WO2016129591A1 - コーティング部材及びコーティング部材の製造方法 - Google Patents

コーティング部材及びコーティング部材の製造方法 Download PDF

Info

Publication number
WO2016129591A1
WO2016129591A1 PCT/JP2016/053802 JP2016053802W WO2016129591A1 WO 2016129591 A1 WO2016129591 A1 WO 2016129591A1 JP 2016053802 W JP2016053802 W JP 2016053802W WO 2016129591 A1 WO2016129591 A1 WO 2016129591A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
layer
sio
less
solid solution
Prior art date
Application number
PCT/JP2016/053802
Other languages
English (en)
French (fr)
Inventor
峰明 松本
栗村 隆之
紘介 西川
忠之 花田
Original Assignee
三菱重工航空エンジン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工航空エンジン株式会社 filed Critical 三菱重工航空エンジン株式会社
Priority to JP2016574809A priority Critical patent/JP6462011B2/ja
Priority to CA2976181A priority patent/CA2976181C/en
Priority to EP16749235.4A priority patent/EP3243809B1/en
Priority to ES16749235T priority patent/ES2729940T3/es
Priority to US15/549,658 priority patent/US11365159B2/en
Publication of WO2016129591A1 publication Critical patent/WO2016129591A1/ja
Priority to US17/731,014 priority patent/US11608303B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/0025Compositions or ingredients of the compositions characterised by the crystal structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/15Rare earth metals, i.e. Sc, Y, lanthanides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/211Silica
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a coating member and a method for producing the coating member, and more particularly, to a coating member that has been subjected to environmental resistance coating.
  • Silicon-based ceramics such as SiC and Si 3 N 4 , or SiC fiber reinforced SiC composites (CMC) have good mechanical properties at high temperatures, so they are promising as high-temperature components for aircraft engines or gas turbines for power generation.
  • the gas turbine combustion environment is operated in a high-temperature and high-pressure steam oxidation environment in which steam is present, so that the silicon-based ceramics or the SiC fiber reinforced SiC composite material is oxidized and corroded by the steam, and the durability is remarkably high. descend.
  • Patent Document 1 discloses a coating made of yttrium silicate.
  • Patent Document 2 discloses a coating consisting of Lu 2 Si 2 O 7.
  • Patent Document 3 discloses a coating comprising a rare earth monosilicate (rare earth monosilicate), disilicate (rare earth disilicate), or a combination thereof, such as Lu, Yb, and Y.
  • a rare earth monosilicate film is formed on a substrate and then heat-treated in an environment containing oxygen to partially convert it to a rare earth disilicate.
  • Y 2 Si 2 O 7 is a relatively inexpensive material among rare earth silicates, it is advantageous as a coating material for large machines such as aircraft engines and power generation gas turbines.
  • the thermal expansion coefficient of Y 2 Si 2 O 7 is 3.7 ⁇ 10 ⁇ 6 / K, and SiC fiber reinforced SiC composite material (3.5 ⁇ 10 ⁇ 6 / K to 4.5 ⁇ 10 ⁇ 6 / K) Close to. Therefore, it is possible to relieve the thermal stress during use at a high temperature.
  • Y 2 Si 2 O 7 has a phase transformation ( ⁇ ⁇ ⁇ ) accompanied by a volume change in the vicinity of 1300 ° C., the coating may be damaged during use at a high temperature.
  • An object of the present invention is to provide a coating member that can suppress coating damage in a high temperature environment, obtain high reliability, and can perform coating at low cost, and a method for manufacturing the same.
  • a bond coat and a top coat are sequentially laminated on a substrate made of a Si-based ceramic or SiC fiber reinforced SiC composite material, and the top coat comprises a rare earth disilicate and a rare earth monosilicate.
  • the rare earth disilicate is a (Y 1-a Ln 1a ) 2 Si 2 O 7 solid solution
  • Ln 1 is one of Nd, Sm, Eu, Gd
  • a is 0.1 or more and 0.5 or less when Ln 1 is Nd, Sm or Eu, and 0.2 or more and 0.5 or less when Ln 1 is Gd
  • the rare earth monosilicate is Y 2 SiO 5 Or (Y 1-b Ln 1 ′ b ) 2 SiO 5 solid solution
  • Ln 1 ′ is any of Nd, Sm, Eu, Gd, and b is greater than 0 and 0.5 or less).
  • a bond coat and a top coat are sequentially laminated on a substrate made of a Si-based ceramic or SiC fiber reinforced SiC composite material, and the top coat comprises a rare earth disilicate and a rare earth monosilicate.
  • the rare earth disilicate is a (Y 1-c Ln 2c ) 2 Si 2 O 7 solid solution (Ln 2 is any one of Sc, Yb, Lu, and c is When Ln 2 is Sc, it is 0.05 or more and 0.5 or less, and when Ln 2 is Yb or Lu, 0.2 or more and 0.5 or less), and the rare earth monosilicate is Y 2 SiO 5 or (Y 1 A coating member that is a solid solution of -d Ln 2 ′ d ) 2 SiO 5 (Ln 2 ′ is any one of Sc, Yb, and Lu, and d is greater than 0 and 0.5 or less).
  • the stable region of the ⁇ phase is expanded.
  • the stable region of the ⁇ phase is expanded.
  • the rare earth disilicate having the composition defined in the first and second aspects does not undergo phase transformation even at a high temperature of about 1300 ° C to 1400 ° C. Therefore, when applied to coatings for aircraft engines or gas turbines, film damage due to volume changes accompanying phase transformation can be prevented.
  • rare earth monosilicate has a higher thermal expansion coefficient than rare earth disilicate.
  • the thermal expansion coefficient of the mixed phase of rare earth monosilicate and rare earth disilicate varies depending on the mixing ratio. If the difference in thermal expansion coefficient between the substrate and the top coat is large, distortion may occur in the top coat and the top coat may be damaged.
  • the top coat has a second layer on the first layer, and the second layer is made of Re 2 SiO 5 (Re is a rare earth element).
  • Rare earth monosilicate has a lower activity of SiO 2 than rare earth disilicate. For this reason, rare earth monosilicate is excellent in water vapor resistance. By forming a rare earth monosilicate layer as the second layer, the water resistance of the top coat can be further improved.
  • a difference between a thermal expansion coefficient of the base material on which the bond coat is laminated and a thermal expansion coefficient of the first layer is 3 ⁇ 10 ⁇ 6 / K or less.
  • the difference between the thermal expansion coefficient of the first layer and the thermal expansion coefficient of the second layer is 3 ⁇ 10 ⁇ 6 / K or less.
  • the thermal stress can be relaxed and damage to the first layer can be prevented.
  • the topcoat has a two-layer structure, if the difference in thermal expansion coefficient between the first layer and the second layer is 3 ⁇ 10 ⁇ 6 / K or less, the first layer and the second layer are damaged by thermal stress. Can be prevented.
  • the third aspect of the present invention includes a step of forming a bond coat on a substrate made of Si-based ceramics or SiC fiber-reinforced SiC composite material, and a step of forming a top coat on the bond coat.
  • the step of forming the top coat is (Y 1-a Ln 1a ) 2 Si 2 O 7 solid solution (Ln 1 is any one of Nd, Sm, Eu, and Gd, and a is Ln 1 is Nd , Sm, Eu, 0.1 to 0.5, Ln 1 is 0.2 to 0.5 when Gd, and Y 2 SiO 5 or (Y 1-b Ln 1 ′ b ) 2 SiO 5 solid solution (Ln 1 ′ is one of Nd, Sm, Eu, Gd, b is greater than 0 and 0.5 or less) and mixed with rare earth monosilicate powder Thermal spray particles are produced
  • a method of manufacturing a coating member comprising: a step, and a step in which the sprayed particles are sprayed onto the surface of
  • the fourth aspect of the present invention includes a step of forming a bond coat on a substrate made of Si-based ceramics or SiC fiber reinforced SiC composite material, and a step of forming a top coat on the bond coat.
  • the step of forming the topcoat is (Y 1-c Ln 2c ) 2 Si 2 O 7 solid solution (Ln 2 is any one of Sc, Yb, Lu, and c is Ln 2 is Sc.
  • (Y 1-a Ln 1a ) 2 Si 2 O 7 solid solution (any one of Ln 1 : Nd, Sm, Eu, Gd) or (Y 1-c Ln 2c ) 2 Si 2
  • a rare earth disilicate represented by an O 7 solid solution (any one of Ln 2 : Sc, Yb, and Lu) is excellent in phase stability at high temperatures.
  • the rare-earth disilicate particles previously solid-solved are used as the spray particles, it is possible to form a top coat in which the distribution of the rare earth is uniform. As a result, the phase stability of the rare earth disilicate is improved and the film life can be extended.
  • particles made of Re 2 SiO 5 are thermally sprayed on the surface of the first layer to form the second layer. It is preferable to include a process. By forming a rare earth monosilicate layer as the second layer, it is possible to further improve the water vapor resistance.
  • the difference between the thermal expansion coefficient of the base material on which the bond coat is laminated and the thermal expansion coefficient of the first layer is 3 ⁇ 10 ⁇ 6 / K or less, It is preferable that the rare earth disilicate powder and the rare earth monosilicate powder are mixed.
  • the rare earth disilicate powder is used at a ratio such that the difference between the thermal expansion coefficient of the first layer and the thermal expansion coefficient of the second layer is 3 ⁇ 10 ⁇ 6 / K or less. It is preferable that the rare earth monosilicate powder is mixed.
  • the thermal expansion coefficient of the mixed phase of rare earth monosilicate and rare earth disilicate varies depending on the mixing ratio.
  • particles prepared by adjusting the mixing ratio of rare earth monosilicate and rare earth disilicate so that the difference in thermal expansion coefficient between the base material and the first layer is 3 ⁇ 10 ⁇ 6 / K or less are used. Since the first layer is formed, damage to the first layer can be prevented.
  • the mixing ratio of rare earth monosilicate and rare earth disilicate is set so that the difference in thermal expansion coefficient between the first layer and the second layer is 3 ⁇ 10 ⁇ 6 / K or less. If the first layer is formed using particles prepared by adjustment, damage to the first layer and the second layer can be prevented.
  • the coating member obtained by the present invention is used in a steam oxidation environment at a high temperature and high pressure of about 1300 ° C. to 1400 ° C., damage due to volume change accompanying phase transformation of the top coat and water vapor erosion is prevented.
  • the thermal expansion coefficient of the first layer of the top coat the thermal stress generated in the coating member can be suppressed and damage to the top coat can be prevented.
  • FIG. 1 is a schematic cross-sectional view of a coating member according to the first embodiment.
  • the coating member 100 is configured by sequentially laminating a bond coat 102 and a top coat 103 on a base material 101.
  • the base material 101 is a gas turbine member for power generation such as an aircraft engine turbine member, a shroud, or a combustion liner.
  • the substrate 101 is made of Si-based ceramics or SiC fiber reinforced SiC composite material (CMC).
  • Si-based ceramics are ceramics containing Si, such as SiC and Si 3 N 4 .
  • the SiC fiber reinforced SiC composite material is a composite material using SiC fiber as a reinforced fiber and SiC as a matrix.
  • a bond coat 102 is formed on the surface of the substrate 101.
  • the bond coat 102 ensures good adhesion between the base material 101 and the top coat 103.
  • the bond coat 102 is made of silicide such as Si, MoSi 2 , LuSi 2 , mullite (3Al 2 O 3 -2SiO 2 ), barium strontium aluminosilicate (BSAS, (Ba 1-x Sr x ) O—Al 2 O 3 ⁇ SiO 2 ).
  • the bond coat 102 may be formed of one of the above materials, or may be configured by laminating a plurality of materials.
  • the thickness of the bond coat 102 is 20 ⁇ m or more and 200 ⁇ m or less.
  • the bond coat 102 is formed by a thermal spraying method, a sintering method, or the like.
  • a top coat 103 is formed on the bond coat 102.
  • the top coat 103 in the present embodiment is composed of a mixed phase of rare earth disilicate and rare earth monosilicate.
  • the thickness of the top coat 103 is 20 ⁇ m or more and 400 ⁇ m or less.
  • FIG. 2 is a graph illustrating the relationship between the temperature and crystal structure of rare earth disilicate (the source of the graph is AJF Carrion et al., “Structural and kinetic study of phase transitions in LaYSi 2 O 7 ”, Journal of the European Ceramic Society, Vol. 32 (2012) P.2477-2486, the boundary of the crystal structure was added by the inventor).
  • the horizontal axis represents the ion radius of the rare earth
  • the vertical axis represents the temperature.
  • the ionic radius of Y 3+ is 0.90 ⁇ , and according to FIG. 2, a phase transition from ⁇ phase to ⁇ phase occurs at about 1280 ° C. That is, when the usage environment of the coating member exceeds 1300 ° C., phase transformation occurs with volume change due to repeated cooling and heating. For this reason, the top coat 103 is cracked by the phase transformation of Y 2 SiO 7 .
  • the ionic radius on the boundary line between the ⁇ phase and the ⁇ phase at 1300 ° C. is 0.905 ⁇ . That is, if the ion radius of the rare earth is 0.905 ⁇ or more, the rare earth disilicate can secure crystal stability up to 1300 ° C.
  • the ionic radius on the boundary line between the ⁇ phase and the ⁇ phase at 1400 ° C. is 0.91 ⁇ . That is, if the ion radius of the rare earth is 0.91 mm or more, the rare earth disilicate can ensure crystal stability up to 1400 ° C.
  • substitution is made with a rare earth element having an ionic radius larger than that of Y.
  • Pr, Ce, and La have high reactivity with water vapor, and the water vapor resistance of the film is deteriorated. Therefore, Gd, Eu, Sm, and Nd are appropriate as the substitution element for Y.
  • Table 1 shows the substitution amount of the substitution element (Gd, Eu, Sm, Nd) and the average ionic radius of the rare earth element in the (Y 1-a Ln 1a ) 2 Si 2 O 7 solid solution.
  • the average ionic radius is 0.905 mm or more when a is Nd, Sm, or Eu, a is 0.1 or more, and G is 0.2 or more. That is, if it is more than the range of said a, a coating member can endure the operating temperature to 1300 degreeC. Further, from Table 1, the average ionic radius is 0.91 mm or more when a is Nd or Sm, a is 0.2 or more, and Eu or Gd is a is 0.3 or more. That is, if it is more than the range of said a, a coating member can endure the operating temperature to 1400 degreeC.
  • the upper limit value of a is preferably 0.5.
  • the ion radius on the boundary line between the ⁇ phase and the ⁇ phase at 1300 ° C. is 0.897 mm. That is, if the ion radius of the rare earth is 0.897 ⁇ or less, the rare earth disilicate can ensure crystal stability up to 1300 ° C.
  • the ionic radius on the boundary line between the ⁇ phase and the ⁇ phase at 1400 ° C. is 0.885 ⁇ . That is, if the ion radius of the rare earth is 0.885 ⁇ or less, the rare earth disilicate can secure crystal stability up to 1400 ° C.
  • the average ionic radius of the rare earth element (Y, Ln 2 ) varies depending on the substitution amount.
  • substitution is made with a rare earth element having an ionic radius smaller than Y.
  • the elements having an ion radius smaller than Y are Sc, Yb, Lu, Tm, and Er.
  • Sc, Yb, and Lu have a smaller ionic radius than Y, and the ⁇ phase of disilicate exists stably up to a high temperature.
  • Table 2 shows the substitution amount of the substitution element (Sc, Yb, Lu) and the average ionic radius of the rare earth element in the (Y 1-c Ln 2c ) 2 Si 2 O 7 solid solution.
  • the average ionic radius is 0.897 mm or less when c is 0.05 or more in the case of Sc and c is 0.1 or more in the case of Yb or Lu. That is, if it is more than the range of said c, a coating member can endure the operating temperature of 1300 degreeC. Further, from Table 2, the average ionic radius is 0.885 ⁇ or less when c is 0.1 or more in the case of Sc, and c is 0.5 or more in the case of Yb or Lu. That is, if it is more than the range of said c, a coating member can endure the operating temperature of 1400 degreeC or more.
  • the upper limit value of c is preferably 0.5.
  • the rare earth monosilicate in the present embodiment is a Y 2 SiO 5 or (Y 1-b Ln 1 ′ b ) 2 SiO 5 solid solution (when the rare earth disilicate is (Y 1-a Ln 1a ) 2 Si 2 O 7 b> 0).
  • Ln 1 ′ which is a substitution element for Y, is preferably the same as the substituent for the rare earth disilicate. Specifically, Ln 1 ′ is any one of Nd, Sm, Eu, and Gd.
  • the rare earth disilicate (Y 1-a Ln 1a ) 2 Si 2 O 7 coexisting in the mixed phase can be used.
  • the substitution amount b is more preferably the same as the substitution amount a of the rare earth disilicate. Therefore, the upper limit value of the replacement amount b is 0.5.
  • the lower limit value of the substitution amount b is preferably 0.1 for Nd, Sm, and Eu, and 0.2 for Gd.
  • Rare earth disilicate be a (Y 1-c Ln 2c) 2 Si 2 O 7
  • rare earth monosilicates are Y 2 SiO 5 or (Y 1-d Ln 2 ' d) 2 SiO 5 solid solution (d> 0) is there.
  • Ln 2 ′ which is a substitution element for Y, is preferably the same as the substituent for the rare earth disilicate.
  • Ln 2 ′ is any one of Yb, Lu, and Sc.
  • the rare earth disilicate (Y 1-d Ln 2d ) 2 Si 2 O 7 coexisting in the mixed phase can be used.
  • the substitution amount d is more preferably the same as the substitution amount c of the rare earth disilicate. Accordingly, the upper limit value of the replacement amount d is 0.5.
  • the lower limit value of the substitution amount d is preferably 0.05 for Sc and 0.1 for Yb, Lu.
  • the top coat 103 is formed by a thermal spraying method.
  • a mixture of a rare earth disilicate powder and a rare earth monosilicate powder is used as the spray particles.
  • Thermal spray particles are produced by the following method. First, rare earth disilicate solid solution particles having the above composition are prepared. As raw material powder, SiO 2 powder, Y 2 O 3 powder, [Ln 1 ] 2 O 3 (Ln 1 is any one of Nd, Sm, Eu, Gd) powder, [Ln 2 ] 2 O 3 (Ln 2 Is one of Sc, Yb, and Lu), and the powder is weighed and mixed so as to have a predetermined composition. Alternatively, Y 2 Si 2 O 7 powder, Ln 2 Si 2 O 7 (Ln is any one of Sc, Yb, and Lu, or any one of Nd, Sm, Eu, and Gd) powder to have a predetermined composition. Weigh and mix.
  • the mixed powder is heat-treated to obtain a solid solution powder.
  • a method for producing a solid solution powder there are a method in which heat treatment is performed at 1300 ° C. or higher using an electric furnace, a method in which plasma heat treatment is performed, and a method in which raw material powder is melted and then pulverized.
  • the rare earth monosilicate represented by Y 2 SiO 5 , (Y 1-b Ln 1 ′ b ) 2 SiO 5 (solid solution) and (Y 1-d Ln 2 ′ d ) 2 SiO 5 (solid solution) is the same as above. Produced by the method.
  • the rare earth disilicate powder and the rare earth monosilicate powder produced by the above method are weighed so as to have a predetermined composition ratio and granulated.
  • the particles thus obtained are classified, and particles of 10 ⁇ m to 200 ⁇ m are used as the spray particles.
  • the produced thermal spray coating was heat-treated at 1300 ° C. ⁇ 100 h, 1400 ° C. ⁇ 100 h, and the change in crystal phase was determined by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • FIG. 4 shows the result of heat-treating a (Y 0.8 Gd 0.2 ) 2 Si 2 O 7 solid solution sprayed coating in which Y is partially substituted with Gd at 1300 ° C. ⁇ 100 h, 1400 ° C. ⁇ 100 h. It can be seen that there is almost no change in the diffraction peak when the heat treatment is performed at 1300 ° C. ⁇ 100 h and 1400 ° C. ⁇ 100 h, and the phase transformation is suppressed.
  • FIG. 5 shows the result of heat treatment at 1300 ° C. ⁇ 100 h, 1400 ° C. ⁇ 100 h for a (Y 0.8 Yb 0.2 ) 2 Si 2 O 7 solid solution sprayed coating in which a part of Y is substituted with Yb. It can be seen that there is almost no change in the diffraction peak when heat treatment is performed at 1300 ° C. ⁇ 100 h and 1400 ° C. ⁇ 100 h, and also in this case, the phase transformation is suppressed.
  • the mixing ratio of the rare earth disilicate powder and the rare earth monosilicate powder is determined in consideration of the thermal expansion coefficient of the top coat.
  • thermal stress is generated in the top coat 103 when the difference in thermal expansion coefficient between the top coat 103 and its base is large. By repeating the operation and stop of the device (aircraft engine or gas turbine), a crack or the like occurs in the top coat 103 due to the thermal stress generated in the top coat 103.
  • the difference between the thermal expansion coefficient of the top coat 103 and the thermal expansion coefficient of the base material 101 including the bond coat 102 which is the base of the top coat 103 (from room temperature to 1200). Is preferably 3 ⁇ 10 ⁇ 6 / K or less.
  • the mixing ratio of the rare earth disilicate and the rare earth monosilicate is determined according to the type of the base material, the type of the rare earth disilicate, and the type of the rare earth monosilicate so as to achieve the above difference in thermal expansion coefficient. In the preparation of the thermal spray powder, the raw material powder is weighed and mixed so as to have this mixing ratio.
  • FIG. 6 is a graph for explaining the relationship between the mixing ratio of the rare earth disilicate and the rare earth monosilicate and the thermal expansion coefficient.
  • FIG. 6 shows an example in which (Y 0.8 Yb 0.2 ) 2 Si 2 O 7 is used as the rare earth disilicate and Y 2 SiO 5 is used as the rare earth monosilicate.
  • the horizontal axis represents the ratio of (Y 0.8 Yb 0.2 ) 2 Si 2 O 7 in the solid solution ((Y 0.8 Yb 0.2 ) 2 Si 2 O 7 + Y 2 SiO 5 ), and the vertical axis.
  • the axis is the thermal expansion coefficient of the solid solution (from room temperature to 1200 ° C.).
  • Rare earth disilicate has a larger coefficient of thermal expansion than rare earth monosilicate. For this reason, as shown in FIG. 6, the thermal expansion coefficient decreases as the mixing ratio of the rare earth disilicate increases. Since the thermal expansion coefficient of the SiC fiber reinforced SiC composite member including the bond coat (Si) is 4 ⁇ 10 ⁇ 6 / K (room temperature to 1200 ° C.), the ratio of rare earth disilicate is in the range of 0.05 to 0.85. Within this range, the difference in thermal expansion coefficient can be 3 ⁇ 10 ⁇ 6 / K or less.
  • a top coat 103 can be obtained. By forming the top coat 103 using spray particles that have been made into a solid solution in advance, the composition in the top coat 103 can be made uniform. Since the rare earth disilicate does not remain unreacted in the topcoat 103, it is possible to ensure excellent water vapor resistance.
  • FIG. 7 is a schematic cross-sectional view of a coating member according to the second embodiment.
  • the coating member 200 according to the second embodiment is configured by sequentially laminating a bond coat 202 and a top coat 203 on a base material 201, and the top coat 203 has a two-layer structure.
  • the base material 201 and the bond coat 202 are the same material as in the first embodiment.
  • the first layer 204 of the top coat 203 is the same material as the top coat 103 of the first embodiment and has the same film thickness.
  • the second layer 205 of the top coat 203 is a rare earth monosilicate represented by Re 2 SiO 5 .
  • Re may be one of the rare earth elements, or a plurality of rare earth elements may be selected.
  • the second layer 205 is Y 2 SiO 5 , Yb 2 SiO 5 , Lu 2 SiO 5 , (Y, Yb) 2 SiO 5 , (Y, Lu) 2 SiO 5, or the like.
  • the second layer 205 is composed of Y 2 SiO 5 or a composite oxide (Y, Re ′) 2 SiO 5 in which a part of Y is substituted with another rare earth element (Re ′ is other than Y) Rare earth elements).
  • the substitution element Re ′ is preferably selected from Yb, Lu, Sc, Nd, Sm, Eu, and Gd from the viewpoint of preventing a rare earth element concentration change due to mutual diffusion with the first layer 204.
  • the substitution element Re ′ is particularly preferably the same as the rare earth element contained in the first layer 204.
  • the substitution amount of Re ′ is preferably 0.5 or less.
  • the second layer 205 is formed by thermal spraying in the same manner as the first layer 204.
  • the thickness of the second layer 205 is 50 ⁇ m or more and 300 ⁇ m or less.
  • the sprayed particles are particles obtained by weighing and mixing the raw material powder so as to have a predetermined substitution ratio, and then solidifying by heat treatment Can be used. By doing so, the uniformity of the composition in the second layer 205 is ensured.
  • the difference in thermal expansion coefficient (from room temperature to 1200 ° C.) between the first layer 204 and the base (the substrate 201 including the bond coat 202) is preferably 3 ⁇ 10 ⁇ 6 / K.
  • the difference in thermal expansion coefficient between the first layer 204 and the second layer 205 (from room temperature to 1200 ° C.) is preferably 3 ⁇ 10 ⁇ 6 / K.
  • the material of the base material 201 (and the bond coat 202), the type of rare earth monosilicate and rare earth disilicate of the first layer 204, and so that each layer achieves the above-mentioned difference in thermal expansion coefficient The mixing ratio and the material of the second layer 205 are selected.
  • the top coat 203 has a two-layer structure, and a rare earth monosilicate layer having excellent water vapor resistance is formed on the outermost layer, so that damage due to water vapor erosion in a high temperature environment can be prevented.
  • Tables 3 and 4 show examples of coating members using SiC fiber reinforced SiC composite materials (Uran Industries, Ltd. Tyrannohex, thermal expansion coefficient: 4 ⁇ 10 ⁇ 6 / K (room temperature to 1200 ° C.)) as a base material. Indicates. Further, in Tables 3 and 4, the difference in thermal expansion coefficient between the first layer and the base (base material including the bond coat) (from room temperature to 1200 ° C.) and the difference in thermal expansion coefficient between the first layer and the second layer ( Room temperature to 1200 ° C.).
  • Second layer 100, 200 Coating member 101, 201 Base material 102, 202 Bond coat 103, 203 Top coat 204 First layer 205 Second layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

 高温環境で皮膜の損傷が抑制でき、低コストでコーティングを施工できるコーティング部材及びその製造方法を提供する。コーティング部材(100)は、Si基セラミックスまたはSiC繊維強化SiC複合材料からなる基材(101)上に、ボンドコート(102)と、トップコート(103)が順次積層され、トップコート(103)が(Y1-aLn1aSi固溶体(Ln:Nd,Sm,Eu,Gdのうちのいずれか)とYSiOまたは(Y1-bLn'SiO固溶体(Ln':Nd,Sm,Eu,Gdのいずれか)との混合相、または、(Y1-cLn2cSi固溶体(Ln:Sc,Yb,Luのうちのいずれか)とYSiOまたは(Y1-dLn'SiO固溶体(Ln':Sc,Yb,Luのうちのいずれか)との混合相である層を含む。

Description

コーティング部材及びコーティング部材の製造方法
 本発明は、コーティング部材及び該コーティング部材の製造方法に関し、特に耐環境コーティングが施されたコーティング部材に関する。
 SiC及びSiなどのシリコン基セラミックス、またはSiC繊維強化SiC複合材料(CMC)は、高温での機械的特性が良好であることから、航空機エンジンまたは発電用ガスタービンなどの高温部材として有望な材料である。しかし、例えばガスタービン燃焼環境は水蒸気が存在する高温高圧の水蒸気酸化環境で運転されるため、シリコン基セラミックスまたはSiC繊維強化SiC複合材料が酸化されるとともに水蒸気によって腐食減肉され、耐久性が著しく低下する。
 そこで、シリコン基セラミックスまたはSiC繊維強化SiC複合材料をガスタービン等に実用化させるために、シリコン基セラミックスまたはSiC繊維強化SiC複合材料の表面に耐環境コーティングが施される。特許文献1は、イットリウムケイ酸塩からなるコーティングを開示する。特許文献2は、LuSiからなるコーティングを開示する。
 特許文献3は、Lu,Yb,Yといった希土類の一ケイ酸塩(希土類モノシリケート)、二ケイ酸塩(希土類ダイシリケート)またはこれらの組み合わせからなるコーティングを開示する。特許文献3の技術では、基板上に希土類一ケイ酸塩の皮膜を形成した後に酸素を含む環境で加熱処理することにより、部分的に希土類二ケイ酸塩へ変換させている。
特許第3866002号公報 特許第4060709号公報 特開2006-28015号公報
 YSiは希土類シリケートの中では比較的安価な材料であるので、航空機エンジン及び発電用ガスタービンなどの大型機械用のコーティング材料として有利である。YSiの熱膨張係数は3.7×10-6/Kであり、SiC繊維強化SiC複合材料(3.5×10-6/Kから4.5×10-6/K)に近い。そのため、高温での使用中における熱応力を緩和することが可能である。しかし、YSiは1300℃近傍で体積変化を伴う相変態(γ→β)があるため、高温での使用中にコーティングが破損する恐れがあった。
 一方、LuSi及びYbSiは1400℃以上の高温までβ相が安定して存在し相変態が起こらない。しかし、これらの希土類元素を含む原料は高価であるので、大面積部材にコーティング施行するには高コストになることが問題であった。
 特許文献3に記載される方法において、複数の希土類ダイシリケート(LuSi、YbSi、YSi)は単なる異結晶の混合状態となり、希土類元素が均一に分布し同一相として存在する状態(固溶体)とはなっていない。この場合、YSiの相安定性が向上しないという問題点があった。
 本発明は、高温環境で皮膜の損傷が抑制されて高い信頼性が得られ、かつ、低コストでコーティングを施工できるコーティング部材及びその製造方法を提供することを目的とする。
 本発明の第1の態様は、Si基セラミックスまたはSiC繊維強化SiC複合材料からなる基材上に、ボンドコートと、トップコートが順次積層され、前記トップコートが、希土類ダイシリケートと希土類モノシリケートとの混合相からなる第1層を含み、前記希土類ダイシリケートが、(Y1-aLn1aSi固溶体(LnはNd,Sm,Eu,Gdのうちのいずれかであり、aは、LnがNd,Sm,Euの場合0.1以上0.5以下、LnがGdの場合0.2以上0.5以下)であり、前記希土類モノシリケートが、YSiOまたは(Y1-bLnSiO固溶体(Ln’はNd,Sm,Eu,Gdのうちのいずれかであり、bは0より大きく0.5以下)であるコーティング部材である。
 本発明の第2の態様は、Si基セラミックスまたはSiC繊維強化SiC複合材料からなる基材上に、ボンドコートと、トップコートが順次積層され、前記トップコートが、希土類ダイシリケートと希土類モノシリケートとの混合相からなる第1層を含み、前記希土類ダイシリケートが、(Y1-cLn2cSi固溶体(LnはSc,Yb,Luのうちのいずれかであり、cは、LnがScの場合0.05以上0.5以下、LnがYbまたはLuの場合0.2以上0.5以下)であり、前記希土類モノシリケートが、YSiOまたは(Y1-dLnSiO固溶体(Ln’はSc,Yb,Luのうちのいずれかであり、dは0より大きく0.5以下)であるコーティング部材である。
 YSiのYの一部を上記の割合でNd,Sm,Eu,Gdで置換することにより、α相の安定領域が広がる。YSiのYの一部を上記の割合でSc,Yb,Luで置換することにより、β相の安定領域が広がる。このため、第1及び第2の態様で規定される組成の希土類ダイシリケートは、1300℃から1400℃程度の高温であっても相変態が起こらない。従って、航空機エンジンまたはガスタービンのコーティングに適用した場合に、相変態に伴う体積変化による皮膜損傷が防止できる。
 一般に、希土類モノシリケートの方が希土類ダイシリケートよりも熱膨張係数が高い。希土類モノシリケートと希土類ダイシリケートとの混合相の熱膨張係数は、混合比率に依存して変化する。基材とトップコートとの熱膨張係数差が大きいと、トップコート内に歪みが発生してトップコートが損傷する恐れがある。本発明のようにトップコートを希土類モノシリケートと希土類ダイシリケートとの混合相とすることにより、熱応力によるコーティングの損傷を防止できる熱膨張係数に調整することが可能である。
 第1及び第2の態様において、前記トップコートが前記第1層上に第2層を有し、前記第2層が、ReSiO(Reは希土類元素)からなることが好ましい。
 希土類モノシリケートは希土類ダイシリケートに比べてSiOの活量が小さい。このため、希土類モノシリケートは耐水蒸気性に優れる。第2層として希土類モノシリケートの層を形成することにより、トップコートの耐水蒸気性を更に向上させることが可能である。
 第1及び第2の態様において、前記ボンドコートが積層された前記基材の熱膨張係数と前記第1層の熱膨張係数との差が3×10-6/K以下であることが好ましい。
 第1及び第2の態様において、前記第1層の熱膨張係数と前記第2層の熱膨張係数との差が3×10-6/K以下であることが好ましい。
 基材と第1層との熱膨張係数差が3×10-6/K以下であれば、熱応力を緩和することができ、第1層の損傷を防止することができる。トップコートを2層構成とした場合には、第1層と第2層との熱膨張係数差が3×10-6/K以下であれば、熱応力による第1層及び第2層の損傷を防止することが可能である。
 本発明の第3の態様は、Si基セラミックスまたはSiC繊維強化SiC複合材料からなる基材上に、ボンドコートが形成される工程と、前記ボンドコート上にトップコートが形成される工程とを含み、前記トップコートを形成される工程が、(Y1-aLn1aSi固溶体(LnはNd,Sm,Eu,Gdのうちのいずれかであり、aはLnがNd,Sm,Euの場合0.1以上0.5以下、LnがGdの場合0.2以上0.5以下)である希土類ダイシリケートの粉末と、YSiOまたは(Y1-bLnSiO固溶体(Ln’はNd,Sm,Eu,Gdのうちのいずれかであり、bは0より大きく0.5以下)である希土類モノシリケートの粉末とが混合されて溶射粒子が作製される工程と、前記溶射粒子が前記ボンドコートの表面に溶射されて、前記希土類ダイシリケートと前記希土類モノシリケートとの混合相からなる第1層が形成される工程とを含むコーティング部材の製造方法である。
 本発明の第4の態様は、Si基セラミックスまたはSiC繊維強化SiC複合材料からなる基材上に、ボンドコートが形成される工程と、前記ボンドコート上にトップコートが形成される工程とを含み、前記トップコートを形成される工程が、(Y1-cLn2cSi固溶体(LnはSc,Yb,Luのうちのいずれかであり、cはLnがScの場合0.05以上0.5以下、LnがYbまたはLuの場合0.2以上0.5以下)である希土類ダイシリケートの粉末と、YSiOまたは(Y1-dLnSiO固溶体(Ln’はSc,Yb,Luのうちのいずれかであり、bは0より大きく0.5以下)である希土類モノシリケートの粉末とが混合されて溶射粒子が作製される工程と、前記溶射粒子が前記ボンドコートの表面に溶射されて、前記希土類ダイシリケートと前記希土類モノシリケートとの混合相からなる第1層が形成される工程とを含むコーティング部材の製造方法である。
 上述したように、(Y1-aLn1aSi固溶体(Ln:Nd,Sm,Eu,Gdのうちのいずれか)、または、(Y1-cLn2cSi固溶体(Ln:Sc,Yb,Luのうちのいずれか)で表される希土類ダイシリケートは高温での相安定性に優れる。
 本態様では予め固溶体化された希土類ダイシリケート粒子を溶射粒子に用いているので、希土類の分布が均一なトップコートを形成することが可能である。この結果、希土類ダイシリケートの相安定性が向上して皮膜を長寿命化できる。
 第3及び第4の態様において、前記トップコートを形成する工程が、ReSiO(Reは希土類元素)からなる粒子が前記第1層の表面に溶射されて、第2層が形成される工程を含むことが好ましい。
 第2層として希土類モノシリケートの層を形成することにより、耐水蒸気性を更に向上させることが可能である。
 第3及び第4の態様において、前記ボンドコートが積層された前記基材の熱膨張係数と前記第1層の熱膨張係数との差が3×10-6/K以下となる比率で、前記希土類ダイシリケートの粉末と前記希土類モノシリケートの粉末とが混合されることが好ましい。
 第3及び第4の態様において、前記第1層の熱膨張係数と前記第2層の熱膨張係数との差が3×10-6/K以下となる比率で、前記希土類ダイシリケートの粉末と前記希土類モノシリケートの粉末とが混合されることが好ましい。
 希土類モノシリケートと希土類ダイシリケートとの混合相の熱膨張係数は、混合比率に依存して変化する。本態様では、基材と第1層との熱膨張係数差が3×10-6/K以下となるように希土類モノシリケートと希土類ダイシリケートとの混合比率を調整して作製した粒子を用いて第1層を形成するので、第1層の損傷を防止することができる。
 トップコートを2層構成とする場合には、第1層と第2層との熱膨張係数差が3×10-6/K以下となるように希土類モノシリケートと希土類ダイシリケートとの混合比率を調整して作製した粒子を用いて第1層を形成すれば、第1層及び第2層の損傷を防止することが可能である。
 本発明により得られるコーティング部材は、1300℃から1400℃程度の高温高圧の水蒸気酸化環境下で使用した場合であっても、トップコートの相変態を伴う体積変化及び水蒸気の侵食による損傷が防止される。トップコートの第1層の熱膨張係数を調整することにより、コーティング部材内に発生する熱応力を抑制して、トップコートの損傷を防止することができる。
第1実施形態に係るコーティング部材の断面概略図である。 希土類ダイシリケートの温度と結晶構造との関係を説明するグラフである。 Si溶射皮膜の熱処理による結晶構造の変化を示す図である。 (Y0.8Gd0.2)Si固溶体溶射皮膜の熱処理による結晶構造の変化を示す図である。 (Y0.8Yb0.2)Si固溶体溶射皮膜の熱処理による結晶構造の変化を示す図である。 希土類ダイシリケートと希土類モノシリケートとの混合割合と熱膨張係数との関係を説明するグラフである。 第2実施形態に係るコーティング部材の断面概略図である。
<第1実施形態>
 図1は第1実施形態に係るコーティング部材の断面概略図である。コーティング部材100は、基材101に、ボンドコート102とトップコート103とが順次積層されて構成される。
 基材101は、航空機エンジンのタービン部材、シュラウド、燃焼ライナなどの発電用のガスタービン部材である。基材101は、Si基セラミックスまたはSiC繊維強化SiC複合材料(CMC)で製造される。Si基セラミックスとは、SiC、SiなどのSiを含むセラミックスである。SiC繊維強化SiC複合材料は、SiC繊維を強化繊維とし、マトリックスとしてSiCを用いた複合材料である。
 基材101の表面上にボンドコート102が形成される。ボンドコート102は基材101とトップコート103との良好な密着性を確保するものである。ボンドコート102は、Si、MoSi,LuSiなどのシリサイド、ムライト(3Al-2SiO)、バリウムストロンチウムアルミノケイ酸塩(BSAS,(Ba1-xSr)O-Al-SiO)などからなる。ボンドコート102は上記材料のうち1種類で形成されていても良いし、複数の材料を積層して構成されていても良い。ボンドコート102の厚さは20μm以上200μm以下である。
 ボンドコート102は、溶射法、焼結法などにより形成される。
 ボンドコート102上にトップコート103が形成される。本実施形態におけるトップコート103は、希土類ダイシリケートと希土類モノシリケートとの混合相からなる。トップコート103の厚さは20μm以上400μm以下である。
 図2は、希土類ダイシリケートの温度と結晶構造との関係を説明するグラフである(グラフの出典は、A.J.F.Carrion et al.,“Structural and kinetic study of phase transitions in LaYSi2O7”,Journal of the European Ceramic Society,Vol.32 (2012) P.2477-2486、結晶構造の境界線は発明者が追記)。図2において、横軸は希土類のイオン半径、縦軸は温度である。
 Y3+のイオン半径は0.90Åであり、図2によると1280℃程度でγ相→β相の相転移が発生する。すなわち、コーティング部材の使用環境が1300℃を超える場合には、冷却及び加熱の繰り返しによって体積変化を伴い相変態が起こることになる。このため、YSiOの相変態によってトップコート103に割れが発生する。
 Yよりもイオン半径が大きい場合には、図2に示すようにα相とγ相との境界がある。図2を参照すると、1300℃におけるα相とγ相との境界線上のイオン半径は0.905Åである。すなわち、希土類のイオン半径が0.905Å以上であれば、希土類ダイシリケートは1300℃まで結晶安定性を確保することができる。1400℃におけるα相とγ相との境界線上のイオン半径は0.91Åである。すなわち、希土類のイオン半径が0.91Å以上であれば、希土類ダイシリケートは1400℃まで結晶安定性を確保することができる。
 Yよりも平均イオン半径を大きくするためには、Yよりイオン半径が大きい希土類元素で置換する。Yとのイオン半径差が大きいほど希土類元素の平均イオン半径を変動させる効果が高い。このことから、図2においてGdよりもイオン半径が大きい元素を選択することが有利である。一方、Pr,Ce,Laは水蒸気との反応性が高く、皮膜の耐水蒸気性が劣化する。従って、Yの置換元素としてはGd,Eu,Sm,Ndが適切である。
 表1は、(Y1-aLn1aSi固溶体における置換元素(Gd,Eu,Sm,Nd)の置換量と希土類元素の平均イオン半径である。
Figure JPOXMLDOC01-appb-T000001
 
 表1より平均イオン半径が0.905Å以上になるのは、Nd,Sm,Euの場合aが0.1以上、Gdの場合aが0.2以上である。すなわち、上記aの範囲以上であれば、コーティング部材は1300℃までの運転温度に耐えることができる。
 更に、表1より平均イオン半径が0.91Å以上となるのは、Nd,Smの場合aが0.2以上、Eu,Gdの場合aが0.3以上である。すなわち、上記aの範囲以上であれば、コーティング部材は1400℃までの運転温度に耐え得ることができる。
 一方で、aの値が大きいことは置換元素の量が多くなることから、原料コストを考慮すると高価な元素であるNd,Sm,Eu,Gdを用いることにより施行コストが高くなる。このことからNd,Sm,Eu,Gdの置換量には上限がある。具体的にはaの上限値は0.5であることが好ましい。
 図2を参照すると、1300℃におけるβ相とγ相との境界線上のイオン半径は0.897Åである。すなわち、希土類のイオン半径が0.897Å以下であれば、希土類ダイシリケートは1300℃まで結晶安定性を確保することができる。1400℃におけるβ相とγ相との境界線上のイオン半径は0.885Åである。すなわち、希土類のイオン半径が0.885Å以下であれば、希土類ダイシリケートは1400℃まで結晶安定性を確保することができる。
 Yを別の希土類元素で置換した(Y1-cLn2cSi固溶体の場合、置換量に応じて希土類元素(Y,Ln)の平均イオン半径が変化する。Yよりも平均イオン半径を小さくするためには、Yよりイオン半径が小さい希土類元素で置換する。図2によると、Yよりイオン半径が小さい元素はSc,Yb,Lu,Tm,Erである。特にSc,Yb,Luは、イオン半径がYに比べて小さく、高温までダイシリケートのβ相が安定して存在する。
 表2は、(Y1-cLn2cSi固溶体における置換元素(Sc,Yb,Lu)の置換量と希土類元素の平均イオン半径である。
Figure JPOXMLDOC01-appb-T000002
 
 表2より平均イオン半径が0.897Å以下となるのは、Scの場合cが0.05以上、Yb,Luの場合cが0.1以上である。すなわち、上記cの範囲以上であれば、コーティング部材は1300℃の運転温度に耐えることができる。
 更に、表2より平均イオン半径が0.885Å以下となるのは、Scの場合cが0.1以上、Yb,Luの場合はcが0.5以上である。すなわち、上記cの範囲以上であれば、コーティング部材は1400℃以上の運転温度に耐え得ることができる。
 一方で、cの値が大きいことは置換元素の量が多くなることから、原料コストを考慮すると高価な元素であるSc,Yb,Luを用いることにより施行コストが高くなる。このことからSc,Yb,Luの置換量には上限がある。具体的にはcの上限値は0.5であることが好ましい。
 本実施形態における希土類モノシリケートは、希土類ダイシリケートが(Y1-aLn1aSiである場合、YSiOまたは(Y1-bLnSiO固溶体(b>0)である。Yの置換元素であるLn’は、上記希土類ダイシリケートの置換基と同じであることが好ましい。具体的に、Ln1’はNd,Sm,Eu,Gdのうちのいずれかである。
 希土類モノシリケートとしてYSiO(置換量b=0)を採用することができるが、混合相となったときに共存する希土類ダイシリケート(Y1-aLn1aSiとの相互拡散が起こり希土類元素の濃度変化が起こることを防止するため、置換量bは上記希土類ダイシリケートの置換量aと同じであることがより好ましい。従って、置換量bの上限値は0.5である。置換量bの下限値は、Nd,Sm,Euの場合0.1、Gdの場合0.2であることが好ましい。
 希土類ダイシリケートが(Y1-cLn2cSiである場合、希土類モノシリケートはYSiOまたは(Y1-dLnSiO固溶体(d>0)である。Yの置換元素であるLn’は、上記希土類ダイシリケートの置換基と同じであることが好ましい。具体的に、Ln’はYb,Lu,Scのうちのいずれかである。
 希土類モノシリケートとしてYSiO(置換量d=0)を採用することができるが、混合相となったときに共存する希土類ダイシリケート(Y1-dLn2dSiとの相互拡散による希土類元素濃度変化が起こるのを防止するため、置換量dは上記希土類ダイシリケートの置換量cと同じであることがより好ましい。従って、置換量dの上限値は0.5である。置換量dの下限値は、Scの場合0.05、Yb,Luの場合0.1であることが好ましい。
 トップコート103は溶射法により形成される。本実施形態では、溶射粒子として希土類ダイシリケートの粉末と希土類モノシリケートの粉末とを混合したものを用いる。
 溶射粒子は以下の方法により作製される。
 まず、上記組成の希土類ダイシリケート固溶体の粒子を作製する。原料粉末として、SiO粉末、Y粉末、[Ln(LnはNd,Sm,Eu,Gdのうちのいずれか)粉末、[Ln(LnはSc,Yb,Luのうちのいずれか)粉末を、所定の組成となるように秤量し、混合する。あるいは、YSi粉末、LnSi(LnはSc,Yb,Luのいずれか、または、Nd,Sm,Eu,Gdのいずれか)粉末を、所定の組成となるように秤量し、混合する。
 原料粉末には粒径1μm以下の微粉末を使用することにより、熱処理による固溶体化を促進することができる。このため、未反応粒子をなくすとともに熱処理時間を短縮することができる。
 混合粉末を熱処理し、固溶体化させた粉末を得る。固溶体化させた粉末を作製する方法としては、電気炉を用いて1300℃以上で熱処理する方法、プラズマ加熱処理する方法、原料粉末を溶融した後粉砕する方法がある。
 YSiO、(Y1-bLnSiO(固溶体)及び(Y1-dLnSiO(固溶体)であらわされる希土類モノシリケートも、上記と同様の方法で作製される。
 上記方法で作製された希土類ダイシリケート粉末及び希土類モノシリケート粉末を、所定の組成比となるように秤量し、造粒する。こうして得られた粒子を分級し、10μmから200μmの粒子を溶射粒子に用いる。
 上記方法で、YSi、(Y0.8Gd0.2Si固溶体、(Y0.8Yb0.2Si固溶体の溶射粉末を作製した。さらに、それらの粉末を用いて溶射皮膜を作製した。
 作製した溶射皮膜を1300℃×100h、1400℃×100hで熱処理し、結晶相の変化をX線回折(XRD)により求めた。図3に示すように、YSiの場合、溶射まま(As sprayed)の状態では皮膜は非晶質であり、1300℃×100hの熱処理後はβ-YSi相とX-YSiO相からなる。1400℃×100hの熱処理後は、γ-YSi相とX-YSiO相の2相になり、1300℃以上でβ-YSiからγ-YSiへの相変態がおこることがわかる。
 一方、Yの一部をGdで置換した(Y0.8Gd0.2Si固溶体溶射皮膜を1300℃×100h、1400℃×100hで熱処理した結果を図4に示すが、1300℃×100hと1400℃×100hで熱処理した場合の回折ピークにほとんど変化がなく、相変態が抑制されていることがわかる。
 一方、Yの一部をYbで置換した(Y0.8Yb0.2Si固溶体溶射皮膜を1300℃×100h、1400℃×100hで熱処理した結果を図5に示すが、1300℃×100hと1400℃×100hで熱処理した場合の回折ピークにほとんど変化がなく、この場合も相変態が抑制されていることがわかる。
 希土類ダイシリケート粉末と希土類モノシリケート粉末の混合比率は、トップコートの熱膨張係数を考慮して決定される。積層体である本実施形態のコーティング部材100では、トップコート103とその下地との熱膨張係数の差が大きい場合には、トップコート103内に熱応力が発生する。機器(航空機エンジンまたはガスタービン)の運転と停止とを繰り返すことにより、トップコート103内に発生する熱応力が原因でトップコート103に亀裂などが発生する。
 トップコート103内の熱応力を緩和するためには、トップコート103の熱膨張係数と、トップコート103の下地であるボンドコート102を含む基材101との熱膨張係数との差(室温から1200℃)が、3×10-6/K以下であることが好ましい。上記熱膨張係数差を達成するように、基材の種類、希土類ダイシリケートの種類、及び、希土類モノシリケートの種類に応じて、希土類ダイシリケートと希土類モノシリケートの混合比率が決定される。溶射粉末の作製では、この混合比率となるように、原料粉末が秤量・混合される。
 図6は、希土類ダイシリケートと希土類モノシリケートとの混合割合と熱膨張係数との関係を説明するグラフである。図6は、希土類ダイシリケートとして(Y0.8Yb0.2Si、希土類モノシリケートとしてYSiOを用いた例である。図6において、横軸は固溶体((Y0.8Yb0.2Si+YSiO)中の(Y0.8Yb0.2Siの割合、縦軸は固溶体の熱膨張係数(室温から1200℃)である。
 希土類ダイシリケートの方が希土類モノシリケートよりも熱膨張係数が大きい。このため、図6に示すように希土類ダイシリケートの混合割合が大きくなるほど熱膨張係数が減少する。ボンドコート(Si)を含むSiC繊維強化SiC複合部材の熱膨張係数は4×10-6/K(室温から1200℃)であるので、希土類ダイシリケートの割合は0.05から0.85の範囲内であれば熱膨張係数差が3×10-6/K以下を達成することができる。
 このように、熱膨張係数が比較的基材に近い希土類ダイシリケートと、耐水蒸気性に優れる希土類モノシリケートとを混合して固溶体化させることにより、優れた耐水蒸気性、熱サイクル耐久性に優れたトップコート103を得ることができる。予め固溶体とされた溶射粒子を用いてトップコート103を形成することにより、トップコート103内の組成を均一にすることができる。トップコート103内に希土類ダイシリケートが未反応のまま残留することがないため、優れた耐水蒸気性を確保することが可能である。
<第2実施形態>
 図7は第2実施形態に係るコーティング部材の断面概略図である。第2実施形態のコーティング部材200は、基材201に、ボンドコート202とトップコート203とが順次積層されて構成されており、トップコート203が2層構成である。
 基材201及びボンドコート202は、第1実施形態と同じ材質である。トップコート203の第1層204は、第1実施形態のトップコート103と同じ材質であり、同じ膜厚である。
 トップコート203の第2層205は、ReSiOで表される希土類モノシリケートである。Reは、希土類元素の中の1つであっても良いし、複数の希土類元素が選択されても良い。例えば、第2層205は、YSiO,YbSiO,LuSiO、または、(Y,Yb)SiO、(Y,Lu)SiOなどである。原料コストを考慮すると、第2層205は、YSiO、または、Yの一部が他の希土類元素に置換された複合酸化物(Y,Re’)SiO(Re’はY以外の希土類元素)であることが好ましい。置換元素Re’としては、第1層204との相互拡散による希土類元素濃度変化を防ぐとの観点から、Yb,Lu、Sc、Nd,Sm,Eu,Gdの中から選択されることが好ましい。置換元素Re’は、第1層204に含まれる希土類元素と同一であることが特に好ましい。原料コストを考慮すると、Re’の置換量は0.5以下であることが好ましい。
 第2層205は第1層204と同様に溶射法で形成される。第2層205の厚さは50μm以上300μm以下である。
 複数の希土類元素から選択した複合酸化物を第2層205に適用する場合、溶射粒子としては、所定の置換割合となるように原料粉末が秤量され混合されたのち、熱処理により固溶体化された粒子を用いることができる。こうすることにより、第2層205内での組成の均一性が確保される。
 本実施形態においても、第1層204と下地(ボンドコート202を含む基材201)との熱膨張係数の差(室温から1200℃)は3×10-6/Kであることが好ましい。第1層204と第2層205との熱膨張係数の差(室温から1200℃)は3×10-6/Kであることが好ましい。
 第1実施形態で説明したように、各層が上記熱膨張係数差を達成するように、基材201(及びボンドコート202)の材質、第1層204の希土類モノシリケート及び希土類ダイシリケートの種類並びに混合比率、第2層205の材質が選択される。
 本実施形態のようにトップコート203を2層構成として最表層に耐水蒸気性に優れる希土類モノシリケートの層を形成することにより、高温環境での水蒸気の侵食による損傷を防止することができる。
 表3及び表4に、基材としてSiC繊維強化SiC複合材料(宇部興産(株)製チラノヘックス、熱膨張係数:4×10-6/K(室温から1200℃))を用いたコーティング部材の例を示す。
 更に表3及び表4に、第1層と下地(ボンドコートを含む基材)との熱膨張係数差(室温から1200℃)、及び、第1層と第2層との熱膨張係数差(室温から1200℃)を示す。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 表3及び表4に示すように、実施例1から8は各層の熱膨張係数差が3×10-6/K以下であるので、トップコート内の熱応力が緩和される。このため、熱膨張係数差が3×10-6/Kを超える比較例1,2に比べて熱サイクル耐久性が向上する。
100,200 コーティング部材
101,201 基材
102,202 ボンドコート
103,203 トップコート
204 第1層
205 第2層

Claims (10)

  1.  Si基セラミックスまたはSiC繊維強化SiC複合材料からなる基材上に、ボンドコートと、トップコートが順次積層され、
     前記トップコートが、希土類ダイシリケートと希土類モノシリケートとの混合相からなる第1層を含み、
     前記希土類ダイシリケートが、(Y1-aLn1aSi固溶体(LnはNd,Sm,Eu,Gdのうちのいずれかであり、aは、LnがNd,Sm,Euの場合0.1以上0.5以下、LnがGdの場合0.2以上0.5以下)であり、
     前記希土類モノシリケートが、YSiOまたは(Y1-bLnSiO固溶体(Ln’はNd,Sm,Eu,Gdのうちのいずれかであり、bは0より大きく0.5以下)であるコーティング部材。
  2.  Si基セラミックスまたはSiC繊維強化SiC複合材料からなる基材上に、ボンドコートと、トップコートが順次積層され、
     前記トップコートが、希土類ダイシリケートと希土類モノシリケートとの混合相からなる第1層を含み、
     前記希土類ダイシリケートが、(Y1-cLn2cSi固溶体(LnはSc,Yb,Luのうちのいずれかであり、cは、LnがScの場合0.05以上0.5以下、LnがYbまたはLuの場合0.1以上0.5以下)であり、
     前記希土類モノシリケートが、YSiOまたは(Y1-dLnSiO固溶体(Ln’はSc,Yb,Luのうちのいずれかであり、dは0より大きく0.5以下)であるコーティング部材。
  3.  前記トップコートが前記第1層上に第2層を有し、前記第2層が、ReSiO(Reは希土類元素)からなる請求項1または請求項2に記載のコーティング部材。
  4.  前記ボンドコートが積層された前記基材の熱膨張係数と前記第1層の熱膨張係数との差が3×10-6/K以下である請求項1乃至請求項3のいずれかに記載のコーティング部材。
  5.  前記第1層の熱膨張係数と前記第2層の熱膨張係数との差が3×10-6/K以下である請求項3または請求項4に記載のコーティング部材。
  6.  Si基セラミックスまたはSiC繊維強化SiC複合材料からなる基材上に、ボンドコートが形成される工程と、前記ボンドコート上にトップコートが形成される工程とを含み、
     前記トップコートを形成される工程が、
     (Y1-aLn1aSi固溶体(LnはNd,Sm,Eu,Gdのうちのいずれかであり、aはLnがNd,Sm,Euの場合0.1以上0.5以下、LnがGdの場合0.2以上0.5以下)である希土類ダイシリケートの粉末と、YSiOまたは(Y1-bLnSiO固溶体(Ln’はNd,Sm,Eu,Gdのうちのいずれかであり、bは0より大きく0.5以下)である希土類モノシリケートの粉末とが混合されて溶射粒子が作製される工程と、
     前記溶射粒子が前記ボンドコートの表面に溶射されて、前記希土類ダイシリケートと前記希土類モノシリケートとの混合相からなる第1層が形成される工程とを含むコーティング部材の製造方法。
  7.  Si基セラミックスまたはSiC繊維強化SiC複合材料からなる基材上に、ボンドコートが形成される工程と、前記ボンドコート上にトップコートが形成される工程とを含み、
     前記トップコートを形成される工程が、
     (Y1-cLn2cSi固溶体(LnはSc,Yb,Luのうちのいずれかであり、cはLnがScの場合0.05以上0.5以下、LnがYbまたはLuの場合0.2以上0.5以下)である希土類ダイシリケートの粉末と、YSiOまたは(Y1-dLnSiO固溶体(Ln’はSc,Yb,Luのうちのいずれかであり、bは0より大きく0.5以下)である希土類モノシリケートの粉末とが混合されて溶射粒子が作製される工程と、
     前記溶射粒子が前記ボンドコートの表面に溶射されて、前記希土類ダイシリケートと前記希土類モノシリケートとの混合相からなる第1層が形成される工程とを含むコーティング部材の製造方法。
  8.  前記トップコートを形成する工程が、
     ReSiO(Reは希土類元素)からなる粒子が前記第1層の表面に溶射されて、第2層が形成される工程を含む請求項6または請求項7に記載のコーティング部材の製造方法。
  9.  前記ボンドコートが積層された前記基材の熱膨張係数と前記第1層の熱膨張係数との差が3×10-6/K以下となる比率で、前記希土類ダイシリケートの粉末と前記希土類モノシリケートの粉末とが混合される請求項6乃至請求項8のいずれかに記載のコーティング部材の製造方法。
  10.  前記第1層の熱膨張係数と前記第2層の熱膨張係数との差が3×10-6/K以下となる比率で、前記希土類ダイシリケートの粉末と前記希土類モノシリケートの粉末とが混合される請求項8または請求項9に記載のコーティング部材の製造方法。
PCT/JP2016/053802 2015-02-09 2016-02-09 コーティング部材及びコーティング部材の製造方法 WO2016129591A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016574809A JP6462011B2 (ja) 2015-02-09 2016-02-09 コーティング部材及びコーティング部材の製造方法
CA2976181A CA2976181C (en) 2015-02-09 2016-02-09 Coated member and method of manufacturing the same
EP16749235.4A EP3243809B1 (en) 2015-02-09 2016-02-09 Coated member and method for producing coated member
ES16749235T ES2729940T3 (es) 2015-02-09 2016-02-09 Elemento recubierto y método para producir un elemento recubierto
US15/549,658 US11365159B2 (en) 2015-02-09 2016-02-09 Coated member and method of manufacturing the same
US17/731,014 US11608303B2 (en) 2015-02-09 2022-04-27 Coated member and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015023373 2015-02-09
JP2015-023373 2015-02-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/549,658 A-371-Of-International US11365159B2 (en) 2015-02-09 2016-02-09 Coated member and method of manufacturing the same
US17/731,014 Division US11608303B2 (en) 2015-02-09 2022-04-27 Coated member and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2016129591A1 true WO2016129591A1 (ja) 2016-08-18

Family

ID=56614693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053802 WO2016129591A1 (ja) 2015-02-09 2016-02-09 コーティング部材及びコーティング部材の製造方法

Country Status (6)

Country Link
US (2) US11365159B2 (ja)
EP (1) EP3243809B1 (ja)
JP (1) JP6462011B2 (ja)
CA (1) CA2976181C (ja)
ES (1) ES2729940T3 (ja)
WO (1) WO2016129591A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047523A1 (ja) * 2016-09-08 2018-03-15 三菱重工航空エンジン株式会社 コーティング法及びコーティング膜並びにタービンシュラウド
JP2019214750A (ja) * 2018-06-12 2019-12-19 三菱重工業株式会社 耐環境コーティング、それを備える耐環境部品、及び耐環境コーティングの製造方法
KR20210027782A (ko) * 2019-09-03 2021-03-11 한국세라믹기술원 환경 차폐 코팅층을 포함한 비산화물 기판 및 이의 제조 방법
WO2021075411A1 (ja) * 2019-10-17 2021-04-22 株式会社Ihi セラミックス基複合材料及びその製造方法
WO2022118958A1 (ja) * 2020-12-03 2022-06-09 国立大学法人東北大学 溶射材料、それを用いた溶射方法、溶射皮膜
CN114763598A (zh) * 2021-01-13 2022-07-19 中国科学院上海硅酸盐研究所 一种长寿命环境障碍涂层及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365159B2 (en) * 2015-02-09 2022-06-21 Mitsubishi Heavy Industries Aero Engines, Ltd. Coated member and method of manufacturing the same
US11066339B2 (en) * 2017-06-08 2021-07-20 General Electric Company Article for high temperature service
CN109404077A (zh) * 2018-09-30 2019-03-01 东方电气集团东方汽轮机有限公司 一种利用汽轮机的混合工质处理方法
US11562890B2 (en) 2018-12-06 2023-01-24 Applied Materials, Inc. Corrosion resistant ground shield of processing chamber
US20200199027A1 (en) * 2018-12-21 2020-06-25 Rolls-Royce Corporation Thermal and/or environmental barrier coating system
DE102019218397A1 (de) * 2019-11-27 2021-05-27 MTU Aero Engines AG Substrat aus keramik-verbundwerkstoff mit schutzschichtgegen umwelteinflüsse und verfahren zur herstellungdesselben
US12018572B2 (en) 2020-06-19 2024-06-25 Rolls-Royce Corporation CMAS resistant environmental barrier coating system
US20220371967A1 (en) * 2021-05-18 2022-11-24 Rolls-Royce Corporation Cmas-resistant environmental barrier coating system
FR3125037B1 (fr) * 2021-07-07 2023-07-07 Safran Ceram Barrière environnementale pour un substrat comprenant du silicium libre.
US12006269B2 (en) * 2021-08-25 2024-06-11 Honeywell International Inc. Multilayer protective coating systems for gas turbine engine applications and methods for fabricating the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112050A (ja) * 1997-06-19 1999-01-19 Toshiba Corp 積層セラミックス及びその製造方法
JP2006028015A (ja) * 2004-07-15 2006-02-02 General Electric Co <Ge> 環境障壁被覆膜系を含む物品、及びその製造方法
JP2007091504A (ja) * 2005-09-27 2007-04-12 Kyocera Corp 表面被覆セラミック焼結体
JP2011046598A (ja) * 2009-07-31 2011-03-10 General Electric Co <Ge> 高温セラミック部品用の溶剤系耐環境コーティング
JP2015172243A (ja) * 2014-03-11 2015-10-01 ゼネラル・エレクトリック・カンパニイ 気密性希土類耐環境皮膜を溶射するための組成物及び方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296941B1 (en) 1999-04-15 2001-10-02 General Electric Company Silicon based substrate with yttrium silicate environmental/thermal barrier layer
WO2002103074A1 (en) 2001-06-15 2002-12-27 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material and method for production thereof, gas turbine member using the thermal barrier coating material, and gas turbine
JP4031631B2 (ja) 2001-10-24 2008-01-09 三菱重工業株式会社 遮熱コーティング材及びガスタービン部材並びにガスタービン
JP2003160852A (ja) 2001-11-26 2003-06-06 Mitsubishi Heavy Ind Ltd 遮熱コーティング材、その製造方法、タービン部材及びガスタービン
US6682821B2 (en) 2001-12-28 2004-01-27 Kyocera Corporation Corrosion-resistant ceramics
US6759151B1 (en) 2002-05-22 2004-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article characterized by low coefficient of thermal expansion outer layer
JP4453718B2 (ja) 2002-06-13 2010-04-21 株式会社デンソー 内燃機関の排ガス浄化装置
US6733908B1 (en) 2002-07-08 2004-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article having stabilized zirconia outer layer and chemical barrier layer
US7226672B2 (en) 2002-08-21 2007-06-05 United Technologies Corporation Turbine components with thermal barrier coatings
JP2005154885A (ja) 2003-03-26 2005-06-16 Mitsubishi Heavy Ind Ltd 遮熱コーティング材料
JP4681841B2 (ja) 2004-06-18 2011-05-11 京セラ株式会社 耐食性窒化珪素セラミックス
DE102004053959B4 (de) 2004-11-09 2007-09-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Keramikmaterial und seine Verwendung sowie Verfahren zur Herstellung von Beschichtungen mit dem Keramikmaterial
JP4690709B2 (ja) 2004-11-26 2011-06-01 三菱重工業株式会社 耐熱材料およびその製造方法
US7115326B2 (en) 2005-01-21 2006-10-03 General Electric Company Thermal/environmental barrier coating with transition layer for silicon-comprising materials
US7595114B2 (en) 2005-12-09 2009-09-29 General Electric Company Environmental barrier coating for a component and method for fabricating the same
US20080160172A1 (en) 2006-05-26 2008-07-03 Thomas Alan Taylor Thermal spray coating processes
JP5436761B2 (ja) 2007-06-15 2014-03-05 川崎重工業株式会社 炭化ケイ素系繊維強化セラミックス複合材料の耐環境コーティング構造
US10717678B2 (en) 2008-09-30 2020-07-21 Rolls-Royce Corporation Coating including a rare earth silicate-based layer including a second phase
US8343589B2 (en) * 2008-12-19 2013-01-01 General Electric Company Methods for making environmental barrier coatings and ceramic components having CMAS mitigation capability
FR2940278B1 (fr) 2008-12-24 2011-05-06 Snecma Propulsion Solide Barriere environnementale pour substrat refractaire contenant du silicium
JP4801789B1 (ja) 2010-10-07 2011-10-26 株式会社超高温材料研究センター 加熱炉の熱効率改善方法及び加熱炉の熱効率改善装置
US20130316891A1 (en) 2010-12-10 2013-11-28 Hiroshi Harada Oxide matrix composite material
US9945036B2 (en) 2011-03-22 2018-04-17 General Electric Company Hot corrosion-resistant coatings and components protected therewith
US9938839B2 (en) * 2014-03-14 2018-04-10 General Electric Company Articles having reduced expansion and hermetic environmental barrier coatings and methods for their manufacture
US11365159B2 (en) * 2015-02-09 2022-06-21 Mitsubishi Heavy Industries Aero Engines, Ltd. Coated member and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112050A (ja) * 1997-06-19 1999-01-19 Toshiba Corp 積層セラミックス及びその製造方法
JP2006028015A (ja) * 2004-07-15 2006-02-02 General Electric Co <Ge> 環境障壁被覆膜系を含む物品、及びその製造方法
JP2007091504A (ja) * 2005-09-27 2007-04-12 Kyocera Corp 表面被覆セラミック焼結体
JP2011046598A (ja) * 2009-07-31 2011-03-10 General Electric Co <Ge> 高温セラミック部品用の溶剤系耐環境コーティング
JP2015172243A (ja) * 2014-03-11 2015-10-01 ゼネラル・エレクトリック・カンパニイ 気密性希土類耐環境皮膜を溶射するための組成物及び方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F. MONTEVERDE ET AL.: "Structural data from X- ray powder diffraction for new high-temperature phases (Y1-xLnx)2Si2O7 with Ln=Ce, Pr, Nd", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 22, no. 5, May 2002 (2002-05-01), pages 721 - 730, XP004334194, DOI: doi:10.1016/S0955-2219(01)00338-7 *
Q.Y. ZHANG ET AL.: "Effects of composition and structure on spectral properties of Eu3+-doped yttrium silicate transparent nanocrystalline films by metallorganic decomposition method", CHEMICAL PHYSICS LETTERS, vol. 356, no. 1-2, April 2002 (2002-04-01), pages 161 - 167, XP055403120 *
See also references of EP3243809A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018039705A (ja) * 2016-09-08 2018-03-15 三菱重工航空エンジン株式会社 コーティング法及びコーティング膜並びにタービンシュラウド
EP3450417A4 (en) * 2016-09-08 2019-05-08 Mitsubishi Heavy Industries Aero Engines, Ltd. COATING PROCESS, COATING FILM, AND TURBINE FAIRING
US11530168B2 (en) 2016-09-08 2022-12-20 Mitsubishi Heavy Industries Aero Engines, Ltd. Coating method, coating layer, and turbine shroud
WO2018047523A1 (ja) * 2016-09-08 2018-03-15 三菱重工航空エンジン株式会社 コーティング法及びコーティング膜並びにタービンシュラウド
JP2019214750A (ja) * 2018-06-12 2019-12-19 三菱重工業株式会社 耐環境コーティング、それを備える耐環境部品、及び耐環境コーティングの製造方法
KR102259348B1 (ko) * 2019-09-03 2021-05-31 한국세라믹기술원 환경 차폐 코팅층을 포함한 비산화물 기판 및 이의 제조 방법
KR20210027782A (ko) * 2019-09-03 2021-03-11 한국세라믹기술원 환경 차폐 코팅층을 포함한 비산화물 기판 및 이의 제조 방법
JPWO2021075411A1 (ja) * 2019-10-17 2021-04-22
JP7173372B2 (ja) 2019-10-17 2022-11-16 株式会社Ihi セラミックス基複合材料及びその製造方法
WO2021075411A1 (ja) * 2019-10-17 2021-04-22 株式会社Ihi セラミックス基複合材料及びその製造方法
WO2022118958A1 (ja) * 2020-12-03 2022-06-09 国立大学法人東北大学 溶射材料、それを用いた溶射方法、溶射皮膜
CN114763598A (zh) * 2021-01-13 2022-07-19 中国科学院上海硅酸盐研究所 一种长寿命环境障碍涂层及其制备方法
CN114763598B (zh) * 2021-01-13 2024-03-08 中国科学院上海硅酸盐研究所 一种长寿命环境障碍涂层及其制备方法

Also Published As

Publication number Publication date
US11608303B2 (en) 2023-03-21
JPWO2016129591A1 (ja) 2017-12-07
CA2976181C (en) 2019-12-31
US20180037515A1 (en) 2018-02-08
ES2729940T3 (es) 2019-11-07
US11365159B2 (en) 2022-06-21
EP3243809A1 (en) 2017-11-15
EP3243809A4 (en) 2018-01-17
US20220259111A1 (en) 2022-08-18
EP3243809B1 (en) 2019-04-10
CA2976181A1 (en) 2016-08-18
JP6462011B2 (ja) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6462011B2 (ja) コーティング部材及びコーティング部材の製造方法
JP6430545B2 (ja) コーティング部材、コーティング用材料、及び、コーティング部材の製造方法
JP6082755B2 (ja) 遮熱及び耐環境コーティングを生成するための水性スラリー並びにこれを作製及び適用するための方法
CN105189932B (zh) 抗凹陷陶瓷基体复合物和环境阻隔涂层
US10889526B2 (en) Environmental resistant coating member
US20110033630A1 (en) Techniques for depositing coating on ceramic substrate
WO2008109214A2 (en) Environmental barrier coating
CN105189411A (zh) 抗衰退陶瓷基质复合材料和环境隔离涂层
WO2014152238A2 (en) Recession resistant ceramic matrix composites and environmental barrier coatings
JP2010070451A (ja) 希土類リン酸塩結合セラミック
JP2010235415A (ja) 遮熱コーティング用材料、遮熱コーティング、タービン部材及びガスタービン、並びに、遮熱コーティング用材料の製造方法
CN102137950A (zh) 涂层构造及表面处理方法
JP5285486B2 (ja) 遮熱コーティング用材料、遮熱コーティング、タービン部材及びガスタービン
KR101947531B1 (ko) 열차폐 코팅층의 자가치유 발현을 위한 캡슐형 치유재
JP2004175627A (ja) 耐食性セラミックス
KR20200075355A (ko) 치밀화된 탑 코팅을 포함한 비산화물 기판 및 이의 제조 방법
Pujari et al. Environmental barrier coating
JP2010229496A (ja) 遮熱コーティング材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574809

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15549658

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2976181

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2016749235

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE