WO2016136324A1 - 核酸検出反応液中のプローブの安定化方法 - Google Patents

核酸検出反応液中のプローブの安定化方法 Download PDF

Info

Publication number
WO2016136324A1
WO2016136324A1 PCT/JP2016/051209 JP2016051209W WO2016136324A1 WO 2016136324 A1 WO2016136324 A1 WO 2016136324A1 JP 2016051209 W JP2016051209 W JP 2016051209W WO 2016136324 A1 WO2016136324 A1 WO 2016136324A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
nucleic acid
acid
reaction solution
chelating agent
Prior art date
Application number
PCT/JP2016/051209
Other languages
English (en)
French (fr)
Inventor
寛一郎 永友
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2017501977A priority Critical patent/JP6848857B2/ja
Publication of WO2016136324A1 publication Critical patent/WO2016136324A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for stabilizing a nucleic acid detection probe (hereinafter abbreviated as “probe”) in a nucleic acid detection reaction solution in a molecular biological detection method such as detection of gene amplification rate or gene mutation.
  • probe a nucleic acid detection probe
  • molecular biological detection method such as detection of gene amplification rate or gene mutation.
  • Detection of genes and nucleic acids is an important operation method in molecular biology.
  • Various methods for detecting nucleic acids have been developed so far, and probe hybridization methods and polymerase chain reaction (PCR) methods are relatively popular.
  • qPCR real-time PCR
  • various fluorescent probes are used for main qPCR and PCR is combined with hybridization probing.
  • qPCR using a probe there are methods such as TaqMan (registered trademark) (see, for example, Non-Patent Document 1), MolecularMoBeacon, Hybridization Probe, Cycling Probe, and the like, and amplification is performed using a technique such as fluorescence energy transfer. It is devised so that the fluorescence increases or decreases in correlation with the amount of nucleic acid.
  • the TaqMan (registered trademark) probe method which is generally widely used is a method using a probe in which a fluorescent substance is bound to the 5 'end and a quencher is attached to the 3' end.
  • This probe anneals to the template, but fluorescence is suppressed by the quencher even when it is irradiated with excitation light.
  • the probe is hydrolyzed by the 5 'to 3' exonuclease activity of the DNA polymerase, the fluorescent substance is released from the probe, and emits fluorescence by leaving the quencher. By detecting this fluorescence, an increase in fluorescence intensity due to amplification can be monitored.
  • An object of the present invention is to provide a method for suppressing degradation of a probe in a nucleic acid detection reaction solution (hereinafter sometimes referred to as “reaction solution”) in a nucleic acid detection method using a probe. is there.
  • reaction solution a nucleic acid detection reaction solution
  • HTS High Throughput Screening
  • the present inventors further considered the undetectable phenomenon in the TaqMan probe method.
  • the background fluorescence was abnormally increased in the above-mentioned non-detectable example, and this was caused by the hot start method (DNA polymerase at room temperature using an antibody against DNA polymerase in a nucleic acid detection reaction solution).
  • DNA polymerase having 5 ′ ⁇ 3 ′ exonuclease activity is not completely suppressed by a technique for blocking the activity of DNA polymerase (see, for example, Non-Patent Document 2). We thought it was to disassemble the probe.
  • chelating agent a substance having a chelating action
  • the degradation of the probe can be suppressed.
  • a more preferable effect was brought about by combining a specific thing among the said chelating agents, and came to complete this invention.
  • the present inventors have found that by coexisting metal ions in the nucleic acid detection reaction solution and adjusting the concentration thereof, the nucleic acid detection reaction is not inhibited and the degradation of the probe is more effectively suppressed, and the present invention is completed. It came.
  • Item 1 A method for stabilizing a probe, characterized by allowing a chelating agent to coexist in a nucleic acid detection reaction solution used in a nucleic acid detection method using a probe.
  • Chelating agents include phenanthroline, nitrilotriacetic acid (NTA), maleic acid, citric acid, tricine, ethylenediaminetetraacetic acid (EDTA), trans-1,2-diaminocyclohexane-N, N, N ′, N′-tetraacetic acid ( Item 2.
  • Item 1 which is at least one selected from the group consisting of CDTA), glycol ether diamine tetraacetic acid (EGTA), tartaric acid, nicotinamide, hydroxyethyliminodiacetic acid (HIDA), and phytic acid.
  • Item 3. Item 3. The method for stabilizing a probe according to Item 2, wherein the phenanthroline is 1,10-phenanthroline (Phen) or 2,9-dimethyl-1,10-phenanthroline.
  • Item 4. Item 4. The method for stabilizing a probe according to any one of Items 1 to 3, wherein Phen or 2,9-dimethyl-1,10-phenanthroline and NTA and / or maleic acid coexist.
  • Item 5. Item 5.
  • Item 6. The method for stabilizing a probe according to Item 5, wherein metal ions are further allowed to coexist at a concentration of 4 mM to 10 mM.
  • Item 7. Item 7. The method for stabilizing a probe according to Item 6, wherein the metal ion is magnesium ion.
  • the decomposition of the probe in the nucleic acid detection reaction solution can be suppressed very easily and stably without changing conditions such as the detection procedure or performing a special pretreatment. Nucleic acid detection is possible.
  • Example 1 it is the figure which showed the amplification curve of qPCR using a probe (IL6).
  • Example 1 it is the figure which confirmed the fluorescence intensity by Multicomponent of qPCR using a probe (IL6).
  • Example 1 it is the figure which showed the amplification curve of qPCR using the probe (RPS19).
  • Example 1 it is the figure which confirmed the fluorescence intensity by Multicomponent of qPCR using a probe (RPS19).
  • Example 2 it is the figure which showed the amplification curve of qPCR using a probe (IL6).
  • Example 2 it is the figure which showed the calibration curve of qPCR using a probe (IL6).
  • Example 2 it is the figure which showed the amplification curve of qPCR using a probe (RPS19).
  • Example 2 it is the figure which showed the calibration curve of qPCR using a probe (IL6).
  • Example 3 it is the figure which showed the calibration curve of qPCR using the probe (E2F5).
  • Example 3 it is the figure which showed the calibration curve of qPCR using a probe (CDK4).
  • Example 3 it is the figure which showed the calibration curve of qPCR using a probe (IL8).
  • Example 3 it is the figure which showed the calibration curve of qPCR using the probe (GAPDH: Hs02758991_g1).
  • Example 3 it is the figure which showed the calibration curve of qPCR using the probe (GAPDH: Hs9999905_m1).
  • Example 3 the conditions plus chelating agent, GAPDH in the case of the MgSO 4 concentration 4,5,6,7 or 8 mM: is a diagram showing the amplification curve of Hs9999905_m1.
  • Example 4 it is the figure which showed the amplification curve of the probe (RPS19) using the reaction liquid of a composition without an anti-Taq antibody (TCP).
  • One embodiment of the present invention is a nucleic acid detection method that uses a probe and allows a chelating agent to coexist in a nucleic acid detection reaction solution.
  • a “probe” is an oligonucleotide having a base sequence selected by a target nucleic acid to be detected.
  • the sequence and length of the probe are not particularly limited, and are appropriately determined by a conventionally known method depending on the target sequence.
  • the probe may bind an enzyme such as alkaline phosphatase, a labeling substance such as biotin, avidin, or a fluorescent dye.
  • the label of the probe is not limited, but a fluorescent dye is preferable.
  • the labeling position of the labeled probe is preferably labeled at or near the end in the base sequence.
  • the “nucleic acid detection method” in the present invention is not particularly limited as long as it is a method for detecting a nucleic acid using a probe. It may be accompanied by nucleic acid amplification or may not be accompanied. Examples of methods that do not use nucleic acid amplification include Fluorescence in situ hybridization (FISH) method, Hybrid Capture method, and Invader method.
  • the nucleic acid detection method may involve a nucleic acid amplification step. In this case, amplification may be performed before detection or may be performed simultaneously with detection.
  • the nucleic acid detection method accompanying amplification is not specifically limited, For example, PCR method is mentioned. Further, the method is not limited to this, for example, the Loop-Mediated Is Amplification (LAMP) method, the Transcribation Reverse Transformed Reaction Reaction (TRC) method, and the Nucleic Acid Sequencing Method B.
  • LAMP Loop-Mediated Is Amplification
  • TRC Transcribation Reverse Transformed
  • examples of the probe include TaqMan (registered trademark) Probe, Molecular Beacon, Hybridization Probe, Cycling Probe, and Q Probe, and any probe can be selected.
  • the “nucleic acid detection reaction solution” in the present invention is not particularly limited as long as components (substances) necessary for carrying out the nucleic acid detection reaction are prepared. In general, it preferably contains a metal ion necessary for nucleic acid hybridization. When the nucleic acid detection method is qPCR, it preferably contains a substrate such as a primer, DNA polymerase, deoxynucleoside triphosphate, etc., and further contains a metal ion.
  • the “DNA polymerase” used in the nucleic acid detection reaction solution is not particularly limited.
  • DNA polymerases derived from various thermostable bacteria can be used. Specific examples include Taq DNA polymerase and Tth DNA polymerase belonging to family A (PolI type), KOD DNA polymerase, Pfu DNA polymerase, Pwo DNA polymerase belonging to family B ( ⁇ type), and the like. Among them, Taq DNA polymerase and Tth DNA polymerase are preferable because they have 5 ' ⁇ 3' exonuclease activity and are used in the TaqMan (registered trademark) Probe method, but are not limited thereto.
  • the “chelating agent” is not particularly limited as long as it is a compound that can form a complex by binding to a metal ion by a ligand having a plurality of coordination sites.
  • Examples include phenanthroline, NTA, maleic acid, citric acid, tricine, EDTA, CDTA, EGTA, tartaric acid, nicotinamide, HIDA and phytic acid.
  • Phen, NTA or maleic acid is more preferable because it is relatively easy to adjust the concentration range that achieves both probe stabilization and nucleic acid detection reaction.
  • the chelating agent to be used is not limited to 1 type, You may use in combination of multiple types.
  • phenanthroline is a generic name for compounds having a heterocyclic skeleton in which two of the carbon atoms in the phenanthrene structure are substituted with nitrogen atoms.
  • Specific examples include 1,10-phenanthroline (Phen) or 2,9-dimethyl-1,10-phenanthroline, but are not limited thereto, and for example, analogs thereof may be used.
  • the concentration in the reaction solution is preferably 2 mM to 4 mM.
  • the concentration of the chelating agent is not particularly limited, but it is preferable that the concentration is appropriately adjusted so as not to inhibit nucleic acid detection. Specifically, when inhibition of nucleic acid detection occurs at a chelating agent concentration effective in suppressing probe degradation, the chelating agent concentration is lowered stepwise to set a concentration at which inhibition does not occur. It is preferably in the range of 1 to 100 mM (1 mM to 100 mM). More preferably, it is 1 to 10 mM. When Phen, NTA or maleic acid is used as the chelating agent, the total concentration of the chelating agent is preferably 1 to 7 mM.
  • the decomposition of the probe in the nucleic acid detection reaction solution can be suppressed by allowing a chelating agent to coexist in the nucleic acid detection reaction solution.
  • the degree of “probe decomposition” can be quantitatively confirmed by the following method (1) or (2).
  • (1) The Ct value in PCR is compared between the probe that has been added to the reaction solution and the time elapsed and the sample that has just been added to the reaction solution.
  • (2) The fluorescence intensity at the beginning of the PCR cycle is compared between the probe that has been added to the reaction solution and the time has elapsed and the probe that has just been added to the reaction solution.
  • “suppressing the decomposition of the probe” ideally means adding the probe that decomposes by leaving it at a temperature of 5 to 35 ° C. to the reaction solution, and before and after storing it at room temperature. When measured by the method, it means that the Ct value is equivalent after storage or the fluorescence intensity at the beginning of the cycle is equivalent after storage.
  • IL6 Interleukin 6, Assay ID: Hs00985639_m1
  • ribosomaly1H15 When the nucleic acid detection reaction solution to which “RPS19” is added) is allowed to stand at room temperature for 24 hours and the following equation is satisfied, decomposition of the probe is suppressed.
  • the value in (1) is more preferably 0.9 or more.
  • the value in (2) is more preferably 0.5 or more.
  • the Ct value or the fluorescence intensity at the beginning of the cycle is compared before and after storage based on the evaluation method, and at least one of them is compared.
  • the degree of stabilization is the longer storage time. Accordingly, it can be determined that it is higher.
  • One of the mechanisms for suppressing the degradation of the probe by the method of the present invention is to suppress the degradation of the probe in the nucleic acid detection reaction solution by an enzyme having nuclease activity by allowing a chelating agent to coexist in the nucleic acid detection reaction solution. It is. As described above, the present inventors have examined the PCR method as an example, and found that the degradation of the probe in the nucleic acid detection reaction solution is due to the 5 ′ ⁇ 3 ′ exonuclease activity of the DNA polymerase.
  • metal ions such as magnesium and calcium are essential for the 5 ′ ⁇ 3 ′ exonuclease activity (and nuclease activity of other enzymes).
  • the enzyme having the nuclease activity is not limited to the DNA polymerase having the 5 ′ ⁇ 3 ′ exonuclease activity described above. Examples thereof include DNase I, DNase II, DNA polymerase, and restriction enzyme, which are generally said to require metal ions such as magnesium, calcium, manganese, and zinc.
  • These enzymes may be derived from those used for nucleic acid amplification and contained in the nucleic acid detection reaction solution, such as DNA polymerase in the PCR method, or derived from contaminants that should not normally be included in the nucleic acid detection reaction solution. You may do it.
  • Metal ions In the method of the present invention, it is preferable that a metal ion further coexists in the nucleic acid detection reaction solution.
  • the “metal ion” used in the method of the present invention is not particularly limited.
  • divalent metal ions such as magnesium ion, manganese ion, zinc ion, and calcium ion can be mentioned, and magnesium ion that is often added to the nucleic acid detection reaction solution is preferable.
  • Magnesium ions usually use a compound in a salt state.
  • a magnesium salt represents a substance having magnesium in a form that releases magnesium ions in an aqueous solvent.
  • the magnesium salt is not particularly limited, but examples thereof include magnesium chloride, magnesium hydroxide, magnesium carbonate and magnesium sulfate, and magnesium chloride and magnesium sulfate are preferable.
  • the concentration of the metal ion is not particularly limited, but it is preferable to use it by appropriately adjusting the concentration so as not to inhibit nucleic acid detection. Specifically, the concentration range of the chelating agent that acts to stabilize the probe is confirmed, and if the nucleic acid detection reaction is inhibited within that concentration range, the concentration of the metal ion is increased to achieve both the probe stabilization and the nucleic acid detection reaction. The procedure for determining the concentration of metal ions to be performed is preferred.
  • the concentration of metal ions in the reaction system is not particularly limited, but when magnesium ions are used, the concentration in the reaction solution is preferably 1 mM to 15 mM, more preferably 1 mM to 10 mM, and particularly preferably 4 mM to 10 mM.
  • the kind of metal ion to be used is not limited to one kind, and a plurality of kinds may be used in combination.
  • the combination of the chelating agent and the metal ion concentration is not particularly limited, but it is preferable to adjust the concentration appropriately so as not to inhibit nucleic acid detection.
  • the chelating agent concentration is 1 to 100 mM, and the metal ion concentration is 1 to 10 mM.
  • the total concentration of the chelating agent is preferably 4 to 10 mM of metal ion with respect to 1 to 7 mM of chelating agent.
  • the concentration ratio of the chelating agent to the metal ions is preferably 1:10 to 100: 1, and particularly preferably 1:50 to 10: 1.
  • the preferred combination of the chelating agent and the metal ion may vary depending on the type and concentration of the DNA polymerase. Specifically, Taq DNA polymerase or a combination of Tth DNA polymerase and magnesium ion is preferable.
  • the method for allowing a chelating agent to coexist in the nucleic acid detection reaction solution is not particularly limited.
  • it may be added in advance to the nucleic acid detection reaction solution, or may be added to the reaction solution together with the probe.
  • the nucleic acid detection reaction solution contains an enzyme (for example, DNA polymerase) that is necessary for the detection reaction and that requires metal ions
  • the chelating agent is added to the reaction solution at the same time as the probe or before the probe. It is preferable.
  • the nucleic acid detection reaction solution is divided into several compositions before starting the reaction in, for example, a nucleic acid detection kit, and is provided to be mixed and used during the reaction, the divided composition Any one or more of these may be added.
  • Example 1 Stabilization effect by probe degradation and addition of chelating agent Analysis was performed using qPCR for the purpose of confirming probe degradation by standing at room temperature and probe stabilization by adding a chelating agent.
  • cDNA prepared from HeLa cell (cell derived from human cervical cancer) RNA was used.
  • SuperPrep registered trademark
  • Cell Lysis & RT Kit for qPCR (Toyobo Co., Ltd.) using reverse transcriptase derived from MMLV was used, and the procedure was in accordance with the instruction manual.
  • 20 ⁇ L of each reaction solution was prepared using THUNDERBIRD (registered trademark) Probe qPCR Mix (Toyobo Co., Ltd.).
  • TaqMan probe and primer are applied biosystems TaqMan (registered trademark) Gene Expression Assays, Gene Name: Interleukin 6, Assay ID: Hs00985639_m1 (hereinafter abbreviated as “IL6”), or Gene Name: ribosom15 ID (Hereinafter abbreviated as “RPS19”).
  • This product is a 20 times concentrated primer / probe mixture.
  • the reaction was performed using a real-time PCR apparatus (Applied Biosystems 7500 Fast real-time PCR system) with a schedule of repeating 95 cycles of 95 ° C, 15 seconds ⁇ 60 ° C, 60 seconds, after a previous reaction at 95 ° C for 1 minute.
  • Platinum (registered trademark) Taq Antibody (hereinafter abbreviated as “Platinum”, Invitrogen by Life technologies) was added as a control and added with 1 U or 5 U.
  • the prepared reaction solution has a probe concentration of 0.25 ⁇ M and a magnesium ion concentration of 4 mM.
  • the prepared reaction solution was allowed to stand at 25 ° C. for 124 hours.
  • the amplification curve obtained by qPCR is shown in FIG.
  • the numbers in the figure are as follows. 1: Probe was added after leaving the reaction solution at room temperature (Ct 27.4, 27.6) 2: Phen 5 mM added (Ct 27.2, 27.5) 3: Phen 4 mM added (Ct 27.6, 27.8) : Platinum 1U added (Ct30.8, 35.1) 5: Platinum 5U added (Ct31.3, 34.6) 6: No chelating agent added (Ct37.3, undetectable)
  • FIG. 2 shows the result of confirming the fluorescence intensity with multicomponent qPCR using the probe (IL6).
  • the numbers in the figure are as follows. 1: Add probe after standing at room temperature 2: Add 5 mM Phen 3: Add 4 mM Phen 4: Add 1 U Platinum 5: Add 5 U Platinum 6: No chelating agent added
  • the fluorescence intensity at the beginning of the cycle is high when no chelating agent is added or when Platinum is added (FIG. 2; No. 4 to 6). This is presumably because the probe was decomposed before starting the cycle due to standing at room temperature, the fluorescent label was released from the probe, the quenching by the quencher was released, and fluorescence was emitted.
  • the fluorescence intensity at the beginning of the cycle is low in the case where the chelating agent is added or in the control where the probe is added after 124 hours (FIG. 2; No. 1 to 3). This is probably because the probe is not decomposed and quenching by the quencher is maintained.
  • FIG. 3 shows an amplification curve of qPCR when the probe (RPS19) is used.
  • the reaction solution was allowed to stand at room temperature for 124 hours after preparation. Phen 8.5 or 10 mM was added as a chelating agent.
  • the numbers in the figure are as follows. 1: Probe was added after leaving the reaction solution at room temperature (Ct 21.6, 21.8) 2: Phen 10 mM added (Ct 22.8, 23.4) 3: Phen 8.5 mM added (Ct 24.5, 25.9) 4) Add 1U of Platinum (not detectable) 5: Add 5U of Platinum (not detectable) 6: No chelating agent added (Ct 32.0, undetectable)
  • FIG. 1 Probe was added after leaving the reaction solution at room temperature (Ct 21.6, 21.8)
  • 3 Phen 8.5 mM added (Ct 24.5, 25.9)
  • Example 2 Effect of combination of chelating agents In Example 1, the effect of improving the delay in Ct value was small for probe RPS19 compared to IL6. Thus, it was examined whether combining Phen with other chelating agents would not inhibit the PCR reaction of IL6 and would have the effect of improving the delay in Ct value of RPS19.
  • qPCR followed the method of Example 1.
  • cDNA prepared from HeLa cell (human-derived cell) RNA as a template was set in five stages by 4-fold dilution.
  • the prepared reaction solution was allowed to stand at 25 ° C. for 23 hours.
  • FIG. 5 shows an amplification curve of qPCR using the probe (IL6).
  • the Phen concentrations were compared at 0, 5, 6.5, and 10 mM.
  • the numbers in the figure are as follows. 1: No addition of Phen 2: Addition of 5 mM of Phen 3: Addition of 6.5 mM of Phen 4 Addition of 10 mM of 4Phen
  • FIG. 6 shows a calibration curve of qPCR using the probe (IL6). Phen concentrations were compared at 0, 4, 5, and 6.5 mM. The numbers in the figure are as follows. 1: No addition of Phen 2: Addition of 6.5 mM of Phen 3: Addition of 5 mM of Phen 4: Addition of 4 mM of Phen FIG.
  • FIG. 7 shows an amplification curve of qPCR using a probe (RPS19). Phen and NTA were used as chelating agents. The numbers in the figure are as follows. 1: Probe was added after leaving the reaction solution at room temperature (Ct21.0, 21.0) 2: 4 mM Phen and 3 mM NTA (Ct21.4, 21.5) 3: 4 mM Phen and 2.5 mM NTA added (Ct21.1, 21.1) 4: Add 4 mM Phen and 2.5 mM maleic acid (Ct21.5, 21.5) 5: Add 4 mM Phen and 1 mM NTA (Ct22.7, 23.6) 6: Add 4 mM Phen (Ct24.4, 24.7) 7: No chelating agent added (not detectable) FIG.
  • Example 3 Influence of other chelating agents on PCR reaction and relationship of magnesium ion concentration (Influence on PCR reaction by other chelating agents)
  • Example 1 and Example 2 showed that the use of a chelating agent alone or in combination has an effect on the stabilization of the probe.
  • adding a chelating agent to a PCR reaction solution inhibits the PCR reaction because it chelates magnesium ions in the reaction solution, but the results of Examples 1 and 2 show that the chelating agent has a constant concentration. It is also shown that the PCR reaction is not inhibited within the range. More specifically, qPCR was performed using probes other than IL6 and RPS19 in order to confirm the influence of the chelating agent on the PCR reaction.
  • FIG. 9 shows a calibration curve of qPCR using the probe (E2F5). Phen was used as a chelating agent. The numbers in the figure are as shown below. 1: No chelating agent added 2: Phen 5 mM added
  • FIG. 10 shows a calibration curve of qPCR using a probe (CDK4). Phen was used as a chelating agent. The numbers in the figure are as shown below. 1: No addition of chelating agent 2: Addition of 5 mM Phen
  • FIG. 11 shows a calibration curve of qPCR using a probe (IL8). Phen was used as a chelating agent. The numbers in the figure are as shown below. 1: No chelating agent added 2: Phen 4 mM added FIG.
  • FIG. 12 shows a calibration curve of qPCR using a probe (GAPDH: Hs0275891_g1). Phen was used as a chelating agent. The numbers in the figure are as shown below. 1: No chelating agent added 2: Phen 4 mM added
  • FIG. 13 shows a calibration curve of qPCR using a probe (GAPDH: Hs9999905_m1). Phen was used as a chelating agent. The numbers in the figure are as shown below. 1: No chelating agent added 2: Phen 4 mM added In FIG. 14, the MgSO 4 concentration was adjusted to 4, 5, 6, 7 or 8 mM with the addition of the chelating agent (Phen 4 mM and NTA 2.5 mM).
  • FIG. 15 shows an amplification curve of GAPDH: Hs9999905_m1 when the MgSO 4 concentration is 10 mM at room temperature for 65 hours.
  • FIG. 16 shows an amplification curve of RPS19 when the MgSO 4 concentration is 10 mM and left at room temperature for 65 hours.
  • the numbers in the figure are as shown below. 1: Add probe after leaving the reaction solution at room temperature (Ct19.2, 19.4) 2: Add 4 mM Phen and 2.5 mM NTA (Ct20.5, 20.6) 3: No chelating agent added (not detectable)
  • THUNDERBIRD® Probe qPCR Mix contains 4 mM MgSO 4, but when the MgSO 4 concentration was increased to 5, 6, 7, or 8 mM, inhibition was resolved depending on the concentration (FIG. 14). .
  • Example 4 Effect of chelating agent in the absence of Taq antibody From Examples 1 to 3, the effect of the chelating agent in stabilizing the probe in the reaction solution was confirmed. On the other hand, since THUNDERBIRD (registered trademark) Probe qPCR Mix used in Examples 1 to 3 contains an anti-Taq DNA polymerase antibody (Toyobo Co., Ltd.), it has the effect of stabilizing the probe synergistically with the chelating agent. It is thought that it is demonstrating.
  • a qPCR Mix having a composition obtained by removing the anti-Taq DNA polymerase antibody from THUNDERBIRD (registered trademark) Probe qPCR Mix was prepared, and the effect of the chelating agent alone was confirmed.
  • FIG. 17 is a diagram showing an amplification curve of the probe (IL6) using a reaction solution having a composition without anti-Taq antibody (TCP). It was left at room temperature for 17 hours. Phen and NTA were used as chelating agents. The numbers in the figure are as shown below. 1: Add probe after standing at room temperature (Ct24.3, 24.7) 2: Add 2 mM Phen and 2.5 mM NTA (Ct22.5, 23.9) 3: Add 1 U of Platinum (Ct25.9) , 26.9) 4: No chelating agent added (not detectable) FIG.
  • FIG. 18 is a diagram showing an amplification curve of the probe (RPS19) using a reaction solution having a composition free of anti-Taq antibody (TCP). It was left at room temperature for 17 hours. Phen and NTA were used as chelating agents. The numbers in the figure are as shown below. 1: Probe was added after leaving the reaction solution at room temperature (Ct 19.6, 19.7) 2: 4 mM Phen and 2.5 mM NTA (Ct 18.7, 18.8) 3: 2 mM Phen and NTA 2. 5 mM added (Ct 18.0, 18.9) 4: 1 U of Platinum added (Ct 23.0, undetectable) 5: No chelating agent added (undetectable)
  • the present invention works effectively to stabilize the probe. This enables stable data collection when analyzing a large amount of gene expression in which the reaction solution is assumed to be left at room temperature.
  • the present invention is particularly useful when gene expression analysis is performed on a large amount of specimens in which a prepared reaction solution is assumed to be left at room temperature for a long time. It can also be used for inspection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 プローブを用いた核酸検出法において、核酸検出反応液中でのプローブの分解を抑制する方法を提供し、安定した遺伝子解析を可能とすることにある。 核酸検出法であって、プローブを用い、かつ、核酸検出反応液にキレート剤、特にフェナントロリン、ニトリロ三酢酸(NTA)、マレイン酸、クエン酸、トリシン、エチレンジアミン四酢酸(EDTA)、トランス-1,2-ジアミノシクロヘキサン-N,N,N',N'-四酢酸(CDTA)、グリコールエーテルジアミン四酢酸(EGTA)、酒石酸、ニコチンアミド、Hydroxy iminodiacetic acid(HIDA)またはフィチン酸を共存させる方法。

Description

核酸検出反応液中のプローブの安定化方法
本発明は、遺伝子増幅率或いは遺伝子変異の検出等の分子生物学的検出法における、核酸検出反応液中の核酸検出プローブ(以下「プローブ」と略す)の安定化方法に関する。
遺伝子・核酸の検出は分子生物学において重要な操作法である。核酸検出法は現在までに様々な方法が開発されており、プローブハイブリダイゼーション法やポリメラーゼ連鎖反応(PCR)法が比較的一般に普及している。
PCRでは、近年、測定感度の高さや迅速性から、増幅産物の生成過程を経時的にモニタリングすることが可能なリアルタイムPCR(以下「qPCR」と略す)が広く実施される。主なqPCRに各種蛍光プローブを用いて、PCRをハイブリダイゼーションプロービングと組み合わせた手法がある。プローブを用いたqPCRとして、TaqMan(登録商標)(例えば、非特許文献1を参照)、Molecular Beacon、Hybridization Probe、Cycling Probeなどの方法が存在し、蛍光エネルギー転移などの技術を利用して、増幅核酸の量に相関して蛍光が増減するように工夫されている。
例えば、一般的に広く普及しているTaqMan(登録商標)プローブ法は5’末端に蛍光物質を、3’末端に消光物質(クエンチャー)を結合させたプローブを使用する方法である。このプローブは鋳型にアニールするが、励起光を照射してもクエンチャーにより蛍光は抑制されている。相補鎖が伸長される際、DNAポリメラーゼの5’→3’エキソヌクレアーゼ活性によりプローブが加水分解され、蛍光物質がプローブから遊離し、クエンチャーから離れることにより蛍光を発する。この蛍光を検出することで、増幅による蛍光強度の増加をモニタリングすることができる。
Hollandら,Proc.Natl.Acad.Sci.第88巻,1991年,第7276-7280頁 Kelloggら, Biotechniques, 第16巻, 1994年,第1134-1137頁
本発明の目的は、プローブを用いた核酸検出法において、核酸検出反応液(以下、「反応液」と記載することもある。)中での、プローブの分解を抑制する方法を提供することにある。
プローブを用いた核酸検出法において、HTS(High Throughput Screening)など、大量サンプルの遺伝子解析を行う場合等においては、反応液を調製後に長時間(数時間日から数日間)放置されることが想定されるが、発明者らの検討によれば、前記反応液を常温で放置することでプローブの分解が懸念されることが明らかになった。例えば、TaqMan(登録商標)プローブ法では、調製後の反応液を常温で放置することで、Ct値が遅れる、あるいは検出そのものが不能になる現象が複数例確認された。上述のような理由より、核酸検出反応液において、より効果的にプローブを安定化することが新たな課題として見出された。
本発明者らは、前記のTaqManプローブ法における検出不能現象等についてさらに考察した。その結果、前記の検出不能例ではバックグラウンドの蛍光が異常に上昇することが観察されており、その原因は、核酸検出反応液において、ホットスタート法(DNAポリメラーゼに対する抗体を用いて常温におけるDNAポリメラーゼの活性をブロックする手法、例えば非特許文献2を参照)によるDNAポリメラーゼの5’→3’エキソヌクレアーゼ活性の抑制が完全にできておらず、5’→3’エキソヌクレアーゼ活性を持つDNAポリメラーゼがプローブを分解することにあると考えた。
上記の考察を基に、本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、キレート作用を持つ物質(以下「キレート剤」という)を核酸検出反応液に共存させることで、プローブの分解を抑制できることを見出した。また、この知見を基に、前記キレート剤のうち特定のものを組み合わせることでより好ましい効果をもたらすことを見出し、本発明を完成させるに至った。さらには、核酸検出反応液に金属イオンを共存させ、その濃度を調節することで、核酸検出反応を阻害せず、より効果的にプローブの分解を抑制することを見出し、本発明を完成させるに至った。
すなわち、本発明は以下の構成からなる。
項1.プローブを用いた核酸検出法において用いられる核酸検出反応液中に、キレート剤を共存させることを特徴とするプローブを安定化させる方法。
項2.キレート剤が、フェナントロリン、ニトリロ三酢酸(NTA)、マレイン酸、クエン酸、トリシン、エチレンジアミン四酢酸(EDTA)、トランス-1,2-ジアミノシクロヘキサン-N,N,N’,N’-四酢酸(CDTA)、グリコールエーテルジアミン四酢酸(EGTA)、酒石酸、ニコチンアミド、ヒドロキシエチルイミノ二酢酸(HIDA)およびフィチン酸からなる群より選ばれるいずれか1つ以上である項1に記載の方法。
項3.フェナントロリンが、1, 10‐フェナントロリン(Phen)または2,9-ジメチルー1,10-フェナントロリンである項2に記載のプローブを安定化させる方法。
項4.Phen若しくは2,9-ジメチルー1,10-フェナントロリン並びにNTAおよび/またはマレイン酸を共存させることを特徴とする項1から3のいずれかに記載のプローブを安定化させる方法。
項5.フェナントロリンを、2mMから4mMの濃度で共存させることを特徴とする項1から4のいずれかに記載のプローブを安定化させる方法。
項6.金属イオンを、4mMから10mMの濃度でさらに共存させることを特徴とする項5に記載のプローブを安定化させる方法。
項7.金属イオンがマグネシウムイオンである項6に記載のプローブを安定化させる方法。
項8.核酸検出法がプローブを用いたPCRである項1から7のいずれかに記載のプローブを安定化させる方法。
項9.5℃から35℃の温度条件下で、核酸検出液を24時間保存した後に、(a)または(b)のいずれかの要件を満たすことを特徴とする項1から8のいずれかに記載のプローブを安定化させる方法。
(a)保存前のCt値/保存後のCt値>0.8
(b)保存前のサイクル初期の蛍光強度/保存後のサイクル初期の蛍光強度>0.3
本発明により、プローブを用いる核酸検出法において、検出手順などの条件を変えることや、特殊な前処理を行うことなく、極めて簡単に核酸検出反応液中でのプローブの分解を抑制し、安定した核酸検出が可能となる。
実施例1において、プローブ(IL6)を用いたqPCRの増幅曲線を示した図である。 実施例1において、プローブ(IL6)を用いたqPCRのMulticomponentで蛍光強度を確認した図である。 実施例1において、プローブ(RPS19)を用いたqPCRの増幅曲線を示した図である。 実施例1において、プローブ(RPS19)を用いたqPCRのMulticomponentで蛍光強度を確認した図である。 実施例2において、プローブ(IL6)を用いたqPCRの増幅曲線を示した図である。 実施例2において、プローブ(IL6)を用いたqPCRの検量線を示した図である。 実施例2において、プローブ(RPS19)を用いたqPCRの増幅曲線を示した図である。 実施例2において、プローブ(IL6)を用いたqPCRの検量線を示した図である。 実施例3において、プローブ(E2F5)を用いたqPCRの検量線を示した図である。 実施例3において、プローブ(CDK4)を用いたqPCRの検量線を示した図である。 実施例3において、プローブ(IL8)を用いたqPCRの検量線を示した図である。 実施例3において、プローブ(GAPDH:Hs02758991_g1)を用いたqPCRの検量線を示した図である。 実施例3において、プローブ(GAPDH:Hs9999905_m1)を用いたqPCRの検量線を示した図である。 実施例3において、キレート剤を加えた条件で、MgSO濃度を4、5、6、7あるいは8mMにした場合のGAPDH:Hs9999905_m1の増幅曲線を示した図である。 実施例3において、MgSO濃度を10mM、常温で65時間放置した際のIL6の増幅曲線を示した図である。 実施例3において、MgSO濃度を10mM、常温で65時間放置した際のRPS19の増幅曲線を示した図である。 実施例4において、抗Taq抗体(TCP)がない組成の反応液を用いて、プローブ(IL6)の増幅曲線を示した図である。 実施例4において、抗Taq抗体(TCP)がない組成の反応液を用いて、プローブ(RPS19)の増幅曲線を示した図である。
以下、本発明を詳細に説明する。
本発明の実施形態の一つは、核酸検出法であって、プローブを用い、かつ、核酸検出反応液にキレート剤を共存させる方法である。
(プローブ)
本発明において、「プローブ」とは、検出目的とする標的核酸により選択される塩基配列を有するオリゴヌクレオチドである。プローブの配列及び長さは、特に限定されず、標的配列によって、従来公知の方法により適宜決定される。
プローブは、アルカリ性ホスファターゼなどの酵素、ビオチン、アビジン、蛍光色素など標識物質を結合してもよい。プローブの標識は限定されないが、蛍光色素が好ましい。標識プローブの標識位置は、塩基配列中の末端もしくは末端の近傍に標識されていることが好ましい。
(核酸検出法)
本発明における「核酸検出法」は、プローブを用いて核酸を検出する方法であれば特に限定されない。核酸増幅を伴うものであっても良いし、伴わないものであっても良い。核酸増幅を利用しない方法では、例えば、Fluorescence in situ hybridization(FISH)法、Hybrid Capture法、Invader法などが挙げられる。
核酸検出法は、核酸の増幅工程を伴ってもよい。この場合において、増幅は検出の前に行われてもよいし、検出と同時に行われてもよい。
増幅を伴う核酸検出法は特に限定されないが、例えば、PCR法が挙げられる。また、これに限らず、例えば、Loop-Mediated Isothermal Amplification(LAMP)法、Transcriprtion Reverse Transcription Concerted Reaction (TRC)法、Nucleic Acid Sequence-Based Amplification (NASBA)法などであることができる。
核酸検出法がqPCRである場合、プローブとしては、TaqMan(登録商標)Probe、Molecular Beacon、Hybridization Probe、Cycling Probe、Q Probeなどが挙げられ、任意のプローブを選択することができる。
(核酸検出反応液)
 本発明における「核酸検出反応液」は、核酸検出反応を実行するのに必要な成分(物質)が揃っていれば特に限定されない。一般に、核酸のハイブリダイゼーションに必要な金属イオンを含んでいることが好ましい。核酸検出法がqPCRである場合は、プライマー、DNAポリメラーゼ、デオキシヌクレオシド三リン酸等の基質を含んでおり、さらに金属イオンも含んでいればより好ましい。
核酸検出法がDNAポリメラーゼによる増幅を伴う場合、前記核酸検出反応液に用いる「DNAポリメラーゼ」は特に限定されない。種々の耐熱性細菌由来のDNAポリメラーゼが使用できる。具体的には、ファミリーA(PolI型)に属するTaq DNAポリメラーゼやTth DNAポリメラーゼ、ファミリーB(α型)に属するKOD DNAポリメラーゼ、Pfu DNAポリメラーゼ、Pwo DNAポリメラーゼなどが挙げられる。その中でも5’→3’エキソヌクレアーゼ活性を有しTaqMan(登録商標)Probe法に用いられることから、Taq DNAポリメラーゼやTth DNAポリメラーゼなどが好ましいが、これらに限定されるものではない。
(キレート剤)
本発明において、「キレート剤」は、複数の配位座を持つ配位子による金属イオンへの結合により錯体を形成することのできる化合物であれば、特に限定されない。例えば、フェナントロリン、NTA、マレイン酸、クエン酸、トリシン、EDTA、CDTA、EGTA、酒石酸、ニコチンアミド、HIDAおよびフィチン酸等が挙げられる。その中でも、プローブの安定化と核酸検出反応とを両立する濃度範囲の調節が比較的容易であることから、Phen、NTAまたはマレイン酸がより好ましい。
また、用いるキレート剤は1種類に限定されず、複数種を組み合わせて用いてもよい。
 上記キレート剤のうち、フェナントロリンとは、フェナントレン構造における炭素原子のうち2個を窒素原子で置換された複素環骨格を有する化合物の総称をいう。具体的には、1, 10‐フェナントロリン(Phen)または2,9-ジメチルー1,10-フェナントロリン等が挙げられるが、これらに限定されるものではなく、例えばこれらの類似体であってもよい。フェナントロリンを用いる場合には、反応液中の濃度としては、2mMから4mMであることが好ましい。
前記キレート剤の濃度は特に限定されないが、核酸検出を阻害しないよう濃度を適宜調節して用いることが好ましい。具体的にはプローブの分解抑制に効果のあるキレート剤濃度で、核酸検出に阻害が生じる場合、キレート剤濃度を段階的に下げて、阻害がかからない濃度を設定する。1~100mM(1mM以上100mM以下)の範囲内にあることが好ましい。さらに好ましくは1~10mMである。キレート剤がPhen、NTAまたはマレイン酸を用いる場合、キレート剤のトータル濃度としては、好ましくは1~7mMである。
(キレート剤の定量方法)
本発明において、核酸検出反応液中のキレート剤を定量する際にはGC/MS法などで検出するものとする。
(本発明の効果)
 本発明の核酸検出法を用いることにより、プローブを用いる核酸検出法において、核酸検出反応液にキレート剤を共存させることにより、核酸検出反応液中のプローブの分解を抑制することができる。
(プローブの分解)
本発明において「プローブの分解」の程度は、以下の(1)または(2)のいずれかの方法で定量的に確認することができる。
(1)プローブを反応液に添加して時間が経過したものと、反応液に入れた直後のものでPCRでのCt値を比較する。
(2)プローブを反応液に添加して時間が経過したものと、反応液に入れた直後のものでPCRサイクル初期の蛍光強度を比較する。
本発明における「プローブの分解を抑制」とは、理想的には、5~35℃の温度条件下で放置することにより分解するプローブを反応液に加えて、常温で保存した前後において、上記の方法で測定したときに、保存前と比較し、保存後でCt値が同等あるいはサイクル初期の蛍光強度が同等であることを言う。
具体的には、アプライドバイオシステムズのTaqMan(登録商標) Gene Expression Assays、Gene Name:Interleukin 6、Assay ID: Hs00985639_m1(以下「IL6」と略す)、あるいはGene Name: ribosomal protein S19、Assay ID: Hs03044115_g1(以下「RPS19」と略す)を加えた核酸検出反応液を24時間常温放置で、以下の式を満たす場合、プローブの分解は抑制されている。
(1)保存前のCt値/保存後のCt値>0.8
(2)保存前のサイクル初期の蛍光強度/保存後のサイクル初期の蛍光強度>0.3
上記(1)における値は、より好ましくは0.9以上である。また、上記(2)における値は、より好ましくは0.5以上である。
本明細書では、核酸検出反応液を25℃で17時間以上保存した後で、前記の評価方法に基づいて保存前と保存後とでCt値あるいはサイクル初期の蛍光強度を比較し、その少なくとも一方が同等であれば、プローブの分解が抑制されていると結論され、プローブが安定化していると判断する。
25℃でさらに保存時間を延ばして(23時間、より長くは65時間、さらに長くは124時間)試験を行った後でプローブの分解が抑制されていれば、安定化の程度が保存時間の長さに応じて、さらに高くなっていると判断できる。
(プローブの分解を抑制するメカニズム)
 本発明の方法によるプローブ分解の抑制メカニズムの一つは、核酸検出反応液にキレート剤を共存させることにより、核酸検出反応液中のプローブがヌクレアーゼ活性を有する酵素によって分解されるのを抑制することである。
本発明者らは、上述のとおり、PCR法を例にとって検討を行い、核酸検出反応液におけるプローブの分解が、DNAポリメラーゼの5’→3’エキソヌクレアーゼ活性によるものであることを見出した。そして本発明者らは、さらに検討を加え、前記5’→3’エキソヌクレアーゼ活性(さらには、他の酵素のヌクレアーゼ活性)には、マグネシウム、カルシウムなどの金属イオンが必須であることから、キレート剤が金属イオンを捕捉することで、金属イオン濃度の調節に関与していると考えた。
前記ヌクレアーゼ活性を有する酵素としては、前述の5’→3’エキソヌクレアーゼ活性を有するDNAポリメラーゼに限定されない。例えば、一般にマグネシウム、カルシウム、マンガン、亜鉛などの金属イオンが必要と言われている、DNase I、DNase II、DNAポリメラーゼおよび制限酵素等が挙げられる。
これらの酵素は、PCR法におけるDNAポリメラーゼのように核酸増幅に用いられ核酸検出反応液に含まれるものに由来するものでもよいし、通常は核酸検出反応液に含まれないはずのコンタミナントに由来するものでもよい。
(金属イオン)
本発明の方法には、核酸検出反応液にさらに金属イオンを共存させることが好ましい。
本発明の方法に用いる「金属イオン」は特に限定されない。例えば、マグネシウムイオン、マンガンイオン、亜鉛イオン、カルシウムイオンなどの二価金属イオンが挙げられ、中でも核酸検出反応液に添加されることが多いマグネシウムイオンが好ましい。マグネシウムイオンは、通常塩の状態の化合物を利用する。本発明において、マグネシウム塩は水性溶媒中にマグネシウムイオンを放出するような形態でマグネシウムを有する物質を表す。マグネシウム塩は特に限定されないが、塩化マグネシウム、水酸化マグネシウム、炭酸マグネシウムおよび硫酸マグネシウム等が例示され、塩化マグネシウム、硫酸マグネシウムが好ましい。
前記金属イオンの濃度は特に限定されないが、核酸検出を阻害しないよう濃度を適宜調節して用いることが好ましい。
具体的には、プローブの安定化に働くキレート剤の濃度範囲を確認し、その濃度範囲で核酸検出反応が阻害される場合、金属イオンの濃度を上げ、プローブの安定化と核酸検出反応が両立される金属イオン濃度を決定する手順が好ましい。反応系中の金属イオンの濃度は特に限定されないが、マグネシウムイオンを用いる場合、反応液中の濃度としては、1mM~15mMが好ましく、より好ましくは1mM~10mM、特に好ましくは4mM~10mMである。
また、用いる金属イオンの種類は1種類に限定されず、複数種を組み合わせて用いてもよい。
(金属イオンの定量方法)
核酸検出反応液中の金属イオンを定量する際にはICP 発光分析法を用いるものとする。
(キレート剤と金属イオンの組み合わせ)
前記キレート剤と前記金属イオンの濃度の組み合わせは特に限定されないが、核酸検出を阻害しないよう濃度を適宜調節して用いることが好ましい。
好ましくは、キレート剤の濃度が1~100mM、かつ、金属イオンの濃度が1~10mMである。キレート剤がPhen、NTAあるいはマレイン酸かつ金属イオンがマグネシウムイオンである場合、キレート剤のトータル濃度としては、好ましくはキレート剤が1~7mMに対して金属イオン4~10mMである。
別の観点からは、キレート剤と金属イオンの濃度比が1:10から100:1であることが好ましく、1:50から10:1であることが特に好ましい。
核酸検出反応液にDNAポリメラーゼが含まれる場合、前記キレート剤と前記金属イオンの濃度は、DNAポリメラーゼの種類や濃度によって、好ましい組み合わせは変動しうる。具体的には、Taq DNAポリメラーゼまたはTth DNAポリメラーゼとマグネシウムイオンの組み合わせが好ましい。
(核酸検出反応液にキレート剤を共存させる方法)
 本発明の方法において、核酸検出反応液にキレート剤を共存させる方法は特に限定されない。
例えば、核酸検出反応液にあらかじめ加えておいても良いし、プローブと共に反応液に加えても良い。核酸検出反応液中に、検出反応に必要であり、かつ、金属イオンが必須である酵素(例えば、DNAポリメラーゼ)が含まれる場合、キレート剤はプローブと同時か、プローブより先に反応液に加えることが好ましい。
核酸検出反応液が、例えば、核酸検出キット等において、反応開始前にいくつかの組成に分割されていて、反応時に混合して用いるように供されている場合は、その分割されている組成物のいずれか1つ以上の中に加えておけばよい。
 本発明により、簡便かつ効果的にプローブの分解を抑制することが可能になり、従来技術と比べて顕著な効果を示す。
以下、実施例に基づき、本発明をより具体的に説明する。もっとも、本発明は実施例により特に限定されるものではない。
実施例1:プローブの分解及びキレート剤添加による安定化効果
常温放置によるプローブの分解及びキレート剤添加によるプローブの安定化を確認する目的で、qPCRを用いて解析を行った。
サンプルは、HeLa細胞(ヒト子宮頸癌由来の細胞)RNAから作製したcDNAを用いた。RNAの抽出及びcDNAの作製には、MMLV由来の逆転写酵素を用いたSuperPrep(登録商標) Cell Lysis & RT Kit for qPCR(東洋紡株式会社)を用い、手順は取扱説明書に従った。THUNDERBIRD(登録商標) Probe qPCR Mix(東洋紡株式会社)を用いて20μLの反応液をそれぞれ調製した。TaqManプローブ及びプライマーは、アプライドバイオシステムズのTaqMan(登録商標) Gene Expression Assays、Gene Name:Interleukin 6、Assay ID: Hs00985639_m1(以下「IL6」と略す)、あるいはGene Name: ribosomal protein S19、Assay ID: Hs03044115_g1(以下「RPS19」と略す)を用いた。本製品は、20倍濃度のプライマー・プローブ混合液である。反応は95℃、1分の前反応の後、「95℃、15秒→60℃、60秒」を40サイクル繰り返すスケジュールでリアルタイムPCR装置(Applied Biosystems 7500 Fast リアルタイムPCRシステム)を用いて行った。また、キレート剤添加の効果と比較するため、Platinum(登録商標) Taq Antibody(以下「Platinum」と略す、Invitrogen by Life technologies)を用い、1Uあるいは5U添加したものを対照として用意した。
調製後の反応液の、プローブの濃度は0.25μM、マグネシウムイオンの濃度は4mMとなる。
調製後の反応液を25℃で124時間放置した。
(プローブIL6の場合)
qPCRにより得られた増幅曲線を図1に示した。図中の番号は、以下を示す通りである。
1:反応液常温放置後にプローブを添加(Ct27.4、27.6) 2:Phenを5mM添加(Ct27.2、27.5) 3:Phenを4mM添加(Ct27.6、27.8) 4:Platinumを1U添加(Ct30.8、35.1) 5:Platinumを5U添加(Ct31.3、34.6) 6:キレート剤添加なし(Ct37.3、検出不可)
その結果、プローブIL6において、キレート剤を添加していない場合はCt値が検出されなかった(図1、No.6)。また、Platinumを添加した場合はCt値遅れの顕著な改善はみられなかった(図1、No.4および5)。一方、キレート剤であるPhenを4あるいは5mM添加した場合は、プローブを124時間後に加えたコントロールとほぼ同等のCt値を示した(図1、No.1~3)。
図2に、プローブ(IL6)を用いたqPCRのMulticomponentで蛍光強度を確認した結果を示した。図中の番号は、以下を示す通りである。
1:反応液常温放置後にプローブを添加 2:Phenを5mM添加 3:Phenを4mM添加 4:Platinumを1U添加 5:Platinumを5U添加 6:キレート剤添加なし
この際、サイクル初期の蛍光強度は、キレート剤を添加していない場合やPlatinumを添加している場合に高い(図2;No.4~6)。これは、常温放置により、サイクル開始前にプローブが分解され、蛍光標識がプローブから遊離し、クエンチャーによる消光が解除され蛍光を発したためと推測される。一方、キレート剤を添加したものやプローブを124時間後に加えたコントロールではサイクル初期の蛍光強度は低い(図2;No.1~3)。これは、プローブが分解されておらず、クエンチャーによる消光が維持されているためと考えられる。
(プローブRPS19の場合)
図3に、プローブ(RPS19)を用いた場合のqPCRの増幅曲線を示した。反応液は調製後常温で124時間放置した。キレート剤としてPhen8.5あるいは10mMを添加した。図中の番号は、以下を示す通りである。
1:反応液常温放置後にプローブを添加(Ct21.6、21.8) 2:Phenを10mM添加(Ct22.8、23.4) 3:Phenを8.5mM添加(Ct24.5、25.9) 4:Platinumを1U添加(検出不可) 5:Platinumを5U添加(検出不可) 6:キレート剤添加なし(Ct32.0、検出不可)
また、図4に、プローブ(RPS19)を用いた場合のqPCRのMulticomponentで蛍光強度を確認した図を示した。反応液は調製後常温で124時間放置した。キレート剤としてPhen8.5あるいは10mMを添加した。図中の番号は、以下を示す通りである。
1:反応液常温放置後にプローブを添加 2:Phenを10mM添加 3:Phenを8.5mM添加 4:Platinumを1U添加 5:Platinumを5U添加 6:キレート剤添加なし
プローブRPS19についてもIL6と同様の傾向がみられ、キレート剤を添加していない場合やPlatinumを添加した場合はCt値が検出されなかった(図3;No.4~6)。一方、Phenを8.5あるいは10mM添加した場合は、Ct値遅れの改善がみられた(図3;No.3および2)。ただし、完全な改善はみられず、IL6の場合と比較して、より高い濃度のPhenを必要とした(図3)。
この際、サイクル初期の蛍光強度はIL6の場合と同様に、キレート剤を添加していない場合やPlatinumを添加している場合に高く、キレート剤であるPhenを添加すると低く抑えられる(図4)。ただし、Phenを添加しても、プローブを124時間後に加えたコントロールほどは低く抑えられておらず、プローブの分解は完全には抑えられていないと考えられる(図4)。
(他のキレート剤の検討)
なお、単独のキレート剤としては、前記のPhenで最も常温放置によるCt値遅れ改善効果がみられたが、他のキレート剤(トリシン、酒石酸、EGTA、マレイン酸、ニコチンアミド、HIDA、EDTA、CDTA、クエン酸およびフィチン酸)でも、特定の濃度範囲で改善効果がみられることを確認した(表1および表2)。よって、キレート剤により最適な濃度範囲は異なるが、共通して、プローブの分解を抑制する作用を持つことが示唆された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
実施例2:キレート剤組み合わせ効果
 実施例1において、プローブRPS19については、IL6と比較してCt値遅れ改善の効果が小さかった。そこで、Phenと他のキレート剤を組み合わせることで、IL6のPCR反応を阻害せず、RPS19のCt値遅れを改善する効果が得られないかを検討した。
qPCRは実施例1の方法に従った。検量線を作成する場合、鋳型としてHeLa細胞(ヒト由来の細胞)RNAから作製したcDNAを4倍希釈で5段階設定した。
調製後の反応液を25℃で23時間放置した。
図5に、プローブ(IL6)を用いたqPCRの増幅曲線を示した。Phenの濃度を0、5、6.5、10mMで比較した。図中の番号は、以下を示す通りである。
1:Phen添加なし 2:Phenを5mM添加 3:Phenを6.5mM添加 4Phenを10mM添加
図6に、プローブ(IL6)を用いたqPCRの検量線を示した。Phenの濃度を0、4、5、6.5mMで比較した。図中の番号は、以下を示す通りである。
1:Phen添加なし 2:Phenを6.5mM添加 3:Phenを5mM添加 4:Phenを4mM添加
図7において、プローブ(RPS19)を用いたqPCRの増幅曲線を示した。キレート剤としてPhenおよびNTAを用いた。図中の番号は、以下を示す通りである。
1:反応液常温放置後にプローブを添加(Ct21.0、21.0) 2:Phenを4mMおよびNTAを3mM添加(Ct21.4、21.5) 3:Phenを4mMおよびNTAを2.5mM添加(Ct21.1、21.1) 4:Phenを4mMおよびマレイン酸を2.5mM添加(Ct21.5、21.5) 5:Phenを4mMおよびNTAを1mM添加(Ct22.7、23.6) 6:Phenを4mM添加(Ct24.4、24.7) 7:キレート剤添加なし(検出不可)
図8に、プローブ(IL6)を用いたqPCRの検量線を示した。キレート剤としてPhenおよびNTAを用いた。図中の番号は、以下を示す通りである。
1:キレート剤添加なし 2:Phenを4mM添加 3:Phenを4mMおよびNTAを2.5mM添加
プローブRPS19についてPhenの濃度が比較的高い(10mM)場合、実施例1に示したように一定の改善効果がみられたが、プローブがIL6の場合、この濃度では阻害がかかる(図5、No.4)。なお、増幅曲線ではPhenを6.5mMでやや乱れ阻害が示唆されるが、5mMでは乱れはなく、検量線では4,5,6.5mMで阻害は確認できなかった(図5、6)。
一方、プローブRPS19の場合、Phenを4mMとNTAあるいはマレイン酸を2.5mM組み合わせて反応液に加えた場合、25℃で23時間放置後のCt値遅れをほぼ改善した。また、Phenを4mMとNTAを2.5mMとの組み合わせ、Phenを4mMとNTAを3mMとの組み合わせにおいても、同様のCt値遅れの効果が見られた(図7、No.2~4)。
また、プローブIL6の場合、Phenを4mMとNTAを2.5mMとの組み合わせ条件では、PCR反応を阻害しておらず、検量線にも異常はみられなかった(図8)。
よってキレート剤を組み合わせて用いることで、単独で用いるよりも、PCR反応を阻害せず、プローブの分解を抑制する効果があることが示唆された。
実施例3:その他のキレート剤によるPCR反応への影響およびマグネシウムイオン濃度の関係
(その他のキレート剤によるPCR反応への影響)
実施例1および実施例2により、キレート剤を単独あるいは組み合わせて用いることでプローブの安定化に効果があることが示された。一方、一般的にPCRの反応液にキレート剤を入れることは反応液中のマグネシウムイオンをキレートするためPCR反応を阻害すると考えられるが、実施例1および2の結果は、キレート剤が一定の濃度範囲であればPCR反応を阻害しないことも示している。より詳しく、キレート剤によるPCR反応への影響を確認するため、IL6、RPS19以外のプローブを用いてqPCRを実施した。
qPCRは実施例1の方法に従った。TaqManプローブ及びプライマーは、アプライドバイオシステムズ社のTaqMan(登録商標) Gene Expression Assays[(Gene Name: glyceraldehyde-3-phosphate dehydrogenase、Assay ID: Hs99999905_m1、「GAPDH Hs99999905_m1」と略す)、(Gene Name: glyceraldehyde-3-phosphate dehydrogenase、Assay ID: Hs02758991_g1、「GAPDH Hs02758991_g1」と略す)、(Gene Name: E2F transcription factor 5, p130-binding、Assay ID: Hs00231092_m1、「E2F5」と略す)、(Gene Name: cyclin-dependent kinase 4、Assay ID: Hs01565683_g1、「CDK4」と略す)及び(Gene Name: Interleukin 8、Assay ID:Hs00174103_m1、「IL8」と略す)を用いた。
調製後の反応液を25℃で65時間放置した。結果を図9から図16までに示した。
図9に、プローブ(E2F5)を用いたqPCRの検量線を示した。キレート剤としてPhenを用いた。図中の番号は、以下に示す通りである。
1:キレート剤添加なし 2:Phenを5mM添加
図10に、プローブ(CDK4)を用いたqPCRの検量線を示した。キレート剤としてPhenを用いた。図中の番号は、以下に示す通りである。
1:キレート剤添加なし 2:Phenを5mM添加
図11に、プローブ(IL8)を用いたqPCRの検量線を示した。キレート剤としてPhenを用いた。図中の番号は、以下に示す通りである。
1:キレート剤添加なし 2:Phenを4mM添加
図12に、プローブ(GAPDH:Hs02758991_g1)を用いたqPCRの検量線を示した。キレート剤としてPhenを用いた。図中の番号は、以下に示す通りである。
1:キレート剤添加なし 2:Phenを4mM添加
図13に、プローブ(GAPDH:Hs9999905_m1)を用いたqPCRの検量線を示した。キレート剤としてPhenを用いた。図中の番号は、以下に示す通りである。
1:キレート剤添加なし 2:Phenを4mM添加
図14に、キレート剤(Phenを4mMおよびNTAを2.5mM)を加えた条件で、MgSO濃度を4、5、6、7あるいは8mMにした場合のGAPDH:Hs9999905_m1の増幅曲線を示した。図中の番号は、以下に示す通りである。
1:MgSO濃度が4mM(検出不可) 2:MgSO濃度が5mM(Ct32.8、34.7) 3:MgSO濃度が6mM(Ct25.7、26.0) 4:MgSO濃度が7mM(Ct23.6、24.3) 5:MgSO濃度が8mM(Ct22.2、22.8) 6:キレート剤添加無し、MgSO濃度が4mM(Ct19.5、19.8)
図15に、MgSO濃度を10mM、常温で65時間放置した際のIL6の増幅曲線を示した。図中の番号は、以下に示す通りである。
1:反応液常温放置後にプローブを添加(Ct26.0、26.0) 2:Phenを4mMおよびNTAを2.5mM添加(Ct25.9、26.0) 3:キレート剤添加なし(Ct27.9、29.6)
図16に、MgSO濃度を10mM、常温で65時間放置した際のRPS19の増幅曲線を示した。図中の番号は、以下に示す通りである。
1:反応液常温放置後にプローブを添加(Ct19.2、19.4) 2:Phenを4mMおよびNTAを2.5mM添加(Ct20.5、20.6) 3:キレート剤添加なし(検出不可)
その結果、反応液にPhenを4mMあるいは5mM加えることで、E2F5、CDK4、IL8およびGAPDH Hs02758991_g1をプローブとした場合はPCR反応への影響が見られない(図9~12)一方、GAPDH、Hs99999905_m1をプローブとした場合は検量線が乱れ、プローブによっては阻害がみられる場合があることを確認した(図13)。
Phenにより検量線が乱れた前記プローブ(GAPDH、Hs99999905_m1)では、Phenを4mMとNTAを2.5mMとの組み合わせのようにキレート剤の濃度がより高い場合、より顕著にPCR反応を阻害し、Ct値が検出されなかった(図14、No.1)。
(マグネシウムイオン濃度の検討)
確認した中で最も阻害がかかったこのプローブを用いて、マグネシウムイオン濃度を変更した条件でキレート剤の影響を確認した。THUNDERBIRD(登録商標) Probe qPCR Mixには4mMのMgSOが含まれているが、MgSO濃度を5、6、7、8mMに上げた場合、濃度に依存して阻害は解消した(図14)。
一方、プローブIL6の場合、MgSO 10mMの条件下で、Ct値遅れの改善効果を確認したところ、常温65時間放置によるCt値遅れは、ほぼ完全に解消されていた(図15)。また、プローブRPS19の場合も、MgSO 10mMの条件下で、Ct値遅れはおおよそ改善されていた(図16)。
以上の検討から、マグネシウムイオンについて、PCRに必要な濃度範囲とプローブの安定化に関わる濃度範囲は異なることがわかった。あるいは、キレート剤はマグネシウムイオンの調節とは別のメカニズムを介してプローブの安定化に効果を示すことが示唆された。
実施例4:Taq抗体非存在化でのキレート剤の効果
実施例1~3より、反応液中のプローブ安定化におけるキレート剤の効果が確認された。一方、実施例1~3で用いたTHUNDERBIRD(登録商標) Probe qPCR Mixには抗Taq DNAポリメラーゼ抗体(東洋紡株式会社)が含まれているため、キレート剤と相乗的にプローブの安定化の効果を発揮していると考えられる。キレート剤単独の効果を確認するため、THUNDERBIRD(登録商標) Probe qPCR Mixから抗Taq DNAポリメラーゼ抗体を抜いた組成のqPCR Mixを作製し、キレート剤単独の効果を確認した。
qPCRは実施例1の方法に従った。結果を図17、図18に示した。図17は、抗Taq抗体(TCP)がない組成の反応液を用いて、プローブ(IL6)の増幅曲線を示した図である。常温17時間放置した。キレート剤としてPhenおよびNTAを用いた。図中の番号は、以下に示す通りである。
1:反応液常温放置後にプローブを添加(Ct24.3、24.7) 2:Phenを2mMおよびNTAを2.5mM添加(Ct22.5、23.9) 3:Platinumを1U添加(Ct25.9、26.9) 4:キレート剤添加なし(検出不可)
図18は、抗Taq抗体(TCP)がない組成の反応液を用いて、プローブ(RPS19)の増幅曲線を示した図である。常温17時間放置した。キレート剤としてPhenおよびNTAを用いた。図中の番号は、以下に示す通りである。
1:反応液常温放置後にプローブを添加(Ct19.6、19.7) 2:Phenを4mMおよびNTAを2.5mM添加(Ct18.7、18.8) 3:Phenを2mMおよびNTAを2.5mM添加(Ct18.0、18.9) 4:Platinumを1U添加(Ct23.0、検出不可) 5:キレート剤添加なし(検出不可)
調製後の反応液を25℃で17時間放置した場合、IL6、RPS19いずれのプローブでも、Phenを4mMとNTAを2.5mM添加した場合ではCt値の遅れを改善した(図17、図18)。一方、プローブIL6ではPlatinumを添加してもCt値遅れの効果が確認されたが、キレート剤におけるほどの効果ではなかった(図17)。また、プローブRPS19では、Platinumを添加しても顕著な効果はなかった(図18)。よって、キレート剤単独でも十分にCt値遅れ効果に機能することが示唆された。
本発明はプローブの安定化に効果的に働く。これにより、室温で反応液が放置されることが想定される大量の遺伝子発現解析に際して、安定したデータ収集を可能にする。本発明は、調製後の反応液が常温で長時間に及んで放置されることが想定される大量の検体における遺伝子発現解析を行う場合に特に有用であり、研究用途のみならず臨床診断や環境検査等にも利用できる。
 

Claims (9)

  1. プローブを用いた核酸検出法において用いられる核酸検出反応液中に、キレート剤を共存させることを特徴とするプローブを安定化させる方法。
  2. キレート剤が、フェナントロリン、ニトリロ三酢酸(NTA)、マレイン酸、クエン酸、トリシン、エチレンジアミン四酢酸(EDTA)、トランス-1,2-ジアミノシクロヘキサン-N,N,N’,N’-四酢酸(CDTA)、グリコールエーテルジアミン四酢酸(EGTA)、酒石酸、ニコチンアミド、ヒドロキシエチルイミノ二酢酸(HIDA)およびフィチン酸からなる群より選ばれるいずれか1つ以上である請求項1に記載の方法。
  3. フェナントロリンが、1, 10‐フェナントロリン(Phen)または2,9-ジメチルー1,10-フェナントロリンである請求項2に記載のプローブを安定化させる方法。
  4. Phen若しくは2,9-ジメチルー1,10-フェナントロリン並びにNTAおよび/またはマレイン酸を共存させることを特徴とする請求項1から3のいずれかに記載のプローブを安定化させる方法。
  5.  フェナントロリンを、2mMから4mMの濃度で共存させることを特徴とする請求項1から4のいずれかに記載のプローブを安定化させる方法。
  6.  金属イオンを、4mMから10mMの濃度でさらに共存させることを特徴とする請求項5に記載のプローブを安定化させる方法。
  7.  金属イオンがマグネシウムイオンである請求項6に記載のプローブを安定化させる方法。
  8. 核酸検出法がプローブを用いたPCRである請求項1から7のいずれかに記載のプローブを安定化させる方法。
  9.  5℃から35℃の温度条件下で、核酸検出液を24時間保存した後に、(a)または(b)のいずれかの要件を満たすことを特徴とする請求項1から8のいずれかに記載のプローブを安定化させる方法。
    (a)保存前のCt値/保存後のCt値>0.8
    (b)保存前のサイクル初期の蛍光強度/保存後のサイクル初期の蛍光強度>0.3
PCT/JP2016/051209 2015-02-24 2016-01-18 核酸検出反応液中のプローブの安定化方法 WO2016136324A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017501977A JP6848857B2 (ja) 2015-02-24 2016-01-18 核酸検出反応液中のプローブの安定化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015033709 2015-02-24
JP2015-033709 2015-02-24

Publications (1)

Publication Number Publication Date
WO2016136324A1 true WO2016136324A1 (ja) 2016-09-01

Family

ID=56789382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051209 WO2016136324A1 (ja) 2015-02-24 2016-01-18 核酸検出反応液中のプローブの安定化方法

Country Status (2)

Country Link
JP (1) JP6848857B2 (ja)
WO (1) WO2016136324A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11970549B2 (en) 2020-12-11 2024-04-30 Toyobo Co., Ltd. Antibody capable of binding specifically to 5′ to 3′ exonuclease active domain of DNA polymerase

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504801A (ja) * 1991-08-06 1995-06-01 ザ ワールド ヘルス オーガニゼイション Dnaの単離方法
JPH09505479A (ja) * 1993-11-29 1997-06-03 ジェン−プローブ・インコーポレイテッド 広範な生物からの核酸抽出法
JP2000325099A (ja) * 1999-05-20 2000-11-28 Toyobo Co Ltd 新規な核酸ハイブリダイゼーション用緩衝溶液
JP2006254912A (ja) * 2005-03-16 2006-09-28 Agilent Technol Inc アレイハイブリダイゼーション用組成物及び方法
WO2010134246A1 (ja) * 2009-05-20 2010-11-25 オリンパス株式会社 核酸含有試料の調製方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5608997B2 (ja) * 2009-03-31 2014-10-22 東洋紡株式会社 保存安定性に優れた核酸増幅検出試薬キット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504801A (ja) * 1991-08-06 1995-06-01 ザ ワールド ヘルス オーガニゼイション Dnaの単離方法
JPH09505479A (ja) * 1993-11-29 1997-06-03 ジェン−プローブ・インコーポレイテッド 広範な生物からの核酸抽出法
JP2000325099A (ja) * 1999-05-20 2000-11-28 Toyobo Co Ltd 新規な核酸ハイブリダイゼーション用緩衝溶液
JP2006254912A (ja) * 2005-03-16 2006-09-28 Agilent Technol Inc アレイハイブリダイゼーション用組成物及び方法
WO2010134246A1 (ja) * 2009-05-20 2010-11-25 オリンパス株式会社 核酸含有試料の調製方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Real Time PCR no Genri", GENRI KARA YOKU WAKARU REAL TIME PCR KANZEN JIKKEN GUIDE, 10 October 2013 (2013-10-10), pages 14 - 19, ISBN: 978-4-7581-0187-5 *
IWANAMI RIKAGAKU JITEN, 10 November 2003 (2003-11-10), pages 345, 1153, ISBN: 4-00-080090-6 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11970549B2 (en) 2020-12-11 2024-04-30 Toyobo Co., Ltd. Antibody capable of binding specifically to 5′ to 3′ exonuclease active domain of DNA polymerase

Also Published As

Publication number Publication date
JPWO2016136324A1 (ja) 2017-11-30
JP6848857B2 (ja) 2021-03-24

Similar Documents

Publication Publication Date Title
JP3589638B2 (ja) 核酸の効率補正したリアルタイム定量方法
US8182995B2 (en) Real time gene expression profiling
Bhat et al. Effect of sustained elevated temperature prior to amplification on template copy number estimation using digital polymerase chain reaction
EP2310527B1 (en) Improved lysis and reverse transcription for mrna quantification
JP5200302B2 (ja) ヘリカーゼを使用するrnaターゲットの同定
Bustin et al. Analysis of mRNA expression by real-time PCR
JP2019509051A5 (ja)
JP2022189882A (ja) minor BCR-ABL1遺伝子を検出する方法
WO2016136324A1 (ja) 核酸検出反応液中のプローブの安定化方法
JP6402905B2 (ja) 核酸増幅の非特異反応を抑制する新規の方法
JP6852267B2 (ja) 核酸検出反応液中のプローブの安定化方法
JP5884869B2 (ja) 核酸増幅における非特異反応抑制方法
JP5911495B2 (ja) 同じ反応容器内での細胞溶解およびpcrのための方法
CN103154270B (zh) 用于rt‑pcr反应缓冲液中的细胞裂解的方法
JP6174999B2 (ja) Pcr反応緩衝液中での細胞溶解のための方法
JP2006075167A (ja) ピロホスファターゼの添加を伴うリアルタイムpcr
JP2007097492A (ja) 融解曲線測定による遺伝子増幅産物の解析方法
JP6880034B2 (ja) 特異的rnaの安定化のための汎用法
Marosy et al. Generating Exome Enriched Sequencing Libraries from Formalin‐Fixed, Paraffin‐Embedded Tissue DNA for Next‐Generation Sequencing
WO2020059792A1 (ja) 核酸増幅反応用組成物
Milan et al. Target Gene Amplification and Expression by qRT-PCR
JP2022181578A (ja) 5’→3’エキソヌクレアーゼ活性を測定するための基質組成物
WO2022117749A1 (en) Multiplexed method for assessing global or genomic locus-specific levels of chromatin modification
Li et al. Detection of colorectal cancer genes using a dye-free method combining barcode-base multiplex ligation-dependent probe amplification and pyrosequencing
JP2019129818A (ja) 核酸増幅試薬および当該試薬を用いた核酸増幅制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755074

Country of ref document: EP

Kind code of ref document: A1