4 in the fourth embodiment, as the semiconductor switch 20, a semiconductor switch whose breakdown voltage between the drain and the source is lower than the breakdown voltage between the drain and the source of the semiconductor switch 30 is used.
  • the breakdown voltage between the drain and the source of each of the M semiconductor switches 40, 40,..., 40 is the same as or substantially the same as the breakdown voltage between the drain and the source of the semiconductor switch 20. Further, the breakdown voltage between the drain and the source in each of the N semiconductor switches 50, 50,... 50 is the same as or substantially the same as the breakdown voltage between the drain and the source of the semiconductor switch 20.
  • control unit 15 Functions as a control device.
  • This current control device has the same characteristics as in the third embodiment.
  • the breakdown voltages between the drains and the sources of the two semiconductor switches 20 and 30 are different from each other. Further, M semiconductor switches 40, 40,..., 40 are connected in parallel to the semiconductor switch 20, and N semiconductor switches 50, 50,. It is connected to the. The number M of semiconductor switches 40 is different from the number N of semiconductor switches 50. Therefore, the current control device in the fourth embodiment has the same effect as the current control device in the third embodiment.
  • the breakdown voltage between the drain and the source of the semiconductor switch 20 is lower than the breakdown voltage between the drain and the source of the semiconductor switch 30. Accordingly, regarding the resistance between the sources of the semiconductor switches 20 and 30, the resistance reduction width that is lowered by connecting the semiconductor switch 50 to the semiconductor switch 30 in parallel is lowered by connecting the semiconductor switch 40 to the semiconductor switch 20 in parallel. Greater than the resistance drop.
  • the current control device according to the fourth embodiment has the effect of the current control device according to the third embodiment when N is larger than M.
  • the current control device according to the fourth embodiment has the effect of the current control device according to the third embodiment when M is larger than N.
  • the number M of semiconductor switches 40 connected in parallel to the semiconductor switch 20 may be the same as the number N of semiconductor switches 50 connected in parallel to the semiconductor switch 30. Even in this case, the two semiconductor switches 20, 30, the M semiconductor switches 40, 40,..., 40 and the N semiconductor switches 50, 50,. Thus, a current control device in which the resistance between the other ends of the two semiconductor switches 20 and 30 is smaller than that of the current control device in the second embodiment is realized.
  • each of the semiconductor switches 20, 30, 40, and 50 is not limited to an N-channel FET, and may be a P-channel FET, for example.
  • the control unit 15 turns on the semiconductor switches 20, 30, 40, and 50 by adjusting the voltage applied to the gate below a certain voltage, and adjusts the voltage applied to the gate to a certain voltage or higher. As a result, the semiconductor switches 20, 30, 40, and 50 are turned off.
  • the cathode of the diode 21 is connected to the source of the semiconductor switch 20 and the anode of the diode 21 is connected to the drain of the semiconductor switch 20.
  • the connection relationship between the semiconductor switch 30 and the diode 31, the connection relationship between the semiconductor switch 40 and the diode 41, and the connection relationship between the semiconductor switch 50 and the diode 51 are the same as the connection relationship between the semiconductor switch 20 and the diode 21, respectively.
  • the breakdown voltage between the drain and source of the semiconductor switches 20, 40 is the same as that of the semiconductor switches 20, 30, 40.
  • 50 is a breakdown voltage between the drain and source of the semiconductor switches 30 and 50 when the FET is an N-channel FET.
  • the breakdown voltage between the drains and the sources of the semiconductor switches 30, 50 is such that the semiconductor switches 20, 30, 40, 50 are N-channel FETs. Is the breakdown voltage between the drain and source of the semiconductor switches 20 and 40.
  • the effect that the current control device has when M is larger than N is that the semiconductor switches 20, 30 , 40, 50 are N-channel FETs, and the current control device has an effect when N is larger than M.
  • the semiconductor switches 20, 30, 40, 50 are P-channel type FETs
  • the effect that the current control device exhibits when N is larger than M is that the semiconductor switches 20, 30, 40, 50 are N-channel type FETs. This is an effect of the current control device when M is larger than N in the case of the FET.
  • the number M of semiconductor switches 40 or the number N of semiconductor switches 50 may be zero. Even when the number M of the semiconductor switches 40 is zero, since the N semiconductor switches 50 are connected to the semiconductor switch 30 in parallel, the resistance between the drains of the semiconductor switches 20 and 30 is small. Similarly, even when the number N of semiconductor switches 50 is zero, the resistance between the drains of the semiconductor switches 20 and 30 is small because M semiconductor switches 40 are connected to the semiconductor switch 20 in parallel. .
  • the configuration of the DCDC converter 12 is not limited to a configuration that steps down the voltage applied to one end, and may be a configuration that steps up the voltage applied to one end. In this case, the normal voltage is lower than the transformed voltage.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electronic Switches (AREA)

Abstract

 電源システム1が備える制御部15及び半導体スイッチ20,30は電流制御装置として機能する。半導体スイッチ20のソースが半導体スイッチ30のソースに接続されている。2つの半導体スイッチ20,30は第1蓄電器11及び第2蓄電器13夫々の正極間を接続する。制御部15は、2つの半導体スイッチ20,30を略同時にオン又はオフにすることによって、2つの半導体スイッチ20,30のドレイン間を流れる電流を制御する。2つの半導体スイッチ20,30夫々のドレイン及びソース間の耐圧は互いに異なっている。

Description

電流制御装置及び電源システム
 本発明は、一端が互いに接続されている2つの半導体スイッチを略同時にオン又はオフにすることによって、2つの半導体スイッチの他端間に流れる電流を制御する電流制御装置、及び、該電流制御装置を備える電源システムに関する。
 車両には、バッテリが負荷に給電する電源システムが搭載されている。バッテリが負荷に給電する電源システムの中には、夫々の一端が互いに接続された2つの半導体スイッチを備える電源システムがある。この電源システムでは、一方の半導体スイッチの他端がバッテリの正極に接続され、他方の半導体スイッチの他端が負荷の一端にされている。そして、2つの半導体スイッチを略同時にオン又はオフにすることによって、バッテリから負荷へ流れる電流を制御する。
 特許文献1には、夫々の一端が互いに接続された2つの半導体スイッチを略同時にオン又はオフにすることによって、2つの半導体スイッチ夫々の他端間を流れる電流を制御する電流制御装置が開示されている。特許文献1に記載の電流制御装置は、2つのNチャネル型のFET(Field Effect Transistor)を備え、2つのFET夫々は半導体スイッチとして機能する。
 2つのFETに関して、一方のFETのソースが他方のFETのソースに接続されている。2つのFET夫々のゲートに共通の電圧が印加される。2つのFET夫々のゲートに印加されている電圧を調整することによって、2つのFETを略同時にオン又はオフにする。これにより、2つのFET夫々のドレインを介して流れる電流が制御される。
特開2014-49686号公報
 2つの半導体スイッチを介して電流が流れた場合、2つの半導体スイッチ夫々から熱が発生する。一端が互いに接続されている2つの半導体スイッチを備える電流制御装置から発生する熱の量は、2つの半導体スイッチの他端間の抵抗、即ち、2つの半導体スイッチのオン抵抗の合成抵抗が大きい程大きく、2つの半導体スイッチを介して流れる電流の値が大きい程大きい。2つの半導体スイッチで大きな熱が発生した場合、2つの半導体スイッチの他端間が短絡する虞がある。
 現在、車両には、バッテリによって給電される多数の負荷が搭載されており、2つの半導体スイッチを介して大電流を多数の負荷に供給する必要がある。そこで、2つの半導体スイッチ夫々を略同時にオン又はオフにすることによって電流を制御する電流制御装置として、大電流が2つの半導体スイッチに流れた場合であっても発熱量が小さい電流制御装置が求められている。
 発熱量が小さい電流制御装置として、オン抵抗が小さい2つの半導体スイッチを備える電流制御装置が考えられる。
 しかしながら、両端間の耐圧が同じである半導体スイッチに関して、オン抵抗が小さい半導体スイッチのサイズは一般的に大きい。このため、両端間の耐圧が同一であってオン抵抗が小さい2つの半導体スイッチを備える電流制御装置は、大型であるため、空間が限定的である車両に搭載する電流制御装置として適していない。
 また、大型の半導体スイッチは高価であるため、オン抵抗が小さい2つの半導体スイッチを備える電流制御装置には製造費用が嵩むという問題もある。
 本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、発熱量が小さくて安価に製造することができる小型の電流制御装置、及び、該電流制御装置を備える電源システムを提供することにある。
 本発明に係る電流制御装置は、一端が互いに接続されている2つの半導体スイッチを略同時にオン又はオフにするスイッチ制御部を備え、該スイッチ制御部が前記2つの半導体スイッチをオン又はオフにすることによって前記2つの半導体スイッチの他端間を流れる電流を制御する電流制御装置において、該2つの半導体スイッチ夫々の両端間の耐圧は互いに異なっており、該2つの半導体スイッチは2つの蓄電器夫々の一端間を接続することを特徴とする。
 本発明にあっては、2つの半導体スイッチ夫々の一端は互いに接続されている。2つの半導体スイッチの一方の他端に1つの蓄電器の一端が接続され、2つの半導体スイッチの他方の他端にもう1つの蓄電器の一端が接続される。半導体スイッチがFETである場合、例えば、一方の半導体スイッチのソースが他方の半導体スイッチのソースに接続されている。2つの半導体スイッチを略同時にオン又はオフにすることによって、2つの半導体スイッチを介して流れる電流を制御する。
 2つの半導体スイッチ夫々の両端間の耐圧は異なっている。半導体スイッチのオン抵抗は、一般的に、耐圧が高い程大きい。従って、2つの半導体スイッチに関して、両端間の耐圧が異なるため、2つの半導体スイッチのオン抵抗の合成抵抗は小さい。これにより、2つの半導体スイッチ夫々の他端を介して電流が流れた場合に発生する熱の量は小さい。また、両端間の耐圧が低い半導体スイッチは、小型であり、安価である。このため、装置は小型であり、安価に製造される。
 本発明に係る電流制御装置は、前記2つの半導体スイッチのいずれかに並列に接続されている一又は複数の第2の半導体スイッチを備え、該一又は複数の第2の半導体スイッチ夫々は、並列に接続されている前記半導体スイッチと略同じ耐圧を有し、前記スイッチ制御部は、前記2つの半導体スイッチと、前記一又は複数の第2の半導体スイッチとを略同時にオン又はオフにすることを特徴とする。
 本発明にあっては、2つの半導体スイッチのいずれかに、一又は複数の第2の半導体スイッチが並列に接続されている。並列に接続されている半導体スイッチ、及び、第2の半導体スイッチ夫々の両端間の耐圧は略同じである。2つの半導体スイッチと、一又は複数の第2の半導体スイッチとを略同時にオン又はオフにすることによって、2つの半導体スイッチの他端間を流れる電流を制御する。
 半導体スイッチに第2の半導体スイッチが並列に接続された場合、半導体スイッチの両端間の抵抗、即ち、半導体スイッチ及び第2の半導体スイッチ夫々のオン抵抗の合成抵抗は、半導体スイッチのオン抵抗よりも小さい。更に、半導体スイッチの両端間の抵抗は、並列に接続されている第2の半導体スイッチの数が多い程小さい。当然のことながら、半導体スイッチの両端間の抵抗が小さい場合、2つの半導体スイッチの他端間の抵抗も小さい。このため、2つの半導体スイッチ及び一又は複数の第2の半導体スイッチがオンである場合において、2つの半導体スイッチ夫々の他端間の抵抗がより小さく、装置の発熱量がより小さい。
 本発明に係る電流制御装置は、前記2つの半導体スイッチ中の一方の半導体スイッチに並列に接続されている前記第2の半導体スイッチの数は、他方の半導体スイッチに並列に接続されている前記第2の半導体スイッチの数と異なっていることを特徴とする。
 本発明にあっては、例えば、2つの半導体スイッチの中で、両端間の耐圧が高い半導体スイッチに、両端間の耐圧が低い半導体スイッチに並列に接続されている第2の半導体スイッチの数よりも多い第2の半導体スイッチを並列に接続する。通常、両端間の耐圧が高い半導体スイッチのオン抵抗は大きい。また、オン抵抗が高い半導体スイッチに第2の半導体スイッチを並列に接続した場合における抵抗の下げ幅は、オン抵抗が低い半導体スイッチに第2の半導体スイッチを並列に接続した場合における抵抗の下げ幅よりも大きい。従って、両端間の耐圧が高い半導体スイッチに、多くの第2の半導体スイッチを並列に接続した場合、2つの半導体スイッチ及び一又は複数の半導体スイッチがオンである状態での2つの半導体スイッチ夫々の他端間の抵抗が格段に小さい装置が実現される。
 また、例えば、2つの半導体スイッチの中で、両端間の耐圧が低い半導体スイッチに、両端間の耐圧が高い半導体スイッチに並列に接続されている第2の半導体スイッチの数よりも多い第2の半導体スイッチを並列に接続する。両端間の耐圧が低い半導体スイッチは一般的に安価である。従って、両端間の耐圧が低い半導体スイッチに、多くの第2の半導体スイッチを並列に接続した場合、2つの半導体スイッチ及び一又は複数の半導体スイッチがオンである状態での2つの半導体スイッチ夫々の他端間の抵抗が更に小さい装置が安価に実現される。
 本発明に係る電源システムは、前述した電流制御装置と、前記2つの蓄電器と、該2つの蓄電器によって給電される負荷とを備え、前記2つの蓄電器夫々には異なる電圧が印加されることを特徴とする。
 本発明にあっては、2つの半導体スイッチの一方の他端に一端が接続されている1つの蓄電器と、2つの半導体スイッチの他方の他端に一端が接続されているもう1つの蓄電器とによって、負荷は給電される。2つの半導体スイッチを略同時にオン又はオフにすることによって、2つの半導体スイッチの他端間に流れる電流を制御する。蓄電が行われる場合に2つの蓄電器夫々に印加される電圧は異なっており、2つの半導体スイッチ夫々の両端間の耐圧は、2つの蓄電器夫々に印加される電圧に応じた値である。
 本発明によれば、発熱量が小さくて安価に製造することができる小型の電流制御装置を実現することができ、更に、該電流制御装置を備える電源システムも実現することができる。
実施の形態1における電源システムの要部構成を示すブロック図である。 半導体スイッチのドレインにおける電圧変動の一例を示す電圧波形である。 実施の形態2における電源システムの要部構成を示すブロック図である。 実施の形態3における電源システムの要部構成を示すブロック図である。 実施の形態4における電源システムの要部構成を示すブロック図である。
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
(実施の形態1)
 図1は実施の形態1における電源システム1の要部構成を示すブロック図である。電源システム1は、好適に車両に搭載されており、発電機10、第1蓄電器11、DCDCコンバータ12、第2蓄電器13、負荷14、制御部15、電流センサ16及び2つの半導体スイッチ20,30を備える。
 2つの半導体スイッチ20,30夫々はNチャネル型のFET(Field Effect Transistor)である。ダイオード21,31夫々は半導体スイッチ20,30の寄生ダイオードである。ダイオード21に関して、カソードは半導体スイッチ20のドレインに接続されており、アノードは半導体スイッチ20のソースに接続されている。また、ダイオード31に関して、カソードは半導体スイッチ30のドレインに接続されており、アノードは半導体スイッチ30のソースに接続されている。
 半導体スイッチ20のソースは半導体スイッチ30のソースに接続されている。半導体スイッチ20のドレインには、発電機10及びDCDCコンバータ12夫々の一端と、第1蓄電器11の正極とが接続されている。半導体スイッチ30のドレインには、DCDCコンバータ12の他端と、第2蓄電器13の正極と、負荷14の一端とが接続されている。このように、2つの半導体スイッチ20,30は第1蓄電器11及び第2蓄電器13夫々の正極間を接続する。発電機10及び負荷14夫々の他端と、第1蓄電器11及び第2蓄電器13夫々の負極とは接地されている。半導体スイッチ20,30のゲートは各別に制御部15に接続されている。制御部15は更に電流センサ16に接続されている。
 半導体スイッチ20,30夫々に関して、制御部15からゲートに印加されている電圧が一定電圧以上である場合、ドレイン及びソース間に電流が流れることが可能である。また、制御部15からゲートに印加されている電圧が一定電圧未満である場合、ドレイン及びソース間に電流が流れることはない。
 従って、半導体スイッチ20,30夫々は、ゲートに印加されている電圧が一定電圧以上である場合にオンであり、ゲートに印加されている電圧が一定電圧未満である場合にオフである。
 発電機10は、車両に搭載されている図示しないエンジンに連動して交流電力を発生させる。発電機10は、発生させた交流電力を直流電力に整流し、整流した直流電力に係る直流電圧を、出力電圧としてDCDCコンバータ12の一端に出力する。また、発電機10は、出力電圧を第1蓄電器11に印加する。
 発電機10には、出力電圧の低下を指示する低下指示が制御部15から入力される。発電機10は、低下指示が入力された場合、通常、出力している出力電圧よりも低い出力電圧を出力する。以下では、発電機10が、通常、出力する出力電圧を通常電圧と記載し、低下指示が入力された発電機10が臨時に出力する出力電圧を臨時電圧と記載する。通常電圧及び臨時電圧夫々は一定である。
 発電機10には、出力電圧の低下の解除を指示する解除指示が制御部15から更に入力される。発電機10は、解除指示が入力された場合、出力電圧を、臨時電圧から通常電圧に戻す。
 第1蓄電器11は例えば、キャパシタである。発電機10の出力電圧が第1蓄電器11に印加された場合、第1蓄電器11は蓄電する。発電機10が発電していない場合、第1蓄電器11は出力電圧をDCDCコンバータ12の一端に出力する。
 DCDCコンバータ12は、発電機10又は第1蓄電器11が出力した出力電圧を変圧する。DCDCコンバータ12が変圧した変圧電圧はDCDCコンバータ12から第2蓄電器13及び負荷14に印加される。
 DCDCコンバータ12には、変圧の開始を指示する開始指示と、変圧の停止を指示する停止指示とが制御部15から入力される。DCDCコンバータ12は、制御部15から開始指示が入力された場合、前述した変圧を開始する。また、DCDCコンバータ12は、停止指示が入力された場合、変圧を停止する。DCDCコンバータ12を介して流れる電流は制限されている。
 第2蓄電器13は例えば鉛蓄電池である。負荷14は車両に搭載される電気機器である。
 2つの半導体スイッチ20,30がオフであってDCDCコンバータ12が変圧を行っている場合、第2蓄電器13及び負荷14夫々に、DCDCコンバータ12から変圧電圧が印加される。これにより、第2蓄電器13は蓄電し、負荷14は給電される。
 また、2つの半導体スイッチ20,30がオンであってDCDCコンバータ12が変圧を停止している場合において、発電機10が発電しているとき、発電機10は、出力電圧を、2つの半導体スイッチ20,30を介して、第2蓄電器13及び負荷14に印加する。同様の場合において、発電機10が発電していないとき、第1蓄電器13は、出力電圧を、2つの半導体スイッチ20,30を介して、第2蓄電器13及び負荷14に印加する。発電機10又は第1蓄電器11が出力した出力電圧の印加により、第2蓄電器13は蓄電し、負荷14は給電される。
 2つの半導体スイッチ20,30がオフであってDCDCコンバータ12が変圧を停止している場合、第2蓄電器13は負荷14に出力電圧を印加する。これにより、負荷14は給電される。
 電流センサ16は、DCDCコンバータ12の他端、又は、半導体スイッチ30のドレインから出力される出力電流を検出し、検出した電流の大きさを示す電流情報を制御部15に出力する。
 制御部15は、CPU(Central Processing Unit)を有し、図示しないROM(Read Only Memory)に記憶してある制御プログラムを実行することによって処理を実行する。制御部15は、電流センサ16から入力された電流情報が示す電流の大きさに基づいて、発電機10の出力電圧の調整と、DCDCコンバータ12の作動及び停止と、半導体スイッチ20,30夫々のオン及びオフとを制御する。
 制御部15は、発電機10に低下指示及び解除指示を出力することによって発電機10の出力電圧を通常電圧又は臨時電圧に調整する。また、制御部15は、DCDCコンバータ12に開始指示及び停止指示を出力することによって、DCDCコンバータ12の作動及び停止を制御する。更に、制御部15は、半導体スイッチ20,30夫々のゲートに印加されている電圧を調整することによって半導体スイッチ20,30夫々のオン及びオフを制御する。
 エンジンが作動している場合において、制御部15は、通常、発電機10の出力電圧を通常電圧に調整し、DCDCコンバータ12に変圧を行わせ、2つの半導体スイッチ20,30をオフにしている。このときの電源システム1の状態を以下では通常状態と記載する。
 電源システム1が通常状態である場合、発電機10は通常電圧を出力し、DCDCコンバータ12から変圧電圧が第2蓄電器13及び負荷14に印加される。このとき、第1蓄電器11には発電機10から通常電圧が印加されて第1蓄電器11は蓄電し、第2蓄電器13にはDCDCコンバータ12から変圧電圧が印加されて第2蓄電器13は蓄電する。通常電圧は変圧電圧と異なっている。具体的には、通常電圧は変圧電圧よりも高い。通常電圧は例えば24ボルトであり、変圧電圧は例えば12ボルトである。
 電源システム1が通常状態である場合、DCDCコンバータ12の他端から電流が出力されている。電源システム1が通常状態である場合において、制御部15は、電流センサ16から入力される電流情報が示す電流の大きさに基づいて、DCDCコンバータ12の出力電流が上限電流以上であるか否かを判定する。
 上限電流は、DCDCコンバータ12を介して流れることが可能な最大電流以下である。
 制御部15は、電源システム1が通常状態である場合において、DCDCコンバータ12の出力電流が上限電流以上であると判定したとき、発電機10の出力電圧を通常電圧から臨時電圧に低下させ、DCDCコンバータ12に変圧を停止させ、2つの半導体スイッチ20,30を同時又は略同時にオンにする。このときの電源システム1の状態を以下では直接給電状態と記載する。
 電源システム1が直接給電状態である場合、第2蓄電器13及び負荷14夫々は、2つの半導体スイッチ20,30夫々のドレインを介して、発電機10又は第1蓄電器13によって直接に給電される。具体的には、発電機10が発電している場合、発電機10から第2蓄電器13及び負荷14に臨時電圧が印加される。これにより、第2蓄電器13は蓄電し、負荷14は給電される。発電機10が発電していない場合、第1蓄電器13から出力電圧が第2蓄電器13及び負荷14に印加される。これにより、第2蓄電器13は蓄電し、負荷14は給電される。
 電源システム1が直接給電状態である場合、発電機10又は第1蓄電器13から負荷14に前述した最大電流を超える電流を供給することが可能である。
 以上のように、電源システム1が通常状態である場合において、DCDCコンバータ12の出力電流が上限電流以上となったとき、電源システム1は通常状態から直接給電状態に切替わり、負荷14に給電し続ける。従って、負荷14が、DCDCコンバータ12を介して流れることが可能な最大電流以上の電流の供給を必要とする場合であっても、負荷14に給電し続けることができる。
 電源システム1が直接給電状態である場合、半導体スイッチ30のドレインから電流が出力されている。電源システム1が直接給電状態である場合において、制御部15は、電流センサ16から入力される電流情報が示す電流の大きさに基づいて、半導体スイッチ30のドレインから出力される出力電流が下限電流未満であるか否かを判定する。下限電流は上限電流以下である。例えば、上限電流は100Aであり、下限電流は90Aである。
 制御部15は、電源システム1が直接給電状態である場合において、半導体スイッチ30のドレインから出力される出力電流が下限電流未満であると判定したとき、2つの半導体スイッチ20,30を同時又は略同時にオフにし、DCDCコンバータ12に変圧を開始させ、発電機10の出力電圧を臨時電圧から通常電圧に戻す。これにより、電源システム1は通常状態に戻る。
 制御部15はスイッチ制御部として機能する。
 エンジンが停止している場合、発電機10が発電することはない。エンジンが停止した場合、制御部15は、DCDCコンバータ12に変圧を停止させ、2つの半導体スイッチ20,30をオフにする。従って、エンジンが停止している場合、負荷14は、第2蓄電器13から給電され、発電機10及び第1蓄電器11から給電されることはない。
 以上のように、制御部15は、2つの半導体スイッチ20,30を同時又は略同時にオン又はオフすることによって、2つの半導体スイッチ20,30のドレイン間を流れる電流を制御する。制御部15及び2つの半導体スイッチ20,30は電流制御装置として機能する。
 また、前述したように、半導体スイッチ20のソースは半導体スイッチ30のソースに接続されている。このため、ダイオード21のアノードがダイオード31のアノードに接続されている。従って、2つの半導体スイッチ20,30がオフである場合において、半導体スイッチ20,30のドレイン間を電流が流れることはない。
 図2は半導体スイッチ20のドレインにおける電圧変動の一例を示す電圧波形である。図2の電圧波形は、第1蓄電器11の両端間の電圧が通常電圧Vnである場合において、外乱ノイズが通常電圧Vnに加わったときに半導体スイッチ20のドレインで生じる電圧変動を示している。図2に示すように、第1蓄電器11の両端間の電圧が通常電圧Vnである場合において、外乱ノイズが通常電圧Vnに加わったとき、半導体スイッチ20のドレインで生じる電圧がΔVnだけ急激に上昇する。その後、第1蓄電器11の両端間の電圧は通常電圧Vnに戻る。
 電圧(Vn+ΔVn)は、半導体スイッチ20のドレインにおける電圧の最大値である。このため、半導体スイッチ20のドレイン及びソース間の耐圧は、(Vn+ΔVn)以上であればよい。
 電源システム1が通常状態である場合において、外乱ノイズが通常電圧Vnに加わったときに、半導体スイッチ20のドレインにおける電圧が電圧(Vn+ΔVn)となる可能性がある。
 半導体スイッチ30のドレインにおける電圧は、第2蓄電器13の両端間の電圧が変圧電圧Vcである場合において、外乱ノイズが変圧電圧Vcに加わったとき、半導体スイッチ20のドレインにおける電圧と同様に変動し、ΔVcだけ急激に上昇する。その後、第2蓄電器13の両端間の電圧は変圧電圧Vcに戻る。
 電圧(Vc+ΔVc)は、半導体スイッチ30のドレインにおける電圧の最大値である。このため、半導体スイッチ30のドレイン及びソース間の耐圧は、(Vc+ΔVc)以上であればよい。
 電源システム1が通常状態である場合において、外乱ノイズが変圧電圧Vcに加わったときに、半導体スイッチ30のドレインにおける電圧が電圧(Vc+ΔVc)となる可能性がある。
 前述したように、変圧電圧Vcは通常電圧Vn未満である。このため、電圧(Vc+ΔVc)は電圧(Vn+ΔVn)未満である。電圧(Vc+ΔVc)は電圧(Vn+ΔVn)未満であるので、電源システム1では、半導体スイッチ30として、ドレイン及びソース間の耐圧が、半導体スイッチ20のドレイン及びソース間の耐圧よりも低い半導体スイッチが用いられる。
 例えば、電圧(Vn+ΔVn)は48ボルトであり、電圧(Vc+ΔVc)は24ボルトである。このとき、電源システム1では、半導体スイッチ20として、例えば、ドレイン及びソース間の耐圧が50ボルトである半導体スイッチを用い、半導体スイッチ30として、例えば、ドレイン及びソース間の耐圧が25ボルトである半導体スイッチを用いる。
 以上のように、電源システム1では、半導体スイッチ20のドレイン及びソース間の耐圧は第1蓄電器11に印加される電圧に応じた値であり、半導体スイッチ30のドレイン及びソース間の耐圧は第2蓄電器13に印加される電圧に応じた値である。
 半導体スイッチ、特に、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)に関して、オン抵抗は、一般的にドレイン及びソース間の耐圧が高い程大きい。これは、ドレイン及びソース間の耐圧が高い半導体スイッチでは、パンチスルー現象を防止するためにチャネル長が確保されており、リーチスルー現象を防止するためにエピタキシャル層のキャリア濃度を低くしているためである。
 前述したように、2つの半導体スイッチ20,30に関して、ドレイン及びソース間の耐圧が異なっている。このため、2つの半導体スイッチ20,30のオン抵抗の合成抵抗は、2つの半導体スイッチ20,30の代わりに、ドレイン及びソース間の耐圧が(Vn+ΔVn)である2つの半導体スイッチが用いられた場合における該2つの半導体スイッチのオン抵抗の合成抵抗よりも小さい。2つの半導体スイッチ20,30のオン抵抗の合成抵抗が小さい場合、2つの半導体スイッチ20,30の他端間の抵抗が小さい。従って、制御部15及び2つの半導体スイッチ20,30を有する電流制御装置においては、2つの半導体スイッチ20,30夫々のドレインを介して電流が流れた場合に発生する熱の量は小さい。
 また、ドレイン及びソース間の耐圧が低い半導体スイッチは、一般的に、小型であり、安価である。半導体スイッチ30は、ドレイン及びソース間の耐圧が低いので、小型であり、安価である。このため、制御部15及び2つの半導体スイッチ20,30を有する電流制御装置は小型であり、安価に製造される。
(実施の形態2)
 実施の形態1においては、半導体スイッチ20のソースが半導体スイッチ30のソースに接続されている。しかしながら、半導体スイッチ20のドレインが半導体スイッチ30のドレインに接続されていてもよい。
 以下では、実施の形態2について実施の形態1と異なる点を説明する。後述する構成を除く他の構成については実施の形態1と同様であるため、同様の符号を付してその詳細な説明を省略する。
 図3は実施の形態2における電源システム1の要部構成を示すブロック図である。実施の形態2における電源システム1も、実施の形態1における電源システム1と同様に好適に車両に搭載されている。実施の形態2における電源システム1は、実施の形態1における電源システム1が備える全ての構成部を備える。実施の形態2において、発電機10、第1蓄電器11、DCDCコンバータ12、第2蓄電器13、負荷14、制御部15及び電流センサ16夫々は実施の形態1と同様に接続されている。
 半導体スイッチ20のドレインは、半導体スイッチ30のドレインに接続されている。半導体スイッチ20のソースには、発電機10及びDCDCコンバータ12夫々の一端と、第1蓄電器11の正極とが接続されている。半導体スイッチ30のソースには、DCDCコンバータ12の他端と、第2蓄電器13の正極と、負荷14の一端とが接続されている。このように、2つの半導体スイッチ20,30は第1蓄電器11及び第2蓄電器13夫々の正極間を接続する。半導体スイッチ20,30のゲートは各別に制御部15に接続されている。
 ダイオード21のカソード及びアノード夫々は半導体スイッチ20のドレイン及びソースに接続されている。ダイオード31のカソード及びアノード夫々は半導体スイッチ30のドレイン及びソースに接続されている。従って、ダイオード21のカソードはダイオード31のカソードに接続されている。このため、2つの半導体スイッチ20,30がオフである場合において、半導体スイッチ20,30のソース間を電流が流れることはない。
 発電機10、第1蓄電器11、DCDCコンバータ12、第2蓄電器13、負荷14、制御部15及び電流センサ16夫々は、実施の形態1と同様に作用する。これらの作用については、実施の形態1の説明において、半導体スイッチ20のドレイン及びソースを入れ替え、半導体スイッチ30のドレイン及びソースを入れ替えることによって説明することができる。半導体スイッチ20,30のオン及びオフは制御部15によって実施の形態1と同様に行われる。
 電圧(Vn+ΔVn)は、半導体スイッチ20のソースにおける電圧の最大値である。このため、半導体スイッチ30のドレイン及びソース間の耐圧は、(Vn+ΔVn)以上であればよい。
 実施の形態2における電源システム1が通常状態である場合、半導体スイッチ30のドレイン及びソース間に電圧(Vn+ΔVn)が印加される可能性がある。
 電圧(Vc+ΔVc)は、半導体スイッチ30のソースにおける電圧の最大値である。このため、半導体スイッチ20のドレイン及びソース間の耐圧は、(Vc+ΔVc)以上であればよい。
 実施の形態2における電源システム1が通常状態である場合、半導体スイッチ20のドレイン及びソース間に電圧(Vc+ΔVc)が印加される可能性がある。
 変圧電圧Vcは通常電圧Vn未満である。このため、電圧(Vc+ΔVc)は電圧(Vn+ΔVn)未満である。電圧(Vc+ΔVc)は電圧(Vn+ΔVn)未満であるので、実施の形態2における電源システム1では、半導体スイッチ20として、ドレイン及びソース間の耐圧が、半導体スイッチ30のドレイン及びソース間の耐圧よりも低い半導体スイッチが用いられている。
 実施の形態2における電源システム1では、半導体スイッチ20のドレイン及びソース間の耐圧は、第2蓄電器13に印加される電圧に応じた値であり、半導体スイッチ30のドレイン及びソース間の耐圧は、第1蓄電器11に印加される電圧に応じた値である。
 以上のように実施の形態2においても、2つの半導体スイッチ20,30に関して、ドレイン及びソース間の耐圧が異なっている。このため、制御部15及び2つの半導体スイッチ20,30を有する実施の形態2の電源システム1は、実施の形態1と同様の効果を奏する。
(実施の形態3)
 実施の形態1における電源システム1では、2つの半導体スイッチ20,30に関して、ドレイン及びソース間の耐圧が異なるため、2つの半導体スイッチ20,30夫々のドレインを介して電流が流れた場合に発生する熱の量が小さい。半導体スイッチ20,30夫々に半導体スイッチを並列に接続することによって、発熱量を更に小さくすることができる。
 以下では、実施の形態3について実施の形態1と異なる点を説明する。後述する構成を除く他の構成については実施の形態1と同様であるため、同様の符号を付してその詳細な説明を省略する。
 図4は実施の形態3における電源システム4の要部構成を示すブロック図である。電源システム4も、実施の形態1における電源システム1と同様に、好適に車両に搭載されている。電源システム4は、電源システム1と同様に、発電機10、第1蓄電器11、DCDCコンバータ12、第2蓄電器13、負荷14、制御部15、電流センサ16及び2つの半導体スイッチ20,30を備え、これらは実施の形態1と同様に接続されている。
 電源システム4は、更に、M(M:自然数)個の半導体スイッチ40,40,・・・,40と、N(N:自然数)個の半導体スイッチ50,50,・・・,50とを備える。半導体スイッチ40,50夫々はNチャネル型のFETである。以下では、単にNと記載した場合、それは、Nチャネルではなく、半導体スイッチ40の数を意味する。
 M個の半導体スイッチ40,40,・・・,40夫々には、寄生ダイオードであるダイオード41が接続されている。ダイオード41に関して、カソードは半導体スイッチ40のドレインに接続され、アノードは半導体スイッチ40のソースに接続されている。
 N個の半導体スイッチ50,50,・・・,50夫々にも、寄生ダイオードであるダイオード51が接続されている。ダイオード51に関して、カソードは半導体スイッチ50のドレインに接続され、アノードは半導体スイッチ50のソースに接続されている。
 M個の半導体スイッチ40,40,・・・,40夫々に関して、ドレインは半導体スイッチ20のドレインに接続され、ソースは半導体スイッチ20のソースに接続されている。同様に、N個の半導体スイッチ50,50,・・・,50夫々に関して、ドレインは半導体スイッチ30のドレインに接続され、ソースは半導体スイッチ30のソースに接続されている。
 以上のように、M個の半導体スイッチ40,40,・・・,40夫々は半導体スイッチ20に並列に接続され、N個の半導体スイッチ50,50,・・・,50夫々は半導体スイッチ30に並列に接続されている。
 M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50夫々は第2の半導体スイッチとして機能する。
 M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50のゲートは制御部15に各別に接続されている。
 半導体スイッチ40,50夫々に関して、制御部15からゲートに印加されている電圧が一定電圧以上である場合、ドレイン及びソース間に電流が流れることが可能である。また、制御部15からゲートに印加されている電圧が一定電圧未満である場合、ドレイン及びソース間に電流が流れることはない。
 従って、半導体スイッチ40,50夫々は、ゲートに印加されている電圧が一定電圧以上である場合にオンであり、ゲートに印加されている電圧が一定電圧未満である場合にオフである。
 制御部15は、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50夫々のゲートに印加されている電圧を調整することによって、これらのオン及びオフを制御する。
 制御部15は、半導体スイッチ20,30を同時又は略同時にオン又はオフにする場合、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50も同時又は略同時にオン又はオフにする。言い換えると、制御部15は、半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50を同時又は略同時にオン又はオフにする。
 従って、実施の形態1において2つの半導体スイッチ20,30をオンにすることは、実施の形態3では、半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50をオンにすることに対応する。更に、実施の形態1において2つの半導体スイッチ20,30をオフにすることは、実施の形態3では、半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50をオフにすることに対応する。
 実施の形態3では、制御部15は、2つの半導体スイッチ20,30を実施の形態1と同様にオン又はオフにする。発電機10,第1蓄電器11、DCDCコンバータ12、第2蓄電器13、負荷14及び電流センサ16は実施の形態1と同様に作用する。
 エンジンが作動している場合において、制御部15は、通常、発電機10の出力電圧を通常電圧に調整し、DCDCコンバータ12に変圧を行わせる。更に、制御部15は、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50夫々をオフにしている。このとき、電源システム4は通常状態であり、電源システム4の通常状態は電源システム1の通常状態に対応する。
 制御部15は、電源システム4が通常状態である場合において、DCDCコンバータ12の出力電流が上限電流以上であると判定したとき、発電機10の出力電圧を通常電圧から臨時電圧に低下させ、DCDCコンバータ12に変圧を停止させる。更に、制御部15は、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50夫々を同時又は略同時にオンにする。このとき、電源システム4は直接給電状態であり、電源システム4の直接給電状態は電源システム1の直接給電状態に対応する。
 電源システム4が通常状態である場合、及び、電源システム4が直接給電状態である場合夫々において制御部15は実施の形態1と同様の処理を行う。実施の形態3における制御部15の処理に関して、半導体スイッチ20,30だけではなく、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50も同時又は略同時にオン又はオフにする点が実施の形態1と異なる。
 エンジンが停止している場合、発電機10が発電することはない。エンジンが停止した場合、制御部15は、DCDCコンバータ12に変圧を停止させ、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50をオフにする。従って、エンジンが停止している場合、負荷14は、第2蓄電器13によって給電され、発電機10及び第1蓄電器11によって給電されることはない。
 電源システム4では、ダイオード21,41,41,・・・,41夫々のアノードがダイオード31,51,51,・・・,51夫々のアノードに接続されている。従って、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50がオフである場合において、半導体スイッチ20,30のドレイン間を電流が流れることはない。
 電圧(Vn+ΔVn)は、半導体スイッチ20、及び、M個の半導体スイッチ40,40,・・・,40夫々のドレインにおける電圧の最大値である。従って、M個の半導体スイッチ40,40,・・・,40のドレイン及びソース間の耐圧は、(Vn+ΔVn)以上であればよい。
 M個の半導体スイッチ40,40,・・・,40夫々におけるドレイン及びソース間の耐圧は、M個の半導体スイッチ40,40,・・・,40夫々に並列に接続されている半導体スイッチ20のドレイン及びソース間の耐圧と同じ又は略同じである。
 電圧(Vc+ΔVc)は、半導体スイッチ30、及び、N個の半導体スイッチ50,50,・・・,50夫々のドレインにおける電圧の最大値である。従って、N個の半導体スイッチ50,50,・・・,50のドレイン及びソース間の耐圧は、(Vc+ΔVc)以上であればよい。
 N個の半導体スイッチ50,50,・・・,50夫々におけるドレイン及びソース間の耐圧は、N個の半導体スイッチ50,50,・・・,50夫々に並列に接続されている半導体スイッチ20のドレイン及びソース間の耐圧と同じ又は略同じである。
 実施の形態3においては、制御部15、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50が電流制御装置として機能する。この電流制御装置でも、2つの半導体スイッチ20,30夫々におけるドレイン及びソース間の耐圧が異なる。このため、実施の形態3における電流制御装置も実施の形態1と同様の効果を奏する。
 また、半導体スイッチ20、及び、M個の半導体スイッチ40,40,・・・,40のオン抵抗の合成抵抗は半導体スイッチ20のオン抵抗よりも小さい。更に、半導体スイッチ30、及び、N個の半導体スイッチ50,50,・・・,50のオン抵抗の合成抵抗は半導体スイッチ30のオン抵抗よりも小さい。このため、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50がオンである場合において、2つの半導体スイッチ20,30のドレイン間の抵抗は、実施の形態1における2つの半導体スイッチ20,30のドレイン間の抵抗よりも小さい。従って、実施の形態3における電流制御装置において発生する熱の量は、実施の形態1における電流制御装置において発生する熱の量よりも小さい。
 前述したように、半導体スイッチに関して、オン抵抗はドレイン及びソース間の耐圧が高い程大きい。従って、半導体スイッチ20及びM個の半導体スイッチ40,40,・・・,40夫々のオン抵抗は、半導体スイッチ30及びN個の半導体スイッチ50,50,・・・,50夫々のオン抵抗よりも大きい。
 このため、半導体スイッチ20,30のドレイン間の抵抗に関して、半導体スイッチ40を半導体スイッチ20に並列に接続することによって下がる抵抗の下げ幅は、半導体スイッチ50を半導体スイッチ30に並列に接続することによって下がる抵抗の下げ幅よりも大きい。
 例えば、半導体スイッチ20,40夫々のオン抵抗が10オームである場合、半導体スイッチ20,40のオン抵抗の合成抵抗は5オームである。従って、半導体スイッチ40を半導体スイッチ20に並列に接続することによって、半導体スイッチ20,30のドレイン間の抵抗は、5オーム下がる。
 例えば、半導体スイッチ30,50夫々のオン抵抗が6オームである場合、半導体スイッチ30,50のオン抵抗の合成抵抗は3オームである。従って、半導体スイッチ50を半導体スイッチ30に並列に接続することによって、半導体スイッチ20,30のドレイン間の抵抗は、3オーム下がる。
 前述したように、ドレイン及びソース間の耐圧が低い半導体スイッチは一般的に安価である。
 半導体スイッチ20に並列に接続されている半導体スイッチ40の数Mは、半導体スイッチ30に並列に接続されている半導体スイッチ50の数Nと異なっている。
 以上のことから、MがNよりも大きい場合、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50がオンである状態での2つの半導体スイッチ20,30夫々の他端間の抵抗が実施の形態1における電流制御装置よりも格段に小さい電流制御装置が実現される。
 また、NがMよりも大きい場合、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50がオンである状態での2つの半導体スイッチ20,30夫々の他端間の抵抗が実施の形態1における電流制御装置よりも小さい電流制御装置が安価に実現される。
 なお、実施の形態3において、半導体スイッチ20に並列に接続されている半導体スイッチ40の数Mは、半導体スイッチ30に並列に接続されている半導体スイッチ50の数Nと同じであってもよい。この場合であっても、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50がオンである状態での2つの半導体スイッチ20,30夫々の他端間の抵抗が実施の形態1における電流制御装置よりも小さい電流制御装置が実現される。
(実施の形態4)
 実施の形態3においては、半導体スイッチ20のソースが半導体スイッチ30のソースに接続されている。しかしながら、半導体スイッチ20のドレインが半導体スイッチ30のドレインに接続されてもよい。
 以下では、実施の形態4について実施の形態1と異なる点を説明する。後述する構成を除く他の構成については実施の形態1と同様であるため、同様の符号を付してその詳細な説明を省略する。
 図5は実施の形態4における電源システム4の要部構成を示すブロック図である。実施の形態4における電源システム4も、実施の形態3における電源システム4と同様に好適に車両に搭載されている。実施の形態4における電源システム4は、実施の形態3における電源システム4が備える全ての構成部を備える。実施の形態4において、発電機10、第1蓄電器11、DCDCコンバータ12、第2蓄電器13、負荷14、制御部15及び電流センサ16夫々は実施の形態3と同様に接続されている。
 半導体スイッチ20のドレインは、半導体スイッチ30のドレインに接続されている。半導体スイッチ20のソースには、発電機10及びDCDCコンバータ12夫々の一端と、第1蓄電器11の正極とが接続されている。半導体スイッチ30のソースには、DCDCコンバータ12の他端と、第2蓄電器13の正極と、負荷14の一端とが接続されている。このように、2つの半導体スイッチ20,30は第1蓄電器11及び第2蓄電器13夫々の正極間を接続する。半導体スイッチ20,30のゲートは各別に制御部15に接続されている。
 M個の半導体スイッチ40,40,・・・,40夫々に関して、ドレイン及びソース夫々は半導体スイッチ20のドレイン及びソースに接続されている。N個の半導体スイッチ50,50,・・・,50夫々に関して、ドレイン及びソース夫々は半導体スイッチ30のドレイン及びソースに接続されている。M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50のゲートは各別に制御部15に接続されている。
 ダイオード21のカソード及びアノード夫々は半導体スイッチ20のドレイン及びソースに接続されている。ダイオード31及び半導体スイッチ30の接続関係、ダイオード41及び半導体スイッチ40の接続関係、並びに、ダイオード51及び半導体スイッチ50の接続関係夫々は、ダイオード21及び半導体スイッチ20の接続関係と同様である。
 従って、ダイオード21,41,41,・・・,41夫々のカソードがダイオード31,51,51,・・・,51夫々のカソードに接続されている。このため、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50がオフである場合において、半導体スイッチ20,30のソース間を電流が流れることはない。
 発電機10、第1蓄電器11、DCDCコンバータ12、第2蓄電器13、負荷14、制御部15及び電流センサ16夫々は、実施の形態3と同様に作用する。これらの作用については、実施の形態3の説明において、半導体スイッチ20のドレイン及びソースを入れ替え、半導体スイッチ30のドレイン及びソースを入れ替え、半導体スイッチ40のドレイン及びソースを入れ替え、半導体スイッチ50のドレイン及びソースを入れ替える。これにより、発電機10、第1蓄電器11、第2蓄電器13、負荷14、DCDCコンバータ12、制御部15及び電流センサ16夫々の作用を説明することができる。
 2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50のオン及びオフは制御部15によって実施の形態3と同様に行われる。
 実施の形態2と同様の理由で、半導体スイッチ30のドレイン及びソース間の耐圧は、(Vn+ΔVn)以上であればよく、半導体スイッチ20のドレイン及びソース間の耐圧は、(Vc+ΔVc)以上であればよい。従って、実施の形態4における電源システム4では、半導体スイッチ20として、ドレイン及びソース間の耐圧が、半導体スイッチ30のドレイン及びソース間の耐圧よりも低い半導体スイッチが用いられている。
 実施の形態3と同様に、M個の半導体スイッチ40,40,・・・,40夫々におけるドレイン及びソース間の耐圧は半導体スイッチ20のドレイン及びソース間の耐圧と同じ又は略同じである。更に、N個の半導体スイッチ50,50,・・・,50夫々におけるドレイン及びソース間の耐圧は、半導体スイッチ20のドレイン及びソース間の耐圧と同じ又は略同じである。
 実施の形態4においても、制御部15、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50が電流制御装置として機能する。この電流制御装置は実施の形態3と同様の特徴を有する。
 即ち、実施の形態4における電流制御装置では、2つの半導体スイッチ20,30夫々のドレイン及びソース間の耐圧は互いに異なっている。更に、半導体スイッチ20にM個の半導体スイッチ40,40,・・・,40夫々が並列に接続されており、半導体スイッチ30にN個の半導体スイッチ50,50,・・・,50夫々が並列に接続されている。また、半導体スイッチ40の数Mは半導体スイッチ50の数Nと異なっている。従って、実施の形態4における電流制御装置は実施の形態3における電流制御装置と同様の効果を奏する。
 ただし、実施の形態4では、半導体スイッチ20のドレイン及びソース間の耐圧は、半導体スイッチ30のドレイン及びソース間の耐圧よりも低い。従って、半導体スイッチ20,30のソース間の抵抗に関して、半導体スイッチ50を半導体スイッチ30に並列に接続することによって下がる抵抗の下げ幅は、半導体スイッチ40を半導体スイッチ20に並列に接続することによって下がる抵抗の下げ幅よりも大きい。
 このため、MがNよりも大きい場合、実施の形態4における電流制御装置は、NがMよりも大きい場合に実施の形態3における電流制御装置が奏する効果を奏する。そして、NがMよりも大きい場合、実施の形態4における電流制御装置は、MがNよりも大きい場合に実施の形態3における電流制御装置が奏する効果を奏する。
 なお、実施の形態4において、半導体スイッチ20に並列に接続されている半導体スイッチ40の数Mは、半導体スイッチ30に並列に接続されている半導体スイッチ50の数Nと同じであってもよい。この場合であっても、2つの半導体スイッチ20,30、M個の半導体スイッチ40,40,・・・,40及びN個の半導体スイッチ50,50,・・・,50がオンである状態での2つの半導体スイッチ20,30夫々の他端間の抵抗が実施の形態2における電流制御装置よりも小さい電流制御装置が実現される。
 また、実施の形態1~4において、半導体スイッチ20,30,40,50夫々は、Nチャネル型のFETに限定されず、例えば、Pチャネル型のFETであってもよい。この場合、制御部15は、ゲートに印加されている電圧を一定電圧未満に調整することよって半導体スイッチ20,30,40,50をオンにし、ゲートに印加されている電圧を一定電圧以上に調整することによって半導体スイッチ20,30,40,50をオフにする。
 半導体スイッチ20がPチャネル型のFETである場合、ダイオード21のカソードが半導体スイッチ20のソースに接続され、ダイオード21のアノードが半導体スイッチ20のドレインに接続されている。半導体スイッチ30及びダイオード31の接続関係、半導体スイッチ40及びダイオード41の接続関係、及び、半導体スイッチ50及びダイオード51の接続関係夫々は、半導体スイッチ20及びダイオード21の接続関係と同様である。
 従って、実施の形態1~4において、半導体スイッチ20,30,40,50がPチャネル型のFETである場合における半導体スイッチ20,40のドレイン及びソース間の耐圧は、半導体スイッチ20,30,40,50がNチャネル型のFETである場合における半導体スイッチ30,50のドレイン及びソース間の耐圧である。また、半導体スイッチ20,30,40,50がPチャネル型のFETである場合における半導体スイッチ30,50のドレイン及びソース間の耐圧は、半導体スイッチ20,30,40,50がNチャネル型のFETである場合における半導体スイッチ20,40のドレイン及びソース間の耐圧である。
 このため、実施の形態3,4において、半導体スイッチ20,30,40,50がPチャネル型のFETである場合においてMがNより大きいときに電流制御装置が奏する効果は、半導体スイッチ20,30,40,50がNチャネル型のFETである場合においてNがMより大きいときに電流制御装置が奏する効果である。更に、半導体スイッチ20,30,40,50がPチャネル型のFETである場合においてNがMより大きいときに電流制御装置が奏する効果は、半導体スイッチ20,30,40,50がNチャネル型のFETである場合においてMがNより大きいときに電流制御装置が奏する効果である。
 また、実施の形態3,4において、半導体スイッチ40の数M又は半導体スイッチ50の数Nはゼロであってもよい。半導体スイッチ40の数Mがゼロである場合であっても、半導体スイッチ30にN個の半導体スイッチ50が並列に接続されているため、半導体スイッチ20,30のドレイン間の抵抗は小さい。同様に、半導体スイッチ50の数Nがゼロである場合であっても、半導体スイッチ20にM個の半導体スイッチ40が並列に接続されているため、半導体スイッチ20,30のドレイン間の抵抗は小さい。
 更に、実施の形態1~4において、DCDCコンバータ12の構成は、一端に印加されている電圧を降圧する構成に限定されず、一端に印加されている電圧を昇圧する構成であってもよい。この場合、通常電圧は変圧電圧よりも低い。
 開示された実施の形態1~4は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述の説明ではなく請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 1,4 電源システム
 11 第1蓄電器
 13 第2蓄電器
 14 負荷
 15 制御部(スイッチ制御部、電流制御装置の一部)
 20,30 半導体スイッチ(電流制御装置の一部)
 40,50 半導体スイッチ(第2の半導体スイッチ、電流制御装置の一部)

Claims (4)

  1.  一端が互いに接続されている2つの半導体スイッチを略同時にオン又はオフにするスイッチ制御部を備え、該スイッチ制御部が前記2つの半導体スイッチをオン又はオフにすることによって前記2つの半導体スイッチの他端間を流れる電流を制御する電流制御装置において、
     該2つの半導体スイッチ夫々の両端間の耐圧は互いに異なっており、
     該2つの半導体スイッチは2つの蓄電器夫々の一端間を接続すること
     を特徴とする電流制御装置。
  2.  前記2つの半導体スイッチのいずれかに並列に接続されている一又は複数の第2の半導体スイッチを備え、
     該一又は複数の第2の半導体スイッチ夫々は、並列に接続されている前記半導体スイッチと略同じ耐圧を有し、
     前記スイッチ制御部は、前記2つの半導体スイッチと、前記一又は複数の第2の半導体スイッチとを略同時にオン又はオフにすること
     を特徴とする請求項1に記載の電流制御装置。
  3.  前記2つの半導体スイッチ中の一方の半導体スイッチに並列に接続されている前記第2の半導体スイッチの数は、他方の半導体スイッチに並列に接続されている前記第2の半導体スイッチの数と異なっていること
     を特徴とする請求項2に記載の電流制御装置。
  4.  請求項1から請求項3のいずれか1つに記載の電流制御装置と、
     前記2つの蓄電器と、
     該2つの蓄電器によって給電される負荷と
     を備え、
     前記2つの蓄電器夫々には異なる電圧が印加されること
     を特徴とする電源システム。
PCT/JP2016/053473 2015-02-24 2016-02-05 電流制御装置及び電源システム WO2016136426A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680010747.2A CN107251432A (zh) 2015-02-24 2016-02-05 电流控制装置及电源系统
DE112016000881.3T DE112016000881T5 (de) 2015-02-24 2016-02-05 Stromsteuereinrichtung und stromversorgungssystem
US15/552,400 US10230366B2 (en) 2015-02-24 2016-02-05 Current control device and power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015034030A JP6511854B2 (ja) 2015-02-24 2015-02-24 電流制御装置及び電源システム
JP2015-034030 2015-02-24

Publications (1)

Publication Number Publication Date
WO2016136426A1 true WO2016136426A1 (ja) 2016-09-01

Family

ID=56788419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053473 WO2016136426A1 (ja) 2015-02-24 2016-02-05 電流制御装置及び電源システム

Country Status (5)

Country Link
US (1) US10230366B2 (ja)
JP (1) JP6511854B2 (ja)
CN (1) CN107251432A (ja)
DE (1) DE112016000881T5 (ja)
WO (1) WO2016136426A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107979109B (zh) * 2018-01-02 2019-06-25 烟台秦讯机械科技有限公司 混合能源供电储能系统及储能方法
JP6581694B1 (ja) * 2018-06-27 2019-09-25 日東電工株式会社 補強フィルム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261945A (ja) * 1997-03-18 1998-09-29 N T T Data Tsushin Kk 半導体スイッチ
JP2011126431A (ja) * 2009-12-18 2011-06-30 Denso Corp 車載電源装置
JP2012115039A (ja) * 2010-11-24 2012-06-14 Rohm Co Ltd スイッチング電源の制御回路ならびにそれを用いたスイッチング電源および電子機器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3927017B2 (ja) 2001-11-26 2007-06-06 株式会社オートネットワーク技術研究所 回路構成体及びその製造方法
DE10254910B4 (de) 2001-11-26 2008-12-24 AutoNetworks Technologies, Ltd., Nagoya Schaltkreisbildende Einheit und Verfahren zu deren Herstellung
JP2003179316A (ja) 2001-12-13 2003-06-27 Fuji Kiko Denshi Kk 放熱性に優れたプリント配線板の構造
JP4238700B2 (ja) 2003-11-11 2009-03-18 住友電装株式会社 回路構成体の製造方法
JP5290015B2 (ja) * 2009-03-25 2013-09-18 ルネサスエレクトロニクス株式会社 バッファ回路
JP4881971B2 (ja) 2009-03-26 2012-02-22 株式会社豊田自動織機 半導体装置
JP5627264B2 (ja) * 2010-03-27 2014-11-19 三洋電機株式会社 車両用の電源装置及びこの電源装置を搭載する車両
US8716995B2 (en) * 2010-11-24 2014-05-06 Rohm Co., Ltd. Control circuit for switching power supply
JP5605320B2 (ja) * 2011-06-28 2014-10-15 株式会社オートネットワーク技術研究所 車両用電源装置
JP5959901B2 (ja) * 2012-04-05 2016-08-02 株式会社日立製作所 半導体駆動回路および電力変換装置
WO2014162907A1 (ja) * 2013-04-03 2014-10-09 株式会社オートネットワーク技術研究所 制御装置、給電制御装置、充電制御方法、充電制御装置及び車両用電源装置
CN203504399U (zh) * 2013-09-16 2014-03-26 王达开 一种功率开关器件串联限压电路
US9729140B2 (en) * 2014-03-05 2017-08-08 Analog Devices, Inc. Circuits with floating bias
US9413348B2 (en) * 2014-07-29 2016-08-09 Semiconductor Components Industries, Llc Electronic circuit including a switch having an associated breakdown voltage and a method of using the same
US9755644B2 (en) * 2015-09-30 2017-09-05 Lapis Semiconductor Co., Ltd. Interface circuit
US20170222641A1 (en) * 2016-01-29 2017-08-03 Ford Global Technologies, Llc Dynamic igbt gate drive to reduce switching loss
US11133796B2 (en) * 2016-03-11 2021-09-28 Ford Global Technologies, Llc Dynamic IGBT gate drive to reduce switching loss
US10090792B2 (en) * 2016-12-08 2018-10-02 Ford Global Technologies, Llc Self-balancing parallel power devices with a temperature compensated gate driver
US9979294B1 (en) * 2017-03-30 2018-05-22 Semiconductor Components Industries, Llc DC-DC converter with gate charge re-use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261945A (ja) * 1997-03-18 1998-09-29 N T T Data Tsushin Kk 半導体スイッチ
JP2011126431A (ja) * 2009-12-18 2011-06-30 Denso Corp 車載電源装置
JP2012115039A (ja) * 2010-11-24 2012-06-14 Rohm Co Ltd スイッチング電源の制御回路ならびにそれを用いたスイッチング電源および電子機器

Also Published As

Publication number Publication date
DE112016000881T5 (de) 2017-11-02
JP2016158071A (ja) 2016-09-01
JP6511854B2 (ja) 2019-05-15
US10230366B2 (en) 2019-03-12
US20180041206A1 (en) 2018-02-08
CN107251432A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
JP4791132B2 (ja) 昇圧回路、昇圧回路を使用した定電圧回路及び昇圧回路を使用した定電流回路
US9804612B2 (en) Regulated bootstrap power supply
JP6008330B2 (ja) 電力変換装置
JP2009502110A (ja) 集積された理想的なダイオード機能を有する二入力dc/dc変換器
JP2017085725A (ja) 降圧dc/dcコンバータおよびその制御回路、車載用電源装置
JP6827112B2 (ja) 制御回路、及び理想ダイオード回路
JP2012205408A (ja) 電源回路
WO2016136426A1 (ja) 電流制御装置及び電源システム
JP6458659B2 (ja) スイッチング素子の駆動装置
JP2005176476A (ja) スイッチングレギュレータ
JP2017225322A (ja) 電力変換システム
US20200172032A1 (en) On-vehicle power supply circuit and on-vehicle power supply apparatus
JP2015139321A (ja) 基準電圧出力回路および電源装置
CN103828205B (zh) 用于控制电力开关的电源
US10333400B2 (en) Boost DC-DC converter including a switching element
JP5052333B2 (ja) スイッチングレギュレータおよびその制御方法
JP2009211210A (ja) 電源回路装置および電子機器
JP6577849B2 (ja) 電源回路用起動回路
WO2018037733A1 (ja) 電子制御装置
JP2015216420A (ja) スイッチ装置、降圧装置及び昇圧装置
JP4609285B2 (ja) 電源用半導体集積回路および電源装置
JP6607068B2 (ja) 電源装置の電源駆動回路
JP2017046390A (ja) 電源回路
CN112051885A (zh) 一种电压调节电路及方法
JP2020195230A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755175

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15552400

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000881

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755175

Country of ref document: EP

Kind code of ref document: A1