WO2016127581A1 - 像素结构、显示装置以及像素结构的制作方法 - Google Patents

像素结构、显示装置以及像素结构的制作方法 Download PDF

Info

Publication number
WO2016127581A1
WO2016127581A1 PCT/CN2015/084661 CN2015084661W WO2016127581A1 WO 2016127581 A1 WO2016127581 A1 WO 2016127581A1 CN 2015084661 W CN2015084661 W CN 2015084661W WO 2016127581 A1 WO2016127581 A1 WO 2016127581A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pixel
pixel defining
pixel structure
insulating
Prior art date
Application number
PCT/CN2015/084661
Other languages
English (en)
French (fr)
Inventor
皇甫鲁江
马文昱
高昕伟
李良坚
张粲
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/912,633 priority Critical patent/US9685634B2/en
Publication of WO2016127581A1 publication Critical patent/WO2016127581A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3035Edge emission

Definitions

  • Embodiments of the present invention relate to a display device, and more particularly to a pixel structure, a display device having such a pixel structure, and a method of fabricating a pixel structure.
  • an organic thin film electroluminescent device an organic light emitting diode (OLED) unit and an active matrix organic light emitting diode (AMOLED) unit have good shock resistance and viewing angle. Wide, wide operating temperature, high contrast, flexible display, etc., has been widely used in display devices.
  • a pixel structure includes a pixel defining layer (PDL) for defining a pixel opening, and an OLED unit disposed in the pixel opening.
  • PDL pixel defining layer
  • the OLED unit includes a first electrode layer, a second electrode layer, and an organic light emitting layer encapsulated between the first electrode layer and the second electrode layer, and the organic light emitting layer is excited by applying a voltage between the first electrode layer and the second electrode layer Illuminating, the emitted light is emitted from the pixel opening.
  • the OLED unit In the OLED unit, light emitted from the organic light-emitting layer is totally reflected on the surface of the organic light-emitting layer within a certain incident angle range, and then propagates inside the organic light-emitting layer, thereby generating an optical waveguide mode inside the organic light-emitting layer.
  • the light beam may deviate from the waveguide mode inside the organic light-emitting layer into the pixel defining layer within a certain incident angle range. This portion of the beam propagates substantially laterally, substantially perpendicular to the direction of light exiting the pixel structure for effective display. Under uncontrolled conditions, this portion of the substantially transversely transmitted beam is eventually dissipated in the pixel defining layer.
  • Embodiments of the present invention provide a pixel structure, a display device having such a pixel structure, and a method of fabricating a pixel structure to improve display effects and reduce light consumption.
  • a pixel structure including:
  • a light emitting unit disposed on the first insulating layer and including a first electrode layer, a light emitting layer and a second electrode layer;
  • a pixel defining layer configured to define a pixel opening, the light emitting unit being disposed in the pixel opening;
  • a reflective component disposed around the pixel defining layer to reflect light incident into the pixel defining layer from the light emitting layer to exit from an exit surface of the pixel structure.
  • the reflective component includes:
  • a second insulating layer located at a periphery of the pixel defining layer and disposed on the first insulating layer
  • a reflective layer disposed on a side of the trench on the second insulating layer to reflect the light passing through the pixel defining layer.
  • a bottom of the trench extends into at least a portion of a thickness of the first insulating layer.
  • the pixel defining layer covers an outer edge of the first electrode layer.
  • the second insulating layer and the pixel defining layer are formed in the same layer and are made of the same material, and the second insulating layer and the pixel defining layer are The height is the same.
  • the second insulating layer and the pixel defining layer are formed in the same layer and are made of the same material, and the height of the second insulating layer is larger than the pixel defining The height of the layer.
  • the reflective layer and the first electrode layer are formed in the same layer and are made of the same material.
  • the reflective layer and the first electrode layer are disconnected.
  • a height of the second insulating layer is greater than a height of the pixel defining layer.
  • the reflective layer has a bowl-shaped surface.
  • the reflective component includes:
  • a second insulating layer located at a periphery of the pixel defining layer and disposed on the first insulating layer
  • a reflective layer disposed on an inner wall of a side of the second insulating layer facing the pixel defining layer to reflect the light emitted from the pixel defining layer
  • an outer surface of the pixel defining layer is in contact with the reflective layer.
  • the reflective layer and the first electrode layer are formed in the same layer and are made of the same material.
  • the reflective layer and the first electrode layer are disconnected.
  • a display device comprising the pixel structure of any of the above embodiments.
  • a method of fabricating a pixel structure each of the pixel structures including a pixel defining layer and a light emitting unit disposed in a pixel opening of the pixel defining layer, the method comprising the following steps :
  • the step of forming a reflective component on the insulating film comprises:
  • a reflective layer is formed on the outer wall of the trench.
  • the bottom of the trench extends into at least a portion of the thickness of the first insulating layer.
  • the insulating film is formed to cover an outer edge of the first electrode layer .
  • a step portion is formed on the insulating film, and a height at an inner portion is formed Less than the height at the outer portion.
  • a method for fabricating a pixel structure including the following steps:
  • first electrode layer and a reflective layer Forming a first electrode layer and a reflective layer by a patterning process, wherein the first electrode layer is formed on the first insulating layer, and the reflective layer extends from the first insulating layer to the second insulating layer On the inner side surface, and the first electrode layer and the reflective layer are broken;
  • a light emitting layer and a second electrode layer are formed on the first electrode layer such that the reflective layer reflects light incident from the light emitting layer into the pixel defining layer to be emitted from an exit surface of the pixel structure.
  • an outer side surface of the pixel defining layer and a inner surface of the second insulating layer form a trench .
  • a height of the pixel defining layer is formed to be smaller than a height of the second insulating layer.
  • the outer surface of the pixel defining layer and the reflection on the inner side surface of the second insulating layer Layer contact.
  • the display device having the pixel structure, and the method of fabricating the pixel structure by reflecting the light-emitting layer, light incident from the light-emitting layer into the pixel defining layer is reflected from The exit surface of the pixel structure is emitted, so that the light beam incident on the pixel defining layer can be converted into an effective light beam of the pixel structure, thereby improving the display effect and reducing the light consumption.
  • FIG. 1 is a schematic cross-sectional view of a pixel structure in accordance with a first exemplary embodiment of the present invention, showing a principle in which a reflective layer reflects light incident from a pixel defining layer;
  • FIGS. 2a-2d are cross-sectional views showing an operation process of fabricating a pixel structure of a first exemplary embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view of a pixel structure in accordance with a second exemplary embodiment of the present invention, showing a principle in which a reflective layer reflects light incident from a pixel defining layer;
  • 4a-4c are cross-sectional views showing an operation process of fabricating a pixel structure of a second exemplary embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a pixel structure in accordance with a third exemplary embodiment of the present invention, showing a principle in which a reflective layer reflects light incident from a pixel defining layer;
  • 6a-6d are cross-sectional views showing an operation process of fabricating a pixel structure of a third exemplary embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a pixel structure in accordance with a fourth exemplary embodiment of the present invention, showing a principle in which a reflective layer reflects light incident from a pixel defining layer;
  • FIGS. 8a-8b are cross-sectional views showing a partial operational process of fabricating a pixel structure of a fourth exemplary embodiment of the present invention.
  • a pixel structure includes: a first insulating layer; a light emitting unit disposed on the first insulating layer and including a first electrode layer, a light emitting layer, and a second electrode layer; a layer configured to define a pixel opening, the light emitting unit being disposed in the pixel opening; and a reflective component disposed around the pixel defining layer to be incident from the light emitting layer into the pixel defining layer The light is reflected to exit from the exit surface of the pixel structure.
  • a pixel structure in accordance with a first exemplary embodiment of the present invention, showing a principle in which a reflective layer reflects light incident from a pixel defining layer.
  • a pixel structure according to an exemplary embodiment of the present invention includes: a first insulating layer 3; a light emitting unit; a pixel defining layer 5; and a reflective component.
  • the light emitting unit is disposed on the first insulating layer 3 and includes a first electrode layer 41, a second electrode layer 43, and a light emitting layer 42 disposed between the first electrode layer 41 and the second electrode layer 43.
  • the pixel defining layer 5 is configured to define a pixel opening for display, the light emitting unit being disposed in the pixel opening.
  • the reflective component is disposed around the pixel defining layer 5 to reflect light 21 incident from the luminescent layer 42 into the pixel defining layer 5 to exit from the exit surface of the pixel structure.
  • the technical term "exit surface of a pixel structure" refers to a surface from which light is illuminated to the exterior of the pixel structure. 1 shows a transmission path from the light 21 of the light-emitting layer 41 through the pixel defining layer 5 and the reflective layer 63 from the pixel structure.
  • a light beam incident from the light-emitting layer 42 into the pixel defining layer 5 due to a small incident angle can be emitted from the exit surface of the pixel structure, so that the portion of the light 21 can be mixed with the main light beam 22 emitted from the display surface of the pixel structure.
  • the display beam is formed to improve the display effect of the pixel structure and reduce the light consumption.
  • the first insulating layer 3 may be made of at least one of silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiNxOy).
  • the first electrode layer may be an anode, and correspondingly, the second electrode layer is a cathode, and the first electrode layer may be a cathode structure, or the first electrode layer may be a cathode, correspondingly,
  • the second electrode layer is an anode, and is an inverted structure at this time;
  • the light emitting layer may be an organic light emitting layer, and may further include one of an electron injecting layer, an electron transporting layer, a hole transporting layer, and a hole injecting layer according to improvement of performance.
  • the reflective component includes: a second insulating layer 61 disposed on a periphery of the pixel defining layer 5 and disposed on the first insulating layer 3; formed on the second insulating layer 61 and pixel defined a trench 62 between the layers 5; and a reflective layer 63 disposed on a side of the trench 62 on the side of the second insulating layer 61 to reflect the light 21 passing through the pixel defining layer 5.
  • the light 21 passing through the pixel defining layer 5 is incident on the reflective layer 63 from a plurality of directions, and thus,
  • the reflecting surface of the reflective layer 63 is disposed as an inclined, curved or parabolic surface so that the light beam incident on the reflective layer 63 can be emitted from the exit surface of the pixel structure, for example, substantially perpendicular to the exit surface, to be an effective display.
  • the beam enhances the display.
  • the outer side wall of the groove 62 surrounding the pixel defining layer 5 is formed into a bowl shape.
  • the shape of the inner side wall (the side wall opposite to the reflective layer) of the groove 62 is not particularly limited as long as the light 21 which is substantially laterally transmitted in the pixel defining layer has a small incident angle, and no total reflection occurs. can.
  • the pixel structure further includes: a substrate 1 made of, for example, glass or a transparent resin material, and a pixel driving unit layer (not shown) disposed on the substrate 1, the first insulating layer 3 being disposed at On the pixel driving unit layer, the first electrode layer 41 is driven by the via hole (not shown) formed in the first insulating layer 3 A drain (not shown) of the thin film transistor in the cell layer is electrically connected to cause the thin film transistor to supply a driving signal to the first electrode layer 41.
  • the first insulating layer 3 may include a passivation layer and/or a flat layer.
  • the bottom of the trench 62 extends into at least a portion of the thickness of the first insulating layer 3.
  • one end of the reflective layer 63 can extend into the first insulating layer 3, thereby completely reflecting the light 21 from the pixel defining layer 5.
  • the pixel defining layer 5 covers the outer edge of the first electrode layer 41.
  • the first electrode layer 41 can be prevented from being electrically broken down, the performance of the light-emitting component can be improved, and the first electrode layer 41 can be firmly adhered to the first insulating layer.
  • the second insulating layer 61 and the pixel defining layer 5 are formed in the same layer and are made of the same material, and the second insulating layer is substantially the same height as the pixel defining layer. .
  • both the second insulating layer 61 and the pixel defining layer 5 are made of a photosensitive organic material.
  • the second insulating layer 61 and the pixel defining layer 5 can be formed by one patterning process by using the same material, which reduces the number of patterning processes and reduces the number of masks used, thereby simplifying the fabrication process of the array substrate and reducing the fabrication. cost.
  • FIG. 3 is a schematic cross-sectional view of a pixel structure showing a principle in which a reflective layer reflects light incident from a pixel defining layer, in accordance with a second exemplary embodiment of the present invention.
  • the pixel structure of the second embodiment is different from the pixel structure of the first embodiment in that the heights of the pixel defining layers are different, and other identical components are given the same or similar reference numerals. Only the pixel defining layer 5' of the pixel structure of the second embodiment will be described below, and the other structures are the same as or similar to those of the pixel structure of the first embodiment, and thus a detailed description thereof will be omitted herein.
  • the second insulating layer 61' and the pixel defining layer 5' are formed in the same layer and made of the same material, and the second insulating layer 61 The height of 'is greater than the height of the pixel defining layer 5'.
  • the edge of the light-emitting layer 42 of the light-emitting component covers at least a portion of the upper portion of the pixel defining layer 5', since the height of the second insulating layer 61' is larger than the height of the pixel defining layer 5', it is disposed in the trench 62.
  • the reflective layer 63' is still substantially flush with the light-emitting layer 42 in the thickness direction, so that the reflective layer 63' can be reflected into the light-emitting layer located at the upper portion of the pixel defining layer 5' due to the continuation of the waveguide effect in the light-emitting layer.
  • the light 21 incident on the reflective layer 63' so that the portion of the light 21 can be mixed with the main beam 22 emitted from the display surface of the pixel structure to form a display beam, improve the display effect of the pixel structure, and reduce light consumption.
  • the reflective layer and the first electrode layer may be made of the same material, for example, a three-layer material having Indium Tin Oxide (ITO)-silver-ITO, silver. Or made of aluminum or the like, so that both the reflective layer and the first electrode layer have better reflective properties, and at the same time, the first electrode layer achieves a conductive function. In this way, the cost can be reduced and the service life of the reflective layer and the first electrode layer can be improved.
  • the reflective layer and the first electrode layer may be made of different materials, for example, because the reflective layer does not assume the function of conducting electricity, the reflective layer may be made of an insulating material.
  • FIG. 5 is a schematic cross-sectional view of a pixel structure in accordance with a third exemplary embodiment of the present invention, showing a principle in which a reflective layer reflects light incident from a pixel defining layer.
  • the pixel structure of the third embodiment is different from the pixel structure of the first embodiment in that the pixel defining layer and the reflective layer are different, and the other identical components are the same or Similar reference numerals. Only the pixel defining layer 5" and the reflective layer 63" of the pixel structure of the third embodiment will be described below, and the other structures are the same as or similar to those of the pixel structure of the first embodiment, and thus a detailed description thereof will be omitted herein.
  • the reflective layer 63" and the first electrode layer 41" are formed in the same layer and are made of the same material.
  • the reflective layer 63" and the first electrode layer 41" can be formed by one patterning process by using the same material, which reduces the number of patterning processes and reduces the number of masks used, thereby simplifying the fabrication process of the array substrate and reducing the number of layers. production cost.
  • the reflective layer 63" and the first electrode layer 41" may be made of, for example, a three-layer material having Indium Tin Oxide (ITO)-silver-ITO, a material such as silver or aluminum, such that the reflective layer and the first layer
  • ITO Indium Tin Oxide
  • the reflective layer and the first layer The electrode layers all have good reflection properties and can improve the service life of the reflective layer and the first electrode layer.
  • the height of the second insulating layer 61" is greater than the height of the pixel defining layer 5".
  • the "reflecting layer 63" is still substantially flush with the light-emitting layer 42" in the thickness direction, so that the reflective layer 63" can be reflected into the light-emitting layer located at the upper portion of the pixel defining layer 5" due to the continuation of the waveguide effect in the light-emitting layer.
  • Figure 5 shows a transmission path from the light 21 of the luminescent layer 41" through the pixel defining layer 5", the reflective layer 63" from the pixel structure. This portion of the light 21 can be mixed with the main beam 22 emitted from the display surface of the pixel structure.
  • the display beam is formed to improve the display effect of the pixel structure and reduce the light consumption. It can be understood that the materials for fabricating the second insulating layer 61" and the pixel defining layer 5" may be the same or different.
  • FIG. 7 is a schematic cross-sectional view of a pixel structure in accordance with a fourth exemplary embodiment of the present invention, showing a principle in which a reflective layer reflects light incident from a pixel defining layer.
  • the pixel structure of the fourth embodiment is different from the pixel structure of the third embodiment in that the pixel defining layers are different, and other identical components are given the same or similar reference numerals. Only the pixel defining layer 53 of the pixel structure of the fourth embodiment will be described below, and the other structures are the same as or similar to those of the pixel structure of the first embodiment, and thus a detailed description thereof will be omitted herein.
  • a reflective layer 63" is disposed on an inner wall of a side of the second insulating layer 61" facing the pixel defining layer 53 to reflect light 21 emitted from the pixel defining layer, wherein the pixel defining layer 53
  • the outer side surface is in contact with the reflective layer 63". That is, the pixel defining layer 53 of the pixel structure of the fourth embodiment extends outward to the reflective layer 63", eliminating the trench 62" in the pixel structure of the third embodiment. In this way, the reflective layer 63" directly illuminating the light passing through the pixel defining layer 53 can be prevented from being refracted by entering the air layer, and the reflection effect of the reflective layer 63" can be improved.
  • This part of the light 21 can be combined with the pixel structure.
  • the main beam 22 emitted from the display surface is mixed to form a display beam, which improves the display effect of the pixel structure and reduces the light consumption.
  • the materials for fabricating the second insulating layer 61" and the pixel defining layer 53 may be the same or different.
  • a display device comprising the pixel structure as described in any of the above embodiments.
  • the display device can be any product or component having a display function such as a display panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, an electronic paper, and the like.
  • each pixel structure includes a pixel defining layer 5 and a light emitting unit disposed in a pixel opening of the pixel defining layer.
  • the method comprises the following steps:
  • the first insulating layer may include a passivation layer and/or a flat layer;
  • a light emitting layer 42 and a second electrode layer 43 are formed on the first electrode layer 41 inside the reflective component such that the reflective component reflects light incident from the light emitting layer 42 into the pixel defining layer 5 into a slave pixel
  • the exit surface of the structure is emitted.
  • the light emitting component reflects light incident from the light emitting layer 42 into the pixel defining layer 5 to be emitted in a direction substantially parallel to an exiting direction of the pixel structure.
  • the light beam incident from the light-emitting layer 42 into the pixel defining layer 5 can be emitted from the exit surface of the pixel structure, thereby improving the display effect of the pixel structure and reducing light consumption.
  • the step of forming a reflective component on the insulating film 51 comprises:
  • a reflective layer 63 is formed on the outer wall of the trench 62.
  • FIGS. 2a-2d are cross-sectional views showing an operation process of fabricating the pixel structure of the first exemplary embodiment of the present invention.
  • a method of fabricating a pixel structure according to a first embodiment of the present invention includes the following steps:
  • a pixel driving unit layer (not shown) including a thin film transistor is formed on a substrate 1 made of, for example, glass or transparent resin, in the same manner as a general process for fabricating an OLED or an AMOLED;
  • the first insulating layer 3 may include a flat layer and/or a passivation layer; in an exemplary embodiment, the first insulating layer 3 may be covered by, for example, An organic film layer made of acrylic or PI (polyimide) material is formed by a patterning process including, for example, an exposure, development, and etching process, or by coating a photosensitive organic material and using a patterning process including, for example, exposure and development. .
  • the first electrode layer 41 of the light emitting unit can be used as a reflective electrode;
  • an insulating film 51 surrounding the first electrode layer 41 is formed on the first insulating layer 3, and a pixel opening is formed on the insulating film 51.
  • a material forming the insulating film may be formed with the first insulating layer. The materials are the same.
  • the trench 62 is etched in the insulating film on the outer periphery of the pixel opening by a patterning or dry etching process; thus, the insulating film 51 is separated by the trench 62 into the pixel defining layer 5 on the inner side.
  • a second insulating layer 61 located on the outside; in an exemplary embodiment, the bottom of the trench extends into at least a portion of the thickness of the first insulating layer 3; that is, the depth of the trench 62 extends through the insulating film And terminating in the first insulating layer 3; thus, one end of the reflective layer 63 may extend into the first insulating layer 3, so that the complete reflection is from the pixel defining layer Light of 5; the slope (or tilt angle) on both sides of the groove 62 may be determined according to the direction in which the light in the pixel defining layer is transmitted in the waveguide mode and/or the direction in which the effective display direction reflects the light emitted from the pixel defining layer;
  • a reflective layer 63 is formed on the inner wall of the trench 62 on the outer side.
  • a reflective metal layer is formed from a material such as Ag or Al by a physical vapor deposition process, by patterning, wet etching or dry etching. The process removes the other portion of the reflective metal layer, retaining the reflective metal layer on the inner wall of the outer side of the trench 62 to form a single-sided light reflecting layer 63;
  • an OLED organic film layer is deposited by a precision metal mask (FMM) and an evaporation process to form a light-emitting layer 42; then an evaporation process is used to form a transparent or transflective second. Electrode layer 43.
  • FMM precision metal mask
  • the pixel structure having the pixel structure of the embodiment of the present invention can be formed by the above steps, and the reflective layer 63 formed in the trench 62 can reflect the light propagating laterally in the pixel defining layer 5 to be emitted from the exit surface of the pixel structure.
  • the display effect is improved, and the light consumption is reduced.
  • the insulating film 51 in the step of forming the insulating film 51 surrounding the first electrode layer 41 on the first insulating layer 3, is formed to cover the outer edge of the first electrode layer. In this way, the first electrode layer 41 can be prevented from being electrically broken, improving the performance of the light-emitting assembly.
  • a method of fabricating a pixel structure according to a second embodiment of the present invention includes the following steps:
  • a pixel driving unit layer including a thin film transistor on a substrate 1 made of, for example, glass or transparent resin;
  • an insulating film 51' surrounding the first electrode layer 41 is formed on the first insulating layer 3, and a pixel opening is formed on the insulating film 51'; wherein the insulating film 51' is formed on the insulating film 51'.
  • Step portion 52, and the height of the inner portion is smaller than the height of the outer portion;
  • the trench 62' is etched in the insulating film having a small height on the outer periphery of the pixel opening; thus, the insulating film 51' is partitioned by the trench 62' into the pixel defining layer 5' located inside. And a second insulating layer 61' located outside;
  • a reflective layer 63' is formed on the inner wall of the trench 62' on the outer side.
  • a reflective metal layer is formed from a material such as Ag or Al by a physical vapor deposition process, patterned, wet etched or dried. The etching process removes the other portion of the reflective metal layer, leaving the reflective metal layer on the inner wall of the outer side of the trench 62' to form a single-sided reflective layer 63'; thereafter, the OLED organic film layer is deposited by FMM and evaporation process, To form the light-emitting layer 42; then the transparent or transflective second electrode layer 43 is formed by an evaporation process.
  • a method of fabricating a pixel structure according to a third embodiment of the present invention includes the following steps:
  • the first electrode layer 41" and the reflective layer 63" are formed by one patterning process, wherein the first electrode layer 41" is formed on the first insulating layer 3, and the reflective layer 63" extends from the first insulating layer 3 to the second insulating layer On the inner side surface of the layer 61", and the first electrode layer 41" and the reflective layer 63" are broken;
  • a pixel defining layer 5" is formed on an outer edge of the first electrode layer 41", and an outer side surface of the pixel defining layer 5" forms a trench 62" with an inner side surface of the second insulating layer 61";
  • a light emitting layer 42" and a second electrode layer 43" are formed on the first electrode layer 41" such that light incident from the light emitting layer 42" into the pixel defining layer 5" from the reflective layer 63" is reflected into a slave pixel structure
  • the exit surface is shot.
  • the reflective layer 63" reflects the light 21 incident from the light-emitting layer 42" into the pixel defining layer 5" to be emitted in a direction substantially parallel to the exit direction of the pixel structure.
  • the reflective layer 63" can reflect the light propagating laterally in the pixel defining layer 5" to be emitted from the exit surface of the pixel structure, thereby forming light that contributes to the display effect, improving the display effect and reducing the light consumption.
  • the height of the pixel defining layer 5" is smaller than the height of the second insulating layer 61.
  • the method of the embodiment of the present invention further includes the steps of: forming a pixel driving unit layer including a thin film transistor on the substrate 1 made of, for example, glass or transparent resin before forming the first insulating layer 3; A first insulating layer 3 is formed on the cell layer.
  • a via hole (not shown) may be formed in the first insulating layer 3 by a patterning process, after the first insulating layer is cured, A second insulating layer 61" is coated on the first insulating layer 3, and an opening slightly larger than the pixel area is formed by a patterning process, followed by curing.
  • a single halftone halftone
  • a gray tone reticle forms the first insulating layer 3, the second insulating layer 61" and the vias at a time by controlling the transmittance of the exposure beam passing through the reticle by one patterning process.
  • a metal electrode reflective layer or other kinds of composite conductive light-reflecting layers are deposited on the first insulating layer 3 and the second insulating layer 61"; thereafter, a metal electrode reflective layer is used as the first electrode by a patterning process.
  • a pixel defining layer 5" is formed on the outer edge of the first electrode layer 41" by a coating, patterning process, and the outer surface of the pixel defining layer 5" and the second insulating layer 61"
  • the inner side surface forms a trench 62"; wherein the height of the pixel defining layer 5" is smaller than the height of the second insulating layer 61", and the pixel defining layer 5" covers the edge of the first electrode layer 41", and is disposed at the pixel defining
  • the edge of the reflective layer 63" on the inner sidewall of the layer 5" opposite second insulating layer 61", the outer sidewall of the pixel defining layer 5" and the inner sidewall of the second insulating layer 61" form a trench 62"; the pixel defining layer
  • the 5" and second insulating layer 61" may be made of the same material, for example, by covering an organic film layer made of, for example, an acrylic or PI (polyimide) material and employing, for example,
  • an OLED organic film layer is deposited using an FMM and an evaporation process to form a light-emitting layer 42"; then a transparent or transflective second electrode layer 43" is formed by an evaporation process.
  • FIG. 8a-8b are cross-sectional views showing a partial operational process of fabricating a pixel structure of a fourth exemplary embodiment of the present invention.
  • the method of the fourth embodiment comprises the steps of Figures 6a and 6b of the method of the third embodiment.
  • a pixel defining layer 53 is formed on the outer edge of the first electrode layer 41" by a coating and patterning process, and the outer surface of the pixel defining layer 53 is The reflective layer 63" on the inner side surface of the second insulating layer 61" is in contact. That is, the pixel defining layer 53 covers the entire reflective layer 63".
  • an OLED organic film layer is deposited using an FMM and an evaporation process to form a light-emitting layer 42"; then a transparent or transflective second electrode layer 43" is formed by an evaporation process.
  • the reflective member has grooves described in the first and second embodiments above, the present invention is not limited thereto. It will be appreciated that in an alternative embodiment, the trench may be filled with a transparent insulating material such that the surface of the pixel structure is flat, but it is still necessary to retain the reflective layer.
  • the patterning process generally includes a process of coating photoresist, exposure, development, etching, photoresist stripping, etc.; or, as long as the process of forming a desired pattern can be a patterning process, The invention is not limited.
  • the display device having the pixel structure, and the method of fabricating the pixel structure by reflecting the light-emitting layer, light incident from the light-emitting layer into the pixel defining layer is reflected from The exit surface of the pixel structure is emitted, so that the light beam incident on the pixel defining layer can be converted into an effective light beam of the pixel structure, thereby improving the display effect and reducing the light consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种像素结构、具有这种像素结构的显示装置、以及像素结构的制作方法。像素结构,包括:第一绝缘层3;发光单元,设置在第一绝缘层3上,并包括第一电极层41、发光层42和第二电极层43;像素界定层5,被构造成用于限定像素开口,发光单元设置在像素开口中;以及反射组件,环绕像素界定层5设置,以将从发光层42入射到像素界定层5中的光反射成从像素结构的出射面射出。通过设置反射组件,使得从发光层42入射到像素界定层5中的光反射成从像素结构的出射面射出,这样入射到像素界定层5中的光束可以转换成像素结构的有效光束,提高显示效果,降低光消耗。

Description

像素结构、显示装置以及像素结构的制作方法
本申请要求于2015年2月13日递交中国专利局的、申请号为201510079940.9的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本发明的实施例涉及一种显示装置,尤其涉及一种像素结构、具有这种像素结构的显示装置、以及像素结构的制作方法。
背景技术
目前,作为一种有机薄膜电致发光器件,有机发光二极管(Organic Light Emitting Diode,OLED)单元以及有源矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode,AMOLED)单元,由于具有抗震性好、视角广、操作温度宽、对比度高、可实现柔性显示等特点,已广泛应用于显示装置中。一般地,一个像素结构包括用于限定像素开口的像素界定层(PDL)、以及设置在像素开口中的OLED单元。OLED单元包括第一电极层、第二电极层以及封装在第一电极层和第二电极层之间的有机发光层,通过在第一电极层和第二电极层之间施加电压激发有机发光层发光,所发出的光从像素开口射出。
在OLED单元中,从有机发光层发出的光在一定入射角度范围内在有机发光层的表面发生全反射,之后在有机发光层内部传播,由此在有机发光层内部产生光波导模式。在有机发光层的边缘与像素界定层的界面处,由于有机发光层与像素界定层的折射率接近,在一定入射角范围内,光束可能脱离有机发光层内部的波导模式进入像素界定层。这部分光束基本上横向传播,与像素结构有效显示所需的出光方向大致垂直。在不受控制的条件下,这部分基本上横向传输的光束在像素界定层中最终耗散。
发明内容
本发明的实施例提供一种像素结构、具有这种像素结构的显示装置、以及像素结构的制作方法,以提高显示效果,降低光消耗。
根据本发明一个发明的实施例,提供一种像素结构,包括:
第一绝缘层;
发光单元,设置在所述第一绝缘层上,并包括第一电极层、发光层和第二电极层;
像素界定层,被构造成用于限定像素开口,所述发光单元设置在所述像素开口中;以及
反射组件,环绕所述像素界定层设置,以将从所述发光层入射到所述像素界定层中的光反射成从所述像素结构的出射面射出。
根据本发明的一种实施例的像素结构,所述反射组件包括:
第二绝缘层,位于所述像素界定层的外围且设置在所述第一绝缘层上;
沟槽,形成在所述第二绝缘层和所述像素界定层之间;以及;
反射层,设置在所述沟槽的位于所述第二绝缘层的一侧,以反射穿过所述像素界定层的所述光。
根据本发明的一种实施例的像素结构,所述沟槽的底部延伸到所述第一绝缘层的至少一部分厚度中。
根据本发明的一种实施例的像素结构,所述像素界定层覆盖所述第一电极层的外边缘。
根据本发明的一种实施例的像素结构,所述第二绝缘层和所述像素界定层形成在同一层并且由相同的材料制成,且所述第二绝缘层与所述像素界定层的高度相同。
根据本发明的一种实施例的像素结构,所述第二绝缘层和所述像素界定层形成在同一层并且由相同的材料制成,并且所述第二绝缘层的高度大于所述像素界定层的高度。
根据本发明的一种实施例的像素结构,所述反射层和所述第一电极层形成在同一层并且由相同的材料制成。
根据本发明的一种实施例的像素结构,所述反射层和所述第一电极层断开。
根据本发明的一种实施例的像素结构,所述第二绝缘层的高度大于所述像素界定层的高度。
根据本发明的一种实施例的像素结构,所述反射层具有碗形的表面。
根据本发明的一种实施例的像素结构,所述反射组件包括:
第二绝缘层,位于所述像素界定层的外围且设置在所述第一绝缘层上;以及
反射层,设置在所述第二绝缘层的面对所述像素界定层的一侧的内壁上,以反射从所述像素界定层射出的所述光,
其中,所述像素界定层的外侧表面与所述反射层接触。
根据本发明的一种实施例的像素结构,所述反射层和所述第一电极层形成在同一层并且由相同的材料制成。
根据本发明的一种实施例的像素结构,所述反射层和所述第一电极层断开。
根据本发明另一方面的实施例,提供一种显示装置,包括上述任一实施例所述的像素结构。
根据本发明进一步方面的实施例,提供一种像素结构的制作方法,每个所述像素结构包括像素界定层和设置在所述像素界定层的像素开口中的发光单元,所述方法包括如下步骤:
在基板上形成第一绝缘层;
在所述第一绝缘层上形成发光单元的第一电极层;
在所述第一绝缘层上形成环绕所述第一电极层的绝缘薄膜;
在所述绝缘薄膜上形成反射组件;以及
在所述反射组件的内侧的所述第一电极层上形成发光层和第二电极层,使得反射组件将从所述发光层入射到所述像素界定层中的光反射成从所述像素结构的出射面射出。
根据本发明一种实施例的方法,在所述绝缘薄膜上形成反射组件的步骤包括:
采用构图工艺在所述绝缘薄膜上形成环形沟槽,以将所述绝缘薄膜分隔成位于外侧的第二绝缘层和位于内侧的像素界定层;
在所述沟槽的位于外侧的壁上形成反射层。
根据本发明一种实施例的方法,所述沟槽的底部延伸到所述第一绝缘层的至少一部分厚度中。
根据本发明一种实施例的方法,在所述第一绝缘层上形成环绕所述第一电极层的绝缘薄膜的步骤中,将所述绝缘薄膜形成为覆盖所述第一电极层的外边缘。
根据本发明一种实施例的方法,在所述第一绝缘层上形成环绕所述第一电极层的绝缘薄膜的步骤中,在所述绝缘薄膜上形成有台阶部,并且位于内侧部分的高度小于位于外侧部分的高度。
根据本发明再进一步方面的实施例,提供一种像素结构的制作方法,包括如下步骤:
在基板上形成第一绝缘层;
在所述第一绝缘层上形成环形的第二绝缘层;
采用一次构图工艺形成第一电极层和反射层,其中所述第一电极层形成在所述第一绝缘层上,所述反射层从所述第一绝缘层延伸到所述第二绝缘层的内侧表面上,并且所述第一电极层和所述反射层断开;
在所述第一电极层的外边缘上形成像素界定层;以及
在所述第一电极层上形成发光层和第二电极层,使得反射层将从所述发光层入射到所述像素界定层中的光反射成从所述像素结构的出射面射出。
根据本发明一种实施例的方法,在所述第一电极层的外边缘上形成像素界定层的步骤中,所述像素界定层的外侧表面与所述第二绝缘层的内侧表面形成沟槽。
根据本发明一种实施例的方法,在所述第一电极层的外边缘上形成像素界定层的步骤中,将所述像素界定层的高度形成为小于所述第二绝缘层的高度。
根据本发明一种实施例的方法,在所述第一电极层的外边缘上形成像素界定层的步骤中,所述像素界定层的外侧表面与所述第二绝缘层的内侧表面上的反射层接触。
根据本发明上述实施例的像素结构、具有这种像素结构的显示装置、以及像素结构的制作方法,通过设置反射组件,使得从所述发光层入射到所述像素界定层中的光反射成从所述像素结构的出射面射出,这样入射到像素界定层中的光束可以转换成像素结构的有效光束,提高显示效果,降低光消耗。
附图说明
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明,其中:
图1是根据本发明的第一种示例性实施例的像素结构的截面示意图,图中示出了反射层反射从像素界定层入射的光的原理;
图2a-2d是示出制作本发明第一示例性实施例的像素结构的操作过程的剖视图;
图3是根据本发明的第二种示例性实施例的像素结构的截面示意图,图中示出了反射层反射从像素界定层入射的光的原理;
图4a-4c是示出制作本发明第二示例性实施例的像素结构的操作过程的剖视图;
图5是根据本发明的第三种示例性实施例的像素结构的截面示意图,图中示出了反射层反射从像素界定层入射的光的原理;
图6a-6d是示出制作本发明第三示例性实施例的像素结构的操作过程的剖视图;
图7是根据本发明的第四种示例性实施例的像素结构的截面示意图,图中示出了反射层反射从像素界定层入射的光的原理;以及
图8a-8b是示出制作本发明第四示例性实施例的像素结构的部分操作过程的剖视图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
根据本发明总体上的发明构思,提供一种像素结构,包括:第一绝缘层;发光单元,设置在第一绝缘层上,并包括第一电极层、发光层和第二电极层;像素界定层,被构造成用于限定像素开口,所述发光单元设置在所述像素开口中;以及反射组件,环绕所述像素界定层设置,以将从所述发光层入射到所述像素界定层中的光反射成从所述像素结构的出射面射出。在上述像素结构中,通过设置反射组件,使得从所述发光层入射到所述像素界定层中的光反射成从所述像素结构的出射面射出,这样入射到像素界定层中的光束可以转换成像素结构的有效光束,提高显示效果,降低光消耗。
在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
图1是根据本发明的第一种示例性实施例的像素结构的截面示意图,图中示出了反射层反射从像素界定层入射的光的原理。参见图1,根据本发明一种示例性实施例的像素结构,包括:第一绝缘层3;发光单元;像素界定层5以及反射组件。发光单元设置在第一绝缘层3上,并包括第一电极层41、第二电极层43以及设置在第一电极层41和第二电极层43之间的发光层42。像素界定层5被构造成用于限定用于显示的像素开口,所述发光单元设置在所述像素开口中。反射组件环绕像素界定层5设置,以将从发光层42入射到所述像素界定层5中的光21反射成从像素结构的出射面射出。在本发明的各种实施例中,技术术语“像素结构的出射面”是指光由此照射到像素结构的外部的表面。图1示出了从发光层41的光21经像素界定层5、反射层63从像素结构射出的传输路径。这样,由于较小的入射角而从发光层42入射到像素界定层5中的光束可以从像素结构的出射面射出,从而这部分光21可以与从像素结构的显示表面发出的主光束22混合,形成显示光束,提高像素结构的显示效果,降低光消耗。
其中,第一绝缘层3可以采用例如氧化硅(SiOx)、氮化硅(SiNx)、氮氧化硅(SiNxOy)中的至少一种材料制成。
例如用于OLED显示中的发光单元,第一电极层可以为阳极,相对应的,第二电极层为阴极,此时为正置型结构;或者,第一电极层可以为阴极,相对应的,第二电极层为阳极,此时为反置型结构;发光层可以为有机发光层,还可以根据改善性能的需要包括电子注入层、电子传输层、空穴传输层、空穴注入层中的一种或两种以上。
在一种实施例中,如图1所示,反射组件包括:位于像素界定层5的外围且设置在第一绝缘层3上的第二绝缘层61;形成在第二绝缘层61和像素界定层5之间的沟槽62;以及设置在所述沟槽62的位于第二绝缘层61的一侧的反射层63,以反射穿过像素界定层5的光21。由于发光层42的一部分设置在像素界定层5上,而且有机发光层与像素界定层的折射率接近,这样穿过像素界定层5的光21从多个方向入射到反射层63上,因此,反射层63的反射面设置成倾斜的、弧形的或者抛物线形的表面,以使入射到反射层63的光束都能够从像素结构的出射面射出,例如大致垂直于出射面,以成为有效显示光束,提高显示效果。这样,环绕像素界定层5的沟槽62的外侧壁形成为碗形的形状。可以理解,对于沟槽62的内侧壁(与反射层相对的侧壁)的形状没有特别的限制,只要确保像素界定层中大致横向传输的光21具有较小的入射角,不致发生全反射即可。
在一种实施例中,像素结构还包括:例如由玻璃或者透明树脂材料制成的基板1和设置在基板1上的像素驱动单元层(未示出),所述第一绝缘层3设置在像素驱动单元层上,第一电极层41通过形成在第一绝缘层3中的过孔(未示出)与所述像素驱动 单元层中的薄膜晶体管的漏极(未示出)电连接,以使薄膜晶体管为第一电极层41提供驱动信号。第一绝缘层3可以包括钝化层和/或平坦层。
在一种实施例中,如图2b所示,沟槽62的底部延伸到第一绝缘层3的至少一部分厚度中。这样,反射层63的一端可以延伸到第一绝缘层3中,从而完全反射来自于像素界定层5的光21。
在一种实施例中,像素界定层5覆盖第一电极层41的外边缘。这样,可以防止第一电极层41被电击穿,提高发光组件的性能,也可以使第一电极层41牢固地附着在第一绝缘层上。
在一种示例性实施例中,参见图1,所述第二绝缘层61和像素界定层5形成在同一层并且由相同的材料制成,且第二绝缘层与像素界定层的高度大致相同。例如,第二绝缘层61和像素界定层5都由感光有机材料制成。这样,第二绝缘层61和像素界定层5可以利用相同的材料通过一次构图工艺形成,减少了构图工艺的次数,减少了掩模板的使用数量,从而简化了阵列基板的制作工艺,降低了制作成本。
图3是根据本发明的第二种示例性实施例的像素结构的截面示意图,图中示出了反射层反射从像素界定层入射的光的原理。第二实施例的像素结构与第一实施例的像素结构的不同之处在于像素界定层的高度不同,而且其它相同的部件采用相同或者类似的附图标记。下面仅描述第二实施例的像素结构的像素界定层5’,对于其它结构与第一实施例的像素结构的对应结构相同或者类似,因此在此省略其详细描述。
在第二示例性实施例的像素结构中,如图3和4a所示,第二绝缘层61’和像素界定层5’形成在同一层并且由相同的材料制成,并且第二绝缘层61’的高度大于像素界定层5’的高度。这样,即便发光组件的发光层42的边缘覆盖在所述像素界定层5’上部的至少一部分上,由于第二绝缘层61’的高度大于像素界定层5’的高度,使得设置在沟槽62’中的反射层63’仍然与发光层42在厚度方向上大致平齐,这样可以使反射层63’反射由于发光层中波导效应的延续而进入位于像素界定层5’的上部的发光层并入射到反射层63’的光21,从而这部分光21可以与从像素结构的显示表面发出的主光束22混合,形成显示光束,提高像素结构的显示效果,降低光消耗。
在第一和第二实施例的像素结构中,反射层和第一电极层可以由相同的材料制成,例如具有氧化铟锡(Indium Tin Oxide,ITO)-银-ITO的三层材料、银或铝等材料制成,使得反射层和第一电极层都具有较好的反射性能,同时,第一电极层实现导电功能。这样,可以降低成本,提高反射层和第一电极层的使用寿命。在一种可替换的实施例中,反射层和第一电极层可以由不同的材料制成,例如由于反射层不承担导电的功能,反射层可以由绝缘材料制成。
图5是根据本发明的第三种示例性实施例的像素结构的截面示意图,图中示出了反射层反射从像素界定层入射的光的原理。第三实施例的像素结构与第一实施例的像素结构的不同之处在于像素界定层和反射层不同,而且其它相同的部件采用相同或者 类似的附图标记。下面仅描述第三实施例的像素结构的像素界定层5”和反射层63”,对于其它结构与第一实施例的像素结构的对应结构相同或者类似,因此在此省略其详细描述。
在第三示例性实施例的像素结构中,如图6b所示,反射层63”和第一电极层41”形成在同一层并且由相同的材料制成。这样,反射层63”和第一电极层41”可以利用相同的材料通过一次构图工艺形成,减少了构图工艺的次数,减少了掩模板的使用数量,从而简化了阵列基板的制作工艺,降低了制作成本。例如,反射层63”和第一电极层41”可以由例如具有氧化铟锡(Indium Tin Oxide,ITO)-银-ITO的三层材料、银或铝等材料制成,使得反射层和第一电极层都具有较好的反射性能,并能够提高反射层和第一电极层的使用寿命。
在进一步的实施例中,如图5和6c所示,第二绝缘层61”的高度大于所述像素界定层5”的高度。这样,即便发光组件的发光层42的边缘覆盖在所述像素界定层5”上部的至少一部分上,由于第二绝缘层61”的高度大于像素界定层5”的高度,使得设置在沟槽62”中的反射层63”仍然与发光层42”在厚度方向上大致平齐,这样可以使反射层63”反射由于发光层中波导效应的延续而进入位于像素界定层5”的上部的发光层并入射到反射层63’的光21。图5示出了从发光层41”的光21经像素界定层5”、反射层63”从像素结构射出的传输路径。这部分光21可以与从像素结构的显示表面发出的主光束22混合,形成显示光束,提高像素结构的显示效果,降低光消耗。可以理解,制作第二绝缘层61”和像素界定层5”的材料可以相同,也可以不相同。
图7是根据本发明的第四种示例性实施例的像素结构的截面示意图,图中示出了反射层反射从像素界定层入射的光的原理。第四实施例的像素结构与第三实施例的像素结构的不同之处在于像素界定层不同,而且其它相同的部件采用相同或者类似的附图标记。下面仅描述第四实施例的像素结构的像素界定层53,对于其它结构与第一实施例的像素结构的对应结构相同或者类似,因此在此省略其详细描述。
如图7所示,反射层63”设置在第二绝缘层61”的面对像素界定层53的一侧的内壁上,以反射从像素界定层射出的光21,其中,像素界定层53的外侧表面与反射层63”接触。也就是说,第四实施例的像素结构的像素界定层53向外延伸到反射层63”,消除了第三实施例的像素结构中的沟槽62”。这样,可以使穿过像素界定层53的光直接照射的反射层63”上,避免了进入空气层而发生折射,提高了反射层63”的反射效果。这部分光21可以与从像素结构的显示表面发出的主光束22混合,形成显示光束,提高像素结构的显示效果,降低光消耗。可以理解,制作第二绝缘层61”和像素界定层53的材料可以相同,也可以不相同。
根据本发明更进一步发明的实施例,提供一种显示装置,包括如上述任一实施例所述的像素结构。显示装置可以为显示面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、电子纸等任何具有显示功能的产品或部件。
根据本发明再进一步方面的实施例,提供一种像素结构的制作方法,如图1所述,每个像素结构包括像素界定层5和设置在像素界定层的像素开口中的发光单元。该方法包括如下步骤:
在基板1上形成第一绝缘层3,例如,该第一绝缘层可以包括钝化层和/或平坦层;
在第一绝缘层3上形成发光单元的第一电极层41;
在所述第一绝缘层3上形成环绕所述第一电极层41的绝缘薄膜51;
在所述绝缘薄膜51上形成反射组件;
在所述反射组件的内侧的所述第一电极层41上形成发光层42和第二电极层43,使得反射组件将从所述发光层42入射到像素界定层5中的光反射成从像素结构的出射面射出。例如,所述发光组件将从发光层42入射到像素界定层5中的光反射成在大致平行于像素结构的出射方向的方向上出射。这样,从发光层42入射到像素界定层5中的光束可以从像素结构的出射面射出,从而提高像素结构的显示效果,降低光消耗。
在一种实施例中,在绝缘薄膜51上形成反射组件的步骤包括:
采用构图工艺在绝缘薄膜51上形成环形沟槽62,以将绝缘薄膜51分隔成位于外侧的第二绝缘层61和位于内侧的像素界定层5;
在所述沟槽62的位于外侧的壁上形成反射层63。
更具体地,图2a-2d是示出制作本发明第一示例性实施例的像素结构的操作过程的剖视图。根据本发明第一实施例的制作像素结构的方法包括如下步骤:
与一般的制作OLED或者AMOLED的工艺相同,在例如玻璃或者透明树脂制成的基板1上形成包括薄膜晶体管的像素驱动单元层(未示出);
在像素驱动单元层上形成第一绝缘层3,例如,该第一绝缘层可以包括平坦层和/或钝化层;在一种示例性实施例中,第一绝缘层3可以通过覆盖由例如亚克力或者PI(聚酰亚胺)材料制成的有机膜层并采用例如包括曝光、显影和刻蚀工艺的构图工艺形成,或者通过涂覆感光有机材料并采用例如包括曝光和显影的构图工艺形成。
在第一绝缘层3上形成发光单元的第一电极层41,例如该第一电极层可以用做反射电极;
如图2a所示,在所述第一绝缘层3上形成环绕所述第一电极层41的绝缘薄膜51,在绝缘薄膜51上形成像素开口;形成绝缘薄膜的材料可以与形成第一绝缘层的材料相同。
如图2b所示,采用构图或干法刻蚀工艺,在像素开口的外侧周边的绝缘薄膜中刻蚀沟槽62;这样,由沟槽62将绝缘薄膜51分隔成位于内侧的像素界定层5和位于外侧的第二绝缘层61;在一种示例性实施例中,沟槽的底部延伸到所述第一绝缘层3的至少一部分厚度中;也就是说,沟槽62的深度贯通绝缘薄膜并终止于第一绝缘层3中;这样,反射层63的一端可以延伸到第一绝缘层3中,从而完全反射来自于像素界定层 5的光;沟槽62两侧的坡度(或者倾斜角度)可以根据像素界定层中的光以波导模式传输的方向和/或向有效显示方向反射从像素界定层射出光线的目的确定;
如图2c所示,在沟槽62的位于外侧的内壁上形成反射层63,例如,采用物理气相淀积工艺由Ag、Al等材料形成反光金属层,用构图、湿刻蚀或干刻蚀工艺除去其它部分的反光金属层,保留位于沟槽62的外侧的内壁上的反光金属层,形成单侧反光层63;
如图2d所示,采用精密金属掩模板(Fine Metal Mask,FMM)和蒸镀工艺淀积OLED有机膜层,以形成发光层42;然后采用蒸镀工艺形成透明或者半透半反的第二电极层43。
这样,通过以上步骤可以形成具有本发明实施例的像素结构的像素结构,形成在沟槽62中的反射层63可以将在像素界定层5中横向传播的光反射成从像素结构的出射面射出,从而形成为对显示效果有贡献的光,提高显示效果,降低了光消耗。
在一种实施例中,在第一绝缘层3上形成环绕第一电极层41的绝缘薄膜51的步骤中,将所述绝缘薄膜51形成为覆盖第一电极层的外边缘。这样,可以防止第一电极层41被电击穿,提高发光组件的性能。
图4a-4c是示出制作本发明第二示例性实施例的像素结构的操作过程的剖视图。根据本发明第二实施例的制作像素结构的方法包括如下步骤:
在例如玻璃或者透明树脂制成的基板1上形成包括薄膜晶体管的像素驱动单元层;
在像素驱动单元层上形成第一绝缘层3;
在第一绝缘层3上形成发光单元的第一电极层41;
如图4a所示,在所述第一绝缘层3上形成环绕所述第一电极层41的绝缘薄膜51’,在绝缘薄膜51’上形成像素开口;其中,在绝缘薄膜51’上形成有台阶部52,并且位于内侧部分的高度小于位于外侧部分的高度;
如图4b所示,在像素开口的外侧周边的具有较小高度的绝缘薄膜中刻蚀沟槽62’;这样,由沟槽62’将绝缘薄膜51’分隔成位于内侧的像素界定层5’和位于外侧的第二绝缘层61’;
如图4c所示,在沟槽62’的位于外侧的内壁上形成反射层63’,例如,采用物理气相淀积工艺由Ag、Al等材料形成反光金属层,用构图、湿刻蚀或干刻蚀工艺除去其它部分的反光金属层,保留位于沟槽62’的外侧的内壁上的反光金属层,形成单侧反光层63’;之后,采用FMM和蒸镀工艺淀积OLED有机膜层,以形成发光层42;然后采用蒸镀工艺形成透明或者半透半反的第二电极层43。
图6a-6d是示出制作本发明第三示例性实施例的像素结构的操作过程的剖视图。根据本发明第三实施例的制作像素结构的方法包括如下步骤:
在基板1上形成第一绝缘层3;
在第一绝缘层3上形成环形的第二绝缘层61”;
采用一次构图工艺形成第一电极层41”和反射层63”,其中所述第一电极层41”形成在第一绝缘层3上,反射层63”从第一绝缘层3延伸到第二绝缘层61”的内侧表面上,并且所述第一电极层41”和反射层63”断开;
在所述第一电极层41”的外边缘上形成像素界定层5”,并且所述像素界定层5”的外侧表面与所述第二绝缘层61”的内侧表面形成沟槽62”;以及
在所述第一电极层41”上形成发光层42”和第二电极层43”,使得从反射层63”将从发光层42”入射到像素界定层5”中的光反射成从像素结构的出射面射出。例如,反射层63”将从发光层42”入射到像素界定层5”中的光21反射成在大致平行于像素结构的出射方向的方向上出射。
这样,反射层63”可以将在像素界定层5”中横向传播的光反射成从像素结构的出射面射出,从而形成为对显示效果有贡献的光,提高显示效果,降低了光消耗。
在一种实施例中,在所述第一电极层41”的外边缘上形成像素界定层5”的步骤中,将像素界定层5”的高度小于第二绝缘层61”的高度。
可以理解,本发明实施例的方法还包括如下步骤:在形成第一绝缘层3之前,在例如玻璃或者透明树脂制成的基板1上形成包括薄膜晶体管的像素驱动单元层;之后,在像素驱动单元层上形成第一绝缘层3。
在一种实施例中,如图6a所示,在形成第一绝缘层3之后,可以在第一绝缘层3中采用构图工艺形成过孔(未示出),在第一绝缘层固化后,在第一绝缘层3上涂布第二绝缘层61”,用构图工艺形成一个略大于像素面积的开口,之后进行固化。在一种可替换的实施例中,可以采用例如单个半色调(halftone)或者灰色调(grey tone)掩模板通过一次构图工艺通过控制穿过掩模板的曝光光束的透过率,而一次形成第一绝缘层3、第二绝缘层61”和过孔。
如图6b所示,在第一绝缘层3和第二绝缘层61”上淀积金属电极反射层或其它种类的复合导电反光层;之后,采用构图工艺由金属电极反射层用做第一电极层41”、以及设置在所述开口的位于外侧的内壁上的金属反射层63”,其中第一电极层41”和反射层63”断开。
如图6c所示,在第一电极层41”的外边缘上采用涂布、构图工艺形成像素界定层5”,并且所述像素界定层5”的外侧表面与所述第二绝缘层61”的内侧表面形成沟槽62”;其中,像素界定层5”的高度小于第二绝缘层61”的高度,而且像素界定层5”覆盖第一电极层41”的边缘、以及设置在与像素界定层5”相对的第二绝缘层61”的内侧壁上的反射层63”的边缘,像素界定层5”的外侧壁与第二绝缘层61”的内侧壁形成沟槽62”;像素界定层5”和第二绝缘层61”可以由相同的材料制成,例如,可以通过覆盖由例如亚克力或者PI(聚酰亚胺)材料制成的有机膜层并采用例如包括曝光、显影和刻蚀工艺的构图工艺形成,或者通过涂覆感光有机材料并采用曝光和显影工艺形成。
最后,如图6d所示,采用FMM和蒸镀工艺淀积OLED有机膜层,以形成发光层42”;然后采用蒸镀工艺形成透明或者半透半反的第二电极层43”。
图8a-8b是示出制作本发明第四示例性实施例的像素结构的部分操作过程的剖视图。可以理解,第四实施例的方法包括第三实施例的方法中附图6a和6b的步骤。在图6b所示结构的基础上,如图8a所示,在第一电极层41”的外边缘上采用涂布、构图工艺形成像素界定层53,并且所述像素界定层53的外侧表面与第二绝缘层61”的内侧表面上的反射层63”接触。也就是说,像素界定层53覆盖了整个反射层63”。
最后,如图8b所示,采用FMM和蒸镀工艺淀积OLED有机膜层,以形成发光层42”;然后采用蒸镀工艺形成透明或者半透半反的第二电极层43”。
虽然在上面的第一和第二实施例中描述了反射组件具有沟槽,但本发明并不局限于此。可以理解,在一种可替换的实施例中,可以采用透明的绝缘材料填充沟槽,使得像素结构的表面平坦,但仍然需要保留反射层。在本发明的实施例中,构图工艺一般包括涂覆光刻胶、曝光、显影、刻蚀、光刻胶剥离等工艺;或者,只要可以形成所需的图案的工艺都可以成为构图工艺,本发明不做限制。
根据本发明上述实施例的像素结构、具有这种像素结构的显示装置、以及像素结构的制作方法,通过设置反射组件,使得从所述发光层入射到所述像素界定层中的光反射成从所述像素结构的出射面射出,这样入射到像素界定层中的光束可以转换成像素结构的有效光束,提高显示效果,降低光消耗。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (23)

  1. 一种像素结构,包括:
    第一绝缘层;
    发光单元,设置在所述第一绝缘层上,并包括第一电极层、发光层和第二电极层;
    像素界定层,被构造成用于限定像素开口,所述发光单元设置在所述像素开口中;以及
    反射组件,环绕所述像素界定层设置,以将从所述发光层入射到所述像素界定层中的光反射成从所述像素结构的出射面射出。
  2. 如权利要求1所述的像素结构,其中,所述反射组件包括:
    第二绝缘层,位于所述像素界定层的外围且设置在所述第一绝缘层上;
    沟槽,形成在所述第二绝缘层和所述像素界定层之间;以及;
    反射层,设置在所述沟槽的位于所述第二绝缘层的一侧,以反射穿过所述像素界定层的所述光。
  3. 如权利要求2所述的像素结构,其中,所述沟槽的底部延伸到所述第一绝缘层的至少一部分厚度中。
  4. 如权利要求1-3中的任一项所述的像素结构,其中,所述像素界定层覆盖所述第一电极层的外边缘。
  5. 如权利要求2或3所述的像素结构,其中,所述第二绝缘层和所述像素界定层形成在同一层并且由相同的材料制成,且所述第二绝缘层与所述像素界定层的高度相同。
  6. 如权利要求2或3所述的像素结构,其中,所述第二绝缘层和所述像素界定层形成在同一层并且由相同的材料制成,并且所述第二绝缘层的高度大于所述像素界定层的高度。
  7. 如权利要求2或3所述的像素结构,其中,所述反射层和所述第一电极层形成在同一层并且由相同的材料制成。
  8. 如权利要求7所述的像素结构,其中,所述反射层和所述第一电极层断开。
  9. 如权利要求7所述的像素结构,其中,所述第二绝缘层的高度大于所述像素界定层的高度。
  10. 如权利要求2所述的像素结构,其中,所述反射层具有碗形的表面。
  11. 如权利要求1所述的像素结构,其中,所述反射组件包括:
    第二绝缘层,位于所述像素界定层的外围且设置在所述第一绝缘层上;以及
    反射层,设置在所述第二绝缘层的面对所述像素界定层的一侧的内壁上,以反射从所述像素界定层射出的所述光,
    其中,所述像素界定层的外侧表面与所述反射层接触。
  12. 如权利要求11所述的像素结构,其中,所述反射层和所述第一电极层形成在同一层并且由相同的材料制成。
  13. 如权利要求12所述的像素结构,其中,所述反射层和所述第一电极层断开。
  14. 一种显示装置,包括如权利要求1-13中的任一项所述的像素结构。
  15. 一种像素结构的制作方法,每个所述像素结构包括像素界定层和设置在所述像素界定层的像素开口中的发光单元,其中,所述方法包括如下步骤:
    在基板上形成第一绝缘层;
    在所述第一绝缘层上形成发光单元的第一电极层;
    在所述第一绝缘层上形成环绕所述第一电极层的绝缘薄膜;
    在所述绝缘薄膜上形成反射组件;以及
    在所述反射组件的内侧的所述第一电极层上形成发光层和第二电极层,使得反射组件将从所述发光层入射到所述像素界定层中的光反射成从所述像素结构的出射面射出。
  16. 如权利要求15所述的方法,其中,在所述绝缘薄膜上形成反射组件的步骤包括:
    采用构图工艺在所述绝缘薄膜上形成环形沟槽,以将所述绝缘薄膜分隔成位于外侧的第二绝缘层和位于内侧的像素界定层;
    在所述沟槽的位于外侧的壁上形成反射层。
  17. 如权利要求16所述的方法,其中,所述沟槽的底部延伸到所述第一绝缘层的至少一部分厚度中。
  18. 如权利要求15所述的方法,其中,在所述第一绝缘层上形成环绕所述第一电极层的绝缘薄膜的步骤中,将所述绝缘薄膜形成为覆盖所述第一电极层的外边缘。
  19. 如权利要求18所述的方法,其中,在所述第一绝缘层上形成环绕所述第一电极层的绝缘薄膜的步骤中,在所述绝缘薄膜上形成有台阶部,并且位于内侧部分的高度小于位于外侧部分的高度。
  20. 一种像素结构的制作方法,包括如下步骤:
    在基板上形成第一绝缘层;
    在所述第一绝缘层上形成环形的第二绝缘层;
    采用一次构图工艺形成第一电极层和反射层,其中所述第一电极层形成在所述第一绝缘层上,所述反射层从所述第一绝缘层延伸到所述第二绝缘层的内侧表面上,并且所述第一电极层和所述反射层断开;
    在所述第一电极层的外边缘上形成像素界定层;以及
    在所述第一电极层上形成发光层和第二电极层,使得反射层将从所述发光层入射到所述像素界定层中的光反射成从所述像素结构的出射面射出。
  21. 如权利要求20所述的方法,其中,在所述第一电极层的外边缘上形成像素界定层的步骤中,所述像素界定层的外侧表面与所述第二绝缘层的内侧表面形成沟槽。
  22. 如权利要求20所述的方法,其中,在所述第一电极层的外边缘上形成像素界定层的步骤中,所述像素界定层的外侧表面与所述第二绝缘层的内侧表面上的反射层接触。
  23. 如权利要求20-22中的任一项所述的方法,其中,在所述第一电极层的外边缘上形成像素界定层的步骤中,将所述像素界定层的高度形成为小于所述第二绝缘层的高度。
PCT/CN2015/084661 2015-02-13 2015-07-21 像素结构、显示装置以及像素结构的制作方法 WO2016127581A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/912,633 US9685634B2 (en) 2015-02-13 2015-07-21 Pixel structure, display device and manufacturing method of pixel structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510079940.9 2015-02-13
CN201510079940.9A CN104733501B (zh) 2015-02-13 2015-02-13 像素结构、显示装置以及像素结构的制作方法

Publications (1)

Publication Number Publication Date
WO2016127581A1 true WO2016127581A1 (zh) 2016-08-18

Family

ID=53457217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084661 WO2016127581A1 (zh) 2015-02-13 2015-07-21 像素结构、显示装置以及像素结构的制作方法

Country Status (3)

Country Link
US (1) US9685634B2 (zh)
CN (2) CN108336126B (zh)
WO (1) WO2016127581A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459570A (zh) * 2019-08-19 2019-11-15 京东方科技集团股份有限公司 一种有机电致发光基板及有机电致发光显示面板

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336126B (zh) 2015-02-13 2021-01-26 京东方科技集团股份有限公司 像素结构、显示装置以及像素结构的制作方法
KR102424975B1 (ko) * 2015-08-31 2022-07-26 삼성디스플레이 주식회사 발광 다이오드 구조체 및 디스플레이 장치
US10374197B2 (en) 2015-10-30 2019-08-06 Lg Display Co., Ltd. Organic light emitting diode display device with micro lenses
KR20170052447A (ko) * 2015-10-30 2017-05-12 엘지디스플레이 주식회사 유기발광 표시장치
CN105552249B (zh) * 2016-03-16 2017-11-14 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN105870154B (zh) * 2016-04-28 2019-04-05 京东方科技集团股份有限公司 一种阵列基板及其制备方法、oled显示装置
CN107170900B (zh) 2017-05-12 2019-11-22 京东方科技集团股份有限公司 Oled基板及其制备方法、显示装置
CN107170904B (zh) 2017-06-30 2019-10-15 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN109411619B (zh) * 2017-08-17 2020-05-26 京东方科技集团股份有限公司 Oled阵列基板及其制备方法、显示面板及显示装置
CN109817664B (zh) * 2017-11-22 2021-01-22 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板
KR102578544B1 (ko) 2017-12-11 2023-09-13 엘지디스플레이 주식회사 전계발광 표시장치
CN108091677A (zh) * 2017-12-14 2018-05-29 合肥鑫晟光电科技有限公司 阵列基板、显示装置以及阵列基板的制造方法
CN108110038B (zh) * 2018-01-02 2021-06-25 上海天马微电子有限公司 有机发光显示面板和显示装置
CN108400146B (zh) * 2018-01-31 2020-08-04 上海天马微电子有限公司 一种有机发光显示面板及显示装置
CN108428723B (zh) * 2018-03-27 2021-08-03 京东方科技集团股份有限公司 像素界定结构及其制备方法、显示基板、喷墨打印方法
CN108538888A (zh) * 2018-04-09 2018-09-14 武汉华星光电半导体显示技术有限公司 Oled面板及其制造方法、oled显示器
US10658621B2 (en) 2018-04-09 2020-05-19 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED panel and manufacturing method thereof and OLED display
CN108649050B (zh) 2018-04-24 2021-11-23 京东方科技集团股份有限公司 一种oled显示基板及制作方法、显示装置
CN110531545A (zh) * 2018-05-23 2019-12-03 深圳Tcl新技术有限公司 液晶电视显示模组及具有该液晶电视显示模组的液晶电视
CN108807494B (zh) * 2018-07-06 2021-09-14 云谷(固安)科技有限公司 显示基板及其制作方法、显示面板和显示装置
CN109065743B (zh) * 2018-07-09 2021-04-23 武汉华星光电半导体显示技术有限公司 Oled显示面板
CN110767676B (zh) * 2018-08-06 2022-04-15 昆山国显光电有限公司 透明显示面板、显示屏和显示终端
DE112019004254B4 (de) * 2018-09-28 2022-06-15 Ngk Insulators, Ltd. Leuchtstoffelement, verfahren zu dessen herstellung und beleuchtungsvorrichtung
CN110164384B (zh) * 2018-09-29 2022-06-10 京东方科技集团股份有限公司 一种亮度补偿方法及装置
CN109346621B (zh) * 2018-10-18 2021-07-30 武汉天马微电子有限公司 一种显示面板及显示装置
US11296158B2 (en) 2018-11-28 2022-04-05 Boe Technology Group Co., Ltd. Pixel structure including a lateral reflective layer
CN109671749A (zh) * 2018-12-13 2019-04-23 武汉华星光电半导体显示技术有限公司 Oled显示屏及其制作方法
CN111384293B (zh) * 2018-12-31 2023-06-09 乐金显示有限公司 发光二极管显示装置
CN109860416B (zh) * 2019-01-09 2022-03-25 昆山工研院新型平板显示技术中心有限公司 像素结构及具有该像素结构的oled显示面板
CN109904347B (zh) 2019-03-15 2020-07-31 京东方科技集团股份有限公司 发光器件及其制造方法、显示装置
CN109873022B (zh) * 2019-03-21 2021-01-22 京东方科技集团股份有限公司 一种背板、显示装置以及背板的制备方法
CN109950282B (zh) 2019-03-25 2021-04-13 京东方科技集团股份有限公司 像素结构、阵列基板以及显示装置
CN109873023B (zh) * 2019-03-29 2021-10-19 京东方科技集团股份有限公司 一种oled显示基板及其制备方法、显示装置
KR20200119452A (ko) * 2019-04-09 2020-10-20 삼성디스플레이 주식회사 디스플레이 장치
CN110071229B (zh) * 2019-05-07 2020-09-08 武汉华星光电半导体显示技术有限公司 阵列基板及其制作方法
CN110620133B (zh) * 2019-09-25 2022-09-09 京东方科技集团股份有限公司 一种透明显示面板及其制备方法和显示装置
CN110875369A (zh) * 2019-11-27 2020-03-10 京东方科技集团股份有限公司 显示背板、显示面板及其制作方法和显示装置
CN110880528B (zh) * 2019-12-16 2022-07-05 京东方科技集团股份有限公司 一种oled显示面板及显示装置
CN111584737A (zh) * 2020-05-06 2020-08-25 Tcl华星光电技术有限公司 显示面板及其制作方法
US11430920B2 (en) 2020-06-08 2022-08-30 Tcl China Star Optoelectronics Technology Co., Ltd. Display panel and manufacturing method thereof
CN111668233B (zh) * 2020-06-08 2023-06-30 Tcl华星光电技术有限公司 显示面板及其制备方法
CN111710702B (zh) * 2020-06-29 2023-04-07 京东方科技集团股份有限公司 一种显示面板及其制作方法和显示装置
CN113224110B (zh) * 2020-06-30 2022-11-15 广东聚华印刷显示技术有限公司 显示基板、显示面板及其制备方法
WO2022015306A1 (en) * 2020-07-16 2022-01-20 Applied Materials, Inc. Graded slope reflective structures for oled display pixels
WO2024031670A1 (en) * 2022-08-12 2024-02-15 Intel Corporation Power efficient micro-led architectures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103915482A (zh) * 2014-03-27 2014-07-09 京东方科技集团股份有限公司 一种有机电致发光显示面板、其制作方法及显示装置
CN104241535A (zh) * 2013-06-06 2014-12-24 上海和辉光电有限公司 一种有机发光结构
CN204391161U (zh) * 2015-02-13 2015-06-10 京东方科技集团股份有限公司 像素结构和显示装置
CN104733501A (zh) * 2015-02-13 2015-06-24 京东方科技集团股份有限公司 像素结构、显示装置以及像素结构的制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3984183B2 (ja) * 2003-03-20 2007-10-03 株式会社 日立ディスプレイズ 有機el表示装置
KR20080067158A (ko) * 2007-01-15 2008-07-18 삼성전자주식회사 표시장치
KR101084176B1 (ko) * 2009-11-26 2011-11-17 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241535A (zh) * 2013-06-06 2014-12-24 上海和辉光电有限公司 一种有机发光结构
CN103915482A (zh) * 2014-03-27 2014-07-09 京东方科技集团股份有限公司 一种有机电致发光显示面板、其制作方法及显示装置
CN204391161U (zh) * 2015-02-13 2015-06-10 京东方科技集团股份有限公司 像素结构和显示装置
CN104733501A (zh) * 2015-02-13 2015-06-24 京东方科技集团股份有限公司 像素结构、显示装置以及像素结构的制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459570A (zh) * 2019-08-19 2019-11-15 京东方科技集团股份有限公司 一种有机电致发光基板及有机电致发光显示面板

Also Published As

Publication number Publication date
CN104733501A (zh) 2015-06-24
CN108336126A (zh) 2018-07-27
US20160359142A1 (en) 2016-12-08
CN108336126B (zh) 2021-01-26
US9685634B2 (en) 2017-06-20
CN104733501B (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
WO2016127581A1 (zh) 像素结构、显示装置以及像素结构的制作方法
WO2016062240A1 (zh) 一种顶发射oled器件及其制作方法、显示设备
US11296160B2 (en) Display substrate, display apparatus, and method of fabricating the display substrate
CN110071229B (zh) 阵列基板及其制作方法
US20200035770A1 (en) Display substrate and manufacturing method thereof, and display device
CN109904347B (zh) 发光器件及其制造方法、显示装置
CN107579166B (zh) 显示面板、显示装置及显示面板制作方法
WO2015184712A1 (zh) 一种有机发光显示装置及其制造方法
US10707449B2 (en) Array substrate, method of preparing the same and display panel
KR102205526B1 (ko) 유기 발광 표시 장치
WO2019000904A1 (zh) Oled显示基板及其制作方法、显示装置
CN107689426B (zh) 发光器件、电子装置及发光器件制作方法
US11201301B2 (en) Base support plate and method of manufacturing the same, and method of manufacturing a flexible display panel
CN204391161U (zh) 像素结构和显示装置
JP2005063838A (ja) 光学デバイス及び有機el表示装置
US10068952B2 (en) Display device having a recess portion in an insulating film and a light emitting layer
US20190103418A1 (en) Array substrate and method for manufacturing thereof, and display device
US20240049575A1 (en) Display panel and mobile terminal
WO2019196166A1 (zh) Oled面板及其制造方法、oled显示器
CN106847861B (zh) 底发光型oled显示单元及其制作方法
JP2023179634A (ja) 画素構造、表示装置及び画素構造の製造方法
WO2017190535A1 (zh) 单侧发光光源及其制作方法、显示装置
WO2022247180A1 (zh) 显示面板及显示装置
CN114023908A (zh) 显示面板及其制备方法、显示装置
JP7348075B2 (ja) 画素構造、表示装置及び画素構造の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14912633

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15881741

Country of ref document: EP

Kind code of ref document: A1