WO2016127492A1 - 一种新型四酚基化合物/四官能度环氧树脂、制备方法及应用 - Google Patents

一种新型四酚基化合物/四官能度环氧树脂、制备方法及应用 Download PDF

Info

Publication number
WO2016127492A1
WO2016127492A1 PCT/CN2015/077062 CN2015077062W WO2016127492A1 WO 2016127492 A1 WO2016127492 A1 WO 2016127492A1 CN 2015077062 W CN2015077062 W CN 2015077062W WO 2016127492 A1 WO2016127492 A1 WO 2016127492A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
mass
parts
catalyst
bisphenol
Prior art date
Application number
PCT/CN2015/077062
Other languages
English (en)
French (fr)
Inventor
李效玉
刘湍
孟焱
张梁栋
陈若石
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510070517.2A external-priority patent/CN104672431B/zh
Priority claimed from CN201510071187.9A external-priority patent/CN104744224B/zh
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2016127492A1 publication Critical patent/WO2016127492A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/27Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups
    • C07C205/35Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups

Definitions

  • the invention relates to a novel tetraphenol-based compound/tetrafunctional epoxy resin, a preparation method and application thereof, and belongs to the technical field of organic polymers.
  • Epoxy resin is currently the most important type of thermosetting resin. Its cured product has excellent mechanical properties, electrical insulation properties, heat resistance and adhesion. It is widely used in coatings, adhesives, potting agents and composite materials. Field (H. LEE, K. Neville, Handbook of Epoxy Resins. Mcgraw-Hill: New York, 1967).
  • the most common epoxy resin is bisphenol A diglycidyl ether (DGEBA) obtained by reacting bisphenol A with epichlorohydrin.
  • DGEBA has low cost, balanced mechanical properties and good processing technology, accounting for more than 85% of the total epoxy resin usage.
  • DGEBA cured materials often have low heat resistance (less than 200 ° C) and low glass transition temperature (less than 180 ° C), which cannot meet the application requirements of some high performance materials.
  • polyfunctional epoxy resins are mainly classified into two types: glycidyl ether resins and glycidylamine resins. They are often mixed with a common DGEBA resin or used separately. Limited by material cost and processing technology, the most widely used polyfunctional epoxy resin is tetraglycidyldiaminodiphenylmethane (TGDDM), which has great applications in the field of carbon fiber composites and has been used as a Boeing. The base resin of the secondary structural material of the airline aircraft is used.
  • TGDDM tetraglycidyldiaminodiphenylmethane
  • TGDDM tetraphenol-based compound
  • the tetrafunctional epoxy resin obtained by phenol-based epoxidation of the tetraphenol-based compound has high purity (greater than 90%), and has a low viscosity after compounding with the bisphenol A-type epoxy resin (less than 50 ° C) 5 Pas); during the curing process, the curing process is easy to control, and the resulting cured product has a high glass transition temperature (greater than 250 ° C).
  • the present invention provides a tetraphenol-based compound/tetrafunctional epoxy resin, a preparation method thereof, a method for preparing a tetrafunctional epoxy resin by phenol-based epoxidation, and a preparation method using a tetrafunctional epoxy resin A method of epoxy material having high toughness and high glass transition temperature.
  • the technical scheme adopted by the invention is as follows: 1. Using p-hydroxybenzaldehyde and a monomer containing a bifunctional ( ⁇ , ⁇ ) alkyl bromide as a raw material, the reaction is carried out to obtain an intermediate monomer having two benzaldehyde groups. 2. Using phenol to react with an aldehyde group on the first step monomer to obtain a tetraphenol based compound. 3. The tetra-functional epoxy resin is further obtained by epoxidation using a tetraphenol-based compound as a raw material. 4. The obtained epoxy resin is compounded with a commercial bisphenol A type epoxy resin or used alone, and then cured with a curing agent to obtain an epoxy material having excellent properties.
  • R 1 H, -CH 3 , -CH 2 CH 3 , -NO 2 .
  • the tetraphenol-based compound was prepared by the following method:
  • 100 parts by mass of the solid product obtained in the first step reaction is dissolved in 120-400 parts by mass of phenol or its derivative M, 5-15 parts by mass of a catalyst p-toluenesulfonic acid, and 5-15 parts by mass of a catalyst are anhydrous chlorinated.
  • Zinc The reaction is stirred at 40-80 ° C for 4 to 48 hours; after the reaction is completed, it is washed with water and distilled; the obtained crude product is dissolved in an alcohol solvent, precipitated in water, and dried to obtain a red tetraphenol-based compound;
  • R 1 H, -CH 3 , -CH 2 CH 3 , -NO 2 .
  • R 1 H, -CH 3 , -CH 2 CH 3 , -NO 2
  • the difunctional ( ⁇ , ⁇ ) alkyl bromide monomer used in the present invention is preferably 1,2 dibromoethane, 1,3 dibromopropane, 1,4 dibromobutane, 1,5 dibromopentane, 1 One of 6 dibromohexane, 1,7-dibromoheptane, 1,8-dibromooctane, 1,9-dibromodecane, and 1,10-dibromodecane.
  • the phenol or a derivative thereof used in the present invention is preferably one of phenol, cresol, acetaminophen, nitrophenol, m-cresol, m-cresol, and m-nitrophenol.
  • the catalyst A used in the present invention is preferably one of potassium carbonate and sodium hydroxide.
  • Catalyst B is preferably potassium iodide.
  • the alcohol solvent used in the present invention is preferably one of methanol, ethanol, 1-propanol and n-butanol.
  • the tetrafunctional epoxy resin obtained by epoxidation modification of the above tetraphenol-based compound has the following structural formula:
  • N is selected from or
  • R 1 H, -CH 3 , -CH 2 CH 3 , -NO 2
  • the tetrafunctional epoxy resin is obtained by epoxidation modification of a tetraphenol-based compound by using 100 mass parts of a tetraphenol-based compound, 100-1000 parts by mass of epichlorohydrin, and 2 to 15 parts by mass of a catalyst.
  • Tetrabutylammonium bromide is added to the reactor, and the reaction is stirred at 70-110 ° C for 2-10 hours; the reaction temperature is lowered to 40-60 ° C, and 80 parts by mass of a 30% by mass aqueous sodium hydroxide solution is used for 2-10 hours.
  • the solution is slowly added dropwise to the reaction system; after the addition is completed, the system is continuously stirred at 40-60 ° C for 2-5 hours; after the reaction is completed, the filtrate is precipitated with an alcohol or a mixed solution of an alcohol and water, and dried to obtain a pale yellow solid. .
  • the alcohol in the mixed solution of the alcohol or alcohol and water used in the present invention is ethanol or methanol.
  • the mass concentration of the aqueous sodium hydroxide solution used is preferably 30%.
  • a method for epoxy curing using the above tetrafunctional epoxy resin comprising the steps of:
  • the tetrafunctional epoxy resin and the bisphenol A epoxy resin are uniformly stirred at 80-130 ° C, and then the curing agent and the catalyst are added, stirred uniformly, defoamed in a vacuum, injected into a mold, and then placed in an oven to be solidified;
  • the mass of the tetrafunctional epoxy resin is 1-100% of the bisphenol A epoxy resin.
  • the amount of the tetrafunctional epoxy resin is calculated according to the actual pure bisphenol A type epoxy resin.
  • a linear bisphenol A type epoxy resin having an epoxy value preferably in the range of preferably 0.2 to 0.58 mol/100 g is preferred.
  • the curing agent of the present invention is preferably an organic amine, an acid anhydride or an imidazole curing agent.
  • the catalyst used in the present invention is preferably a tertiary amine catalyst.
  • a tetrafunctional epoxy resin can be obtained by phenol-based epoxidation from a tetraphenol-based compound.
  • the resin can be obtained by compounding with a linear bisphenol A type epoxy resin and curing with a plurality of curing agents.
  • the epoxy material obtained by using 4,4 diaminodiphenyl sulfone as a curing agent has the properties of: glass transition temperature of 250 ° C, impact strength of 30 kJ/m 2 , tensile strength of 80 MPa, elongation at break of 11.18%, dynamic pulling The modulus of elongation is 2.1 GPa.
  • the present invention produces a structurally tunable tetraphenol-based compound. Synthetic raw materials are widely available, low in price, simple in synthesis, high in product purity, and easy to industrialize.
  • the present invention provides a tetrafunctional epoxy resin by epoxidizing the resulting tetraphenol-based compound.
  • the resin is compounded with a commercial bisphenol A type epoxy resin and cured with a curing agent to obtain an epoxy cured material having high strength, high toughness, and high glass transition temperature.
  • This tetrafunctional epoxy resin can be used as a matrix resin for high performance epoxy materials, and can replace the existing TGDDM epoxy resin, and has broad application prospects.
  • Figure 1 shows the nuclear magnetic resonance spectrum of the tetraphenol-based compound synthesized in Example 1;
  • Figure 2 shows the nuclear magnetic resonance spectrum of the tetrafunctional epoxy resin synthesized in Example 11;
  • Figure 3 is a flight mass spectrum of the tetraphenol-based compound synthesized in Example 1, in addition to the target product, a dimer impurity having a molecular weight of 1205 appears in the figure;
  • Figure 4 is a flight mass spectrometry data for a tetrafunctional epoxy resin synthesized in Example 11.
  • Examples 1-10 are preparation examples of tetraphenol-based compounds.
  • the flight mass spectrum of the tetraphenol-based compound synthesized in Example 1 is shown in Fig. 3.
  • a dimer impurity having a molecular weight of 1205 appeared in the figure.
  • the ethanol solution used was changed to a n-butanol solution, and the first-step reaction temperature was changed to 110 ° C, and the others were the same as in Example 1.
  • the phenol used was changed to 1600 g of m-cresol, and the others were the same as in Example 1.
  • the phenol used was changed to 4030 g of m-nitrophenol, and the others were the same as in Example 1.
  • Examples 11-20 are examples of the preparation of tetrafunctional epoxy resins from tetraphenol based compounds.
  • the flight mass spectrum of the tetrafunctional epoxy resin synthesized in Example 11 is shown in Fig. 4.
  • the dimer impurity in Figure 3 is largely removed after epoxidation, and the resulting tetrafunctional epoxy resin has an effective purity of greater than 95%.
  • the amount of epichlorohydrin was changed to 850 g in the preparation of the tetrafunctional epoxy resin, and the others were the same as in Example 11.
  • the amount of epichlorohydrin was changed to 6400 g in the preparation of the tetrafunctional epoxy resin, and the others were the same as in Example 11.
  • the amount of the catalyst tetrabutylammonium bromide was changed to 21 g, and the others were the same as in Example 11.
  • the amount of the catalyst tetrabutylammonium bromide was changed to 98 g, and the others were the same as in Example 11.
  • the first reaction temperature was changed to 80 ° C, and the others were the same as in Example 11.
  • the first reaction temperature was changed to 110 ° C, and the others were the same as in Example 11.
  • Example 1 in the preparation of the tetrafunctional epoxy resin, the product obtained in Example 1 was used instead of the product obtained in Example 3, and the others were the same as in Example 11.
  • Example 1 in the preparation of the tetrafunctional epoxy resin, the product obtained in Example 1 was used instead of the product obtained in Example 5, and the others were the same as in Example 11.
  • Example 1 in the preparation of the tetrafunctional epoxy resin, the product obtained in Example 1 was used instead of the product obtained in Example 7, and the others were the same as in Example 11.
  • Examples 21-34 are a method for preparing a material in which a tetrafunctional epoxy resin is compounded with a bisphenol A epoxy resin and then cured with methylnadic anhydride.
  • Example 11 100 g of the tetrafunctional epoxy resin obtained in Example 11 was stirred and homogenized at 73 ° C with 73 g (0.41 mol) of methylnadic anhydride, and then 0.73 g of 2-ethyl-4-methylimidazole was added, and then uniformly stirred. Vacuum defoaming in a vacuum oven at 60 ° C, into the mold, 100 ° C for 2 hours, 150 ° C for 3 hours, 180 ° C for 2 hours, 220 ° C for 1 hour. After complete curing, the system is naturally cooled, and finally a tetrafunctional epoxy resin cured material is obtained.
  • Example 11 in the process of preparing a tetrafunctional epoxy resin/bisphenol A type epoxy resin hybrid material, the product obtained in the starting material of Example 11 was changed to the product obtained in Example 12, and the others were the same as in Example 22.
  • Example 11 in the preparation of the tetrafunctional epoxy resin/bisphenol A type epoxy resin hybrid material, the product obtained in the starting material of Example 11 was changed to the product obtained in Example 13, and the others were the same as in Example 22.
  • Example 11 in the process of preparing a tetrafunctional epoxy resin/bisphenol A type epoxy resin hybrid material, the product obtained in the starting material of Example 11 was changed to the product obtained in Example 14, and the others were the same as in Example 22.
  • Example 11 in the preparation of the tetrafunctional epoxy resin/bisphenol A type epoxy resin hybrid material, the product obtained in the starting material of Example 11 was changed to the product obtained in Example 15, and the others were the same as in Example 22.
  • Example 11 in the process of preparing a tetrafunctional epoxy resin/bisphenol A type epoxy resin hybrid material, the product obtained in the starting material of Example 11 was changed to the product obtained in Example 16, and the others were the same as in Example 22.
  • Example 11 in the process of preparing a tetrafunctional epoxy resin/bisphenol A type epoxy resin hybrid material, the product obtained in the starting material of Example 11 was changed to the product obtained in Example 17, and the others were the same as in Example 22.
  • Example 11 in the process of preparing a tetrafunctional epoxy resin/bisphenol A type epoxy resin hybrid material, the product obtained in the starting material of Example 11 was changed to the product obtained in Example 18, and the others were the same as in Example 22.
  • Example 11 in the process of preparing a tetrafunctional epoxy resin/bisphenol A type epoxy resin hybrid material, the product obtained in the starting material of Example 11 was changed to the product obtained in Example 19, and the others were the same as in Example 22.
  • Example 11 in the process of preparing a tetrafunctional epoxy resin/bisphenol A type epoxy resin hybrid material, the product obtained in the starting material of Example 11 was changed to the product obtained in Example 20, and the others were the same as in Example 22.
  • Examples 35-38 are a method for preparing a material in which a tetrafunctional epoxy resin is compounded with a bisphenol A epoxy resin and then cured with 4,4' diaminodiphenyl sulfone.
  • the tensile strength of the epoxy resin material of Case 21-38 was determined according to the method of ISO 527:1993, and the sample type was a 1BA type small sample strip.
  • the impact strength was measured according to the unnotched impact spline method described in ISO 179:1982.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)

Abstract

一种四酚基化合物/四官能度环氧树脂、其制备方法及应用。所述四酚基化合物通过对羟基苯甲醛与烷基溴反应,产物再与苯酚或其衍生物反应获得。所述四官能度环氧树脂通过四酚基化合物的酚基环氧化反应获得。该四官能度环氧树脂可用于双酚A型环氧树脂的固化反应中。

Description

一种新型四酚基化合物/四官能度环氧树脂、制备方法及应用 技术领域
本发明涉及一种新型四酚基化合物/四官能度环氧树脂及其制备方法和应用,属于有机高分子技术领域。
背景技术
环氧树脂是目前最重要的一类热固性树脂,其固化物具有优异的机械性能、电绝缘性能、耐热及粘接性,因而广泛用于涂料、胶黏剂、灌封剂及复合材料等领域(H.LEE,K.Neville,Handbook of Epoxy Resins.Mcgraw-Hill:New York,1967)。最常见的环氧树脂是由双酚A与环氧氯丙烷反应得到的双酚A二缩水甘油醚(DGEBA)。DGEBA具有低成本、均衡的力学性能以及良好的加工工艺,约占总环氧树脂使用量的85%以上。然而,往往DGEBA固化物具有低的耐热性(小于200℃)以及低的玻璃化转变温度(小于180℃),不能满足一些高性能材料的应用需求。
为解决这一问题,以多官能度环氧树脂制备的环氧材料已被证实可以满足上述需求。这些多官能度环氧树脂主要分为缩水甘油醚树脂及缩水甘油胺树脂两类。它们往往与通用的DGEBA树脂混合或单独使用。受到材料成本以及加工工艺的限制,目前应用最广的多官能度环氧树脂是四缩水甘油基二氨基二苯基甲烷(TGDDM),它在碳纤维复合材料领域有很大用途,并已作为波音航空公司飞机的二次结构材料的基体树脂使用。但是,工业应用的TGDDM往往具有低纯度(小于80%),高粘度(50℃下大于5Pas);固化过程中,固化进程不利于控制,易发生分子内环化不利于有效提高玻璃化转变温度。为了解决这些问题,我们研制一种新型四酚基化合物。由该四酚基化合物经酚基环氧化得到的四官能度环氧树脂具有高纯度(大于90%),在与双酚A型环氧树脂复配后,具有低粘度(50℃下小于5Pas);固化过程中,固化进程易于控制,所得固化物具有高的玻璃化转变温度(大于250℃)。
发明内容
本发明在于提供一种四酚基化合物/四官能度环氧树脂及其制备方法、利用该化合物经酚基环氧化制备四官能度环氧树脂的方法以及利用四官能度环氧树脂制备高强度高韧性以及高玻璃化转变温度的环氧材料的方法。
本发明采取的技术方案是:1.以对羟基苯甲醛和含有两官能度(α,ω)烷基溴的单体为原料,反应得到具有两个苯甲醛基团的中间单体。2.利用苯酚与第一步单体上的醛基反应,得到四酚基化合物。3.以四酚基化合物为原料经环氧化,进一步得到四官能度环氧树脂。4.将所得环氧树脂与商品双酚A型环氧树脂复配或单独使用,再配合固化剂固化,得到具有优异性能的环氧材料。
一种四酚基化合物,其特征在于,其结构式如下:
Figure PCTCN2015077062-appb-000001
其中M选自
Figure PCTCN2015077062-appb-000002
Figure PCTCN2015077062-appb-000003
Figure PCTCN2015077062-appb-000004
n=2,3,4,5,6,7,8,9,10
R1=H,-CH3,-CH2CH3,-NO2
采用下述方法制备四酚基化合物:
第一步:
将100质量份的对羟基苯甲醛,40-150质量份含有两官能度(α,ω)烷基溴的单体,30-150质量份的催化剂A,1-5份质量份的催化剂B,加入反应器,在醇类溶剂和50-120℃条件搅拌下反应4-24小时;反应结束后,体系在室温静置,所得产物以晶体形式析出;然后滤出晶体并水洗,再用醇类溶剂重结晶,干燥,得到淡黄色固体产物;
Figure PCTCN2015077062-appb-000005
第二步:
将100质量份第一步反应所得固体产物溶于120-400质量份苯酚或其衍生物M,加入5-15质量份的催化剂对甲苯磺酸,5-15份质量份的催化剂无水氯化锌, 在40-80℃条件下搅拌反应4-48小时;反应结束后水洗,蒸馏;所得粗产物用醇类溶剂溶解后在水中沉淀,干燥,得到红色的四酚基化合物;
Figure PCTCN2015077062-appb-000006
其中M选自
Figure PCTCN2015077062-appb-000007
Figure PCTCN2015077062-appb-000008
中的一种;
Figure PCTCN2015077062-appb-000009
n=2,3,4,5,6,7,8,9,10
R1=H,-CH3,-CH2CH3,-NO2
上述反应以M为
Figure PCTCN2015077062-appb-000010
的反应式如下:
Figure PCTCN2015077062-appb-000011
Figure PCTCN2015077062-appb-000012
n=2,3,4,5,6,7,8,9,10
R1=H,-CH3,-CH2CH3,-NO2
本发明所用两官能度(α,ω)烷基溴单体优选为1,2二溴乙烷、1,3二溴丙烷、1,4二溴丁烷、1,5二溴戊烷、1,6二溴己烷、1,7二溴庚烷、1,8二溴辛烷、1,9二溴壬烷、1,10二溴癸烷中的一种。
本发明所用苯酚或其衍生物优选为苯酚、临甲酚、临乙酚、临硝基酚、间甲酚、间乙酚、间硝基酚中的一种
本发明所用的催化剂A优选为碳酸钾,氢氧化钠中的一种。催化剂B优选为碘化钾。
本发明所用醇类溶剂优选为甲醇、乙醇、1-丙醇、正丁醇中的一种。
上述四酚基化合物进行环氧化改性得到的四官能度环氧树脂,其结构式如下:
Figure PCTCN2015077062-appb-000013
其中N选自
Figure PCTCN2015077062-appb-000014
Figure PCTCN2015077062-appb-000015
Figure PCTCN2015077062-appb-000016
n=2,3,4,5,6,7,8,9,10
R1=H,-CH3,-CH2CH3,-NO2
采用下述方法对四酚基化合物进行环氧化改性得到四官能度环氧树脂:将100质量份四酚基化合物、100-1000质量份的环氧氯丙烷、2-15质量份的催化剂四丁基溴化铵加入反应器,在70-110℃搅拌反应2-10小时;反应温度降至40-60℃,将质量浓度为30%的氢氧化钠水溶液80质量份在2-10小时内缓慢滴加到反应体系中;滴加完后,体系在40-60℃继续搅拌反应2-5小时;反应结束后,滤液用醇或醇与水的混合溶液沉淀,干燥,得到淡黄色固体。
本发明所用醇或醇与水的混合溶液中的醇为乙醇或甲醇。
所用氢氧化钠水溶液的质量浓度优选为30%。
采用上述四官能度环氧树脂用于环氧固化的方法,其特征在于,包括以下步骤:
所述四官能度环氧树脂与双酚A型环氧树脂于80-130℃搅拌均匀后加入固化剂和催化剂,搅拌均匀后于真空脱泡,注入模具中,再放入烘箱中固化成型;其中四官能度环氧树脂的质量是双酚A型环氧树脂的1-100%。
若双酚A型环氧树脂为商品双酚A型环氧树脂,则四官能度环氧树脂用量是按照实际所含纯双酚A型环氧树脂来计算的。
优选线性双酚A型环氧树脂,其环氧值范围优选为0.2-0.58mol/100g。
本发明所述的固化剂优选为有机胺、酸酐类或咪唑类固化剂。
本发明所用催化剂优选为叔胺类催化剂。
由四酚基化合物为原料经酚基环氧化反应可以得到四官能度环氧树脂。利用该树脂与线性双酚A型环氧树脂复配,再配合多种固化剂固化,可以得到具有高 玻璃化转变温度、高强度、高伸长率以及高韧性的环氧材料。其中以4,4二氨基二苯砜作为固化剂得到的环氧材料,其性能达到:玻璃化转变温度250℃,冲击强度30kJ/m2,拉伸强度80MPa,断裂伸长率11.18%,动态拉伸模量为2.1GPa。
有益效果:
1.本发明制备了一种结构可调的四酚基化合物。合成原料来源广泛,价格低廉,合成方法简单,产品纯度高,易于工业化生产。
2.本发明通过将所得四酚基化合物环氧化得到四官能度环氧树脂。利用该树脂与商品双酚A型环氧树脂复配并与固化剂固化,得到了高强度、高韧性、高玻璃化转变温度的环氧固化材料。说明该四官能度环氧树脂可以作为高性能环氧材料的基体树脂使用,并可以替代现有TGDDM环氧树脂,应用前景广阔。
附图说明
图1实施例1所合成的四酚基化合物的核磁氢谱;
图2实施例11所合成的四官能度环氧树脂的核磁氢谱;
图3实施例1所合成的四酚基化合物的飞行质谱,除了目标产物外,图中还出现了分子量为1205的二聚体杂质;
图4实施例11所合成的四官能度环氧树脂的飞行质谱数据。
具体实施方式
下面结合具体实施例对本发明作进一步的阐述。应理解,本发明不限于以下实施例,所述方法如无特别说明均为常规方法。所述材料如无特别说明均能从公开商业途径获得。
实施例1-10为四酚基化合物的制备案例。
实施例1
第一步:
将4270g的对羟基苯甲醛,2520g的1,4二溴丁烷,6400g碳酸钾,200g碘化钾,加入反应器,在乙醇溶液和50-120℃条件下搅拌反应10小时;反应结束后在室温静置,所得产物以晶体形式析出;然后将滤出晶体水洗,再用乙醇溶液重结晶,干燥,得到淡黄色固体产物,收率93%。
第二步:
将792g的第一步固体产物溶于2500g苯酚,加入108g的催化剂对甲苯磺酸, 87g的催化剂无水氯化锌,在40℃条件下搅拌反应24小时;反应结束后水洗,蒸馏;所得粗产物用乙醇溶解后在水中沉淀,干燥,得到红色固体,收率91%。
实施例1所合成的四酚基化合物的核磁氢谱见图1,结果与预期相符。
实施例1所合成的四酚基化合物的飞行质谱见图3。除了目标产物外,图中还出现了分子量为1205的二聚体杂质。
实施例2
本实施方式在四酚基化合物的制备过程中,原料2520g的1,4二溴丁烷换成1830g 1,2二溴乙烷,6400碳酸钾改为4200g,其他与实施例1相同。
实施例3
本实施方式在四酚基化合物的制备过程中,原料2520g的1,4二溴丁烷换成2847g 1,6二溴己烷,6400碳酸钾改为1300g,其他与实施例1相同。
实施例4
本实施方式在四酚基化合物的制备过程中,原料2520g的1,4二溴丁烷换成3174g 1,8二溴辛烷,200g碘化钾改为50g碘化钾,其他与实施例1相同。
实施例5
本实施方式在四酚基化合物的制备过程中,原料2520g的1,4二溴丁烷换成3702g 1,10二溴癸烷,200g碘化钾改为100g,其他与实施例1相同。
实施例6
本实施方式在四酚基化合物的制备过程中,所用乙醇溶液改为正丁醇溶液,第一步反应温度改为110℃,其他与实施例1相同。
实施例7
本实施方式在四酚基化合物的制备过程中,所用苯酚改为980g临甲酚,其他与实施例1相同。
实施例8
本实施方式在四酚基化合物的制备过程中,所用苯酚改为1600g间甲酚,其他与实施例1相同。
实施例9
本实施方式在四酚基化合物的制备过程中,所用苯酚改为2830g临硝基酚, 其他与实施例1相同。
实施例10
本实施方式在四酚基化合物的制备过程中,所用苯酚改为4030g间硝基酚,其他与实施例1相同。
实施例11-20为由四酚基化合物制备四官能度环氧树脂的案例。
实施例11
将638g的实施例1所得产物,3422g的环氧氯丙烷,64.47g的催化剂四丁基溴化铵,一次性加入反应器,在100℃反应3小时;待反应温度降至45℃后,将质量分数为30%的氢氧化钠水溶液530g在10小时内缓慢滴加到反应体系中;滴加完后,体系在45℃继续搅拌反应3小时;反应结束后,滤液用乙醇沉淀,干燥,得到黄色固体,收率83%。
实施例11所合成的四官能度环氧树脂的核磁氢谱见图2;与预期相符。
实施例11所合成的四官能度环氧树脂的飞行质谱见图4。图3中的二聚体杂质在经过环氧化后被除掉大部分,所得四官能度环氧树脂的有效纯度大于95%。
实施例12
本实施方式在四官能度环氧树脂制备过程中,环氧氯丙烷用量改为850g,其他与实施例11相同。
实施例13
本实施方式在四官能度环氧树脂制备过程中,环氧氯丙烷用量改为6400g,其他与实施例11相同。
实施例14
本实施方式在四官能度环氧树脂制备过程中,催化剂四丁基溴化铵用量改为21g,其他与实施例11相同。
实施例15
本实施方式在四官能度环氧树脂制备过程中,催化剂四丁基溴化铵用量改为98g,其他与实施例11相同。
实施例16
本实施方式在四官能度环氧树脂制备过程中,第一段反应温度改为80℃,其他与实施例11相同。
实施例17
本实施方式在四官能度环氧树脂制备过程中,第一段反应温度改为110℃,其他与实施例11相同。
实施例18
本实施方式在四官能度环氧树脂制备过程中,所用实施例1所得产物改用实施例3所得产物,其他与实施例11相同。
实施例19
本实施方式在四官能度环氧树脂制备过程中,所用实施例1所得产物改用实施例5所得产物,其他与实施例11相同。
实施例20
本实施方式在四官能度环氧树脂制备过程中,所用实施例1所得产物改用实施例7所得产物,其他与实施例11相同。
实施例21-34为四官能度环氧树脂与双酚A型环氧树脂复配后,再配合甲基那迪克酸酐固化的材料的制备方法。
实施例21
将75g环氧树脂(CYD-128,环氧值0.5262mol/100g)和25g实施例11所得四官能度环氧树脂于80℃搅拌均匀后加入112g甲基那迪克酸酐及1.12g 2-乙基-4-甲基咪唑,再充分搅拌均匀后于60℃真空烘箱内真空脱泡,注入模具中,100℃2小时,150℃3小时,180℃2小时,200℃1小时。完全固化后,体系自然冷却,最终制得四官能度环氧树脂物/双酚A型环氧树脂杂化材料。
实施例22
将50g环氧树脂(CYD-128,环氧值0.5262mol/100g)和50g实施例11所得四官能度环氧树脂于80℃搅拌均匀后加入130g甲基那迪克酸酐及1.3g 2-乙基-4-甲基咪唑,再充分搅拌均匀后于60℃真空烘箱内真空脱泡,注入模具中,100℃2小时,150℃3小时,180℃2小时,210℃1小时。完全固化后,体系自然冷却,最终制得四官能度环氧树脂物/双酚A型环氧树脂杂化材料。
实施例23
将25g环氧树脂(CYD-128,环氧值0.5262mol/100g)和75g实施例11所得四官能度环氧树脂于80℃搅拌均匀后加入149g(0.83mol)甲基那迪克酸酐及1.49g2-乙基-4-甲基咪唑,再充分搅拌均匀后于60℃真空烘箱内真空脱泡,注入模具中,100℃2小时,150℃3小时,180℃2小时,220℃1小时。完全固化后,体系自然冷却,最终制得四官能度环氧树脂物/双酚A型环氧树脂杂化材料。
实施例24
将100g实施例11所得四官能度环氧树脂于和73g(0.41mol)甲基那迪克酸酐在80℃搅拌均匀后加入0.73g 2-乙基-4-甲基咪唑,再充分搅拌均匀后于60℃真空烘箱内真空脱泡,注入模具中,100℃2小时,150℃3小时,180℃2小时,220℃1小时。完全固化后,体系自然冷却,最终制得四官能度环氧树脂固化材料。
实施例25
本实施方式在制备四官能度环氧树脂/双酚A型环氧树脂杂化材料过程中,所用1.12g催化剂2-乙基-4-甲基咪唑改为2.24g,其他与实施例22相同。
实施例26
本实施方式在制备四官能度环氧树脂/双酚A型环氧树脂杂化材料过程中,所用的原料实施例11所得产物改为实施例12所得产物,其他与实施例22相同。
实施例27
本实施方式在制备四官能度环氧树脂/双酚A型环氧树脂杂化材料过程中,所用的原料实施例11所得产物改为实施例13所得产物,其他与实施例22相同。
实施例28
本实施方式在制备四官能度环氧树脂/双酚A型环氧树脂杂化材料过程中,所用的原料实施例11所得产物改为实施例14所得产物,其他与实施例22相同。
实施例29
本实施方式在制备四官能度环氧树脂/双酚A型环氧树脂杂化材料过程中,所用的原料实施例11所得产物改为实施例15所得产物,其他与实施例22相同。
实施例30
本实施方式在制备四官能度环氧树脂/双酚A型环氧树脂杂化材料过程中,所用的原料实施例11所得产物改为实施例16所得产物,其他与实施例22相同。
实施例31
本实施方式在制备四官能度环氧树脂/双酚A型环氧树脂杂化材料过程中,所用的原料实施例11所得产物改为实施例17所得产物,其他与实施例22相同。
实施例32
本实施方式在制备四官能度环氧树脂/双酚A型环氧树脂杂化材料过程中,所用的原料实施例11所得产物改为实施例18所得产物,其他与实施例22相同。
实施例33
本实施方式在制备四官能度环氧树脂/双酚A型环氧树脂杂化材料过程中,所用的原料实施例11所得产物改为实施例19所得产物,其他与实施例22相同。
实施例34
本实施方式在制备四官能度环氧树脂/双酚A型环氧树脂杂化材料过程中,所用的原料实施例11所得产物改为实施例20所得产物,其他与实施例22相同。
实施例35-38为四官能度环氧树脂与双酚A型环氧树脂复配后,再配合4,4’二氨基二苯砜固化的材料的制备方法。
实施例35
将90g环氧树脂(CYD-128,环氧值0.5262mol/100g)和10g实施例11所得四官能度环氧树脂于100℃搅拌均匀后加入35g(0.14mol)4,4二氨基二苯砜,再与125℃充分搅拌均匀后于120℃真空烘箱内真空脱泡,注入模具中,120℃2小时,160℃3小时,180℃2小时,220℃1小时。完全固化后,体系自然冷却,最终制得四官能度环氧树脂物/双酚A型环氧树脂杂化材料。
实施例36
将80g环氧树脂(CYD-128,环氧值0.5262mol/100g)和20g实施例11所得四官能度环氧树脂于100℃搅拌均匀后加入38g(0.15mol)4,4二氨基二苯砜,再与125℃充分搅拌均匀后于120℃真空烘箱内真空脱泡,注入模具中,120℃2小时,160℃3小时,180℃2小时,220℃1小时。完全固化后,体系自然冷却,最终制得四官能度环氧树脂物/双酚A型环氧树脂杂化材料。
实施例37
将70g环氧树脂(CYD-128,环氧值0.5262mol/100g)和30g实施例11所得四官能度环氧树脂于100℃搅拌均匀后加入40g(0.16mol)4,4二氨基二苯砜,再与 125℃充分搅拌均匀后于120℃真空烘箱内真空脱泡,注入模具中,120℃2小时,160℃3小时,180℃2小时,220℃1小时。完全固化后,体系自然冷却,最终制得四官能度环氧树脂物/双酚A型环氧树脂杂化材料。
实施例38
将60g环氧树脂(CYD-128,环氧值0.5262mol/100g)和40g实施例11所得四官能度环氧树脂于100℃搅拌均匀后加入43g(0.17mol)4,4二氨基二苯砜,再与125℃充分搅拌均匀后于120℃真空烘箱内真空脱泡,注入模具中,120℃2小时,160℃3小时,180℃2小时,220℃1小时。完全固化后,体系自然冷却,最终制得四官能度环氧树脂物/双酚A型环氧树脂杂化材料。
案例21-38的环氧树脂材料拉伸强度按照ISO 527:1993方法测定,选用样条类型为1BA型小样条。冲击强度按照ISO 179:1982中所述无缺口冲击样条方法测。
表1 实施例1-10所合成的四酚基化合物的表征数据。
Figure PCTCN2015077062-appb-000017
表2 实施例11-20所合成的四官能度环氧树脂的表征数据。
Figure PCTCN2015077062-appb-000018
Figure PCTCN2015077062-appb-000019
表3 实施例21-34的性能数据。
Figure PCTCN2015077062-appb-000020
表4 实施例35-38的性能数据。
Figure PCTCN2015077062-appb-000021
Figure PCTCN2015077062-appb-000022

Claims (10)

  1. 一种四酚基化合物,其特征在于,其结构式如下:
    Figure PCTCN2015077062-appb-100001
    其中M选自
    Figure PCTCN2015077062-appb-100002
    Figure PCTCN2015077062-appb-100003
    n=2,3,4,5,6,7,8,9,10
    R1=H,-CH3,-CH2CH3,-NO2
  2. 制备权利要求1所述四酚基化合物的方法,其特征在于,包括以下步骤:
    第一步:
    将100质量份的对羟基苯甲醛,40-150质量份含有两官能度(α,ω)烷基溴的单体,30-150质量份的催化剂A,1-5份质量份的催化剂B,加入反应器,在醇类溶剂和50-120℃条件搅拌下反应4-24小时;反应结束后,体系在室温静置,所得产物以晶体形式析出;然后滤出晶体并水洗,再用醇类溶剂重结晶,干燥,得到淡黄色固体产物;
    Figure PCTCN2015077062-appb-100004
    第二步:
    将100质量份第一步反应所得固体产物溶于120-400质量份苯酚或其衍生物,加入5-15质量份的催化剂对甲苯磺酸,5-15份质量份的催化剂无水氯化锌,在40-80℃条件下搅拌反应4-48小时;反应结束后水洗,蒸馏;所得粗产物用醇类溶剂溶解后在水中沉淀,干燥,得到红色的四酚基化合物;
    Figure PCTCN2015077062-appb-100005
    其中M选自
    Figure PCTCN2015077062-appb-100006
    中的一种;
    Figure PCTCN2015077062-appb-100007
    n=2,3,4,5,6,7,8,9,10
    R1=H,-CH3,-CH2CH3,-NO2
  3. 按照权利要求2所述的方法,其特征在于,两官能度(α,ω)烷基溴单体为1,2二溴乙烷、1,3二溴丙烷、1,4二溴丁烷、1,5二溴戊烷、1,6二溴己烷、1,7二溴庚烷、1,8二溴辛烷、1,9二溴壬烷、1,10二溴癸烷中的一种;苯酚衍生物为临甲酚、临乙酚、临硝基酚、间甲酚、间乙酚、间硝基酚中的一种;催化剂A优选为碳酸钾、氢氧化钠中的一种;催化剂B为碘化钾;醇类溶剂为甲醇、乙醇、1-丙醇、正丁醇中的一种。
  4. 一种四官能度环氧树脂,其特征在于,
    Figure PCTCN2015077062-appb-100008
    其中N选自
    Figure PCTCN2015077062-appb-100009
    Figure PCTCN2015077062-appb-100010
    n=2,3,4,5,6,7,8,9,10
    R1=H,-CH3,-CH2CH3,-NO2
  5. 利用权利要求1所述的四酚基化合物制备权利要求4的四官能度环氧树脂的方法,其特征在于,包括以下步骤:
    将100质量份四酚基化合物、100-1000质量份的环氧氯丙烷、2-15质量份的催化剂四丁基溴化铵加入反应器,在70-110℃搅拌反应2-10小时;反应温度降至40-60℃,将质量浓度为30%的氢氧化钠水溶液80质量份在2-10小时内缓慢滴加到反应体系中;滴加完后,体系在40-60℃继续搅拌反应2-5小时;反应结束后,滤液用醇或醇与水的混合溶液沉淀,干燥。
  6. 按照权利要求5的方法,其特征在于,所用醇或醇与水的混合溶液中的醇为乙醇或甲醇。
  7. 按照权利要求5的方法,其特征在于,氢氧化钠水溶液的浓度为30%。
  8. 利用权利要求4的四官能度环氧树脂用于环氧固化的方法,其特征在于,包括以下步骤:
    四官能度环氧树脂与双酚A型环氧树脂于80-130℃搅拌均匀后加入固化剂和催化剂,搅拌均匀后于真空脱泡,注入模具中,再放入烘箱中固化成型;其中四官能度环氧树脂的质量是双酚A型环氧树脂的1-100%。
  9. 按照权利要求8的方法,其特征在于,双酚A型环氧树脂为商品双酚A型环氧树脂,四官能度环氧树脂用量是按照实际所含纯双酚A型环氧树脂来计算的。
  10. 按照权利要求8的方法,其特征在于,双酚A型环氧树脂的环氧值范围优选为0.2-0.58mol/100g;固化剂为有机胺、酸酐类或咪唑类固化剂;催化剂为叔胺类催化剂。
PCT/CN2015/077062 2015-02-10 2015-04-21 一种新型四酚基化合物/四官能度环氧树脂、制备方法及应用 WO2016127492A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510070517.2 2015-02-10
CN201510070517.2A CN104672431B (zh) 2015-02-10 2015-02-10 一种四官能度环氧树脂及制备方法和应用
CN201510071187.9A CN104744224B (zh) 2015-02-10 2015-02-10 一种四酚基化合物、制备方法及应用
CN201510071187.9 2015-02-10

Publications (1)

Publication Number Publication Date
WO2016127492A1 true WO2016127492A1 (zh) 2016-08-18

Family

ID=56614189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077062 WO2016127492A1 (zh) 2015-02-10 2015-04-21 一种新型四酚基化合物/四官能度环氧树脂、制备方法及应用

Country Status (1)

Country Link
WO (1) WO2016127492A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754988A (zh) * 2021-10-18 2021-12-07 河南四通集团有限公司 一种高弯曲模量的仿水泥制备工艺
CN113788803A (zh) * 2021-09-13 2021-12-14 北京化工大学 一种缩水甘油醚型四官能度环氧树脂及其固化物和制备方法
CN114456353A (zh) * 2022-03-18 2022-05-10 安徽善孚新材料科技股份有限公司 一种低甲苯残留双酚a环氧树脂的制备方法
CN114716682A (zh) * 2022-05-25 2022-07-08 哈尔滨工业大学 一种可降解、低介电生物基环氧/有机硅杂化树脂的制备方法及其应用
CN115109229A (zh) * 2022-07-18 2022-09-27 河源诚展科技有限公司 一种耐黄变耐温的四官能团环氧树脂及其制备方法
CN115872984A (zh) * 2022-12-13 2023-03-31 南京林业大学 一种多官能度糠醇基缩水甘油醚及其制备方法和应用
CN116041669A (zh) * 2022-12-29 2023-05-02 中国建筑材料科学研究总院有限公司 环氧树脂单体及其制备方法和应用
CN117185743A (zh) * 2023-09-08 2023-12-08 海南瑞宸新型建材有限公司 一种用于农村自建房的轻质节能砂浆及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098964A (en) * 1991-01-31 1992-03-24 Shell Oil Company Process for preparing low-chlorine epoxy resins
JP2005263676A (ja) * 2004-03-18 2005-09-29 Nippon Soda Co Ltd テトラキス(4−ヒドロキシフェニル)エタン化合物の製造方法
CN101735176A (zh) * 2008-11-26 2010-06-16 建滔化工集团有限公司 一种四官能团环氧树脂的合成方法及其制得的环氧树脂
CN101973966A (zh) * 2010-09-03 2011-02-16 北京化工大学 一种1,1,2,2-四(对羟基苯基)乙烷四缩水甘油醚的制备方法
CN104262615A (zh) * 2014-09-11 2015-01-07 北京化工大学 一系列超支化聚合物的合成方法及其对环氧固化物的改性

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098964A (en) * 1991-01-31 1992-03-24 Shell Oil Company Process for preparing low-chlorine epoxy resins
JP2005263676A (ja) * 2004-03-18 2005-09-29 Nippon Soda Co Ltd テトラキス(4−ヒドロキシフェニル)エタン化合物の製造方法
CN101735176A (zh) * 2008-11-26 2010-06-16 建滔化工集团有限公司 一种四官能团环氧树脂的合成方法及其制得的环氧树脂
CN101973966A (zh) * 2010-09-03 2011-02-16 北京化工大学 一种1,1,2,2-四(对羟基苯基)乙烷四缩水甘油醚的制备方法
CN104262615A (zh) * 2014-09-11 2015-01-07 北京化工大学 一系列超支化聚合物的合成方法及其对环氧固化物的改性

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788803A (zh) * 2021-09-13 2021-12-14 北京化工大学 一种缩水甘油醚型四官能度环氧树脂及其固化物和制备方法
CN113788803B (zh) * 2021-09-13 2023-12-15 北京化工大学 一种缩水甘油醚型四官能度环氧树脂及其固化物和制备方法
CN113754988A (zh) * 2021-10-18 2021-12-07 河南四通集团有限公司 一种高弯曲模量的仿水泥制备工艺
CN114456353A (zh) * 2022-03-18 2022-05-10 安徽善孚新材料科技股份有限公司 一种低甲苯残留双酚a环氧树脂的制备方法
CN114716682A (zh) * 2022-05-25 2022-07-08 哈尔滨工业大学 一种可降解、低介电生物基环氧/有机硅杂化树脂的制备方法及其应用
CN115109229A (zh) * 2022-07-18 2022-09-27 河源诚展科技有限公司 一种耐黄变耐温的四官能团环氧树脂及其制备方法
CN115109229B (zh) * 2022-07-18 2023-09-05 广东诚展科技股份有限公司 一种耐黄变耐温的四官能团环氧树脂及其制备方法
CN115872984A (zh) * 2022-12-13 2023-03-31 南京林业大学 一种多官能度糠醇基缩水甘油醚及其制备方法和应用
CN115872984B (zh) * 2022-12-13 2024-05-31 南京林业大学 一种多官能度糠醇基缩水甘油醚及其制备方法和应用
CN116041669A (zh) * 2022-12-29 2023-05-02 中国建筑材料科学研究总院有限公司 环氧树脂单体及其制备方法和应用
CN117185743A (zh) * 2023-09-08 2023-12-08 海南瑞宸新型建材有限公司 一种用于农村自建房的轻质节能砂浆及其制备方法
CN117185743B (zh) * 2023-09-08 2024-03-08 海南瑞宸新型建材有限公司 一种用于农村自建房的轻质节能砂浆及其制备方法

Similar Documents

Publication Publication Date Title
WO2016127492A1 (zh) 一种新型四酚基化合物/四官能度环氧树脂、制备方法及应用
US9605110B2 (en) Epoxy resin curing agent
US6060611A (en) Epoxy resin composition
CN104744694B (zh) 一种苯并噁嗪树脂的制备方法
CN104672431B (zh) 一种四官能度环氧树脂及制备方法和应用
JP5875030B2 (ja) エポキシ樹脂、その製造方法、エポキシ樹脂組成物およびその硬化物
US4656294A (en) Polyglycidyl ethers and a process for producing the same
CN108863988A (zh) 一种含砜基四官能度环氧及其制备方法和应用
JPH0377814B2 (zh)
WO2016006649A1 (ja) エポキシ樹脂、その製造方法、エポキシ樹脂組成物およびその硬化物
CN113788803B (zh) 一种缩水甘油醚型四官能度环氧树脂及其固化物和制备方法
JP3894628B2 (ja) 変性エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
CN104744224B (zh) 一种四酚基化合物、制备方法及应用
JP3998163B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP3636409B2 (ja) フェノール類樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP6252978B2 (ja) エポキシ樹脂硬化剤
JPH09278868A (ja) 三官能性エポキシ樹脂
JPH11302508A (ja) エポキシ樹脂組成物
JPH11181049A (ja) 変性エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JPH11343286A (ja) エポキシ化合物及びその製造方法
JPH06157710A (ja) 新規エポキシ樹脂及びその製造方法並びにその中間体の製造方法
JP3791711B2 (ja) エポキシ樹脂組成物
CN116410445A (zh) 环氧树脂组合物以及树脂薄膜
JPH11140163A (ja) エポキシ樹脂、エポキシ樹脂製造法、エポキシ樹脂組成物及びその硬化物
JP2014162854A (ja) 樹脂組成物及び硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881653

Country of ref document: EP

Kind code of ref document: A1