WO2019196166A1 - Oled面板及其制造方法、oled显示器 - Google Patents

Oled面板及其制造方法、oled显示器 Download PDF

Info

Publication number
WO2019196166A1
WO2019196166A1 PCT/CN2018/087854 CN2018087854W WO2019196166A1 WO 2019196166 A1 WO2019196166 A1 WO 2019196166A1 CN 2018087854 W CN2018087854 W CN 2018087854W WO 2019196166 A1 WO2019196166 A1 WO 2019196166A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel defining
tft substrate
defining layer
reflective
reflective wall
Prior art date
Application number
PCT/CN2018/087854
Other languages
English (en)
French (fr)
Inventor
刘圣
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/040,591 priority Critical patent/US10658621B2/en
Publication of WO2019196166A1 publication Critical patent/WO2019196166A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present application relates to the field of display, and in particular to an OLED (Organic Light-Emitting Diode) panel, a method of manufacturing the same, and an OLED display.
  • OLED Organic Light-Emitting Diode
  • the OLED panel 10 Compared with the traditional liquid crystal display panel, the OLED panel has the advantages of fast response speed, high contrast, wide viewing angle, etc., and is regarded as the next generation display technology.
  • the OLED panel 10 generally includes a TFT (Thin Film Transistor) substrate 11 and a Pixel Defined Layer (PDL) 12 on the TFT substrate 11 , and an organic light emitting unit 13 for sealing the package.
  • a voltage is applied to the anode 131 and the cathode 132.
  • holes of electrons are injected from the cathode 132 and the anode 131 to the electron and hole transport layers, respectively, and then migrate to the light-emitting layer 133, and meet at the light-emitting layer 133 to form a radical.
  • the luminescent molecules are excited to emit visible light.
  • the prior art In order to increase the light exit rate of the OLED panel 10, the prior art generally adds a reflective layer below each of the light-emitting regions 15, or increases the surface roughness under the light-emitting region 15.
  • these methods cannot prevent light from exiting from the adjacent light-emitting region 15, and the effect of increasing the light exit rate is very limited, it is difficult to reduce the power consumption of the device and prolong the service life of the device, and the difference from the adjacent light-emitting region 15 cannot be eliminated. Color mixing caused by the mixing of color light.
  • the present application provides an OLED panel and a manufacturing method thereof, and an OLED display, which can improve light emission rate, reduce power consumption of the device and prolong the service life of the device, and facilitate elimination of different colors emitted from adjacent light emitting regions. Color mixing caused by light mixing.
  • the OLED panel of the embodiment of the present invention includes a TFT substrate and a pixel defining layer on the TFT substrate.
  • the pixel defining layer defines a light emitting area of the OLED panel on the TFT substrate, and the OLED panel further A reflective wall disposed between adjacent two light emitting regions is disposed, the reflective wall being located within the pixel defining layer.
  • An OLED panel includes an OLED panel including a TFT substrate and a pixel defining layer on the TFT substrate, wherein the pixel defining layer defines a light emitting region of the OLED panel on the TFT substrate,
  • the OLED panel further includes a reflective wall disposed between adjacent two light emitting regions, the reflective wall being located within the pixel defining layer.
  • a reflective wall and a pixel defining layer on the TFT substrate, wherein the pixel defining layer defines a light emitting region of the OLED panel on the TFT substrate, and the reflective wall is disposed between two adjacent light emitting regions Located within the pixel defining layer;
  • a remaining layer structure of the organic light emitting unit is formed in the light emitting region defined by the pixel defining layer, including a light emitting layer and a cathode.
  • the present application adds a reflective wall in a pixel defining layer, and the reflective wall is disposed between two adjacent light emitting regions to prevent light from exiting from adjacent light emitting regions, thereby improving light emission rate and reducing device work. It consumes and prolongs the service life of the device, and is beneficial for eliminating color mixing caused by mixing of different colors of light emitted from adjacent light-emitting regions.
  • FIG. 1 is a schematic structural view of an embodiment of a OLED panel of the prior art
  • FIG. 2 is a schematic structural diagram of an OLED panel according to an embodiment of the present application.
  • FIG. 3 is a top plan view showing the structure of an OLED panel according to an embodiment of the present application.
  • FIG. 4 is a schematic structural view of an OLED panel having a bottom gate type TFT shown in FIG. 2;
  • FIG. 5 is a schematic flow chart of a method of manufacturing an OLED panel according to an embodiment of the present application.
  • the main purpose of the present application is to add a reflective wall in a pixel defining layer, and the reflective wall is disposed between two adjacent light emitting regions, thereby preventing light from exiting from adjacent light emitting regions, thereby improving light emission rate, which is beneficial to Reduces device power consumption and extends device lifetime, and helps eliminate color mixing caused by mixing of different colors of light emitted from adjacent illuminating regions.
  • the OLED panel 20 includes a TFT substrate 21, a pixel defining layer 22 on the TFT substrate 21, an organic light emitting unit 23, a reflective wall 24, and an encapsulation layer 25 for sealing the package.
  • the pixel defining layer 22 is used to define the light emitting region 221 of the OLED panel 20, and the pixel defining layer 22 may be made of a water-proof, oxygen-insulating transparent insulating material such as SiO 2 (silicon dioxide) or silicon nitride (SiN x ). ITO (Indium tin oxide).
  • the reflective wall 24 is disposed between the adjacent two light-emitting regions 221 and is located within the pixel defining layer 22, and the reflective wall 24 is capable of reflecting light incident on the surface thereof.
  • the reflective wall 24 is capable of reflecting light incident on the surface thereof.
  • four reflective walls 24 are disposed around each of the light-emitting regions 221 along a line of sight perpendicular to the TFT substrate 21, and the four reflective walls 24 may be end-to-end.
  • the connection, that is, the four reflective walls 24 are completely disposed around the light-emitting area 221.
  • the present application can also provide that the four reflective walls 24 around each of the light-emitting regions 221 are not connected end to end; or, the number of reflective walls 24 surrounding each of the light-emitting regions 221 can be less than four.
  • the plurality of reflective walls 24 are partially disposed around the light-emitting area 221; or each reflective wall 24 is not a complete wall structure, but includes a plurality of spaced wall structures surrounding the light-emitting area 221 settings.
  • the organic light emitting unit 23 is located within the light emitting region 221. Specifically, the organic light emitting unit 23 includes an anode 231, a light emitting layer 232, a cathode 233, and an electron transport layer, a hole transport layer, and the anode 231 is disposed on the TFT substrate 21, the light emitting layer 232, the electron transport layer, and the hole transport layer. It is disposed between the anode 231 and the cathode 233.
  • each of the light-emitting regions 221 can be regarded as each sub-pixel of the OLED panel 20 .
  • the light-emitting layer 232 of the red sub-pixel 31 has a red light-emitting material
  • the light-emitting layer 232 of the green sub-pixel 32 has a green color.
  • the luminescent material, the luminescent layer 232 of the blue sub-pixel 33 has a blue luminescent material.
  • the reflective wall 24 reflects the light back to the light emitting region 221, and finally The light emitting region 221 is emitted upwards.
  • the present application can not only improve the light emission rate, but also reduce the power consumption of the device and prolong the service life of the device, and is advantageous for eliminating the mixing of different colors of light emitted from the adjacent light emitting regions 221 . The resulting color mixing phenomenon.
  • the reflective wall 24 needs to have a very good light reflection effect.
  • the present application can limit the light reflectivity of the reflective wall 24 to at least 95%. In practical applications, the present application can select silver (Ag) to prepare the above. Reflecting wall 24.
  • the shape of the reflective wall 24 can be adapted according to actual needs and the manufacturing method employed. For example, as shown in FIG. 2, the thickness of the reflective wall 24 is constant from top to bottom, and the cross-sectional shape of the reflective wall 24 is rectangular. For another example, the thickness of the reflective wall 24 may gradually increase from top to bottom, and the cross-sectional shape of the reflective wall 24 is trapezoidal.
  • the present application can design the heights of the reflective wall 24 and the pixel defining layer 22 to be equal.
  • the TFT substrate 21 may be a flexible substrate, and the OLED panel 20 is a flexible display panel.
  • the TFT substrate 21 may include a substrate substrate and a TFT layer and a flat layer on the substrate substrate, and the pixel defining layer 22, the organic light emitting unit 23, and the reflective wall 24 are all located on the flat layer, the TFT layer Including a gate, a source, a drain, an active layer, etc., the flat layer is provided with a via hole exposing a drain of the TFT layer, and an anode 231 of the organic light-emitting unit 23 fills the via hole and a drain of the TFT layer contact.
  • the present application does not limit the structural design and manufacturing materials of the TFT in the TFT layer.
  • the TFT may be of a bottom gate type design or a top gate type design; for example, a metal trace or a conductive pattern material in the TFT. It may be ITO, or one or more of Mo (molybdenum), Al (aluminum), Ti (titanium), Cu (copper), or the like.
  • Mo molecular metal
  • Al aluminum
  • Ti titanium
  • Cu copper
  • the TFT layer 40 includes respective layer structures sequentially formed on the substrate substrate 41: a gate electrode 42 and a gate insulating layer (Gate Insulation Layer, also referred to as a GI layer or a gate insulating layer). 43.
  • a gate electrode 42 and a gate insulating layer Gate Insulation Layer, also referred to as a GI layer or a gate insulating layer.
  • PV layer passivation layer
  • the gate electrode 42, the insulating layer 43, the active layer 44, the source 451, the drain 452, and the passivation layer 46 form a TFT in the TFT layer 40, in view of the gate 42 being located under the active layer 44,
  • the OLED panel 20 can be considered to employ a bottom gate type pixel design.
  • the flat layer 47 covers the passivation layer 46, the TFT passivation layer defines a through-hole 46 and the planarization layer 47 O 1, O 1 via the exposed surface of the drain electrode 452 .
  • the organic light emitting unit of the anode 23 123 O filling the vias and contacts with the drain electrode 4521, in order to achieve organic light emitting unit 23 is electrically connected to the drain of the TFT 452.
  • the TFT layer 40 may also adopt a top gate type design.
  • TFT based on the design reference may be made to the prior art, and details are not described herein again.
  • FIG. 5 is a schematic flow chart of a method of manufacturing an OLED panel according to an embodiment of the present application. Referring to FIG. 5, the manufacturing method of the OLED device includes steps S51-S54.
  • the TFT substrate may include a substrate substrate and a TFT layer and a flat layer on the substrate substrate, the TFT layer is provided with a gate, a source, a drain, an active layer, etc., and the flat layer is provided with a drain for exposing the TFT layer Through hole.
  • the substrate substrate may be a light-transmissive substrate such as a glass substrate, a plastic substrate or a flexible substrate.
  • the present application does not limit the structural design and manufacturing materials of the TFT in the TFT layer.
  • the TFT may be of a bottom gate type design or a top gate type design.
  • the process of forming the TFT of the present application may include the following steps:
  • the present application can form a full-face metal layer on a substrate substrate by a PVD (Physical Vapor Deposition) method, and then pattern the entire metal layer to retain only a predetermined area.
  • the patterning process may include photoresist coating, exposure, development, etching, and the like. For details, refer to the prior art, and details are not described herein.
  • the present application can form a full-surface insulating layer covering the gate by a CVD (Chemical Vapor Deposition) method.
  • the insulating layer may be made of silicon oxide (SiO x ), or the insulating layer may include a silicon oxide layer and a silicon nitride compound layer sequentially covering the gate, such as a SiO 2 layer and Si 3 N 4 (silicon trinitride).
  • the layer further improves the wear resistance and insulation properties of the insulating layer.
  • the present application can form a full-surface active layer by using a CVD method, and then patterning a full-surface active layer, thereby retaining only the portion of the entire active layer above the gate, thereby forming a final Active layer.
  • the present application can also directly form the active layer by a CVD method in combination with a mask having a predetermined pattern.
  • the present application can form the source and drain using the same patterning process as the fabrication gate principle, and form a passivation layer covering the source and drain.
  • the flat layer is a one-sided structure overlying the TFT, and based on this, the flat layer can be formed by a CVD method or a Coating PI material method. Further, the present application may employ etching or the like such that the flat layer forms a via hole exposing the drain above the drain of the TFT.
  • the present application can form the anode using a patterning process including photoresist coating, exposure, development, and etching processes. Specifically, a full-surface metal layer is formed on the flat layer, and then a full-surface photoresist is coated on the metal layer, and then a predetermined area of a full-surface photoresist is exposed by the photomask, and the remaining area is light. The photoresist is not exposed due to the occlusion of the reticle, the photoresist of the exposed area can be removed by development, and the photoresist of the unexposed area is retained, and then the metal layer is etched, and the metal layer not blocked by the remaining photoresist is etched. The metal layer removed while being blocked by the remaining photoresist is retained to form an anode having a predetermined pattern. Wherein the anode fills the via of the planarization layer and is in contact with the drain of the TFT.
  • S53 forming a reflective wall and a pixel defining layer on the TFT substrate, wherein the pixel defining layer defines a light emitting area of the OLED panel on the TFT substrate, and the reflective wall is disposed between the adjacent two light emitting areas and located in the pixel Define the layer.
  • a pixel defining layer may be formed first, and then a reflective wall is formed.
  • a full-surface positive photoresist may be sequentially formed on the TFT substrate, and then the positive photoresist is exposed by a photomask, and exposed.
  • the positive photoresist of the region is removed by development, and the positive photoresist of the unexposed region is retained to form a pixel defining layer having a predetermined pattern, and then the pixel defining layer is exposed and developed again based on the mask to A groove is formed on the pixel defining layer, and finally a reflective material is injected into the groove to form a reflective wall.
  • the present application can form a pixel defining layer on the TFT substrate by using a patterning process including photoresist coating, exposure, development, and etching processes, and then using an etching process.
  • a groove is formed on the pixel defining layer, and finally a reflective material is injected into the groove to form a reflective wall.
  • the present application may also form the reflective wall first, and then form a pixel defining layer.
  • the present invention can form a reflective wall on the TFT substrate by using a laser interference lithography process.
  • the material of the pixel defining layer is a positive photoresist, for example, firstly forming a whole on the TFT substrate. Face-positive photoresist, then at least two lasers are used to illuminate the positive photoresist, and the interference of at least two lasers causes the positive photoresist to be photosensitive, that is, a lithographic pattern is generated, and the positive photoresist of the exposed region is developed.
  • a pixel defining layer encasing the reflective wall is then formed by the aforementioned patterning process, or by evaporation, sputtering, or the like.
  • the present application may form the light-emitting layer and the cathode by an evaporation process or a printing process.
  • the organic light-emitting unit further includes other layer structures, such as an electron transport layer and a hole transport layer. These layer structures, which are not shown, can be produced by the prior art.
  • the present application forms an encapsulation layer to seal and enclose the structure formed in the foregoing steps S51 to S54.
  • the manufacturing method of the present embodiment can be used to manufacture an OLED panel having the same structure as the above-described OLED panel 20, and thus has the same advantageous effects.
  • the present application also provides an OLED display of an embodiment having an OLED panel having the same structure as the OLED panel 20 described above, and thus having the same advantageous effects as the OLED panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开一种OLED面板及其制造方法、OLED显示器。所述OLED面板包括设置于相邻两个发光区之间的反射墙,所述反射墙位于像素界定层内。基于此,本申请能够提高光出射率,有利于降低器件功耗及延长器件的使用寿命,并且有利于消除光从相邻发光区出射而造成的混色现象。

Description

OLED面板及其制造方法、OLED显示器 【技术领域】
本申请涉及显示领域,具体涉及一种OLED(Organic Light-Emitting Diode,有机发光二极管)面板及其制造方法、OLED显示器。
【背景技术】
与传统的液晶显示面板相比,OLED面板具有反应速度快、对比度高、视角广等优势,被视为下一代显示技术。如图1所示,OLED面板10一般包括TFT(Thin Film Transistor,薄膜晶体管)基板11及位于TFT基板11上的像素界定层(Pixel Define Layer,PDL)12、有机发光单元13、用于密封封装的封装层(cover glass)14,其中,有机发光单元13位于像素界定层12所限定的发光区15内,所述有机发光单元13设有阳极(anode)131、阴极(cathode)132和发光层133。对阳极131和阴极132施加电压,在电压驱动下,电子的空穴分别从阴极132和阳极131注入到电子和空穴传输层,再迁移至发光层133,并在发光层133相遇,形成激子并使发光分子激发以发出可见光。
为了提高OLED面板10的光出射率,现有技术一般会在各个发光区15的下方增加一反射层,或者增大发光区15下方的表面粗糙度。但是,这些方式无法避免光从相邻发光区15出射,不仅对于提高光出射率的作用十分有限,难以降低器件功耗及延长器件的使用寿命,而且无法消除从相邻发光区15出射的不同颜色光混合而造成的混色现象。
【发明内容】
鉴于此,本申请提供一种OLED面板及其制造方法、OLED显示器,能够提高光出射率,有利于降低器件功耗及延长器件的使用寿命,并且有利于消除从相邻发光区出射的不同颜色光混合而造成的混色现象。
本申请一实施例的OLED面板,包括TFT基板及位于所述TFT基板上的像素界定层,所述像素界定层在所述TFT基板上限定了所述OLED面板的发光区,所述OLED面板还包括设置于相邻两个发光区之间的反射墙,所述反射墙位于 所述像素界定层内。
本申请一实施例的OLED显示器,其OLED面板包括TFT基板及位于所述TFT基板上的像素界定层,所述像素界定层在所述TFT基板上限定了所述OLED面板的发光区,所述OLED面板还包括设置于相邻两个发光区之间的反射墙,所述反射墙位于所述像素界定层内。
本申请一实施例的OLED面板的制造方法,包括:
提供一TFT基板;
在所述TFT基板上形成有机发光单元的阳极;
在所述TFT基板上形成反射墙和像素界定层,其中,所述像素界定层在所述TFT基板上限定了OLED面板的发光区,所述反射墙设置于相邻两个发光区之间且位于所述像素界定层内;
在所述像素界定层限定的发光区形成有机发光单元的其余层结构,包括发光层和阴极。
有益效果:本申请通过在像素界定层中增加反射墙,该反射墙设置于相邻两个发光区之间,避免光从相邻发光区出射,从而能够提高光出射率,有利于降低器件功耗及延长器件的使用寿命,并且有利于消除从相邻发光区出射的不同颜色光混合而造成的混色现象。
【附图说明】
图1是现有技术的OLED面板一实施例的结构示意图;
图2是本申请一实施例的OLED面板的结构示意图;
图3是本申请一实施例的OLED面板的结构俯视图;
图4是图2所示的具有底栅型TFT的OLED面板的结构示意图;
图5是本申请一实施例的OLED面板的制造方法的流程示意图。
【具体实施方式】
本申请的主要目的是:在像素界定层中增加反射墙,该反射墙设置于相邻两个发光区之间,以此避免光从相邻发光区出射,从而能够提高光出射率,有利于降低器件功耗及延长器件的使用寿命,并且有利于消除从相邻发光区出射的不同颜色光混合而造成的混色现象。
下面将结合本申请实施例中的附图,对本申请所提供的各个示例性的实施例的技术方案进行清楚、完整地描述。在不冲突的情况下,下述各个实施例以及实施例中的特征可以相互组合。并且,本申请全文所采用的方向性术语,例如“上”、“下”等,均是为了更好的描述各个实施例的技术方案,并非用于限制本申请的保护范围。
图2是本申请一实施例的OLED面板的结构示意图。请参阅图2所示,OLED面板20包括TFT基板21,位于TFT基板21上的像素界定层22、有机发光单元23、反射墙24及用于密封封装的封装层25。
像素界定层22用于限定OLED面板20的发光区221,该像素界定层22可以采用隔水、隔氧的透明绝缘材料制成,例如SiO 2(二氧化硅)、硅氮化合物(SiN x)、ITO(Indium tin oxide,氧化铟锡)等。
反射墙24设置于相邻两个发光区221之间,且位于像素界定层22内,且反射墙24能够对入射至其表面的光进行反射。在一种实施方式中,例如,结合图3所示,沿垂直于TFT基板21的视线方向,围绕于每一个发光区221周围设置有四个反射墙24,且这四个反射墙24可以首尾连接,即,这四个反射墙24完全围绕发光区221设置。当然,本申请还可以设置围绕于每一个发光区221周围的四个反射墙24并未首尾连接;或者,每一发光区221周围所围绕的反射墙24的数量可以少于四个,此时多个反射墙24部分围绕发光区221设置;又或者,每一反射墙24并非一完整的墙面结构,而是包括多个间隔的墙面结构,这些间隔的墙面结构围绕所述发光区221设置。
有机发光单元23位于所述发光区221内。具体地,所述有机发光单元23包括阳极231、发光层232、阴极233以及电子传输层、空穴传输层,阳极231设置于TFT基板21上,发光层232、电子传输层和空穴传输层设置于阳极231和阴极233之间。
结合图2和图3所示,各个发光区221可视为OLED面板20的各个子像素,具体地,红色子像素31的发光层232具有红色发光材料,绿色子像素32的发光层232具有绿色发光材料,蓝色子像素33的发光层232具有蓝色发光材料。
结合图2中直线箭头所示的光传输方向,有机发光单元23发出的光从一发光区221朝向相邻发光区221传输时,反射墙24会将光反射回该发光区221,并最终从该发光区221的上方出射,于此,本申请不仅能够提高光出射率,有利于降低器件功耗及延长器件的使用寿命,而且有利于消除从相邻发光区221 出射的不同颜色光混合而造成的混色现象。
由上述可知,反射墙24需要具有非常良好的光反射效果,本申请可以限定反射墙24的光反射率至少为95%,在实际应用场景中,本申请可以选用银(Ag)来制备所述反射墙24。并且,反射墙24的形状可以根据实际所需以及所采用的制造方法进行适应设置,例如图2所示,反射墙24的厚度由上至下不变,此时反射墙24的截面形状为矩形;又例如,反射墙24的厚度可以由上至下逐渐增大,此时反射墙24的截面形状为梯形。另外,为了进一步确保反射墙24的光反射效果,本申请可以设计反射墙24和像素界定层22的高度相等。
在本申请中,所述TFT基板21可以为柔性基板,于此,OLED面板20为柔性显示面板。TFT基板21可以包括衬底基材以及位于所述衬底基材上的TFT层和平坦层,上述像素界定层22、有机发光单元23和反射墙24均位于该平坦层上,所述TFT层包括栅极、源极、漏极、有源层等,所述平坦层开设有暴露TFT层的漏极的过孔,有机发光单元23的阳极231填充所述过孔并与TFT层的漏极接触。
本申请对TFT层中TFT的结构设计和制造材料并不予以限定,例如,TFT可以采用底栅型设计,也可以采用顶栅型设计;又例如,TFT中的金属走线或导电图案的材质可以为ITO,或者Mo(钼)、Al(铝)、Ti(钛)、Cu(铜)等中的其中一种或多种混合。下面结合图4所示的TFT对所述OLED面板20的结构进一步描述。
图4是图2所示的具有底栅型TFT的OLED面板的结构示意图。结合图2和图4所示,所述TFT层40包括依次形成于衬底基材41上的各层结构:栅极42、绝缘层(Gate Insulation Layer,又称GI层或栅极绝缘层)43、有源层44、由源极451和漏极452形成的源漏电极层、钝化层(Passivation Layer,PV层)46、平坦层47。
其中,栅极42、绝缘层43、有源层44、源极451、漏极452、以及钝化层46形成TFT层40中的TFT,鉴于栅极42位于有源层44的下方,所述OLED面板20可视为采用底栅型像素设计。
结合图2和图3所示,平坦层47覆盖于钝化层46上,TFT开设有贯穿钝化层46和平坦层47的过孔O 1,该过孔O 1暴露漏极452的上表面。有机发光单元23的阳极231填充所述过孔O 1并与所述漏极452接触,以此实现有机发光单元23与TFT的漏极452电连接。
应理解,所述TFT层40也可以采用顶栅型设计,基于该设计的TFT,可参阅现有技术,此处不再予以赘述。
图5是本申请一实施例的OLED面板的制造方法的流程示意图。请参阅图5,所述OLED器件的制造方法包括步骤S51~S54。
S51:提供一TFT基板。
TFT基板可以包括衬底基材及位于衬底基材上的TFT层和平坦层,TFT层设置有栅极、源极、漏极、有源层等,平坦层开设有暴露TFT层的漏极的过孔。
其中,衬底基材可以为玻璃基体、塑料基体或可挠式基体等透光基体。本申请对于TFT层中TFT的结构设计和制造材料并不予以限定,例如,TFT可以采用底栅型设计,也可以采用顶栅型设计。
对于底栅型像素设计的TFT层,本申请形成TFT的过程可以包括如下步骤:
首先,本申请可以采用PVD(Physical Vapor Deposition,物理气相沉积)方法在衬底基材上形成一整面金属层,而后对所述一整面金属层进行图案化制程,从而仅保留预定区域的金属层,从而形成栅极。其中,图案化制程可以包括光阻涂布、曝光、显影、刻蚀等工艺,具体可参阅现有技术,此处不予以赘述。
然后,本申请可以采用CVD(Chemical Vapor Deposition,化学气相沉积)方法形成覆盖栅极的一整面的绝缘层。该绝缘层的材质可以为硅氧化物(SiO x),或者所述绝缘层包括依次覆盖栅极的硅氧化合物层和硅氮化合物层,例如SiO 2层和Si 3N 4(三氮化硅)层,进一步提高绝缘层的耐磨损能力和绝缘性能。
接着,本申请可采用CVD方法形成一整面有源层,而后对一整面有源层进行图案化制程,从而仅保留该一整面有源层的位于栅极上方的部分,即形成最终的有源层。当然,本申请也可采用CVD方法并结合具有预定图案的掩膜板,直接形成具有所述有源层。
最后,本申请可以采用与制造栅极原理相同的图案化制程工艺形成所述源极和漏极,并形成覆盖源极和漏极的钝化层。
于此,本实施例即可制得所需要的TFT。
平坦层为覆盖于TFT之上的一整面结构,基于此,本申请可以采用CVD方法或Coating PI(涂层聚酰亚胺)材料方法形成所述平坦层。进一步地,本申请可以采用刻蚀等方法使得所述平坦层在TFT的漏极的上方形成暴露所述漏极的过孔。
S52:在TFT基板上形成有机发光单元的阳极。
本申请可以采用包括光阻涂布、曝光、显影及刻蚀制程的图案化工艺形成所述阳极。具体地,在所述平坦层上形成一整面金属层,然后在金属层上涂布一整面光阻,而后采用光罩对一整面光阻的预定区域进行曝光,而其余区域的光阻由于光罩的遮挡而未曝光,曝光区域的光阻可以被显影去除,而未曝光区域的光阻被保留,然后对金属层进行刻蚀,未被剩余光阻遮挡的金属层被刻蚀去除,而被剩余光阻遮挡的金属层被保留,以此形成具有预定图案的阳极。其中,该阳极填充平坦层的过孔并与TFT的漏极接触。
S53:在TFT基板上形成反射墙和像素界定层,其中,所述像素界定层在TFT基板上限定了OLED面板的发光区,所述反射墙设置于相邻两个发光区之间且位于像素界定层内。
本申请可以先形成像素界定层,再形成反射墙。具体地,以像素界定层的材质为正性光阻为例,本申请可以首先在TFT基板上依次形成一整面正性光阻,然后采用光罩对该正性光阻进行曝光,被曝光区域的正性光阻被显影去除,而未被曝光区域的正性光阻被保留,以此形成具有预定图案的像素界定层,然后,再次基于光罩对像素界定层进行曝光及显影,以在所述像素界定层上形成凹槽,最后在所述凹槽中注入反光材料,从而形成反射墙。而当像素界定层的材质为其他材质时,本申请可以采用包括光阻涂布、曝光、显影及刻蚀制程的图案化工艺在所述TFT基板上形成像素界定层,然后采用刻蚀工艺在所述像素界定层上形成凹槽,最后在所述凹槽中注入反光材料,从而形成反射墙。
当然,本申请也可以先形成所述反射墙,再形成像素界定层。具体而言,本申请可以采用激光干涉光刻工艺在所述TFT基板上形成反射墙,具体地,仍以像素界定层的材质为正性光阻为例,首先在TFT基板上依次形成一整面正性光阻,然后采用至少两束激光对正性光阻进行照射,利用至少两束激光的干涉使得正性光阻感光,即产生光刻图案,被曝光区域的正性光阻被显影去除,而未被曝光区域的正性光阻被保留,以此形成具有预定图案的像素界定层。继而通过前述图案化工艺、或者蒸镀、溅射等方式形成包裹所述反射墙的像素界定层。
S54:在像素界定层限定的发光区形成有机发光单元的其余层结构,包括发光层和阴极。
本申请可以采用蒸镀工艺或者打印工艺形成所述发光层和阴极。当然,所述有机发光单元还包括其他层结构,例如电子传输层、空穴传输层,这些未示 出的层结构,可采用现有技术制得。进一步地,本申请形成封装层,以对前述步骤S51~S54形成的结构进行密封封装。
本实施例的制造方法可用于制造与上述OLED面板20相同结构的OLED面板,因此具有与其相同的有益效果。
另外,本申请还提供一实施例的OLED显示器,其具有与上述OLED面板20相同结构的OLED面板,因此也具有与其相同的有益效果。
应理解,以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种OLED面板,包括TFT基板及位于所述TFT基板上的像素界定层,所述像素界定层在所述TFT基板上限定了所述OLED面板的发光区,其中,所述OLED面板还包括设置于相邻两个发光区之间的反射墙,所述反射墙位于所述像素界定层内。
  2. 根据权利要求1所述的OLED面板,其中,围绕于每一所述发光区有四个反射墙,且所述四个反射墙首尾连接。
  3. 根据权利要求1所述的OLED面板,其中,所述反射墙包括多个间隔的墙面结构,多个墙面结构围绕所述发光区设置。
  4. 根据权利要求1所述的OLED面板,其中,所述反射墙和像素界定层的高度相等,所述反射墙的厚度由上至下不变或逐渐增大。
  5. 根据权利要求1所述的OLED面板,其中,所述反射墙的光反射率至少为95%。
  6. 根据权利要求5所述的OLED面板,其中,所述反射墙的材质为银。
  7. 根据权利要求1所述的OLED面板,其中,所述TFT基板为柔性基板。
  8. 一种OLED显示器,其中,所述OLED显示器包括OLED面板,所述OLED面板包括TFT基板及位于所述TFT基板上的像素界定层,所述像素界定层在所述TFT基板上限定了所述OLED面板的发光区,所述OLED面板还包括设置于相邻两个发光区之间的反射墙,所述反射墙位于所述像素界定层内。
  9. 根据权利要求8所述的OLED显示器,其中,围绕于每一所述发光区有四个反射墙,且所述四个反射墙首尾连接。
  10. 根据权利要求8所述的OLED显示器,其中,所述反射墙包括多个间隔的墙面结构,多个墙面结构围绕所述发光区设置。
  11. 根据权利要求8所述的OLED显示器,其中,所述反射墙和像素界定层的高度相等,所述反射墙的厚度由上至下不变或逐渐增大。
  12. 根据权利要求8所述的OLED显示器,其中,所述反射墙的光反射率至少为95%。
  13. 根据权利要求12所述的OLED显示器,其中,所述反射墙的材质为银。
  14. 根据权利要求8所述的OLED显示器,其中,所述TFT基板为柔性基板。
  15. 一种OLED面板的制造方法,其中,所述方法包括:
    提供一TFT基板;
    在所述TFT基板上形成有机发光单元的阳极;
    在所述TFT基板上形成反射墙和像素界定层,其中,所述像素界定层在所述TFT基板上限定了OLED面板的发光区,所述反射墙设置于相邻两个发光区之间且位于所述像素界定层内;
    在所述像素界定层限定的发光区形成有机发光单元的其余层结构,包括发光层和阴极。
  16. 根据权利要求15所述的方法,其中,围绕于每一所述发光区有四个反射墙,且所述四个反射墙首尾连接。
  17. 根据权利要求16所述的方法,其中,在所述TFT基板上形成反射墙和像素界定层,包括:
    在所述TFT基板上形成像素界定层;
    在所述像素界定层上形成凹槽;
    在所述凹槽中注入反光材料以形成反射墙。
  18. 根据权利要求16所述的方法,其中,在所述TFT基板上形成包裹有反射墙的像素界定层,包括:
    采用激光干涉光刻工艺在所述TFT基板上形成反射墙;
    形成包裹所述反射墙的像素界定层。
  19. 根据权利要求15所述的方法,其中,采用银形成所述反射墙。
  20. 根据权利要求15所述的方法,其中,所述TFT基板为柔性基板。
PCT/CN2018/087854 2018-04-09 2018-05-22 Oled面板及其制造方法、oled显示器 WO2019196166A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/040,591 US10658621B2 (en) 2018-04-09 2018-07-20 OLED panel and manufacturing method thereof and OLED display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810312248.XA CN108538888A (zh) 2018-04-09 2018-04-09 Oled面板及其制造方法、oled显示器
CN201810312248.X 2018-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/040,591 Continuation US10658621B2 (en) 2018-04-09 2018-07-20 OLED panel and manufacturing method thereof and OLED display

Publications (1)

Publication Number Publication Date
WO2019196166A1 true WO2019196166A1 (zh) 2019-10-17

Family

ID=63479640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087854 WO2019196166A1 (zh) 2018-04-09 2018-05-22 Oled面板及其制造方法、oled显示器

Country Status (2)

Country Link
CN (1) CN108538888A (zh)
WO (1) WO2019196166A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384092B (zh) * 2018-12-29 2024-01-30 北京小米移动软件有限公司 终端和有机发光二极管显示面板的制作方法
CN111381705B (zh) * 2018-12-29 2024-05-24 北京小米移动软件有限公司 一种终端
CN110212004A (zh) 2019-06-14 2019-09-06 京东方科技集团股份有限公司 一种像素界定层、有机发光二极管显示面板和制作方法
CN111048568B (zh) * 2019-12-25 2022-06-03 上海天马微电子有限公司 显示面板及显示装置
CN112117357B (zh) * 2020-09-17 2022-03-22 厦门天马微电子有限公司 一种显示面板及其制备方法、显示装置
CN114188466B (zh) * 2021-12-03 2023-11-28 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080169461A1 (en) * 2007-01-15 2008-07-17 Samsung Electronics Co., Ltd. Display device and method of manufacturing the same
JP2012124103A (ja) * 2010-12-10 2012-06-28 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス表示装置用対向基板および有機エレクトロルミネッセンス表示装置
CN104241535A (zh) * 2013-06-06 2014-12-24 上海和辉光电有限公司 一种有机发光结构
CN104733501A (zh) * 2015-02-13 2015-06-24 京东方科技集团股份有限公司 像素结构、显示装置以及像素结构的制作方法
CN107369778A (zh) * 2016-12-15 2017-11-21 广东聚华印刷显示技术有限公司 电致发光器件及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080169461A1 (en) * 2007-01-15 2008-07-17 Samsung Electronics Co., Ltd. Display device and method of manufacturing the same
JP2012124103A (ja) * 2010-12-10 2012-06-28 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス表示装置用対向基板および有機エレクトロルミネッセンス表示装置
CN104241535A (zh) * 2013-06-06 2014-12-24 上海和辉光电有限公司 一种有机发光结构
CN104733501A (zh) * 2015-02-13 2015-06-24 京东方科技集团股份有限公司 像素结构、显示装置以及像素结构的制作方法
CN107369778A (zh) * 2016-12-15 2017-11-21 广东聚华印刷显示技术有限公司 电致发光器件及其制作方法

Also Published As

Publication number Publication date
CN108538888A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
WO2019196166A1 (zh) Oled面板及其制造方法、oled显示器
US11296160B2 (en) Display substrate, display apparatus, and method of fabricating the display substrate
US9064822B2 (en) Organic electroluminescent device and method of manufacturing the same
WO2019196601A1 (zh) Oled显示面板及其制造方法、显示装置
US7573193B2 (en) Optical device and organic EL display
WO2016062240A1 (zh) 一种顶发射oled器件及其制作方法、显示设备
CN108172600B (zh) 用于woled显示器的彩膜基板及woled显示器
US8395569B2 (en) Dual panel type organic electroluminescent display device and method of fabricating the same
US11289685B2 (en) Display panel with patterned light absorbing layer, and manufacturing method thereof
WO2017094760A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置、および表示装置
JP6200320B2 (ja) 光源およびその光源を用いた表示装置
WO2019205264A1 (zh) Oled器件及其制造方法、oled显示器
US20140091291A1 (en) Array substrate and manufacturing method thereof, oled display device
WO2020220476A1 (zh) 阵列基板及其制造方法、及显示面板
WO2019061736A1 (zh) Oled显示器的制作方法及oled显示器
JP2005340203A (ja) 有機発光ダイオード装置及びその製造方法
WO2018119784A1 (zh) 底发光型oled显示单元及其制作方法
KR100725493B1 (ko) 디스플레이장치 및 그 제조방법
WO2019186810A1 (ja) 有機el表示装置及びその製造方法
JP6802887B2 (ja) 有機el表示装置及びその製造方法
US11063234B2 (en) Organic light emitting diode display panel and method for manufacturing the same
KR102312784B1 (ko) 전계발광 소자 및 이의 제조 방법
KR20120073704A (ko) 유기전계발광소자 및 그 제조방법
US10658621B2 (en) OLED panel and manufacturing method thereof and OLED display
CN115132941B (zh) 显示面板的制备方法及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914320

Country of ref document: EP

Kind code of ref document: A1