WO2017190535A1 - 单侧发光光源及其制作方法、显示装置 - Google Patents

单侧发光光源及其制作方法、显示装置 Download PDF

Info

Publication number
WO2017190535A1
WO2017190535A1 PCT/CN2017/072055 CN2017072055W WO2017190535A1 WO 2017190535 A1 WO2017190535 A1 WO 2017190535A1 CN 2017072055 W CN2017072055 W CN 2017072055W WO 2017190535 A1 WO2017190535 A1 WO 2017190535A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
pattern
sided
electrode
layer
Prior art date
Application number
PCT/CN2017/072055
Other languages
English (en)
French (fr)
Inventor
祝明
董学
姚继开
秦广奎
王新星
吕敬
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/556,405 priority Critical patent/US10665660B2/en
Publication of WO2017190535A1 publication Critical patent/WO2017190535A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a single-sided light source, a method of fabricating the same, and a display device.
  • Reflective display technology has attracted more and more attention in the field of wearable display technology due to its outdoor readability and low power consumption.
  • the picture of the reflective display device cannot be seen in a weak ambient or dark environment, the application of the reflective display device is limited to some extent.
  • the front light source technology can solve the above problems.
  • placing the side-entry light guide plate above the reflective display device has a certain difficulty.
  • the light guide plate is easily stained, scratched, and damaged in use, and is not compatible with the touch panel.
  • the side-lit light guide plate emits light on both sides, the contrast of the reflective display device in a dark environment is low.
  • the above object of the present disclosure is achieved by a single-sided light source, a method of fabricating the single-sided light source, and a display device provided by the present disclosure.
  • the technical solutions provided by the embodiments of the present disclosure are as follows.
  • the present disclosure provides a single-sided light source comprising: a substrate; a plurality of light-shielding patterns on the substrate; a signal transmission pattern covering the plurality of light-shielding patterns; and a plurality of first electrodes,
  • the plurality of first electrodes are located on the signal transmission pattern, and an orthographic projection of each of the plurality of first electrodes on the substrate substrate completely falls into the plurality of shading patterns a corresponding light-shielding pattern within an orthographic projection on the substrate; an electroluminescent layer on the plurality of first electrodes; and a transparent second electrode layer on the electroluminescent layer.
  • the single-sided illuminating light source further includes an insulating layer filling a region between the first electrodes adjacent in the horizontal direction, the first surface of the insulating layer being on the same horizontal surface as the first surface of the first electrode The second surface of the insulating layer is on the signal transmission pattern.
  • the signal transmission pattern is a full layer pattern made of a transparent conductive material.
  • the shape of the light shielding pattern is a circle.
  • the light shielding pattern has a diameter of 20 to 60 ⁇ m.
  • the first electrode includes a metal pattern and a transparent conductive pattern on a side of the metal pattern facing the electroluminescent layer, wherein the metal pattern and the The transparent conductive patterns have the same shape.
  • the metal pattern is made of Ag or Al
  • the transparent conductive pattern is made of ITO.
  • the second electrode layer is made of IZO.
  • the single-sided illumination source further includes a driving circuit for providing a corresponding electrical signal to the plurality of first electrodes and the second electrode layer.
  • the size of the plurality of first electrodes is gradually increased in a direction from the edge of the base substrate to the driving circuit to the center of the substrate substrate .
  • the signal transmission pattern has a thickness of 1300 to 1400 nm.
  • the shape of the light shielding pattern is any one of a rectangle, an ellipse, and a trapezoid.
  • the transparent conductive pattern has a thickness of 100 to 140 angstroms.
  • the diameter ratio of the metal pattern is smaller than the shading pattern The diameter is small 5-7 ⁇ m.
  • the single-sided light source as described above further includes an encapsulation layer covering the second electrode layer.
  • an embodiment of the present disclosure further provides a display device including a reflective display panel and a single-sided illumination source as described above attached to a light-emitting side of the reflective display panel, the single-sided illumination source The light exit side faces the reflective display panel.
  • the display device as described above further includes a touch screen formed over the single-sided light source.
  • the substrate of the single-sided light source is multiplexed into the touch screen of the display device.
  • the embodiment of the present disclosure further provides a method for fabricating a single-sided light source as described above, comprising: providing a substrate; forming a light-shielding pattern on the substrate; forming a light-shielding pattern a signal transmission pattern; a first electrode is formed on the signal transmission pattern, and an orthographic projection of the first electrode on the substrate substrate completely falls within an orthographic projection of the light shielding pattern on the substrate substrate; Forming an insulating layer; forming an electroluminescent layer on the first electrode; forming a transparent second electrode layer on the electroluminescent layer.
  • forming the first electrode on the signal transmission pattern comprises: sequentially depositing a metal layer and a transparent conductive layer on the substrate substrate on which the signal transmission pattern is formed; and coating the photoresist on the transparent conductive layer Exposing the photoresist with a first mask, wherein the first mask includes an opaque region corresponding to a position of the first electrode and a opaque region a light-transmissive region; after developing the photoresist, forming a photoresist-retained region and a photoresist-removed region, wherein the photoresist-retained region corresponds to a position of the first electrode; etching The metal layer and the transparent conductive layer of the photoresist removal region are removed; and the photoresist of the photoresist remaining region is removed to form the metal pattern and the transparent conductive pattern.
  • forming the first electrode on the signal transmission pattern comprises: sputtering or vapor-depositing a metal material on the substrate substrate on which the signal transmission pattern is formed by using a second mask to form the metal pattern, wherein the second mask comprises an opening region corresponding to a position of the first electrode; and the transparent material is sputtered or evaporated on the metal pattern by using the second mask to form a A transparent conductive pattern is described.
  • forming a transparent second electrode layer on the electroluminescent layer comprises forming a transparent second electrode layer on the electroluminescent layer by a low temperature deposition method.
  • the insulating layer is filled between the first electrodes adjacent in the horizontal direction, and the upper surface of the insulating layer is The upper surface of the first electrode is on the same horizontal plane.
  • the method for fabricating the single-sided illuminating light source of the present disclosure further includes forming an encapsulation layer on the second electrode layer.
  • the single-sided illuminating light source emits light only on the side of the second electrode layer, so that when the single-sided illuminating light source is attached to the reflective display panel, the one-side illuminating light source is turned on in a dark environment.
  • the light from the single-sided illumination source is incident on the reflective display panel and then reflected out into the human eye for display. Since the one-side illuminating light source emits light only on the side facing the reflective display panel, the display contrast in a dark state environment can be improved.
  • the single-sided light source can be turned off in a bright environment, and the ambient light enters the reflective display panel, and is reflected and then enters the human eye for display. Therefore, the single-sided illuminating light source and the display device provided by the present disclosure have the characteristics of simple process, low cost, and repairability.
  • FIG. 1 is a schematic structural view of a single-sided light source according to an embodiment of the present disclosure
  • FIG. 2 is a top plan view of a light shielding pattern and a first electrode in a single-sided light source according to an embodiment of the present disclosure
  • FIG. 3 is a top plan view of a single-sided light source according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of connection between a single-sided illumination source and a driving circuit according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing a relationship between a distance of a first electrode from a driving circuit and an area of a first electrode according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another example of a display device according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a method for fabricating a single-sided illumination source according to an embodiment of the present disclosure.
  • Substrate substrate 2. Shading pattern 3. Signal transmission pattern 4. Metal pattern 5. Transparent conductive pattern 6. Insulating layer 7, electroluminescent layer 8, second electrode layer 9, encapsulation layer 10, reflective display panel 11, laminating glue 12, single-sided illumination source 100, single-sided illumination source 400, Driving circuit 600, display device
  • embodiments of the present disclosure provide a single-sided light source, a method of fabricating the same, and a display device capable of improving a display device in a dark environment Contrast.
  • Embodiments of the present disclosure provide a single-sided illumination source 100.
  • the single-sided light source 100 includes: a substrate 1; a plurality of light-shielding patterns 2 on the substrate 1; a signal transmission pattern 3 covering the plurality of light-shielding patterns 2; and a plurality of first electrodes, A plurality of first electrodes are located on the signal transmission pattern 3 and connected to the signal transmission pattern, and an orthographic projection of each of the plurality of first electrodes on the substrate substrate 1 completely falls into the plurality of shading patterns 2
  • the light-shielding pattern is projected in the orthographic projection on the base substrate 1; the electroluminescent layer 7 on the plurality of first electrodes; and the transparent second electrode layer 8 on the electroluminescent layer 7.
  • the single-sided illuminating light source 100 may further include an encapsulation layer 9 covering the second electrode layer 8.
  • the one-side light source when the one-side light source is attached to the reflective display panel, the one-side light source is turned on in a dark environment, and the one-side light source has light only on the side of the second electrode layer.
  • the light emitted from the single-sided illumination source is incident on the reflective display panel and then reflected out into the human eye for display. Since the one-side illuminating light source emits light only on the side facing the reflective display panel, the display contrast in a dark state environment can be improved.
  • the single-sided light source can be turned off in a bright environment, and the ambient light enters the reflective display panel, and the light is reflected and enters the human eye for display.
  • the first electrode may be an anode and the second electrode layer may be a cathode layer.
  • the single-sided light source 100 is further connected to a driving circuit 400 for supplying corresponding electrical signals to the plurality of first electrodes and second electrode layers 8.
  • the driving circuit 400 supplies the corresponding electrical signals to the plurality of first electrodes and the second electrode layer 8
  • the plurality of An electric field is generated between the one electrode and the second electrode layer 8, and the electroluminescent layer 7 is driven to emit light.
  • Each of the first electrodes corresponds to one light-emitting point
  • the single-sided light source 100 includes a plurality of light-emitting points, and light emitted by the plurality of light-emitting points is emitted from the side of the second electrode layer 8.
  • the first electrode includes a metal pattern 4 and a transparent conductive pattern 5 on the side of the metal pattern 4 facing the electroluminescent layer 7.
  • the metal pattern 4 is used to generate an electric field with the second electrode layer 8, but in order to prevent the light emitted from the electroluminescent layer 7 from being repeatedly reflected in the layer, a transparent conductive pattern 5 is also disposed on the metal pattern 4, and the transparent conductive pattern 5 is used.
  • the metal pattern 4 is made of a highly reflective metal such as Ag or Al, and the light extraction efficiency of the electroluminescent layer 7 can be further improved.
  • the diameter of the metal pattern 4 is 5-7 ⁇ m smaller than the diameter of the light-shielding pattern 2. Alternatively, the diameter of the metal pattern 4 is smaller than the diameter of the light shielding pattern 2 by 6 ⁇ m.
  • the transparent conductive pattern 5 can be made of ITO, and the transparent conductive pattern 5 has a thickness of 100-140 angstroms. Optionally, the thickness of the transparent conductive pattern is
  • the single-sided light source 12 further includes an insulating layer 6 filled between the first electrodes adjacent in the horizontal direction.
  • the upper surface of the insulating layer 6 is on the same level as the upper surface of the first electrode, and the lower surface of the insulating layer 6 is on the same level as the upper surface of the signal transmission pattern 3.
  • the insulating layer 6 can not only function as a flat layer, but also provide a flat surface for subsequent processes, and can also define different light-emitting regions.
  • the insulating layer 6 may be made of an inorganic insulating material such as silicon nitride or silicon oxide, or may be made of an organic insulating material such as an organic resin.
  • the electroluminescent layer 7 may be formed to cover an entire layer of the first electrode and the insulating layer 6.
  • the signal transmission pattern 3 is made of a transparent conductive material.
  • the signal transmission pattern 3 can be formed as a whole layer on the base substrate, on the one hand, reducing the voltage drop when the electrical signal is transmitted, and on the other hand, since the signal transmission pattern 3 is transparent, when the single-sided illumination source 100 is attached When the reflective display panel is on, it does not affect the ambient light entering the reflective display panel.
  • the signal transmission pattern 3 may be made of ITO.
  • the signal transmission pattern 3 may have a thickness of 1300 to 1400 nm, alternatively 1350 nm.
  • the light shielding pattern 2 may be designed to be circular.
  • the shading pattern 2 can also be designed in other shapes such as a rectangle, an ellipse, a trapezoid or the like.
  • the diameter of the light shielding pattern 2 is optionally 20-60 ⁇ m. If the diameter of the light-shielding pattern 2 is too large (for example, greater than 60 ⁇ m), the light-shielding pattern 2 may be visible to the naked eye, affecting the display device. display effect. If the diameter of the light-shielding pattern 2 is too small (for example, less than 20 ⁇ m), the diameter of the metal pattern 4 also needs to be relatively small in design.
  • the area of the light-emitting area is determined by the diameter of the metal pattern 4, the area of the light-emitting area is also relatively small, which in turn causes the brightness of the single-sided light source 100 to decrease, thereby affecting the display effect of the display device.
  • the second electrode layer 8 is formed on the electroluminescent layer 7 when the single-sided illuminating light source 100 is fabricated, in order to avoid adversely affecting the electroluminescent layer 7 when the second electrode layer 8 is deposited at a high temperature, the second electrode layer 8 IZO which can be formed by a low temperature deposition method can be used.
  • the size of the first electrode at different positions of the single-sided illumination source 100 can be changed, as shown in FIG.
  • the size of the first electrode i.e., the metal pattern 4 and the transparent conductive pattern 5 gradually increases in the direction to the center of the base substrate 1.
  • the area of the shading pattern 2 remains unchanged.
  • the diameter of the light-shielding pattern 2 is 50 ⁇ m
  • the relationship between the distance of the first electrode from the pad and the light-emitting area of the light-emitting point (ie, the area of the first electrode) is as shown in FIG. 5.
  • the display device 600 includes a reflective display panel 10 and a single-sided illumination source 12 attached to the light-emitting side of the reflective display panel 10.
  • the single-sided illumination source 12 can be the one-side illumination described in the above embodiment.
  • Light source 100 The single-sided light source 100 is attached to the reflective display panel 10 by the bonding glue 11.
  • the light emitting side of the one-side light source 12 faces the reflective display panel 10.
  • the glue 11 can be liquid optical glue (LOCA) or optical glue (OCA). The fit can be a full fit.
  • the one-sided light source when the one-sided light source is attached to the reflective display panel, the one-side light source is turned on in a dark environment, and the one-side light source emits light only on one side. In this way, the light emitted by the single-sided illumination source is incident on the reflective display panel, and then the light is reflected out to enter the human eye for display. Since the one-side illuminating light source emits light only on the side facing the reflective display panel, the display contrast in a dark state environment can be improved. In addition, the single-sided light source can be turned off in a bright environment, and the ambient light enters the reflective display panel, and the light is reflected and enters the human eye for display.
  • the electroluminescent layer of the light-emitting point here is ashed by a laser, and an open circuit is formed in the area to be repaired into a dark spot, so that the continued use of the display device is not affected.
  • the display device 600 of the embodiment of the present disclosure may include a touch screen 13 in addition to the reflective display panel 10 and the single-sided light source 12, and the touch screen 13 may be disposed on the back of the single-sided light source 12 To one side of the reflective display panel 10.
  • FIG. 7 is a schematic structural view of another example of a display device according to an embodiment of the present disclosure. The difference between FIG. 6 and FIG. 7 is that the substrate of the single-sided light source 12 is multiplexed into the touch screen of the display device, thereby reducing the thickness of the display device 600.
  • the present disclosure also provides a method of making a single-sided illumination source as described above.
  • the method comprises the steps of: providing a substrate; forming a plurality of light shielding patterns on the substrate; forming a signal transmission pattern on the light shielding pattern; forming a plurality of first electrodes, a first electrode and a signal transmission on the signal transmission pattern
  • the pattern is connected and the orthographic projection of each of the plurality of first electrodes on the substrate substrate completely falls within an orthographic projection of the corresponding shading image of the plurality of shading patterns on the substrate substrate; forming an insulating layer;
  • An electroluminescent layer is formed on one of the electrodes; and a transparent second electrode layer is formed on the electroluminescent layer.
  • the method of the present disclosure for fabricating a single-sided illuminating light source as described above further includes forming an encapsulation layer on the second electrode layer.
  • the single-sided light source produced by the embodiment of the present disclosure emits light only on the side of the second electrode layer.
  • the one-side light source is turned on in a dark environment, and the light emitted by the one-side light source is incident on the reflective display panel, and then the light is reflected. Come out and enter the human eye to achieve the display.
  • the one-side illuminating light source emits light only on the side facing the reflective display panel, the display contrast in a dark state environment can be improved.
  • the single-sided light source can be turned off in a bright environment, and the ambient light enters the reflective display panel, and the light is reflected and enters the human eye for display.
  • the first electrode may be an anode and the second electrode layer may be a cathode layer.
  • the method for fabricating the single-sided illuminating light source of the embodiment of the present disclosure may specifically include the following steps S801 to S808 .
  • Step 801 Providing a substrate.
  • the base substrate may be a glass substrate or a quartz substrate.
  • Step 802 depositing a black photosensitive material on the base substrate, and blacking by a patterning process
  • the photosensitive material forms a light-shielding pattern.
  • a black photosensitive material may be deposited on the substrate, and the black photosensitive material is exposed by a mask to form a light-shielding pattern 2.
  • the shape of the light-shielding pattern 2 may be a circle, and may be other shapes such as a rectangle, an ellipse, a trapezoid, or the like.
  • the diameter of the light-shielding pattern is optionally 20-60 ⁇ m. If the diameter of the light-shielding pattern 2 is too large (greater than 60 ⁇ m), the light-shielding pattern 2 is visible to the naked eye, affecting the display effect of the display device.
  • the diameter of the light-shielding pattern 2 is too small (less than 20 ⁇ m)
  • the diameter of the metal pattern 4 also needs to be relatively small. Since the area of the light-emitting area is determined by the diameter of the metal pattern 4, the area of the light-emitting area is also relatively small, which in turn causes the brightness of the single-sided light source to decrease, thereby affecting the display effect of the display device.
  • Step 803 depositing ITO on the light-shielding pattern to form a signal transmission pattern.
  • the signal transmission pattern is made of ITO. Since ITO is a transparent conductive material, such a signal transmission pattern can be disposed as a whole layer and cover the substrate. In this way, on the one hand, the voltage drop during the transmission of the electrical signal is reduced, and on the other hand, since the signal transmission pattern is transparent, when the single-sided illumination source is attached to the reflective display panel, the external ambient light does not affect the reflection. Display panel.
  • the signal transmission pattern may have a thickness of 1300-1400 nm, alternatively 1350 nm.
  • Step 804 forming a first electrode on the signal transmission pattern, and the orthographic projection of the first electrode on the substrate substrate completely falls within the orthographic projection of the light shielding pattern on the substrate.
  • the first electrode may be formed by a chemical etching method or the first electrode may be directly formed by a sputtering or deposition method.
  • a metal layer and a transparent conductive layer may be sequentially deposited on the substrate substrate on which the signal transmission pattern is formed. Then, a photoresist is coated on the transparent conductive layer, and the photoresist is exposed by the first mask, the first mask includes an opaque region corresponding to the position of the first electrode and a light transmitting area outside the light transmitting area. After developing the photoresist, a photoresist retention region and a photoresist removal region are formed, and the photoresist retention region corresponds to the position of the first electrode, and the metal layer and the transparent conductive layer of the photoresist removal region are etched away. .
  • the photoresist of the photoresist remaining region is removed to form a metal pattern and a transparent conductive pattern, and the metal pattern and the transparent conductive pattern thereon constitute a first electrode.
  • the metal pattern can be made of Ag or Al.
  • the diameter of the metal pattern is 5-7 ⁇ m smaller than the diameter of the light-shielding pattern in consideration of the alignment accuracy.
  • the diameter of the metal pattern is 6 ⁇ m smaller than the diameter of the light-shielding pattern.
  • the transparent conductive pattern can be made of ITO, and the transparent conductive pattern has a thickness of 100-140 angstroms.
  • the thickness of the transparent conductive pattern is
  • the metal material may be sputtered or vapor-deposited on the substrate substrate on which the signal transmission pattern is formed by the second mask to form a metal pattern.
  • the second mask includes an open area corresponding to the position of the first electrode.
  • a transparent conductive material is sputtered or vapor-deposited on the metal pattern by the second mask to form a transparent conductive pattern.
  • the metal pattern can be made of Ag or Al.
  • the diameter of the metal pattern is 5-7 ⁇ m smaller than the diameter of the light-shielding pattern, and optionally, the diameter of the metal pattern is 6 ⁇ m smaller than the diameter of the light-shielding pattern.
  • the transparent conductive pattern can be made of ITO, and the thickness of the transparent metal pattern is Optionally, the thickness of the transparent conductive pattern is
  • Step 805 forming an insulating layer.
  • the insulating layer is on the upper surface of the signal transmission pattern and filled between the first electrodes adjacent in the horizontal direction, and the upper surface of the insulating layer is on the same level as the upper surface of the first electrode.
  • the insulating layer may be made of an inorganic insulating material such as silicon nitride or silicon oxide, or may be made of an organic insulating material such as an organic resin.
  • Step 806 evaporating the electroluminescent material on the first electrode to form an electroluminescent layer.
  • the electroluminescent layer may be formed to cover the entire layer of the insulating layer and the first electrode.
  • Step 807 depositing an entire layer of IZO on the electroluminescent layer to form a transparent second electrode layer. Since the second electrode layer is formed on the electroluminescent layer when the single-sided light source is fabricated, in order to avoid adversely affecting the electroluminescent layer when the second electrode layer is deposited at a high temperature, the second electrode layer may be selected to pass the low temperature. IZO formed by deposition.
  • Step 808 forming an encapsulation layer on the second electrode layer.
  • the encapsulating layer may be an inorganic film or an organic film having water blocking and oxygen barrier properties, or a multilayer structure in which an inorganic film and an organic film are alternately laminated.
  • the single-sided illuminating light source of the embodiment of the present disclosure does not use a metal material to make a signal trace, and a high aperture ratio design can be realized.
  • the single-sided illumination source can be attached to the surface of the reflective display panel by LOCA or OCA, and the light-emitting side of the single-sided illumination source faces the reflective display panel. Since the single-sided illuminating light source emits light only on one side, the one-sided illuminating When the light source is attached to the reflective display panel, in a dark environment, the one-side light source is turned on, and the light emitted by the one-side light source is incident on the reflective display panel, and then reflected and enters the human eye for display.
  • the one-side illuminating light source emits light only on the side facing the reflective display panel, the display contrast in a dark state environment can be improved.
  • the single-sided light source can be turned off in a bright environment, and the ambient light enters the reflective display panel, and is reflected and then enters the human eye for display.

Abstract

提供了一种单侧发光光源及其制作方法、显示装置。单侧发光光源包括衬底基板(1)、位于衬底基板上的多个遮光图形(2)、覆盖遮光图形的信号传输图形(3)、多个第一电极、位于多个第一电极上的电致发光层(7)、位于电致发光层上的透明的第二电极层(8)。在单侧发光光源中,多个第一电极位于信号传输图形上,并且每个第一电极在衬底基板上的正投影完全落入相应的遮光图形在衬底基板上的正投影内。

Description

单侧发光光源及其制作方法、显示装置
相关申请的交叉引用
本申请主张在2016年5月6日在中国提交的中国专利申请号No.201610298101.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,特别涉及一种单侧发光光源及其制作方法、显示装置。
背景技术
由于反射显示技术的户外可读性好、低功耗等优势,所以反射显示技术在可穿戴显示技术领域越来越受到关注。然而,由于在环境光较弱或者暗态环境下不能看到反射显示器件的画面,所以在一定程度上限制了反射显示器件的应用。前置光源技术可以解决以上问题。然而,在相关技术中,将侧入式导光板放置在反射显示器件上方,存在一定难度。此外,导光板在使用中容易脏污、受到刮擦,而遭到破坏,并且不能够兼容触控面板。同时,由于侧入式导光板双面均有光发出,所以反射显示器件在暗态环境下的对比度很低。
发明内容
本公开的目的在于提供能够提高反射显示器件在暗态环境下的对比度,并且能够兼容触控面板的用于反射显示器件的前置光源。
本公开的上述目的是通过本公开提供的单侧发光光源、该单侧发光光源的制作方法和显示器件实现的。本公开的实施例提供的技术方案如下。
一方面,本公开提供一种单侧发光光源,包括:衬底基板;位于所述衬底基板上的多个遮光图形;覆盖所述多个遮光图形的信号传输图形;多个第一电极,所述多个第一电极位于所述信号传输图形上,并且所述多个第一电极中每个第一电极在所述衬底基板上的正投影完全落入所述多个遮光图形中 相应的遮光图形在所述衬底基板上的正投影内;位于所述多个第一电极上的电致发光层;位于所述电致发光层上的透明的第二电极层。
进一步地,所述单侧发光光源还包括填充水平方向上相邻的第一电极之间区域的绝缘层,所述绝缘层的第一表面与所述第一电极的第一表面位于同一水平面上,所述绝缘层的第二表面位于所述信号传输图形上。
进一步地,在如上所述的单侧发光光源中,所述信号传输图形为采用透明导电材料制成的整层图形。
进一步地,在如上所述的单侧发光光源中,所述遮光图形的形状为圆形。
进一步地,在如上所述的单侧发光光源中,所述遮光图形的直径为20-60μm。
进一步地,在所述的单侧发光光源中,所述第一电极包括金属图形和位于所述金属图形朝向所述电致发光层一侧的透明导电图形,其中,所述金属图形和所述透明导电图形的形状相同。
进一步地,在如上所述的单侧发光光源中,所述金属图形采用Ag或Al制成,所述透明导电图形采用ITO制成。
进一步地,在如上所述的单侧发光光源中,所述第二电极层采用IZO制成。
进一步地,所述的单侧发光光源还包括驱动电路,用于向所述多个第一电极和所述第二电极层提供相应的电信号。
进一步地,在如上所述的单侧发光光源中,所述衬底基板与所述驱动电路连接的边缘到所述衬底基板中心的方向上,所述多个第一电极的尺寸逐渐增大。
进一步地,在如上所述的单侧发光光源中,所述信号传输图形的厚度为1300-1400nm。
可选地,在如上所述的单侧发光光源中,所述遮光图形的形状为矩形、椭圆形、梯形中的任一种。
进一步地,在如上所述的单侧发光光源中,所述透明导电图形的厚度为100-140埃。
进一步地,在如上所述的单侧发光光源中,金属图形的直径比遮光图形 的直径小5-7μm。
进一步地,如上所述的单侧发光光源还包括覆盖所述第二电极层的封装层。
另一方面,本公开实施例还提供了一种显示装置,包括反射式显示面板和贴附在所述反射式显示面板出光侧的如上所述的单侧发光光源,所述单侧发光光源的出光侧朝向所述反射式显示面板。
进一步地,如上所述的显示装置还包括在所述单侧发光光源的上方形成的触控屏。
可选地,在如上所述的显示装置中,所述单侧发光光源的衬底基板复用为所述显示装置的触控屏。
再一方面,本公开实施例还提供了一种如上所述单侧发光光源的制作方法,包括:提供一衬底基板;在所述衬底基板上形成遮光图形;形成覆盖所述遮光图形的信号传输图形;在所述信号传输图形上形成第一电极,所述第一电极在所述衬底基板上的正投影完全落入所述遮光图形在所述衬底基板上的正投影内;形成绝缘层;在所述第一电极上形成电致发光层;在所述电致发光层上形成透明的第二电极层。
进一步地,在所述信号传输图形上形成第一电极包括:在形成有所述信号传输图形的衬底基板上依次沉积金属层和透明导电层;在所述透明导电层上涂覆光刻胶,利用第一掩膜板对所述光刻胶进行曝光,其中,所述第一掩膜板包括有与所述第一电极的位置相对应的不透光区域和除所述不透光区域之外的透光区域;在对所述光刻胶显影后,形成光刻胶保留区域和光刻胶去除区域,所述光刻胶保留区域与所述第一电极的位置相对应;刻蚀掉光刻胶去除区域的金属层和透明导电层;以及去除光刻胶保留区域的光刻胶,形成所述金属图形和所述透明导电图形。
可选地,在所述信号传输图形上形成第一电极包括:利用第二掩膜板在形成有所述信号传输图形的衬底基板上溅射或蒸镀金属材料,形成所述金属图形,其中,所述第二掩膜板包括有与所述第一电极的位置相对应的开口区;利用所述第二掩膜板在所述金属图形上溅射或蒸镀透明导电材料,形成所述透明导电图形。
进一步地,在所述电致发光层上形成透明的第二电极层包括通过低温沉积法在所述电致发光层上形成透明的第二电极层。
进一步地,在本公开的如上所述的单侧发光光源的制作方法中,所述绝缘层填充在水平方向上相邻的所述第一电极之间,并且所述绝缘层的上表面与所述第一电极的上表面位于同一水平面上。
进一步地,本公开的如上所述的单侧发光光源的制作方法还包括在所述第二电极层上形成封装层。
在上述方案中,单侧发光光源仅在第二电极层一侧有光发出,这样将该单侧发光光源贴附在反射式显示面板上时,在黑暗环境中,将该单侧发光光源打开,单侧发光光源发出的光线射入反射式显示面板内,然后反射出来进入人眼实现显示。由于该单侧发光光源仅在朝向反射式显示面板的一侧有光发出,因此可以提高暗态环境下的显示对比度。另外,在明亮环境下可以将该单侧发光光源关闭,环境光进入反射式显示面板内,反射出来后进入人眼实现显示。因而,本公开提供的单侧发光光源和显示装置具有工艺简单、成本低、可修复等特点。
附图说明
图1为本公开实施例的单侧发光光源的结构示意图;
图2为本公开实施例的单侧发光光源中的遮光图形和第一电极的俯视示意图;
图3为本公开实施例的单侧发光光源的俯视示意图;
图4为本公开的实施例的单侧发光光源与驱动电路的连接示意图;
图5为本公开实施例的第一电极距驱动电路的距离和第一电极的面积之间的关系的示意图;
图6为本公开实施例的显示装置的结构示意图;
图7为本公开的实施例的显示装置的另一示例的结构示意图;以及
图8为本公开实施例的单侧发光光源的制作方法的流程图。
附图标记
1、衬底基板   2、遮光图形  3、信号传输图形    4、金属图形 5、透明导电图形   6、绝缘层   7、电致发光层   8、第二电极层9、封装层   10、反射式显示面板    11、贴合胶   12、单侧发光光源100、单侧发光光源   400、驱动电路  600、显示装置
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
针对相关技术中的反射显示器件在暗态环境下的对比度很低的问题,本公开的实施例提供一种单侧发光光源及其制作方法、显示装置,其能够提高暗态环境下的显示装置的对比度。
本公开的实施例提供一种单侧发光光源100。如图1所示,该单侧发光光源100包括:衬底基板1;位于衬底基板1上的多个遮光图形2;覆盖多个遮光图形2的信号传输图形3;多个第一电极,多个第一电极位于信号传输图形3上并且与信号传输图形连接,并且多个第一电极中的每个第一电极在衬底基板1上的正投影完全落入多个遮光图形2中相应的遮光图形在衬底基板1上的正投影内;位于多个第一电极上的电致发光层7;位于电致发光层7上的透明的第二电极层8。该单侧发光光源100可以进一步包括覆盖第二电极层8的封装层9。
在本实施例中,当将该单侧发光光源贴附在反射式显示面板上时,在黑暗环境中,将该单侧发光光源打开,单侧发光光源仅在第二电极层一侧有光发出,这样单侧发光光源发出的光线射入反射式显示面板内,然后反射出来进入人眼实现显示。由于该单侧发光光源仅在朝向反射式显示面板的一侧有光发出,因此可以提高暗态环境下的显示对比度。另外,在明亮环境下可以将该单侧发光光源关闭,环境光进入反射式显示面板内,光线反射出来后进入人眼实现显示。
具体地,第一电极可以为阳极,第二电极层可以为阴极层。
进一步地,如图4所示,单侧发光光源100还与驱动电路400连接,该驱动电路400用于向多个第一电极和第二电极层8提供相应的电信号。在驱动电路400向多个第一电极和第二电极层8提供相应的电信号后,在多个第 一电极和第二电极层8之间产生电场,驱动电致发光层7发光。每个第一电极对应一个发光点,单侧发光光源100包括多个发光点,多个发光点发出的光线均从第二电极层8一侧射出。
具体地,如图1所示,第一电极包括金属图形4和位于金属图形4朝向电致发光层7一侧的透明导电图形5。金属图形4用于与第二电极层8产生电场,但为了避免电致发光层7发出的光线在层内反复发生反射,在金属图形4上还设置有透明导电图形5,透明导电图形5用于匹配电致发光层7的腔长,提高光取出效率。可选地,金属图形4采用Ag或Al等反射性较强的金属,可以进一步提高电致发光层7的光取出效率。金属图形4的直径比遮光图形2的直径小5-7μm。可选地,金属图形4的直径比遮光图形2的直径小6μm。透明导电图形5可以采用ITO制成,透明导电图形5的厚度为100-140埃
Figure PCTCN2017072055-appb-000001
可选地,透明导电图形的厚度为
Figure PCTCN2017072055-appb-000002
进一步地,如图1所示,单侧发光光源12还包括填充在水平方向上相邻的第一电极之间的绝缘层6。绝缘层6的上表面与第一电极的上表面位于同一水平面上,绝缘层6的下表面与信号传输图形3的上表面位于同一水平面上。绝缘层6不仅能够起到平坦层的作用,为后续制程提供一平坦表面,还可以限定出不同的发光区域。绝缘层6可以采用无机绝缘材料比如氮化硅、氧化硅制成,还可以采用有机绝缘材料比如有机树脂制成。在本公开的实施例中,电致发光层7可以形成为覆盖第一电极和绝缘层6的一整层。
可选地,信号传输图形3采用透明导电材料制成。信号传输图形3可以在衬底基板上形成为一整层,一方面降低了电信号传输时的电压降,另一方面由于信号传输图形3为透明的,所以当单侧发光光源100贴附在反射式显示面板上时,不会影响外界环境光进入反射式显示面板。可选地,信号传输图形3可以采用ITO制成。信号传输图形3的厚度可以为1300-1400nm,可选地是1350nm。
在具体实施例中,如图2所示,遮光图形2可以设计为圆形。当然遮光图形2还可以设计为其他形状,如矩形、椭圆形、梯形等等。在遮光图形2为圆形时,可选地,遮光图形2的直径为20-60μm。如果遮光图形2的直径过大(例如,大于60μm),则会导致遮光图形2肉眼可见,影响显示装置的 显示效果。如果遮光图形2的直径过小(例如,小于20μm),则相应地金属图形4的直径也需要设计的比较小。由于发光区域的面积由金属图形4的直径决定,所以发光区域的面积也会比较小,进而导致单侧发光光源100的亮度减小,影响显示装置的显示效果。
由于在制作单侧发光光源100时,在电致发光层7上形成第二电极层8,所以为了避免在高温沉积第二电极层8时对电致发光层7产生不良影响,第二电极层8可以采用可通过低温沉积法形成的IZO。
在信号传输图形3的电阻较大时,为了补偿第一电极的电压降导致的发光不均匀性,可以改变单侧发光光源100不同位置处的第一电极的尺寸,如图3所示。由于越靠近衬底基板1的中心,第一电极距焊盘的距离(即与驱动电路700之间的距离)越大,所以如图3所示,从衬底基板1的包含焊盘的边缘到衬底基板1中心的方向上,第一电极(也即金属图形4和透明导电图形5)的尺寸逐渐增大。同时,为了保证显示的均一性,遮光图形2的面积保持不变。具体地,在遮光图形2的直径为50μm时,第一电极距离焊盘的距离与发光点的发光面积(即第一电极的面积)之间的关系如图5所示。
本公开的实施例还提供了一种显示装置600。如图6所示,显示装置600包括反射式显示面板10和贴附在反射式显示面板10出光侧的单侧发光光源12,单侧发光光源12可以是上面的实施例中介绍的单侧发光光源100。单侧发光光源100通过贴合胶11贴附在反射式显示面板10上。单侧发光光源12的出光侧朝向反射式显示面板10。贴合胶11可以采用液体光学胶(LOCA)或光学胶(OCA)。贴合方式可以是全贴合。
在本公开的显示装置中,当将该单侧发光光源贴附在反射式显示面板上时,在黑暗环境中,将该单侧发光光源打开,单侧发光光源仅在一侧有光发出。这样,单侧发光光源发出的光线射入反射式显示面板内,然后光线反射出来进入人眼实现显示。由于该单侧发光光源仅在朝向反射式显示面板的一侧有光发出,因此可以提高暗态环境下的显示对比度。另外,在明亮环境下可以将该单侧发光光源关闭,环境光进入反射式显示面板内,光线反射出来后进入人眼实现显示。
在本公开的实施例的显示装置中,如果某一发光区域发生短路,则可以 利用激光对此处的发光点的电致发光层进行灰化,在该区域形成断路,从而修复成暗点,这样不影响显示装置的继续使用。
进一步地,本公开的实施例的显示装置600除了包括反射式显示面板10和单侧发光光源12之外,还可以包括有触控屏13,触控屏13可以设置在单侧发光光源12背向反射式显示面板10的一侧。
图7为本公开的实施例的显示装置的另一示例的结构示意图。图6和图7之间的不同之处在于单侧发光光源12的衬底基板被复用为显示装置的触控屏,从而降低了显示装置600的厚度。
本公开还提供了一种制作如上所述的单侧发光光源的方法。该方法包括以下步骤:提供一衬底基板;在衬底基板上形成多个遮光图形;在遮光图形上形成信号传输图形;在信号传输图形上形成多个第一电极,第一电极与信号传输图形连接并且多个第一电极中每个第一电极在衬底基板上的正投影完全落入多个遮光图形中相应的遮光图像在衬底基板上的正投影内;形成绝缘层;在第一电极上形成电致发光层;以及在电致发光层上形成透明的第二电极层。本公开的制作如上所述的单侧发光光源的方法还包括在第二电极层上形成封装层。
本公开的实施例制作的单侧发光光源仅在第二电极层一侧有光发出。这样,当将该单侧发光光源贴附在反射式显示面板上时,在黑暗环境中,将该单侧发光光源打开,单侧发光光源发出的光线射入反射式显示面板内,然后光线反射出来进入人眼实现显示。由于该单侧发光光源仅在朝向反射式显示面板的一侧有光发出,因此可以提高暗态环境下的显示对比度。另外,在明亮环境下可以将该单侧发光光源关闭,环境光进入反射式显示面板内,光线反射出来后进入人眼实现显示。
具体地,第一电极可以为阳极,第二电极层可以为阴极层。
如图8所示,本公开的实施例的制作单侧发光光源的方法具体可以包括以下步骤S801至步骤S808。
步骤801:提供衬底基板。
具体地,衬底基板可以为玻璃基板或石英基板。
步骤802:在衬底基板上沉积黑色感光材料,并且通过构图工艺将黑色 感光材料形成遮光图形。
具体地,可以在衬底基板上沉积一层黑色感光材料,采用掩膜板对该层黑色感光材料进行曝光,显影后形成遮光图形2。遮光图形2的形状可以为圆形,还可以为其他形状,如矩形、椭圆形、梯形等等。在遮光图形2为圆形时,可选地,遮光图形的直径为20-60μm。如果遮光图形2的直径过大(大于60μm),则会导致遮光图形2肉眼可见,影响显示装置的显示效果。如果遮光图形2的直径过小(小于20μm),则相应地金属图形4的直径也需要设计的比较小。由于发光区域的面积由金属图形4的直径决定,所以发光区域的面积也会比较小,进而导致单侧发光光源的亮度减小,影响显示装置的显示效果。
步骤803:在遮光图形上沉积ITO,以形成信号传输图形。信号传输图形采用ITO制成。由于ITO为透明导电材料,所以这样信号传输图形可以设置为一整层并且覆盖衬底基板。这样,一方面降低了电信号传输时的电压降,另一方面由于信号传输图形为透明的,所以当将单侧发光光源贴附在反射式显示面板上时,不会影响外界环境光进入反射式显示面板。信号传输图形的厚度可以为1300-1400nm,可选地是1350nm。
步骤804:在信号传输图形上形成第一电极,第一电极在衬底基板上的正投影完全落入遮光图形在衬底基板上的正投影内。
具体地,可以采用化学刻蚀的方法形成第一电极或者利用溅射或沉积的方法直接形成第一电极。
在采用化学刻蚀的方法形成第一电极时,可以在形成有信号传输图形的衬底基板上依次沉积金属层和透明导电层。然后,在透明导电层上涂覆光刻胶,并且利用第一掩膜板对光刻胶进行曝光,第一掩膜板包括有与第一电极的位置相对应的不透光区域和除不透光区域之外的透光区域。在对光刻胶显影后,形成光刻胶保留区域和光刻胶去除区域,光刻胶保留区域与第一电极的位置相对应,刻蚀掉光刻胶去除区域的金属层和透明导电层。然后,去除光刻胶保留区域的光刻胶,形成金属图形和透明导电图形,金属图形和其上的透明导电图形共同组成第一电极。具体地,金属图形可以采用Ag或者Al制成。考虑到对位精度,金属图形的直径比遮光图形的直径小5-7μm。可选 地,金属图形的直径比遮光图形的直径小6μm。透明导电图形可以采用ITO制成,透明导电图形的厚度为100-140埃
Figure PCTCN2017072055-appb-000003
可选地,透明导电图形的厚度为
Figure PCTCN2017072055-appb-000004
在利用溅射或沉积的方法直接形成第一电极时,可以利用第二掩膜板在形成有信号传输图形的衬底基板上溅射或蒸镀金属材料,以形成金属图形。第二掩膜板包括与第一电极的位置相对应的开口区。然后,利用第二掩膜板在金属图形上溅射或蒸镀透明导电材料,形成透明导电图形。具体地,金属图形可以采用Ag或者Al制成。考虑到对位精度,金属图形的直径比遮光图形的直径小5-7μm,可选地,金属图形的直径比遮光图形的直径小6μm。透明导电图形可以采用ITO制成,透明金属图形的厚度为
Figure PCTCN2017072055-appb-000005
可选地,透明导电图形的厚度为
Figure PCTCN2017072055-appb-000006
步骤805:形成绝缘层。
具体地,绝缘层在信号传输图形的上表面上并且填充在水平方向上相邻的第一电极之间,并且绝缘层的上表面与第一电极的上表面位于同一水平面上。绝缘层可以采用无机绝缘材料比如氮化硅、氧化硅制成,还可以采用有机绝缘材料比如有机树脂制成。
步骤806:在第一电极上蒸镀电致发光材料,以形成电致发光层。电致发光层可以形成为覆盖绝缘层和第一电极的一整层。
步骤807:在电致发光层上沉积一整层IZO,以形成透明的第二电极层。由于在制作单侧发光光源时,在电致发光层上形成第二电极层,所以为了避免高温沉积第二电极层时对电致发光层产生不良影响,第二电极层可选采用可以通过低温沉积法形成的IZO。
步骤808:在第二电极层上形成封装层。封装层可以采用具有阻水阻氧特性的无机薄膜或有机薄膜,还可以为由无机薄膜和有机薄膜交替层叠设置组成的多层结构。
本公开的实施例的单侧发光光源未采用金属材料来制作信号走线,可以实现高开口率设计。在制作完单侧发光光源后,可以利用LOCA或OCA将单侧发光光源贴附在反射式显示面板表面,并且单侧发光光源的出光侧朝向反射式显示面板。由于单侧发光光源仅在一侧有光发出,这样将该单侧发光 光源贴附在反射式显示面板上时,在黑暗环境中,将该单侧发光光源打开,单侧发光光源发出的光线射入反射式显示面板内,然后反射出来进入人眼实现显示。由于该单侧发光光源仅在朝向反射式显示面板的一侧有光发出,因此可以提高暗态环境下的显示对比度。另外,在明亮环境下可以将该单侧发光光源关闭,环境光进入反射式显示面板内,反射出来后进入人眼实现显示。
以上是本公开的可选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (24)

  1. 一种单侧发光光源,包括:
    衬底基板;
    位于所述衬底基板上的多个遮光图形;
    覆盖所述多个遮光图形的信号传输图形;
    多个第一电极,所述多个第一电极位于所述信号传输图形上,并且所述多个第一电极中每个第一电极在所述衬底基板上的正投影完全落入所述多个遮光图形中相应的遮光图形在所述衬底基板上的正投影内;
    位于所述多个第一电极上的电致发光层;以及
    位于所述电致发光层上的透明的第二电极层。
  2. 根据权利要求1所述的单侧发光光源,还包括:
    填充水平方向上相邻的第一电极之间区域的绝缘层,所述绝缘层的第一表面与所述第一电极的第一表面位于同一水平面上,所述绝缘层的第二表面位于所述信号传输图形上。
  3. 根据权利要求1或2所述的单侧发光光源,其中,所述信号传输图形为采用透明导电材料制成的整层图形。
  4. 根据权利要求1至3中任一项所述的单侧发光光源,其中,所述遮光图形的形状为圆形。
  5. 根据权利要求4所述的单侧发光光源,其中,所述遮光图形的直径为20-60μm。
  6. 根据权利要求1至5中任一项所述的单侧发光光源,其中,所述第一电极包括:
    金属图形,和
    位于所述金属图形朝向所述电致发光层一侧的透明导电图形,
    其中,所述金属图形和所述透明导电图形的形状相同。
  7. 根据权利要求6所述的单侧发光光源,其中,所述金属图形采用Ag或Al制成,所述透明导电图形采用ITO制成。
  8. 根据权利要求1至7中任一项所述的单侧发光光源,其中,所述第二 电极层采用IZO制成。
  9. 根据权利要求1至8中任一项所述的单侧发光光源,还包括:
    驱动电路,用于向所述多个第一电极和所述第二电极层提供相应的电信号。
  10. 根据权利要求1至9中任一项所述的单侧发光光源,其中,从所述衬底基板与所述驱动电路连接的边缘到所述衬底基板中心的方向上,所述多个第一电极的尺寸逐渐增大。
  11. 根据权利要求1至10中任一项所述的单侧发光光源,其中,所述信号传输图形的厚度为1300-1400nm。
  12. 根据权利要求1至3中任一项所述的单侧发光光源,其中,所述遮光图形的形状为矩形、椭圆形、梯形中的任一种。
  13. 根据权利要求6或7所述的单侧发光光源,其中,所述透明导电图形的厚度为100-140埃。
  14. 根据权利要求6或7所述的单侧发光光源,其中,金属图形的直径比遮光图形的直径小5-7μm。
  15. 根据权利要求1至14中任一项所述的单侧发光光源,还包括覆盖所述第二电极层的封装层。
  16. 一种显示装置,包括反射式显示面板和贴附在所述反射式显示面板出光侧的如权利要求1至15中任一项所述的单侧发光光源,所述单侧发光光源的出光侧朝向所述反射式显示面板。
  17. 根据权利要求16所述的显示装置,还包括在所述单侧发光光源的上方形成的触控屏。
  18. 根据权利要求16所述的显示装置,其中所述单侧发光光源的衬底基板复用为所述显示装置的触控屏。
  19. 一种如权利要求1-14中任一项所述的单侧发光光源的制作方法,包括:
    提供一衬底基板;
    在所述衬底基板上形成遮光图形;
    形成覆盖所述遮光图形的信号传输图形;
    在所述信号传输图形上形成第一电极,所述第一电极在所述衬底基板上的正投影完全落入所述遮光图形在所述衬底基板上的正投影内;
    形成绝缘层;
    在所述第一电极上形成电致发光层;
    在所述电致发光层上形成透明的第二电极层。
  20. 根据权利要求19所述的单侧发光光源的制作方法,其中,在所述信号传输图形上形成第一电极包括:
    在形成有所述信号传输图形的衬底基板上依次沉积金属层和透明导电层;
    在所述透明导电层上涂覆光刻胶,利用第一掩膜板对所述光刻胶进行曝光,其中,所述第一掩膜板包括有与所述第一电极的位置相对应的不透光区域和除所述不透光区域之外的透光区域;
    在对所述光刻胶显影后,形成光刻胶保留区域和光刻胶去除区域,所述光刻胶保留区域与所述第一电极的位置相对应;
    刻蚀掉光刻胶去除区域的金属层和透明导电层;以及
    去除光刻胶保留区域的光刻胶,形成所述金属图形和所述透明导电图形。
  21. 根据权利要求19所述的单侧发光光源的制作方法,其中,在所述信号传输图形上形成第一电极包括:
    利用第二掩膜板在形成有所述信号传输图形的衬底基板上溅射或蒸镀金属材料,形成所述金属图形,其中,所述第二掩膜板包括有与所述第一电极的位置相对应的开口区;
    利用所述第二掩膜板在所述金属图形上溅射或蒸镀透明导电材料,形成所述透明导电图形。
  22. 根据权利要求19所述的单侧发光光源的制作方法,其中,在所述电致发光层上形成透明的第二电极层包括通过低温沉积法在所述电致发光层上形成透明的第二电极层。
  23. 根据权利要求19所述的单侧发光光源的制作方法,其中,所述绝缘层填充在水平方向上相邻的所述第一电极之间,并且所述绝缘层的上表面与所述第一电极的上表面位于同一水平面上。
  24. 根据权利要求19所述的单侧发光光源的制作方法,进一步包括在第 二电极层上形成封装层。
PCT/CN2017/072055 2016-05-06 2017-01-22 单侧发光光源及其制作方法、显示装置 WO2017190535A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/556,405 US10665660B2 (en) 2016-05-06 2017-01-22 Display device, and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610298101.0 2016-05-06
CN201610298101.0A CN105870134B (zh) 2016-05-06 2016-05-06 单侧发光光源及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2017190535A1 true WO2017190535A1 (zh) 2017-11-09

Family

ID=56631421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072055 WO2017190535A1 (zh) 2016-05-06 2017-01-22 单侧发光光源及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US10665660B2 (zh)
CN (1) CN105870134B (zh)
WO (1) WO2017190535A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870134B (zh) 2016-05-06 2018-10-19 京东方科技集团股份有限公司 单侧发光光源及其制作方法、显示装置
KR20180076832A (ko) 2016-12-28 2018-07-06 엘지디스플레이 주식회사 전계 발광 표시 장치 및 그 제조 방법
CN206946456U (zh) * 2017-07-03 2018-01-30 京东方科技集团股份有限公司 触控基板及内嵌式触控面板
US20220128870A1 (en) * 2019-07-24 2022-04-28 Beijing Boe Display Technology Co., Ltd. Display substrate and display panel
CN114384723B (zh) * 2020-10-20 2023-06-13 京东方科技集团股份有限公司 一种前置光源及其制作方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1638579A (zh) * 2003-12-29 2005-07-13 Lg.菲利浦Lcd株式会社 有机电致发光器件
CN1822383A (zh) * 2006-01-09 2006-08-23 友达光电股份有限公司 有机电致发光显示器
CN105070741A (zh) * 2015-09-02 2015-11-18 京东方科技集团股份有限公司 一种阵列基板及oled显示面板、显示装置
CN105870134A (zh) * 2016-05-06 2016-08-17 京东方科技集团股份有限公司 单侧发光光源及其制作方法、显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2010121879A (ru) * 2007-10-31 2011-12-10 Нисса Принтинг Ко., Лтд. (Jp) Защитная панель с функцией сенсорного ввода для окна дисплея электронного устройства и электронное устройство
CN103542276B (zh) * 2012-07-17 2015-10-07 昆达电脑科技(昆山)有限公司 反射式显示面板实现均匀前光光源的方法
KR101554164B1 (ko) * 2013-08-29 2015-09-21 (주)보림 엘이디 간접 조명 모듈 및 이를 이용한 엘이디 간접 조명 장치
CN104698530A (zh) * 2015-04-07 2015-06-10 京东方科技集团股份有限公司 一种导光板、前置光源模组、显示模组和显示装置
CN104808391B (zh) * 2015-05-26 2018-05-29 京东方科技集团股份有限公司 一体化前置光源及其制作方法、反射式显示装置
JP6661343B2 (ja) * 2015-11-26 2020-03-11 富士フイルム株式会社 転写材料、転写材料の製造方法、積層体、積層体の製造方法、静電容量型入力装置の製造方法、及び、画像表示装置の製造方法
KR102532869B1 (ko) * 2015-12-29 2023-05-16 엘지디스플레이 주식회사 디스플레이 패널 및 이를 포함하는 디스플레이 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1638579A (zh) * 2003-12-29 2005-07-13 Lg.菲利浦Lcd株式会社 有机电致发光器件
CN1822383A (zh) * 2006-01-09 2006-08-23 友达光电股份有限公司 有机电致发光显示器
CN105070741A (zh) * 2015-09-02 2015-11-18 京东方科技集团股份有限公司 一种阵列基板及oled显示面板、显示装置
CN105870134A (zh) * 2016-05-06 2016-08-17 京东方科技集团股份有限公司 单侧发光光源及其制作方法、显示装置

Also Published As

Publication number Publication date
CN105870134A (zh) 2016-08-17
CN105870134B (zh) 2018-10-19
US10665660B2 (en) 2020-05-26
US20190115410A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2017190535A1 (zh) 单侧发光光源及其制作方法、显示装置
CN104733501B (zh) 像素结构、显示装置以及像素结构的制作方法
WO2020186932A1 (zh) 发光器件及其制造方法、显示装置
TWI679630B (zh) 顯示裝置及顯示模組
TWI390297B (zh) 照明裝置
WO2015184712A1 (zh) 一种有机发光显示装置及其制造方法
WO2016062240A1 (zh) 一种顶发射oled器件及其制作方法、显示设备
WO2019041899A1 (zh) 显示面板、显示装置及显示面板制作方法
CN113629208B (zh) 显示面板及显示装置
KR100753257B1 (ko) 광학 디바이스 및 유기 el 디스플레이
JP2009070683A (ja) 照明装置及び液晶表示装置
WO2016187987A1 (zh) 一种显示面板及其制作方法、显示装置
TW200305351A (en) Organic electroluminescence device and the manufacturing method, and the display device
US7868330B2 (en) Organic electro-luminescence display device and fabricating method thereof
WO2018119784A1 (zh) 底发光型oled显示单元及其制作方法
WO2020088470A1 (zh) 发光单元及其制造方法、显示装置
WO2019184901A1 (zh) 显示面板及其制造方法、显示装置
KR101707574B1 (ko) 차광 패턴을 갖는 백라이트 유닛 및 그의 차광 패턴 형성방법
JP2002006776A (ja) 画像表示装置
WO2022247180A1 (zh) 显示面板及显示装置
CN107994061A (zh) 一种盖板及其制备方法、显示装置
CN113328047B (zh) 显示面板及其制作方法和显示装置
TWI545480B (zh) 觸控顯示裝置
JP2016046126A (ja) 有機エレクトロルミネッセンス装置の製造方法
JP2002198167A (ja) 照明装置及びその製造方法、表示装置、並びに電子機器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792365

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792365

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.05.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17792365

Country of ref document: EP

Kind code of ref document: A1