WO2016129476A1 - 研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリー - Google Patents

研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリー Download PDF

Info

Publication number
WO2016129476A1
WO2016129476A1 PCT/JP2016/053215 JP2016053215W WO2016129476A1 WO 2016129476 A1 WO2016129476 A1 WO 2016129476A1 JP 2016053215 W JP2016053215 W JP 2016053215W WO 2016129476 A1 WO2016129476 A1 WO 2016129476A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
metal oxide
particles
silica
silica particles
Prior art date
Application number
PCT/JP2016/053215
Other languages
English (en)
French (fr)
Inventor
勇児 川▲崎▼
務 山本
瑞穂 和田
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56614756&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016129476(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to JP2016530027A priority Critical patent/JP5979340B1/ja
Publication of WO2016129476A1 publication Critical patent/WO2016129476A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to an abrasive composite particle, a method for producing an abrasive composite particle, and an abrasive slurry.
  • Colloidal silica has a uniform particle size and is close to a monodispersed state even in a slurry, so excellent surface quality can be obtained. Therefore, semiconductor devices such as semiconductor devices on circuit boards, wiring boards, alumina hard disks, glass hard disks, or optical materials Used for polishing. However, since there is no chemical reactivity, there is a problem that the polishing rate is slow and the process takes time. Thus, attempts have been made to support other oxides on the silica surface.
  • Patent Document 1 As an example in which a metal oxide is supported on silica, in Patent Document 1, a halide containing a metal or metalloid is brought into contact with a silica powder in a fluidized state and heated to 25 to 800 ° C. to heat the metal oxide on the surface. It is disclosed that silica particles carrying succinol can be obtained.
  • the surface of the silica particles contains one or more elements selected from aluminum, zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanium, and strontium, and Silica composite particles having an amorphous oxide layer containing aluminum as an essential component are disclosed.
  • the method for producing silica particles disclosed in Patent Document 1 is a method called a dry method, in which silica fine particles are brought into a fluidized state in a gas phase, and a metal salt as a raw material for metal oxide is brought into contact therewith to perform thermal decomposition.
  • This is a method for carrying a metal oxide.
  • the metal oxide is supported while the silica is agglomerated, which is not suitable as a method for uniformly supporting the metal oxide on each particle. If the metal oxide is not uniformly supported on each particle, the effect of improving the polishing characteristics (polishing rate, surface roughness) by supporting the metal oxide may not be sufficiently exhibited.
  • silica usable in this method is silica obtained by a dry method or silica in a dry state, and there is a problem that silica in a state dispersed in a solution such as colloidal silica cannot be used.
  • the silica-based composite particles disclosed in Patent Document 2 are obtained by hydrolyzing polyaluminum chloride on silica particles and coating with aluminum hydroxide, and have an amorphous oxide layer. is there.
  • the metal oxide was agglomerated and localized and adhered to a part of the surface of the silica particles. Further, when a glass polishing test was performed using the composite particles, the polishing rate was low and a smooth polished surface could not be obtained.
  • the present invention is a composite particle for polishing comprising a metal oxide supported on silica particles, and the composite particle for polishing capable of obtaining a smooth polishing surface with a high polishing rate.
  • the purpose is to provide.
  • the present inventors are not amorphous but highly crystalline metal oxides. Attempts were made to load objects.
  • the present inventors have made various studies on the method of supporting a highly crystalline metal oxide on the surface of silica particles, and the highly crystalline metal in which the half-value width of the maximum peak in X-ray diffraction is in a predetermined range.
  • the present invention has been reached.
  • the abrasive composite particles of the present invention are composed of composite silica particles having a metal oxide supported on the surface of silica particles, and X of the above metal oxide obtained by X-ray powder diffraction measurement using CuK ⁇ rays as a radiation source.
  • the half width of the maximum peak in line diffraction is 0.45 to 1.0 °.
  • the abrasive composite particles of the present invention are obtained by supporting a highly crystalline metal oxide having a small half-value width of the maximum peak of 0.45 to 1.0 ° in X-ray diffraction on the surface of silica particles.
  • a metal oxide having high crystallinity has a higher hardness than an amorphous metal oxide.
  • chemical polishing is imparted to the silica particles. For this reason, silica particles carrying a metal oxide with high crystallinity have a high polishing rate, and become composite particles for polishing that can obtain a smooth polished surface.
  • D50 of the composite particles for polishing dispersed in the dispersion medium when a slurry for polishing is obtained shows a preferable value.
  • D50 is a value obtained by measuring the particle size distribution.
  • D50 means a 50% cumulative particle diameter on a volume basis, and is also called a median diameter.
  • the metal oxide is uniformly supported on the surface of the silica particles.
  • the metal oxide is preferably supported on the silica particles in a layered or island shape.
  • the silica particles are preferably amorphous silica particles.
  • a metal salt as a raw material for metal oxide is added to a dispersion obtained by dispersing silica particles, and a metal oxide precursor is precipitated on the surface of silica particles by a neutralization reaction.
  • two steps of a step of depositing a metal oxide precursor on the surface of silica particles by a neutralization reaction and a step of heating and firing the deposited metal oxide precursor are performed.
  • the metal oxide precursor is precipitated on the surface of the silica particles by a neutralization reaction, the metal oxide precursor is uniformly deposited on the surface of the silica particles, so that the localization of the metal oxide is prevented, Polishing composite particles having uniform characteristics can be obtained.
  • the metal oxide precursor changes to a metal oxide and the crystallization of the metal oxide proceeds, so that a highly crystalline metal It becomes an oxide.
  • the flux component contained in the particles before heating and firing to 50 to 10,000 ppm, the crystallinity of the metal oxide can be increased without promoting the sintering of the silica particles. That is, by the above production method, it is possible to produce composite particles for polishing that have a high polishing rate and can obtain a smooth polished surface.
  • the polishing slurry of the present invention is characterized in that the polishing composite particles of the present invention are dispersed in a dispersion medium, and the D50 of the polishing composite particles dispersed in the dispersion medium is 3 to 1000 nm. If D50 is within this range, the surface quality of the polished surface will be good.
  • D50 of the composite particle for polishing is a particle diameter measured as a secondary particle diameter of the composite particle for polishing in the dispersion medium.
  • the abrasive composite particles of the present invention are obtained by supporting a highly crystalline metal oxide having a small half-value width of the maximum peak of 0.45 to 1.0 ° in X-ray diffraction on the surface of silica particles.
  • a metal oxide having high crystallinity has a higher hardness than an amorphous metal oxide.
  • chemical polishing is imparted to the silica particles.
  • silica particles carrying a metal oxide with high crystallinity have a high polishing rate, and become composite particles for polishing that can obtain a smooth polished surface.
  • it is excellent in dispersibility in a dispersion medium, and D50 of the composite particles for polishing dispersed in the dispersion medium when a slurry for polishing is obtained shows a preferable value.
  • FIG. 1 is an electron micrograph of the abrasive composite particles produced in Example 1.
  • FIG. FIG. 2 is an electron micrograph of the abrasive composite particles produced in Example 4.
  • FIG. 3 is an electron micrograph of the abrasive composite particles produced in Comparative Example 1.
  • FIG. 4 is an electron micrograph of the abrasive composite particles produced in the reference example.
  • the composite particle for polishing of the present invention is composed of composite silica particles having a metal oxide supported on the surface of silica particles, and X-ray diffraction using CuK ⁇ rays as a radiation source of the metal oxide by powder X-ray diffraction measurement.
  • the full width at half maximum of the peak is 0.45 to 1.0 °.
  • FIG. 1 is an example of an electron micrograph of the abrasive composite particles of the present invention, and is an electron micrograph of the abrasive composite particles produced in Example 1 described later.
  • the composite particle 1 for polishing shown in FIG. 1 has silica particles 10 as base particles, and a metal oxide 20 is supported on the surface of the silica particles 10.
  • the metal oxide is uniformly supported on the surface of the silica particles.
  • Uniformly supported means that the metal oxide is uniformly distributed on the surface of the silica particles without being partially localized as shown in FIG.
  • the metal oxide is preferably supported on the silica particles in an island shape or a layer shape.
  • “Island-supported” means that metal oxide particles are supported in a state where the outline of each particle can be distinguished in an electron micrograph, and the metal oxide particles protrude from the surface of silica particles. Means. Specifically, it means that there are metal oxide particles protruding 2 nm or more from the surface of the silica particles. That is, when the surface of the silica particles is the sea, a state where the metal oxide particles appear to be an island floating in the sea is referred to as an “island shape”. Examples of the metal oxide that is easily supported in an island shape when supported on silica particles include cerium oxide and zirconium oxide.
  • “Supported in layers” means a state in which a metal oxide is supported like a film covering the surface of silica particles in a transmission electron micrograph.
  • Silica particles are not particularly limited in terms of the production method, shape, crystal type and particle size. Amorphous silica particles or crystalline silica particles may be used, but amorphous silica particles are desirable.
  • silica particles can be used as the silica particles, and the method for producing the silica particles is not particularly limited, but the dry method silica obtained by the arc method or the combustion method, the wet method silica obtained by the precipitation method or the gel method, etc. Is applicable.
  • the shape of the silica particles can be spherical, confetti, eyebrows, chain, or the like. Of these, spherical ones are desirable.
  • the average particle size (average primary particle size) of the silica particles is preferably 5 to 1000 nm, more preferably 10 to 500 nm, and even more preferably 30 to 200 nm.
  • a polishing rate can be made higher that the average particle diameter of a silica particle is 5 nm or more.
  • polishing surface can be made high that the average particle diameter of a silica particle is 1000 nm or less.
  • the average particle diameter (average primary particle diameter) of the silica particles is a constant direction diameter (interval between two parallel lines in a fixed direction sandwiching the particles) in a field of view of 20,000 times that of a transmission electron microscope (TEM) photograph.
  • the particle diameter (nm) defined in (1)), and the average value was obtained by measuring the diameter in a fixed direction of 1000 independent particles not overlapping in the TEM photograph.
  • the metal constituting the metal oxide is not particularly limited, but for example, selected from the group consisting of cerium, zirconium, aluminum, iron, zinc, manganese, tin, titanium, chromium, lanthanum, strontium, and barium. There may be mentioned at least one metal. Of these, cerium is particularly desirable. Examples of metal oxides that are oxides of the above metals include cerium oxide (ceria), zirconium oxide (zirconia), aluminum oxide (alumina), iron oxide, zinc oxide, manganese oxide, manganese dioxide, tin oxide, and titanium oxide (titania). ), Chromium oxide, lanthanum oxide, strontium oxide and barium oxide. Of these, cerium oxide is desirable.
  • the valence of the metal in the metal oxide is not particularly limited.
  • the valence of cerium in the cerium oxide particles may be trivalent or tetravalent. It is more preferable to carry cerium oxide particles containing trivalent cerium in view of further chemical polishing.
  • the metal oxide may be a composite oxide containing two or more of the above metals. Examples of the composite oxide include SrZrO 3 , BaTiO 3 , SrTiO 3 , CeLa 2 O 3 F 3 and LaOF etc. are mentioned.
  • the metal oxide precursor raw material is a metal Chlorides, nitrates, sulfates, acetates, peroxoacid salts, carbonates, metal oxoacid salts, metal alkoxides and the like.
  • a precipitate such as a hydroxide or an oxalate as a metal oxide precursor is obtained and deposited on the surface of the silica particles.
  • the average particle diameter of the metal oxide on the surface of the silica particles is preferably 0.1 to 30 nm, and more preferably 1 to 25 nm. As shown in FIG. 1, the average particle size of the metal oxide is smaller than the average particle size (average primary particle size) of the silica particles, and the average particle size of the silica particles is equal to the average particle size of the metal oxide. It is desirable to be 5 to 50 times.
  • the average particle diameter of the metal oxide can be measured by the same method as the average particle diameter (average primary particle diameter) of the silica particles.
  • the metal oxide in the abrasive composite particles of the present invention is characterized by high crystallinity, and the half-value width of the maximum peak in X-ray diffraction using CuK ⁇ rays as a radiation source (hereinafter simply referred to as half-value of metal oxide).
  • width is 0.45 to 1.0 °.
  • the half width is preferably 0.45 to 0.8 °.
  • the half width exceeds 1.0 °, the crystallinity of the metal oxide contained in the composite particles for polishing is low, and the polishing rate is low. This is because if the crystallinity of the metal oxide is low, sufficient hardness cannot be obtained and chemical polishing properties cannot be exhibited. If the half width is less than 0.45 °, the polishing rate tends to increase, but the surface roughness deteriorates. This is presumably due to the fact that the supported metal oxide particles grow large and the surface of the exposed silica particles increases, and that aggregated particles are produced by sintering of the silica particles.
  • the average particle diameter in the powder state of the abrasive composite particles of the present invention is preferably 3 to 1000 nm, and more preferably 30 to 250 nm.
  • the average particle size of the composite particles for polishing can be measured by the same method as the average particle size (average primary particle size) of the silica particles.
  • a metal salt as a raw material for metal oxide is added to a dispersion obtained by dispersing silica particles, and a metal oxide precursor is precipitated on the surface of silica particles by a neutralization reaction.
  • a dispersion liquid in which silica particles are dispersed in a dispersion medium is prepared.
  • silica particles the above-described silica particles can be used.
  • the dispersion medium is not particularly limited, and water or alcohol can be used, but water is desirable from the viewpoint of production cost, and ion-exchanged water is more desirable.
  • a dispersion stabilizer may be included in the dispersion to prevent reaggregation of the particles during the surface treatment.
  • Dispersion stabilizers include organic polyanionic substances such as polyacrylates, celluloses such as carboxymethylcellulose and hydroxyethylcellulose, water-soluble polymers such as polyvinyl alcohol, ethanol, ethylene glycol, propylene glycol, and glycerin. Examples of such water-soluble alcohols and surfactants such as sodium alkylbenzene sulfonate.
  • a commercially available colloidal silica slurry (silica sol) is one in which silica particles are already dispersed in a dispersion medium, but a colloidal silica slurry may be purchased and used as a dispersion.
  • a commercially available colloidal silica slurry is used as a dispersion, it can also be used after being diluted by adding a dispersion medium.
  • a metal oxide can be supported on each silica particle by performing wet grinding with a bead mill or the like. It is possible to suppress aggregation of the abrasive composite particles in the subsequent steps.
  • the silica particle concentration in the dispersion is preferably in the range of 0.01 to 40% by weight.
  • the silica particle concentration is more preferably in the range of 0.01 to 20% by weight.
  • a metal salt as a raw material for the metal oxide is added to the dispersion, and the metal oxide precursor is precipitated on the surface of the silica particles by a neutralization reaction.
  • the above process can be performed by a method in which a solution containing a metal salt or a metal salt is added to the dispersion, and then an acid or alkali as a neutralizing agent is added to perform a neutralization reaction.
  • the above steps can be performed by a method of adding a metal salt while neutralizing by adding an acid or alkali as a neutralizing agent at the same time as adding a solution or metal salt containing the metal salt to the dispersion. it can.
  • the above-described step is also performed by adding the metal salt while neutralizing. It can be performed.
  • the neutralization reaction is performed by adding an acid or alkali as a neutralizing agent, it is desirable to adjust the pH within a range where the metal oxide precursor is precipitated.
  • the pH at which the metal oxide precursor is precipitated varies depending on the raw material, but it is more desirable to adjust the pH to be in the range of 5 to 11.
  • the pH is outside the appropriate range, the precipitation reaction of the metal oxide precursor becomes insufficient, the reaction rate of the precipitation reaction increases, and precipitation occurs not only from the surface of the silica particles but also from the solution.
  • the amount of unsupported metal oxide precursor may increase.
  • the metal oxide precursor not supported on the silica particles is not desirable because it does not contribute to the polishing performance and the particle size distribution of the obtained abrasive composite particles becomes broad.
  • cerium hydroxide when cerium hydroxide is precipitated on the surface of silica particles by adding an alkali as a neutralizing agent, it is desirable to carry out the neutralization so that the pH is 8-11. If the pH is less than 8, the precipitation reaction of cerium hydroxide may be insufficient. On the other hand, if the pH is higher than 11, the reaction rate of the precipitation reaction is increased, precipitation occurs not only from the surface of the silica particles but also from the solution, and the amount of cerium hydroxide not supported on the silica particles increases.
  • Examples of the metal salt that is a raw material for the metal oxide include metal chlorides, nitrates, sulfates, acetates, peroxoacid salts, carbonates, metal oxoacid salts, metal alkoxides, and the like.
  • Examples of the acid used for neutralization include inorganic acids or organic acids such as sulfuric acid and oxalic acid.
  • Examples of the alkali used for neutralization include alkali metal hydroxides (sodium hydroxide and potassium hydroxide), aqueous ammonia, ammonium salts (ammonium hydrogen carbonate and ammonium carbonate), amine compounds (organic amine compounds) and the like.
  • alkali metal hydroxides are preferable, and sodium hydroxide is more preferable. Since the neutralization reaction using sodium hydroxide is a reaction performed in the presence of a component serving as a flux, the metal oxide precursor is uniformly deposited on the surface of the silica particles.
  • the addition amount of the metal oxide raw material is preferably 1 to 100% by weight in terms of metal oxide with respect to 100% by weight of silica particles. More preferably, it is 5 to 50% by weight, and further preferably 10 to 30% by weight.
  • the addition amount of the metal oxide raw material is less than 1% by weight in terms of the metal oxide, the supported amount of the metal oxide is insufficient and the polishing rate may be lowered. Further, even if the amount of the metal oxide raw material added exceeds 100% by weight in terms of the metal oxide, a polishing rate commensurate with the increase in the amount added cannot be obtained, and the consumption of the metal oxide increases. Therefore, it is not preferable.
  • the silica particles are aggregated due to the precipitation reaction of the metal oxide precursor. Therefore, it is desirable to perform dispersion by wet pulverization using a bead mill or the like.
  • washing with water is desirable. Washing with water can be performed by a known method such as pressure filtration, vacuum filtration, or ultrafiltration.
  • the metal salt or the acid or alkali as the neutralizing agent contains inorganic ions, it remains in the dispersion as an inorganic salt after the neutralization treatment, and thus it is desirable to perform sufficient washing with water.
  • particles obtained by depositing a metal oxide precursor on the surface of the silica particles are heated and fired at 700 to 950 ° C. with the content of the flux component contained in the particles before heating and firing being 500 to 10,000 ppm. More preferably, the temperature is 800 to 950 ° C.
  • the heating and baking time is preferably 1 to 10 hours.
  • the firing atmosphere is not particularly limited, and may be an air atmosphere, a nitrogen atmosphere, a vacuum atmosphere, or the like.
  • the kind of heating furnace used for heat-firing is not specifically limited. It is possible to use a method in which a current flows through the resistor to generate heat, a method in which fuel is burned, a method in which heated gas is used, and the like.
  • the metal oxide precursor becomes a metal oxide and the crystallinity is sufficiently increased.
  • the firing temperature is set to 700 ° C. or higher, the crystallinity of the metal oxide increases.
  • the firing temperature is higher than 950 ° C., the crystallinity of the metal oxide increases, but this is not desirable because it tends to cause sintering between the silica particles and deformation of the particles. If the silica particles are sintered or deformed, pulverization becomes difficult in a later step, which causes an increase in surface roughness Ra and generation of scratches. Further, when the firing temperature is increased beyond 950 ° C., crystallization of silica begins to occur. Those containing 0.1% or more of crystallized silica are designated as substances subject to GHS classification and are not desirable because their use is legally restricted.
  • the crystallinity of the metal oxide can be increased without promoting the sintering of the silica particles.
  • the flux component include alkali metal compounds (sodium compounds, potassium compounds, etc.), alkaline earth metal compounds, and sulfates. Among these, sodium compounds and sulfates are preferable.
  • the flux component may be added as a neutralizing agent during the neutralization reaction, or an appropriate amount may be added to the cake after washing with water after the neutralization reaction, or an appropriate amount may be added to the powder after drying.
  • Specific examples of the compound added as a flux component include sodium hydroxide as a sodium compound and ammonium sulfate as a sulfate.
  • the content of the flux component is the weight of the flux component element converted to an oxide, and is the weight converted to Na 2 O in the case of a sodium compound and SO 3 in the case of a sulfate.
  • the particles after baking are pulverized.
  • the pulverization of the particles after heating and firing can be performed by an air mill, a jet mill, a steam mill, a hammer mill or the like.
  • By performing pulverization and loosening the sintering it is possible to shorten the dispersion time of the wet dispersion process that is used as a slurry when the composite particles for polishing are used. If the time of the wet dispersion process is long, the supported metal oxide may be peeled off from the silica particles, which is not desirable because it causes a reduction in the polishing rate.
  • the abrasive composite particles of the present invention can be produced by the above process.
  • the composite particles for polishing are dispersed in a dispersion medium to obtain a polishing slurry.
  • the polishing slurry of the present invention comprises the composite particles for polishing of the present invention dispersed in a dispersion medium,
  • the D50 of the abrasive composite particles dispersed in the dispersion medium is 3 to 1000 nm. Further, it is desirable that D50 of the abrasive composite particles dispersed in the dispersion medium is 1 to 6 times the primary particle diameter.
  • the dispersion medium used for the production of the polishing slurry is not particularly limited, and water or alcohol can be used. However, water is desirable from the viewpoint of production cost, and ion-exchanged water is more desirable.
  • D50 of the abrasive composite particles dispersed in the dispersion medium is a particle diameter measured as the secondary particle diameter of the abrasive composite particles, and is a laser diffraction / scattering particle size analyzer (for example, Nikkiso Co., Ltd .: Model No. Microtrack). This is a value obtained by performing particle size distribution measurement using MT3300EX).
  • a polishing slurry is prepared by dispersing abrasive composite particles in a dispersion medium
  • the abrasive composite particles do not aggregate and are polished.
  • the particle size (D50) of the abrasive composite particles becomes a desired value simply by mixing the composite particles for dispersion and the dispersion medium.
  • the D50 value is higher than the desired value. Therefore, the pulverization step is performed after the abrasive composite particles are dispersed in a dispersion medium to form a coarse slurry.
  • a media type pulverizer such as a bead mill, an attritor, a sand mill, or a ball mill can be used.
  • a dyno mill manufactured by Shinmaru Enterprises, an SC mill manufactured by Nippon Coke Industries, Ltd., and the like can be given.
  • the material for the beads is not particularly limited, and examples thereof include zirconia, glass, alumina, silica, and titania.
  • a medialess pulverizer can be used as the pulverizer.
  • the medialess pulverizer include a high-speed stirrer, a high-pressure disperser, and an ultrasonic disperser. Specific examples include a slasher manufactured by Nippon Coke Kogyo Co., Ltd. and an ecogenizer manufactured by Matsubo.
  • the D50 of the composite particles for polishing is reduced by the pulverization step, but the value of D50 does not change (no further decrease) when the pulverization is repeated.
  • the time required until D50 of the composite particles for polishing does not change is defined as the dispersion residence time.
  • the particle size distribution of the polishing slurry is measured for each pulverization step, and when the difference from D50 measured after the previous pulverization step becomes 0.02 ⁇ m or less, D50 changes. Judge that it has stopped. It is desirable that the D50 of the composite particles for polishing after the pulverization step does not change in the range of 3 to 1000 nm. In addition, it is desirable that the composite particles for polishing of the present invention have a dispersion residence time of 9 minutes or less when a polishing slurry is produced.
  • the dispersion residence time varies depending on the apparatus used in the grinding step and the grinding conditions, but the test conditions for determining whether the dispersion residence time of the abrasive composite particles is 9 minutes or less are as follows. Abrasive composite particles having a dispersion residence time of 9 minutes or less under the following conditions are preferred.
  • the abrasive composite particles are suspended in ion exchange water to obtain a 30% by weight crude slurry.
  • the obtained coarse slurry is pulverized by supplying it to a continuous horizontal bead mill (Dyno-mill, KDL SPECIAL, mill capacity: 600 mL) using a metering pump.
  • the particle size distribution of the polishing slurry was measured for each grinding process, and when the difference from D50 measured after the previous grinding process was 0.02 ⁇ m or less, it was determined that D50 no longer changed. Stop the distribution.
  • the dispersion conditions are as follows.
  • the dispersion residence time of the composite particles for polishing of the present invention is as short as 9 minutes or less, the time required for pulverizing to the desired particle diameter when manufacturing the polishing slurry is short, and the manufacturing of the polishing slurry It means that efficiency is good. It also means that it is highly convenient for users who purchase it as composite particles for polishing and mix it with a dispersion medium themselves immediately before use to prepare a slurry for polishing and use it in the polishing step.
  • the polishing slurry of the present invention can be used in the polishing step after pulverizing the abrasive composite particles to a desired particle size and further diluting with a dispersion medium as necessary to obtain a desired concentration.
  • the abrasive composite particles and the abrasive slurry of the present invention can be applied to various objects to be polished.
  • colloidal silica, cerium oxide, chromium oxide, bengara (Fe 2 O 3 ), and the like can be applied to an object to be polished.
  • the object of polishing to which the composite particles for polishing of the present invention are applied is not particularly limited.
  • Examples of the use of the object to be polished include semiconductor devices for semiconductor substrates and wiring substrates, alumina hard disks, glass hard disks, and optical materials.
  • the abrasive composite particles and the slurry for polishing of the present invention may be used by appropriately mixing with other components depending on the application.
  • other components include acids, alkalis, chelating agents, antifoaming agents, pH adjusting agents, dispersants, viscosity adjusting agents, anti-aggregating agents, lubricants, reducing agents, rust preventing agents, and known polishing materials. Two or more of these may be used in combination as long as the effects of the present invention are not impaired.
  • Example 1 Ion exchange water was added to a colloidal silica slurry (40 wt%) having an average primary particle diameter of 75 nm to obtain a slurry having a silica particle concentration of 10 wt%.
  • the slurry was adjusted to 45 ° C. while stirring, and while maintaining this temperature, 50 mL of an aqueous cerium chloride solution (250 g / L) corresponding to 25% by weight in terms of CeO 2 per 100% by weight of silica particles. was added over 180 minutes. At this time, an aqueous sodium hydroxide solution was added so as to maintain the pH at 8, and cerium hydroxide was precipitated on the surface of the silica particles.
  • the slurry after precipitation of cerium hydroxide was filtered and washed with ion-exchanged water, and washed with water until the specific resistance of the filtrate reached 10,000 ⁇ ⁇ cm to obtain a washed cake.
  • the obtained cake was dried at a temperature of 120 ° C. for 8 hours.
  • the obtained dried product was pulverized using an air mill and heated and fired in an air atmosphere at 900 ° C. for 1 hour. Thereafter, grinding was again performed using an air mill to obtain composite particles for polishing.
  • Example 2 to Example 5 abrasive composite particles were obtained in the same manner as in Example 1 except that the firing temperature in the firing step was changed from 900 ° C. to the temperature shown in Table 1.
  • Example 6 composite particles for polishing were obtained in the same manner as in Example 1 except that the colloidal silica slurry having the average primary particle size of the silica particles contained in the colloidal silica slurry was the particle size shown in Table 1.
  • Example 8 abrasive composite particles were obtained in the same manner as in Example 1 except that the specific resistance of the filtrate in the washing step was changed to 20000 ⁇ ⁇ cm.
  • Example 9 In Example 9, in Comparative Example 3 described later, 1 wt% (6100 ppm as SO 3 ) of ammonium sulfate was added to the cake after being filtered and washed with ion-exchanged water in the water washing step, based on the weight of the solid content in the cake, Abrasive composite particles were obtained in the same manner as in Comparative Example 3 except that the firing temperature in the firing step was changed from 1000 ° C to 900 ° C.
  • Comparative Example 1 Comparative Example 1
  • abrasive composite particles were obtained in the same manner as in Example 1 except that the firing step was not performed.
  • Comparative Example 2 abrasive composite particles were obtained in the same manner as in Example 1 except that the firing temperature in the firing step was changed from 900 ° C. to 300 ° C. in Example 1.
  • the slurry after cerium hydroxide precipitation was filtered and washed with ion exchange water, and dried at a temperature of 120 ° C. for 8 hours.
  • the obtained dried product was pulverized using an air mill and heated and fired in an air atmosphere at 1000 ° C. for 1 hour. Thereafter, grinding was again performed using an air mill to obtain composite particles for polishing.
  • Comparative Example 4 abrasive composite particles were obtained in the same manner as in Example 1 except that the firing temperature in the firing step was changed from 900 ° C. to 1000 ° C. in Example 1.
  • Comparative Example 5 composite particles for polishing were obtained in the same manner as in Example 1, except that the specific resistance of the filtrate in the washing step was changed to 2000 ⁇ ⁇ cm.
  • Example 6 (Comparative Examples 6 to 8)
  • the average primary particle diameters used in Examples 1, 6, and 7 are 75 nm, 36 nm, and 100 nm colloidal silica slurries, respectively.
  • Ion exchange water was added to a colloidal silica slurry (40 wt%) having an average primary particle diameter of 75 nm to obtain a slurry having a silica particle concentration of 10 wt%.
  • 0.5 L of this slurry was adjusted to 90 ° C., and 298 mL of an aqueous solution of cerium nitrate (42 g / L) corresponding to 25% by weight in terms of CeO 2 per 100% by weight of silica particles was added with stirring.
  • the slurry was heated at 90 ° C. for 3 hours with stirring while maintaining this temperature. After drying at a temperature of 120 ° C. for 8 hours, the mixture was heated and fired at 900 ° C. in an air atmosphere for 1 hour. Then, it grind
  • This production method is a method of supporting cerium oxide generated by hydrolysis (thermal decomposition) of cerium nitrate without performing a neutralization reaction.
  • Example 1 is an electron micrograph of the abrasive composite particles produced in Example 1.
  • FIG. 2 is an electron micrograph of the abrasive composite particles produced in Example 4.
  • FIG. 3 is an electron micrograph of the abrasive composite particles produced in Comparative Example 1.
  • FIG. 4 is an electron micrograph of the particles produced in the reference example. Since the composite particles for polishing produced in Example 1, Example 4 and Comparative Example 1 are produced through a method of precipitating the metal oxide precursor on the surface of the silica particles by a neutralization reaction, the metal oxide is uniform. In addition, it is supported in an island shape.
  • the metal oxide was agglomerated and only localized and adhered to a part of the surface of the silica particle, and the metal oxide was supported on the surface of the silica particle. It was not a composite silica particle.
  • powder X-ray diffraction patterns (also simply referred to as X-ray diffraction patterns) were measured under the following conditions.
  • the abrasive composite particles obtained in Examples 1 to 9 and Comparative Examples 1 to 5 were dispersed in a dispersion medium by the following procedure and then pulverized.
  • the composite particles for polishing were suspended in ion exchange water to obtain a 30% by weight crude slurry.
  • the obtained crude slurry was pulverized by supplying it to a continuous horizontal bead mill (Dyno-mill, KDL SPECIAL, mill capacity: 600 mL) using a metering pump.
  • the particle size distribution of the polishing slurry was measured for each pulverization step, and the dispersion was stopped when the difference from D50 measured after the previous pulverization step was 0.02 ⁇ m or less.
  • the dispersion conditions are as follows.
  • the particle size distribution was measured with a laser diffraction / scattering particle size analyzer (manufactured by Nikkiso Co., Ltd .: Model No. Microtrac MT3300EX). First, 60 mL of ion-exchanged water was added to 0.1 g of a sample (crude slurry or slurry after pulverization), and a suspension for measurement was prepared by thoroughly stirring at room temperature using a glass rod. In addition, the dispersion
  • polishing slurry (Preparation of polishing slurry)
  • Glass plate polishing test The glass plate was polished using each polishing slurry under the following conditions.
  • Polishing machine Desktop polishing machine (manufactured by MT Corporation, MAT BC-15C polishing surface plate diameter 300mm ⁇ )
  • Polishing pad Foam polyurethane pad (Nitta Haas Co., Ltd .: MHN-15A, without ceria impregnation) Polishing pressure: 101 g / cm 2 Plate rotation speed: 70rpm Supply amount of polishing slurry: 100 mL / min
  • the weight of the glass plate before and after the glass plate polishing test was measured with an electronic balance.
  • the thickness reduction amount of the glass plate was calculated from the weight reduction amount, the area of the glass plate, and the specific gravity of the glass plate, and the polishing rate ( ⁇ m / min) was calculated.
  • Three glass plates were polished at the same time, and after polishing for 30 minutes, the glass was removed and the weight was measured.
  • the polishing rate in each example and comparative example is shown in Table 1.
  • the glass was polished in advance with cerium oxide to prepare a glass having a surface roughness Ra in the range of 0.7 to 0.8 nm.
  • the other conditions were the same as in the (glass plate polishing test), the glass was removed every 10 minutes, and the surface roughness was measured each time. And the grinding
  • polishing became 0.5 nm or less was recorded. In Table 1, it was shown as “Ra 0.5 nm or less arrival time”.
  • the polishing rate is high, and the surface roughness after polishing for 30 minutes is also low.
  • the composite particles for polishing have a high polishing rate and can obtain a smooth polished surface.
  • it is excellent in dispersibility in a dispersion medium and D50 of the abrasive composite particles dispersed in the dispersion medium when a polishing slurry is obtained shows a preferable value (0.20 to 0.27 ⁇ m).
  • the dispersion residence time is 9 minutes at the maximum, and the production efficiency of the slurry for polishing is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

シリカ粒子に金属酸化物を担持させてなる研磨用複合粒子であって、研磨レートが高く、平滑な研磨面を得ることのできる研磨用複合粒子を提供すること。 シリカ粒子の表面に金属酸化物を担持させた複合シリカ粒子からなり、粉末X線回折測定による上記金属酸化物の、線源としてCuKα線を用いたX線回折における最大ピークの半価幅が0.45~1.0°であることを特徴とする研磨用複合粒子。

Description

研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリー
本発明は、研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリーに関する。
コロイダルシリカは粒子径の均一性が高くスラリー中でも単分散の状態に近いことから優れた面品質が得られるため、半導体基板や配線基板の半導体デバイス、アルミナ製ハードディスク、ガラス製ハードディスクまたは光学材料の最終研磨に用いられている。しかし化学反応性がないため研磨速度が遅く、工程に時間がかかってしまうという問題があった。そこで、これまでシリカ表面にその他の酸化物を担持する試みが行われてきた。
シリカに金属酸化物を担持させている例として、特許文献1では流動状態にしたシリカ粉末に金属若しくは半金属を含むハロゲン化物を接触させて25~800℃に加熱することで表面に金属酸化物を担持させたシリカ粒子が得られることが開示されている。
また、特許文献2ではシリカ粒子の表面に、アルミニウム、ジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含み、かつ、アルミニウムを必須成分として含む非晶質の酸化物層を有するシリカ系複合粒子が開示されている。
国際公開第01/055028号 特開2013-133255号公報
特許文献1に開示されたシリカ粒子の製造方法は、乾式法と呼ばれる方法であり、シリカ微粒子を気相中で流動状態にして、金属酸化物の原料となる金属塩を接触させ、熱分解を行って金属酸化物を担持させる方法である。
この方法ではシリカが凝集されたまま金属酸化物を担持させることになり、粒子一つ一つに均一に金属酸化物を担持させる方法として適していない。金属酸化物が粒子一つ一つに均一に担持されていないと、金属酸化物を担持することによる研磨特性(研磨レート、表面粗さ)の向上の効果が充分に発揮されない可能性がある。また、この方法で使用可能なシリカは乾式法で得られたシリカや乾燥状態のシリカであり、コロイダルシリカのような溶液中に分散した状態のシリカは使用できないという問題があった。
特許文献2に開示されたシリカ系複合粒子は、シリカ粒子に対してポリ塩化アルミニウムを加水分解して水酸化アルミニウム被覆を行うことにより得られており、非晶質の酸化物層を有するものである。この方法で得られた複合粒子を観察すると、金属酸化物が塊状となってシリカ粒子の表面の一部に局在化して付着していた。
また、この複合粒子を用いてガラス研磨試験を行ったところ研磨レートが低く、平滑な研磨面が得られなかった。
上記のような状況を踏まえ、本発明は、シリカ粒子に金属酸化物を担持させてなる研磨用複合粒子であって、研磨レートが高く、平滑な研磨面を得ることのできる研磨用複合粒子を提供することを目的とする。
本発明者らは、特許文献2に開示されたシリカ系複合粒子においてシリカ粒子に担持させた金属酸化物が非晶質であったことを踏まえて、非晶質でなく結晶性の高い金属酸化物を担持させてみることを試みた。
本発明者らは、結晶性の高い金属酸化物をシリカ粒子の表面に担持させる方法について種々の検討を行い、X線回折における最大ピークの半価幅が所定の範囲にある結晶性の高い金属酸化物を担持させることに成功した。そして、シリカ粒子の表面に結晶性の高い金属酸化物を担持させた複合粒子を用いて研磨を行うと高い研磨レートを発揮することができ、かつ、平滑な研磨面が得られることを見出して、本発明に至った。
すなわち、本発明の研磨用複合粒子は、シリカ粒子の表面に金属酸化物を担持させた複合シリカ粒子からなり、粉末X線回折測定による上記金属酸化物の、線源としてCuKα線を用いたX線回折における最大ピークの半価幅が0.45~1.0°であることを特徴とする。
本発明の研磨用複合粒子は、X線回折における最大ピークの半価幅が0.45~1.0°と小さい、結晶性の高い金属酸化物をシリカ粒子の表面に担持させてなる。
結晶性の高い金属酸化物は、非晶質の金属酸化物と比較してその硬度が高い。また、金属酸化物を担持させることによりシリカ粒子に化学研磨性が付与される。
そのため、結晶性の高い金属酸化物を担持させたシリカ粒子はその研磨レートが高く、平滑な研磨面を得ることのできる研磨用複合粒子となる。
さらに、分散媒への分散性に優れており、研磨用スラリーとした際に分散媒中に分散した研磨用複合粒子のD50が好ましい値を示す。
本明細書において、D50は粒度分布を測定することによって得られる値である。D50は体積基準での50%積算粒径を意味し、メジアン径とも呼ぶ。
本発明の研磨用複合粒子において、上記金属酸化物は、上記シリカ粒子の表面に均一に担持されていることが望ましい。
また、上記金属酸化物は、上記シリカ粒子上に層状又はアイランド状に担持されていることが望ましい。
本発明の研磨用複合粒子において、上記シリカ粒子は非晶質シリカ粒子であることが望ましい。
本発明の研磨用複合粒子の製造方法は、シリカ粒子を分散させてなる分散液に金属酸化物の原料となる金属塩を加え、中和反応により金属酸化物前駆体をシリカ粒子の表面に析出させる工程と、加熱焼成前の粒子に含まれるフラックス成分の含有量を50~10000ppmとして700~950℃で加熱焼成する工程と、上記加熱焼成後の粒子を粉砕する工程とを行うことを特徴とする。
本発明の研磨用複合粒子の製造方法では、中和反応により金属酸化物前駆体をシリカ粒子の表面に析出させる工程と、析出させた金属酸化物前駆体を加熱焼成する工程という2つの工程を行う。
中和反応により金属酸化物前駆体をシリカ粒子の表面に析出させる方法を用いると、金属酸化物前駆体はシリカ粒子の表面に均一に析出するため、金属酸化物の局在化が防止され、均一な特性を有する研磨用複合粒子が得られる。
また、金属酸化物前駆体をシリカ粒子の表面に析出させた後に加熱焼成することにより、金属酸化物前駆体が金属酸化物に変化するとともに金属酸化物の結晶化が進み、結晶性の高い金属酸化物となる。この際、加熱焼成前の粒子に含まれるフラックス成分を50~10000ppmとすることにより、シリカ粒子の焼結を促進せずに金属酸化物の結晶性を増大させることができる。
すなわち、上記製造方法によって、研磨レートが高く、平滑な研磨面を得ることのできる研磨用複合粒子を製造することができる。
本発明の研磨用スラリーは、本発明の研磨用複合粒子が分散媒中に分散してなり、上記分散媒中に分散した研磨用複合粒子のD50が3~1000nmであることを特徴とする。
D50がこの範囲であると研磨面の面品質が良好となる。
なお、ここでいう研磨用複合粒子のD50は、分散媒中における研磨用複合粒子の二次粒子径として測定される粒子径である。
本発明の研磨用複合粒子は、X線回折における最大ピークの半価幅が0.45~1.0°と小さい、結晶性の高い金属酸化物をシリカ粒子の表面に担持させてなる。
結晶性の高い金属酸化物は、非晶質の金属酸化物と比較してその硬度が高い。また、金属酸化物を担持させることによりシリカ粒子に化学研磨性が付与される。
そのため、結晶性の高い金属酸化物を担持させたシリカ粒子はその研磨レートが高く、平滑な研磨面を得ることのできる研磨用複合粒子となる。
さらに、分散媒への分散性に優れており、研磨用スラリーとした際に分散媒中に分散した研磨用複合粒子のD50が好ましい値を示す。
図1は、実施例1で製造した研磨用複合粒子の電子顕微鏡写真である。 図2は、実施例4で製造した研磨用複合粒子の電子顕微鏡写真である。 図3は、比較例1で製造した研磨用複合粒子の電子顕微鏡写真である。 図4は、参考例で製造した研磨用複合粒子の電子顕微鏡写真である。
以下、本発明の研磨用複合粒子について説明する。
本発明の研磨用複合粒子は、シリカ粒子の表面に金属酸化物を担持させた複合シリカ粒子からなり、粉末X線回折測定による上記金属酸化物の、線源としてCuKα線を用いたX線回折における最大ピークの半価幅が0.45~1.0°であることを特徴とする。
図1は、本発明の研磨用複合粒子の電子顕微鏡写真の一例であり、後述する実施例1で製造した研磨用複合粒子の電子顕微鏡写真である。
図1に示す研磨用複合粒子1は、シリカ粒子10を基材粒子とし、シリカ粒子10の表面に金属酸化物20が担持されている。
金属酸化物はシリカ粒子の表面に均一に担持されていることが望ましい。
均一に担持されているとは、図1に示すように金属酸化物がシリカ粒子の表面に、一部に局在化することなく一様に分布していることを意味する。
また、金属酸化物はシリカ粒子上にアイランド状又は層状に担持されていることが望ましい。
「アイランド状に担持」とは、金属酸化物粒子が、電子顕微鏡写真において1つ1つの粒子の輪郭が区別できる状態で担持されており、シリカ粒子の表面から金属酸化物粒子が突出している状態を意味している。具体的には、シリカ粒子の表面から2nm以上突出した金属酸化物粒子が存在することを意味する。
すなわち、シリカ粒子の表面を海とした場合に、金属酸化物粒子が海に浮かぶ島になっているように見える状態を「アイランド状」ということとする。
シリカ粒子に担持させた際にアイランド状に担持されやすい金属酸化物としては、例えば、酸化セリウム、酸化ジルコニウム等が挙げられる。
「層状に担持」とは、透過型電子顕微鏡写真において金属酸化物がシリカ粒子の表面を覆う膜のように担持されている状態をいう。
シリカ粒子は、その製法、形状、結晶型及び粒子径において特に限定されない。非晶質シリカ粒子であってもよく、結晶質シリカ粒子であってもよいが、非晶質シリカ粒子であることが望ましい。
シリカ粒子の結晶性は、X線回折の測定により得られた回折パターンにおいて、2θ=20.00~23.00°での正方晶SiO(101)のピークが出現するかによって判定することができる。
シリカ粒子としては市販のシリカ粒子を用いることができ、シリカ粒子の製造方法は特に限定されないが、アーク法や燃焼法等で得られる乾式法シリカや沈殿法やゲル法等で得られる湿式法シリカが適用できる。
また、シリカ粒子の形状は球状、金平糖状、まゆ状、鎖状等の形状を用いることができる。
これらの中では球状のものが望ましい。
シリカ粒子の平均粒子径(平均一次粒子径)は5~1000nmであることが望ましく、10~500nmであることがより望ましく、30~200nmであることがさらに望ましい。
シリカ粒子の平均粒子径が5nm以上であると研磨レートをより高くすることができる。また、シリカ粒子の平均粒子径が1000nm以下であると研磨面の品質を高くすることができる。
ここでシリカ粒子の平均粒子径(平均一次粒子径)とは、透過型電子顕微鏡(TEM)写真の2万倍の視野での一定方向径(粒子をはさむ一定方向の二本の平行線の間隔)で定義される粒子径(nm)であって、TEM写真内の重なっていない独立した粒子1000個の一定方向径を測定して平均値を求めたものである。
金属酸化物を構成する金属としては、特に限定されるものではないが、例えばセリウム、ジルコニウム、アルミニウム、鉄、亜鉛、マンガン、スズ、チタン、クロム、ランタン、ストロンチウム及びバリウムからなる群から選択された少なくとも1種の金属が挙げられる。これらの中ではセリウムが特に望ましい。
上記金属の酸化物である金属酸化物としては、酸化セリウム(セリア)、酸化ジルコニウム(ジルコニア)、酸化アルミニウム(アルミナ)、酸化鉄、酸化亜鉛、酸化マンガン、二酸化マンガン、酸化スズ、酸化チタン(チタニア)、酸化クロム、酸化ランタン、酸化ストロンチウム及び酸化バリウムが挙げられる。これらの中では酸化セリウムが望ましい。
また、金属酸化物中の金属の価数は特に限定されるものではなく、例えば、酸化セリウム粒子中のセリウムの価数は3価でも4価でもよい。より化学研磨が進む点で、3価のセリウムを含む酸化セリウムの粒子を担持するのがより好ましい。また、金属酸化物は、上記金属のうちの2種以上を含む複合酸化物であってもよく、複合酸化物の例としては、SrZrO、BaTiO、SrTiO、CeLa及びLaOF等が挙げられる。
金属酸化物が、金属酸化物前駆体の形でシリカ粒子の表面に析出され、焼成によって金属酸化物となってシリカ粒子の表面に担持される場合、金属酸化物前駆体の原料としては、金属の塩化物、硝酸塩、硫酸塩、酢酸塩、ペルオキソ酸塩、炭酸塩、金属オキソ酸塩、金属アルコキシド等が挙げられる。これら原料の水溶液に酸又はアルカリを加えることによって、金属酸化物前駆体としての水酸化物やシュウ酸塩等の沈殿を得て、シリカ粒子の表面に析出させる。シリカ粒子の表面で析出させた金属酸化物前駆体を加熱焼成すると、金属酸化物となってシリカ粒子の表面に担持される。
シリカ粒子の表面上における金属酸化物の平均粒子径としては、0.1~30nmであることが望ましく、1~25nmであることがより望ましい。
金属酸化物の平均粒子径は、図1に示すようにシリカ粒子の平均粒子径(平均一次粒子径)に比べて小さくなっており、シリカ粒子の平均粒子径が金属酸化物の平均粒子径の5~50倍であることが望ましい。
金属酸化物の平均粒子径は、シリカ粒子の平均粒子径(平均一次粒子径)と同様の方法により測定することができる。
本発明の研磨用複合粒子における金属酸化物は結晶性が高いことが特徴であり、線源としてCuKα線を用いたX線回折における最大ピークの半価幅(以下、単に金属酸化物の半価幅ともいう)が0.45~1.0°である。
また、上記半価幅が0.45~0.8°であることが好ましい。
上記半価幅が1.0°を超えると、研磨用複合粒子に含まれる金属酸化物の結晶性が低く、研磨レートが低くなる。これは金属酸化物の結晶性が低いと充分な硬度が得られず、化学研磨性が発揮されないためである。
また上記半価幅が0.45°未満であると、研磨レートは高くなる傾向にあるが、表面粗さが悪化する。これは担持されている金属酸化物の粒子が大きく成長し、露出するシリカ粒子の面が多くなることやシリカ粒子の焼結による凝集粒子の生成のためと推測される。
本発明の研磨用複合粒子の、粉末状態での平均粒子径としては、3~1000nmであることが望ましく、30~250nmであることがより望ましい。
研磨用複合粒子の平均粒子径は、シリカ粒子の平均粒子径(平均一次粒子径)と同様の方法により測定することができる。
次に、本発明の研磨用複合粒子を製造する方法の一例として、本発明の研磨用複合粒子の製造方法について説明する。
本発明の研磨用複合粒子の製造方法は、シリカ粒子を分散させてなる分散液に金属酸化物の原料となる金属塩を加え、中和反応により金属酸化物前駆体をシリカ粒子の表面に析出させる工程と、加熱焼成前の粒子に含まれるフラックス成分の含有量を50~10000ppmとして700~950℃で加熱焼成する工程と、上記加熱焼成後の粒子を粉砕する工程とを行うことを特徴とする。
上記方法では、まず、分散媒にシリカ粒子を分散させてなる分散液を準備する。
シリカ粒子としては上述のシリカ粒子を使用することができる。
分散媒としては特に限定されず、水やアルコールを用いることができるが、製造コストの観点から水が望ましく、イオン交換水がより望ましい。
表面処理中の粒子の再凝集を防ぐために分散液に分散安定剤が含まれていてもよい。分散安定剤としてはポリアクリル酸塩のような有機系ポリアニオン系物質、カルボキシメチルセルロース、ヒドロキシエチルセルロースのようなセルロース類、ポリビニルアルコールのような水溶性高分子類、エタノール、エチレングリコール、プロピレングリコール、グリセリンのような水溶性アルコール類、アルキルベンゼンスルホン酸ソーダなどの界面活性剤を挙げることができる。
なお、市販のコロイダルシリカスラリー(シリカゾル)は分散媒にシリカ粒子がすでに分散したものであるが、コロイダルシリカスラリーを購入して分散液として使用してもよい。
市販のコロイダルシリカスラリーを分散液として使用する場合、さらに分散媒を加えて希釈して使用することもできる。
また、乾式法シリカやその他の粉体で得られるシリカ粒子を分散媒に分散させる際には、ビーズミル等による湿式粉砕を行うことで、シリカ粒子一つ一つに金属酸化物を担持させることができ、以後の工程での研磨用複合粒子の凝集を抑制することが可能になる。
分散液中のシリカ粒子濃度は0.01~40重量%の範囲にあることが望ましい。また、シリカ粒子の平均粒子径が200nm以下の場合、シリカ粒子濃度が20重量%を超えると金属酸化物前駆体をシリカ粒子の表面に析出させる際に、分散液の粘度が著しく高くなることがあるため、シリカ粒子濃度が0.01~20重量%の範囲にあることがより望ましい。
次に、分散液に金属酸化物の原料となる金属塩を加え、中和反応により金属酸化物前駆体をシリカ粒子の表面に析出させる。
具体的には、金属塩を含有する溶液又は金属塩を分散液に添加し、その後中和剤としての酸又はアルカリを加えて中和反応を行う方法により上記工程を行うことができる。
または、金属塩を含有する溶液又は金属塩を分散液に添加すると同時に中和剤としての酸又はアルカリを加えることにより、中和しながら金属塩の添加を行う方法によっても上記工程を行うことができる。
または、分散液に中和剤としての酸又はアルカリを添加しておき、そこに金属塩を含有する溶液又は金属塩を加えることにより、中和しながら金属塩の添加を行う方法によっても上記工程を行うことができる。
中和剤としての酸又はアルカリを加えて中和反応を行う場合、金属酸化物前駆体が析出する範囲でpHを調整することが望ましい。金属酸化物前駆体が析出するpHは原料によって異なるが、pHが5~11の範囲になるように調整することがより望ましい。
pHが適切な範囲から外れると金属酸化物前駆体の析出反応が不充分となったり、析出反応の反応速度が速くなってシリカ粒子表面からだけではなく溶液中からの析出が起こり、シリカ粒子に担持されない金属酸化物前駆体の量が増加することがある。シリカ粒子に担持されない金属酸化物前駆体は研磨性能に寄与しない、また得られた研磨用複合粒子の粒度分布がブロードになるなどの問題が発生するため望ましくない。
一例として、中和剤としてアルカリを加えて中和を行いセリウム水酸化物をシリカ粒子表面上に析出させる場合、pHが8~11となるように中和を行うことが望ましい。
pHが8より小さいとセリウム水酸化物の析出反応が不充分になることがある。
また、pHが11を超えて大きいと析出反応の反応速度が速くなり、シリカ粒子表面からだけではなく溶液中からの析出が起こり、シリカ粒子に担持されないセリウム水酸化物の量が増加する。
中和剤として酸を加えて中和を行う場合、析出させる金属酸化物前駆体の析出pHに達するまで中和を行うことが望ましい。
金属酸化物の原料となる金属塩としては、上述した通り、金属の塩化物、硝酸塩、硫酸塩、酢酸塩、ペルオキソ酸塩、炭酸塩、金属オキソ酸塩、金属アルコキシド等が挙げられる。
中和に用いる酸としては、硫酸、シュウ酸等の無機酸又は有機酸が挙げられる。
中和に用いるアルカリとしては、アルカリ金属水酸化物(水酸化ナトリウム、水酸化カリウム)、アンモニア水、アンモニウム塩(炭酸水素アンモニウム、炭酸アンモニウム)、アミン化合物(有機アミン化合物)等が挙げられる。
これらの中ではアルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。水酸化ナトリウムを用いた中和反応は、フラックスとなる成分の存在下で行われる反応となるので、金属酸化物前駆体がシリカ粒子の表面により均一に析出する。
金属酸化物の原料の添加量は、シリカ粒子100重量%に対し、金属酸化物に換算して、1~100重量%が好ましい。より好ましくは5~50重量%であり、さらに好ましくは10~30重量%である。
金属酸化物の原料の添加量が、金属酸化物に換算して1重量%未満であると、金属酸化物の担持量が不足して、研磨レートが低くなることがある。また、金属酸化物の原料の添加量が、金属酸化物に換算して100重量%を超えたとしても、添加量の増加に見合う研磨レートが得られず、金属酸化物の消費量が多くなるため好ましくない。
金属酸化物前駆体を析出させた後には、金属酸化物前駆体の析出反応によりシリカ粒子同士が凝集しているため、ビーズミル等を用いた湿式粉砕を行い、分散させておく方が望ましい。
その後、水洗を行うことが望ましい。
水洗は、加圧濾過や真空濾過、限外濾過等の公知の方法で行うことができる。金属塩や中和剤としての酸又はアルカリが無機イオンを含んでいる場合、中和処理後に無機塩として分散液中に残留するため、充分な水洗を行うことが望ましい。
さらに、必要に応じて乾燥及び乾式粉砕を行うことが望ましい。
次に、シリカ粒子の表面に金属酸化物前駆体が析出してなる粒子を、加熱焼成前の粒子に含まれるフラックス成分の含有量を500~10000ppmとして700~950℃で加熱焼成する。より好ましくは800~950℃である。
なお、加熱焼成時間は1~10時間が好ましい。
焼成雰囲気は特に限定されるものでなく、大気雰囲気、窒素雰囲気、真空雰囲気等とすることができる。
また、加熱焼成に用いる加熱炉の種類も特に限定されない。抵抗に電流を流して発熱させる方式や燃料を燃焼させる方式、加熱ガスを用いる方式などが使用可能である。例えば電気マッフル炉やシャトルキルン、ロータリーキルン等が挙げられる。
この工程により、金属酸化物前駆体は金属酸化物となり、また、結晶性が充分に高まる。
焼成温度を700℃以上とすることにより金属酸化物の結晶性が高くなる。また、焼成温度を950℃を超えて高くすると、金属酸化物の結晶性は高くなるがシリカ粒子同士の焼結や粒子の変形を引き起こしやすいため望ましくない。シリカ粒子同士の焼結や変形が生じると後の工程で粉砕が難しくなり、表面粗さRaの増大やスクラッチの発生の原因となる。
また、焼成温度を950℃を超えて高くするとシリカの結晶化が起こり始める。結晶化したシリカが0.1%以上含まれるものはGHS分類対象物質に指定されており、法的に使用が制限されるため望ましくない。
加熱焼成前の粒子がフラックス成分を50~10000ppm含有していると、シリカ粒子の焼結を促進せずに金属酸化物の結晶性を増大させることができる。
フラックス成分としては、アルカリ金属化合物(ナトリウム化合物、カリウム化合物等)、アルカリ土類金属化合物、硫酸塩が挙げられる。
これらの中で好ましいものはナトリウム化合物、硫酸塩である。
なお、フラックス成分は中和反応時に中和剤として加えてもよく、中和反応後に水洗した後のケーキに適量を加えるようにしてもよく、乾燥後の粉体に適量加えるようにしてもよい。フラックス成分として加える化合物の具体例としては、ナトリウム化合物としての水酸化ナトリウムや硫酸塩としての硫酸アンモニウムが挙げられる。
フラックス成分の含有量の調整方法としては、水洗を繰り返すことでフラックス成分を減らすことができるので、水洗する際に濾液の比抵抗を測定し、所定の比抵抗になるまで洗浄を行う方法が挙げられる。また、フラックス成分が不足している場合は水洗後にフラックス成分を加えればよい。
また、フラックス成分の含有量は、フラックス成分の元素を酸化物換算した重量であり、ナトリウム化合物の場合はNaO、硫酸塩の場合はSOにそれぞれ換算した重量である。
次に、加熱焼成後の粒子を粉砕する。
加熱焼成後の粒子の粉砕は、エアーミル、ジェットミル、スチームミル、ハンマーミル等で行うことができる。
粉砕を行って焼結をほぐしておくことで、研磨用複合粒子を使用する際にスラリーとする湿式での分散工程の分散時間を短縮することができる。湿式での分散工程の時間が長くなると、担持した金属酸化物がシリカ粒子から剥離することがあり、研磨速度の低下を引き起こすため望ましくない。
上記工程により、本発明の研磨用複合粒子を製造することができる。
製造された研磨用複合粒子を研磨用途に使用する際には、分散媒に研磨用複合粒子を分散させて研磨用スラリーとする。
本発明の研磨用スラリーは、本発明の研磨用複合粒子が分散媒中に分散してなり、
上記分散媒中に分散した研磨用複合粒子のD50が3~1000nmであることを特徴とする。
また、分散媒中に分散した研磨用複合粒子のD50が1次粒子径の1~6倍であることが望ましい。
研磨用スラリーの製造に使用する分散媒としては特に限定されず、水やアルコールを用いることができるが、製造コストの観点から水が望ましく、イオン交換水がより望ましい。
分散媒中に分散した研磨用複合粒子のD50は、研磨用複合粒子の二次粒子径として測定される粒子径であり、レーザー回折・散乱式粒度分析計(例えば日機装株式会社製:型番 マイクロトラックMT3300EX)により粒度分布測定を行うことにより得られる値である。
研磨用複合粒子を分散媒中に分散させて研磨用スラリーを作製する際には、理想的には、研磨用複合粒子を分散媒と混合した際に研磨用複合粒子の凝集が生じず、研磨用複合粒子と分散媒を混合しただけで研磨用複合粒子の粒子径(D50)が所望の値となることが好ましいが、実際には研磨用複合粒子が分散媒中で凝集するために混合直後のD50の値は所望の値よりも高くなる。そのため、研磨用複合粒子を分散媒中に分散させて粗スラリーとした後に粉砕工程を行う。
粉砕装置としては、例えば、ビーズミル、アトライター、サンドミル、ボールミル等のメディア型粉砕機を使用することができる。例えば、シンマルエンタープライゼス社製ダイノーミル、日本コークス工業社製SCミル等が挙げられる。
ビーズの材質としては、特に限定されないが、ジルコニア、ガラス、アルミナ、シリカ、チタニア等が挙げられる。
また、粉砕装置としてメディアレス粉砕機を使用することもできる。メディアレス粉砕機としては高速攪拌機や高圧分散機、超音波分散機が挙げられる。具体例としては日本コークス工業社製のスラッシャーやマツボー社製のエコジナイザーが挙げられる。
粉砕工程により研磨用複合粒子のD50は小さくなるが、粉砕を繰り返すとD50の値は変化しなくなる(それ以上低下しなくなる)。
研磨用複合粒子のD50が変化しなくなるまでに要した時間を分散滞留時間とする。
具体的には、粉砕工程の1回ごとに研磨用スラリーの粒度分布を測定して、1回前の粉砕工程後に測定したD50との差が0.02μm以下になった時点で、D50が変化しなくなったと判断する。
粉砕工程後の研磨用複合粒子のD50が3~1000nmの範囲で変化しなくなることが望ましい。
また、本発明の研磨用複合粒子は、研磨用スラリーを作製した際の分散滞留時間が9分以下となるものであることが望ましい。
分散滞留時間は、粉砕工程において使用する装置や粉砕条件によって異なるが、研磨用複合粒子の分散滞留時間が9分以下であるかどうかを判定するための試験条件は以下の条件とする。下記条件において分散滞留時間が9分以下となる研磨用複合粒子が好ましい。
研磨用複合粒子をイオン交換水に懸濁させ、30重量%の粗スラリーを得る。得られた粗スラリーを定量ポンプを用いて連続式横型ビーズミル(Dyno-mill、KDL SPECIAL、ミル容量:600mL)に供給することで粉砕する。
粉砕工程の1回ごとに研磨用スラリーの粒度分布を測定して、1回前の粉砕工程後に測定したD50との差が0.02μm以下になった時点で、D50が変化しなくなったと判断し、分散を停止する。
分散条件は以下のとおりとする。
ビーズ:ガラスビーズ
ビーズ重量:795g
定量ポンプ流速:200mL/min(1回の粉砕工程での滞留時間:1.5min)
ミル周速:14m/s
分散の停止までに要した分散時間を分散滞留時間とする。
本発明の研磨用複合粒子の分散滞留時間が9分以下と短いものであると、研磨用スラリーを製造する際に所望の粒子径まで粉砕するのに必要な時間が短く、研磨用スラリーの製造効率が良いことを意味する。また、研磨用複合粒子として購入し、使用直前に自ら分散媒と混合して研磨用スラリーを調製して研磨工程に使用するユーザーにとって利便性が高いことを意味する。
本発明の研磨用スラリーは、研磨用複合粒子を所望の粒子径まで粉砕した後に、必要に応じて更に分散媒により希釈して所望の濃度として、研磨工程に使用することができる。
本発明の研磨用複合粒子及び研磨用スラリーは、各種の研磨対象に適用できる。
例えば、従来、コロイダルシリカ、酸化セリウム、酸化クロム及びベンガラ(Fe)等が研磨材料として用いられていた研磨対象に適用できる。
本発明の研磨用複合粒子を適用する研磨対象は特に限定されず、例えばガラス基板、金属板、石材、サファイア、窒化ケイ素、炭化ケイ素、酸化ケイ素、窒化ガリウム、ヒ化ガリウム、ヒ化インジウム、及びリン化インジウム等が挙げられる。
研磨対象物の用途としては、半導体基板や配線基板の半導体デバイス、アルミナ製ハードディスク、ガラス製ハードディスクまたは光学材料等が挙げられる。
本発明の研磨用複合粒子及び研磨用スラリーは、用途に応じて、適宜他の成分と混合して使用してもよい。
他の成分としては、例えば、酸、アルカリ、キレート化剤、消泡剤、pH調整剤、分散剤、粘度調整剤、凝集防止剤、潤滑剤、還元剤、防錆剤、公知の研磨材料等が挙げられ、本発明の効果を妨げない範囲でこれらを2種以上併用してもよい。
以下、本発明の実施例について説明するが、本発明はこれらによって限定されるものではない。
(実施例1)
平均一次粒子径75nmのコロイダルシリカスラリー(40重量%)にイオン交換水を添加して、シリカ粒子濃度10重量%のスラリーを得た。
このスラリー0.5Lを攪拌しながら45℃に調整し、この温度を維持しながら、シリカ粒子100重量%当たり、CeO換算で25重量%に相当する量の塩化セリウム水溶液(250g/L)50mLを180分間かけて添加した。このとき、pHを8に保つように水酸化ナトリウム水溶液を添加し、シリカ粒子表面上にセリウム水酸化物を析出させた。セリウム水酸化物析出後のスラリーをイオン交換水で濾過洗浄し、濾液の比抵抗が10000Ω・cmに達するまで水洗することで水洗ケーキを得た。得られたケーキを120℃の温度で8時間乾燥した。得られた乾燥品をエアーミルを用いて粉砕し、900℃の大気雰囲気で1時間加熱焼成した。その後、再びエアーミルを用いて粉砕を行って研磨用複合粒子を得た。
(実施例2~実施例5)
実施例1において、焼成工程における焼成温度を900℃から表1に示す温度に変更したほかは実施例1と同様にして研磨用複合粒子を得た。
(実施例6~実施例7)
実施例1において、コロイダルシリカスラリーに含まれるシリカ粒子の平均一次粒子径が表1に示す粒子径であるコロイダルシリカスラリーを用いたほかは実施例1と同様にして研磨用複合粒子を得た。
(実施例8)
実施例8では、実施例1において、水洗工程における濾液の比抵抗を20000Ω・cmに変更したほかは実施例1と同様にして研磨用複合粒子を得た。
(実施例9)
実施例9では、後述する比較例3において、水洗工程においてイオン交換水で濾過洗浄したあとのケーキに硫酸アンモニウムをケーキ中の固形分の重量に対して1重量%(SOとして6100ppm)添加し、焼成工程における焼成温度を1000℃から900℃に変更した他は比較例3と同様にして研磨用複合粒子を得た。
(比較例1~比較例2)
比較例1では、焼成工程を行わなかったほかは実施例1と同様にして研磨用複合粒子を得た。
比較例2では、実施例1において、焼成工程における焼成温度を900℃から300℃に変更したほかは実施例1と同様にして研磨用複合粒子を得た。
(比較例3)
平均一次粒子径75nmのコロイダルシリカスラリー(40重量%)にイオン交換水を添加して、シリカ粒子濃度10重量%のスラリーを得た。
このスラリー0.5Lを攪拌しながら45℃に調整し、この温度を維持しながら、シリカ粒子100重量%当たり、CeO換算で25重量%に相当する量の塩化セリウム水溶液(250g/L)50mLを180分間かけて添加した。このとき、pHを8に保つようにアンモニア水を添加し、シリカ粒子表面上にセリウム水酸化物を析出させた。セリウム水酸化物析出後のスラリーをイオン交換水で濾過洗浄し、120℃の温度で8時間乾燥した。得られた乾燥品をエアーミルを用いて粉砕し、1000℃の大気雰囲気で1時間加熱焼成した。その後、再びエアーミルを用いて粉砕を行って研磨用複合粒子を得た。
(比較例4)
比較例4では、実施例1において、焼成工程における焼成温度を900℃から1000℃に変更したほかは実施例1と同様にして研磨用複合粒子を得た。
比較例5では、実施例1において、水洗工程における濾液の比抵抗を2000Ω・cmに変更したほかは実施例1と同様にして研磨用複合粒子を得た。
(比較例6~8)
実施例1、6、7でそれぞれ用いた、平均一次粒子径がそれぞれ75nm、36nm、100nmコロイダルシリカスラリーである。
(参考例)
平均一次粒子径75nmのコロイダルシリカスラリー(40重量%)にイオン交換水を添加して、シリカ粒子濃度10重量%のスラリーを得た。
このスラリー0.5Lを90℃に調整し、撹拌しながらシリカ粒子100重量%当たりCeO換算で25重量%に相当する量の硝酸セリウム水溶液(42g/L)298mLを添加した。このスラリーをこの温度を保ちながら撹拌しながら90℃で3時間加熱した。120℃の温度で8時間乾燥した後、900℃大気雰囲気で1時間加熱焼成した。その後、再びエアーミルを用いて粉砕を行った。
この製造方法は、中和反応を行うことなく、硝酸セリウムの加水分解(熱分解)により生じた酸化セリウムを担持させる方法である。
(顕微鏡観察)
実施例1、実施例4、比較例1及び参考例で製造した粒子について、透過型電子顕微鏡を用いた電子顕微鏡観察を行った。
図1は、実施例1で製造した研磨用複合粒子の電子顕微鏡写真である。
図2は、実施例4で製造した研磨用複合粒子の電子顕微鏡写真である。
図3は、比較例1で製造した研磨用複合粒子の電子顕微鏡写真である。
図4は、参考例で製造した粒子の電子顕微鏡写真である。
実施例1、実施例4、比較例1で製造した研磨用複合粒子は、中和反応により金属酸化物前駆体をシリカ粒子の表面に析出させる方法を経て製造されているため金属酸化物が均一に、かつ、アイランド状に担持されている。
一方、参考例で製造した粒子は、金属酸化物が塊状となってシリカ粒子の表面の一部に局在化して付着しているのみであり、シリカ粒子の表面に金属酸化物を担持させた複合シリカ粒子とはいえないものであった。
(粉末X線回折の測定)
実施例1~9及び比較例1~5で得た研磨用複合粒子について、以下の条件により粉末X線回折パターン(単にX線回折パターンともいう)を測定した。
使用機:株式会社リガク製 RINT-UltimaIII
線源:CuKα
電圧:40kV
電流:40mA
試料回転速度:回転しない
発散スリット:1.00mm
発散縦制限スリット:10mm
散乱スリット:開放
受光スリット:開放
走査モード:FT
計数時間:2.0秒
ステップ幅:0.0200°
操作軸:2θ/θ
走査範囲:10.0000~70.0000°
積算回数:1回
立方晶CeO:PDFカード 01-089-8436
正方晶SiO:PDFカード 01-082-0512
(半価幅の測定)
実施例1~9及び比較例1~5で得た研磨用複合粒子について、X線回折の測定により得られた回折パターンから立方晶CeOの27.00~31.00°での最大ピークの半価幅を測定した。実施例1では2θ=28.52°に立方晶CeO(111)のピークが出現し、半価幅は0.53°であった。その他の実施例2~9、比較例1~5の半価幅も表1に示した。
(シリカ粒子の結晶性の判定)
実施例1~9及び比較例1~5で得た研磨用複合粒子について、X線回折の測定により得られた回折パターンから2θ=20.00~23.00°での正方晶SiO(101)のピークが出現するかどうかで結晶質か非晶質かを判定した。
実施例1~9及び比較例1~5で得た研磨用複合粒子についてシリカ粒子は非晶質であった。
(フラックス含有量の測定)
実施例1~9及び比較例1~5で得た研磨用複合粒子について、蛍光X線分析装置(株式会社リガク製:型番 ZSX PrimusII)の含有元素スキャニング機能であるEZスキャンにより元素分析を行った。測定サンプル台にプレスしたサンプルをセットし、次の条件を選択(測定範囲:F-U、測定径:30mm、試料形態:酸化物、測定時間:長い、雰囲気:真空)し、フラックス成分の含有量を測定した。結果を表1に示した。
測定されるフラックス成分の含有量は、酸化物換算(NaO又はSO)である。
また、フラックス含有量の測定は、焼成前の乾燥品に対して行った。
(金属酸化物含有量のばらつき)
実施例1、比較例1及び参考例に係る研磨用複合粒子について、TEM-EDX(TEM:日本電子社製JEM-2100F、EDX:EX-24063JGT)を用いて金属酸化物含有量のばらつきを測定した。具体的には研磨用複合粒子について10×10nmの範囲で元素分析を10点行い、このときの金属酸化物含有量の平均値を求め、この平均値からのばらつきを以下の式に従って計算した。
(最大値-平均値)/平均値 × 100(%)・・・(1)
(平均値-最小値)/平均値 × 100(%)・・・(2)
(1)または(2)式で求めた値のうち大きい方を評価値とした。結果を表1に示した。
含有量のばらつきが±250%以下であると、金属酸化物がシリカ粒子の表面に均一に担持されているといえる。参考例における金属酸化物含有量のばらつきは±280%であった。
(粒子の分散)
実施例1~9及び比較例1~5で得た研磨用複合粒子について、以下の手順により分散媒中に分散させたのちに粉砕工程を行った。
研磨用複合粒子をイオン交換水に懸濁させ、30重量%の粗スラリーを得た。得られた粗スラリーを定量ポンプを用いて連続式横型ビーズミル(Dyno-mill、KDL SPECIAL、ミル容量:600mL)に供給することで粉砕した。粉砕工程の1回ごとに研磨用スラリーの粒度分布を測定して、1回前の粉砕工程後に測定したD50との差が0.02μm以下になった時点で分散を停止した。
分散条件は以下のとおりである。
ビーズ:ガラスビーズ
ビーズ重量:795g
定量ポンプ流速:200mL/min(1回の粉砕工程での滞留時間:1.5min)
ミル周速:14m/s
分散の停止までに要した分散時間を分散滞留時間とし、表1に示した。
(粒度分布の測定)
レーザー回折・散乱式粒度分析計(日機装株式会社製:型番 マイクロトラックMT3300EX)により粒度分布測定を行った。まず、サンプル(粗スラリー又は粉砕後のスラリー)0.1gにイオン交換水60mLを加え、ガラス棒を用いて室温にてよく撹拌することにより、測定用の懸濁液を準備した。なお、超音波を用いた分散操作は行わなかった。この後、イオン交換水180mLを試料循環器に準備し、透過率が0.71~0.94になるように上記懸濁液を滴下して、流速50%にて、超音波分散をさせずに循環させながら測定を行った。
表1には、粒度分布測定により算出されたD50を、粗スラリーのD50について「分散前」、粉砕後のスラリーのD50について「分散後」として示した。
(研磨用スラリーの作製)
粉砕後のスラリー(実施例1~9及び比較例1~5)又はコロイダルシリカスラリー(比較例6~8)について、イオン交換水を用いて希釈して研磨用複合粒子(又はシリカ粒子)の固形分濃度が3重量%の研磨用スラリーを作製した。
(ガラス板研磨試験)
以下の条件により、各研磨用スラリーを用いてガラス板の研磨を行った。
使用ガラス板:ソーダライムガラス(松浪硝子工業株式会社製 サイズ36×36×1.3mm 比重2.5g/cm、Ra=0.2~0.3nm)
研磨機:卓上型研磨機(株式会社エム・エー・ティ製、MAT BC-15C 研磨定盤径300mmφ)
研磨パッド:発泡ポリウレタンパッド(ニッタ・ハース株式会社製:MHN-15A、セリア含浸なし)
研磨圧力:101g/cm
定盤回転数:70rpm
研磨用スラリーの供給量:100mL/min
(研磨レート評価)
ガラス板研磨試験前後のガラス板の重量を電子天秤で測定した。重量減少量、ガラス板の面積、ガラス板の比重からガラス板の厚さ減少量を算出し、研磨レート(μm/分)を算出した。
3枚のガラス板を同時に研磨し、30分研磨後にガラスを取り外して重量を測定した。
各実施例及び比較例における研磨レートを表1に示した。
(表面粗さRa測定)
非接触表面性状測定装置(New View 7100、Zygo Corp.、測定原理:走査型白色干渉法、対物レンズ:50倍、測定視野186×139μm)を用いて算術平均粗さ(Ra)を測定した。
研磨レート評価で得られたガラスの表面粗さを測定し、表1に示した。
(Ra=0.5nm以下到達時間の評価)
上記試験とは別に、研磨用複合粒子が2次研磨(または最終研磨)で使用されることを想定して、一部の実施例及び比較例について以下の試験を行った。
1次研磨としてガラスを酸化セリウムを用いて事前に研磨して、表面粗さRaが0.7~0.8nmの範囲にあるガラスを準備した。その他の条件は(ガラス板研磨試験)と同様の条件にて試験を行いガラスを10分おきに取り外して、その都度表面粗さを測定した。そして、研磨後のガラスのRaが0.5nm以下となるまでに要した研磨時間を記録した。表1には「Ra=0.5nm以下到達時間」として示した。
Figure JPOXMLDOC01-appb-T000001
 
実施例1~9で製造した研磨用複合粒子は、結晶性の高い金属酸化物がシリカ粒子の表面に担持されているため、研磨レートが高く、また、30分研磨後の表面粗さも低い範囲に入っている。つまり、研磨レートが高く、平滑な研磨面を得ることのできる研磨用複合粒子といえる。
また、分散媒への分散性に優れており、研磨用スラリーとした際に分散媒中に分散した研磨用複合粒子のD50が好ましい値(0.20~0.27μm)を示す。さらに、分散滞留時間も最大でも9分であり、研磨用スラリーの製造効率に優れている。
一方、比較例1~5で製造した研磨用複合粒子では、いずれも30分研磨後の表面粗さが粗くなっており、比較例1~3、5で製造した研磨用複合粒子では研磨レートが低くなっている。
また、シリカ粒子のみを研磨粒子とする比較例6~8では研磨レートがかなり低くなっており、Ra=0.5nm以下到達時間を比較しても分かるように研磨に時間がかかることが明らかである。
1 研磨用複合粒子
10 シリカ粒子
20 金属酸化物

Claims (6)

  1. シリカ粒子の表面に金属酸化物を担持させた複合シリカ粒子からなり、
    粉末X線回折測定による前記金属酸化物の、線源としてCuKα線を用いたX線回折における最大ピークの半価幅が0.45~1.0°であることを特徴とする研磨用複合粒子。
  2. 前記金属酸化物は、前記シリカ粒子の表面に均一に担持されている請求項1に記載の研磨用複合粒子。
  3. 前記金属酸化物は、前記シリカ粒子上に層状又はアイランド状に担持されている請求項1又は2に記載の研磨用複合粒子。
  4. 前記シリカ粒子が非晶質シリカ粒子である請求項1~3のいずれかに記載の研磨用複合粒子。
  5. シリカ粒子を分散させてなる分散液に金属酸化物の原料となる金属塩を加え、中和反応により金属酸化物前駆体をシリカ粒子の表面に析出させる工程と、
    加熱焼成前の粒子に含まれるフラックス成分の含有量を50~10000ppmとして700~950℃で加熱焼成する工程と、
    前記加熱焼成後の粒子を粉砕する工程とを行うことを特徴とする研磨用複合粒子の製造方法。
  6. 請求項1~4のいずれかに記載の研磨用複合粒子が分散媒中に分散してなり、
    前記分散媒中に分散した研磨用複合粒子のD50が3~1000nmであることを特徴とする研磨用スラリー。
PCT/JP2016/053215 2015-02-10 2016-02-03 研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリー WO2016129476A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016530027A JP5979340B1 (ja) 2015-02-10 2016-02-03 研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-024573 2015-02-10
JP2015024573 2015-02-10

Publications (1)

Publication Number Publication Date
WO2016129476A1 true WO2016129476A1 (ja) 2016-08-18

Family

ID=56614756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053215 WO2016129476A1 (ja) 2015-02-10 2016-02-03 研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリー

Country Status (3)

Country Link
JP (1) JP5979340B1 (ja)
TW (1) TWI668189B (ja)
WO (1) WO2016129476A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055758A (ja) * 2016-09-30 2018-04-05 株式会社フジミインコーポレーテッド 研磨用組成物、およびこれを用いた研磨方法および磁気ディスク用基板の製造方法
WO2018221357A1 (ja) * 2017-06-01 2018-12-06 日揮触媒化成株式会社 セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6694653B2 (ja) * 2017-04-10 2020-05-20 信越化学工業株式会社 合成石英ガラス基板用研磨剤及びその製造方法並びに合成石英ガラス基板の研磨方法
US20190127607A1 (en) 2017-10-27 2019-05-02 Versum Materials Us, Llc Composite Particles, Method of Refining and Use Thereof
US11718767B2 (en) 2018-08-09 2023-08-08 Versum Materials Us, Llc Chemical mechanical planarization composition for polishing oxide materials and method of use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158007A (ja) * 1996-11-25 1998-06-16 Sekisui Chem Co Ltd 無機質粉体及び硬化性無機質組成物
JP2010016063A (ja) * 2008-07-01 2010-01-21 Kao Corp 研磨液組成物
JP2010222151A (ja) * 2009-03-19 2010-10-07 Asahi Kasei Chemicals Corp シリカ系材料及びその製造方法並びに金属担持物
JP2012111869A (ja) * 2010-11-25 2012-06-14 Jgc Catalysts & Chemicals Ltd 研磨用シリカゾル、研磨用組成物及び研磨用シリカゾルの製造方法
JP2014130957A (ja) * 2012-12-28 2014-07-10 Kao Corp 半導体基板用研磨液組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158007A (ja) * 1996-11-25 1998-06-16 Sekisui Chem Co Ltd 無機質粉体及び硬化性無機質組成物
JP2010016063A (ja) * 2008-07-01 2010-01-21 Kao Corp 研磨液組成物
JP2010222151A (ja) * 2009-03-19 2010-10-07 Asahi Kasei Chemicals Corp シリカ系材料及びその製造方法並びに金属担持物
JP2012111869A (ja) * 2010-11-25 2012-06-14 Jgc Catalysts & Chemicals Ltd 研磨用シリカゾル、研磨用組成物及び研磨用シリカゾルの製造方法
JP2014130957A (ja) * 2012-12-28 2014-07-10 Kao Corp 半導体基板用研磨液組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055758A (ja) * 2016-09-30 2018-04-05 株式会社フジミインコーポレーテッド 研磨用組成物、およびこれを用いた研磨方法および磁気ディスク用基板の製造方法
WO2018221357A1 (ja) * 2017-06-01 2018-12-06 日揮触媒化成株式会社 セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JPWO2018221357A1 (ja) * 2017-06-01 2020-04-02 日揮触媒化成株式会社 セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
US11267715B2 (en) 2017-06-01 2022-03-08 Jgc Catalysts And Chemicals Ltd. Ceria-based composite fine particle dispersion, production method therefor, and polishing abrasive grain dispersion including ceria-based composite fine particle dispersion

Also Published As

Publication number Publication date
TW201634389A (zh) 2016-10-01
JP5979340B1 (ja) 2016-08-24
JPWO2016129476A1 (ja) 2017-04-27
TWI668189B (zh) 2019-08-11

Similar Documents

Publication Publication Date Title
JP5979340B1 (ja) 研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリー
TWI554601B (zh) 研磨材料及研磨用組成物
JP5862578B2 (ja) 研磨材微粒子及びその製造方法
JP4033440B2 (ja) セリウム系研摩材スラリー及びセリウム系研摩材スラリーの製造方法
JPWO2005110679A1 (ja) 研磨用組成物
JP2017001927A (ja) 研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリー
JP5218736B2 (ja) 研磨用組成物の製造方法
JPWO2014208414A1 (ja) 酸化セリウム研磨材、酸化セリウム研磨材の製造方法及び研磨加工方法
JP2012011526A (ja) 研磨材およびその製造方法
WO2013042596A1 (ja) ガラス研磨用複合粒子
TW201313849A (zh) 研磨材及研磨用組成物
JP6460090B2 (ja) 複合金属酸化物研磨材料の製造方法及び複合金属酸化物研磨材料
WO2013187354A1 (ja) 研磨材粒子及びその製造方法
JP2016055352A (ja) 研磨材スラリー
JP2008001907A (ja) セリウム系研摩材スラリー及びセリウム系研摩材スラリーの製造方法
TWI705947B (zh) 帶負電性基板之硏磨方法、及高表面平滑性之帶負電性基板之製造方法
KR20170077492A (ko) 세륨계 복합 연마입자의 제조방법, 그에 의한 세륨계 복합 연마입자 및 그 세륨계 복합 연마입자를 포함하는 슬러리 조성물
WO2014122992A1 (ja) コア・シェル型無機粒子
WO2019049932A1 (ja) セリウム系研磨材用原料の製造方法、及びセリウム系研磨材の製造方法
JP2007084755A (ja) 研磨用複合酸化物粒子とその製造方法、スラリー状研磨材
JP5726501B2 (ja) 研磨材料、研磨用組成物及び研磨方法
TW201533184A (zh) 研磨劑、研磨方法及半導體積體電路裝置之製造方法
JP6458554B2 (ja) 複合金属酸化物研磨材料の製造方法及び複合金属酸化物研磨材料
JP6792554B2 (ja) 研磨砥粒、研磨スラリーおよび硬脆材の研磨方法、ならびに硬脆材の製造方法
JP5861277B2 (ja) ジルコニア系研磨剤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016530027

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749120

Country of ref document: EP

Kind code of ref document: A1