WO2016125834A1 - 発光組成物、発光電気化学素子、及び発光装置 - Google Patents

発光組成物、発光電気化学素子、及び発光装置 Download PDF

Info

Publication number
WO2016125834A1
WO2016125834A1 PCT/JP2016/053258 JP2016053258W WO2016125834A1 WO 2016125834 A1 WO2016125834 A1 WO 2016125834A1 JP 2016053258 W JP2016053258 W JP 2016053258W WO 2016125834 A1 WO2016125834 A1 WO 2016125834A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
conductive polymer
emitting
electrode
composition
Prior art date
Application number
PCT/JP2016/053258
Other languages
English (en)
French (fr)
Inventor
錦谷 禎範
西出 宏之
涼 西村
聡一 内田
さなみ 矢崎
Original Assignee
Jxエネルギー株式会社
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社, 学校法人早稲田大学 filed Critical Jxエネルギー株式会社
Priority to CN201680008867.9A priority Critical patent/CN107210383B/zh
Priority to JP2016573404A priority patent/JP6675611B2/ja
Priority to KR1020177023290A priority patent/KR101943078B1/ko
Publication of WO2016125834A1 publication Critical patent/WO2016125834A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/133Rod-like building block
    • C08G2261/1334Step-ladder-type, e.g. polyfluorenes or polycarbazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent

Definitions

  • the present invention relates to a light-emitting composition, a light-emitting electrochemical element having a light-emitting layer formed of the light-emitting composition, and a light-emitting device having the light-emitting electrochemical element.
  • organic electroluminescent elements (hereinafter referred to as OLED; Organic-Light-Emitting-Diode) are generally lightweight, thin, and capable of forming a large-area light-emitting surface. The use to is expected.
  • This organic electroluminescent element is generally composed of an anode, a cathode, and a light emitting layer. By applying a voltage between the two electrodes, holes injected from the anode and electrons injected from the cathode are generated. Light is emitted by bonding in the light emitting layer.
  • a hole injection layer or an electron injection layer for improving the recombination efficiency of holes and electrons is provided to form a multilayer structure. There is a need. However, in this case, there is a problem that the structure of the light emitting element becomes complicated and the manufacturing process becomes complicated. Furthermore, a high electric field is required for driving the light emitting element.
  • a light emitting electrochemical element (hereinafter, also abbreviated as LEC; Light-emitting Electrochemical Cell) is proposed in, for example, Patent Document 1, Patent Document 2, and the like. Has been.
  • the LEC is composed of a first electrode, a second electrode, and a light emitting layer provided between both electrodes.
  • the light emitting layer is formed by dispersing a conductive polymer, which is a light emitting material, and an electrolytic salt in an electrolyte.
  • a pn junction or a pin junction is formed by the injection of positive and negative charges from the electrode and the movement of both positive and negative ions of the electrolytic salt. It is presumed that electrons emit light by recombination on the light emitting material molecules in the light emitting layer to excite the light emitting molecules and deactivate from the excited state to the ground state.
  • This LEC generally has (1) low driving voltage, (2) use of stable electrodes in the atmosphere, and (3) manufacture of a device with a single light emitting layer compared to OLEDs. Therefore, it has advantages such as a simple element configuration. Among them, LEC using a solid electrolyte is particularly attracting attention because it is easy to seal the electrolyte during the manufacture of the device and has little influence on the environment when the device is damaged.
  • an object of the present invention is to provide a light emitting composition capable of obtaining white light emission almost as white as possible while having a simple device structure in which the light emitting layer is a single layer, and light emitting electrochemistry in which the light emitting layer is formed with this light emitting composition It is providing the light-emitting device which has an element and this luminescent electrochemical element.
  • the present inventors have found that in the LEC in which the first electrode, the light emitting layer, and the second electrode are laminated in this order, the light emitting layer includes the first conductive polymer and the second conductive polymer.
  • Polymer electrolyte, and electrolyte salt, and the absolute value of the energy difference between the highest occupied orbit (HOMO) or the lowest empty orbit (LUMO) of the first conductive polymer and the second conductive polymer is 0.5 eV LECs comprising the following luminescent compositions were developed to complete the present invention.
  • the first conductive polymer when a voltage is applied between the first electrode and the second electrode, the first conductive polymer emits blue light, and the second conductive polymer emits red-orange light, so that the light emitting layer is white.
  • the first conductive polymer emits blue light
  • the second conductive polymer emits red-orange light
  • the exciplex formed by the first conductive polymer and / or the second conductive polymer emits fluorescence.
  • the light emitting layer By emitting light, the light emitting layer emits white light.
  • the exciplex is an excimer formed by the first conductive polymer or the second conductive polymer, and an exciplex or electroplex formed between the first conductive polymer and the second conductive polymer. It is preferable to emit fluorescence, exciplex fluorescence, or electroplex fluorescence.
  • the present inventors have found that excellent white light with high luminance can be emitted at a low driving voltage by combining two or more kinds of light emission.
  • the first conductive polymer, the second conductive polymer, the polymer electrolyte, and the electrolytic salt are contained, and the highest occupied orbit (HOMO) of the first conductive polymer and the second conductive polymer is included.
  • the absolute value of the energy difference between the lowest empty orbit (LUMO) is 0.5 eV or less.
  • the light-emitting layer is made of the light-emitting composition. An element is provided.
  • a light-emitting device comprising the light-emitting electrochemical element and a voltage unit for applying a voltage between the first electrode and the second electrode of the light-emitting electrochemical element.
  • a light-emitting electrochemistry of a combination of at least one conductive polymer having a fluorene skeleton and at least one selected from a conductive polymer having a phenylene vinylene skeleton and a conductive polymer having a thiophene skeleton The light-emitting electrochemical device includes a first electrode, a light-emitting layer, and a second electrode laminated in this order, and the light-emitting layer has a conductive polymer having the fluorene skeleton.
  • Use of at least one combination in the manufacture of a light-emitting electrochemical device is provided.
  • the light-emitting composition of the present invention By using the light-emitting composition of the present invention, a light-emitting layer of a light-emitting electrochemical device capable of obtaining white light emission with high brightness and almost as much white as possible at a low driving voltage can be easily produced.
  • the light-emitting electrochemical element of the present invention can be a single light-emitting layer, and has a simple element structure, and can obtain white light emission with high luminance and almost as much white as possible with a low driving voltage.
  • white as close as possible to white means that x and y are in the range of 0.33 ⁇ 0.09 in the chromaticity diagram.
  • the emission color of the light-emitting electrochemical element of the present invention and the compound related to the element is applied to the CIE chromaticity coordinates based on the result of measurement using “instant multi-photometry system (wide dynamic range type) MCPD9800” (manufactured by Otsuka Electronics Co., Ltd.).
  • the color when In the following, a material having such a good whiteness may be referred to as a high whiteness.
  • a light emitting device capable of obtaining white light with high brightness and high whiteness can be obtained.
  • FIG. 1 is a graph showing the luminance-voltage (LV) characteristics of the elements of Examples 1 and 2, and (b) shows the luminance-voltage (LV) characteristics of the elements of Examples 3-5. It is a graph.
  • (A) is an EL (Electroluminescence) spectrum diagram of the elements of Examples 1 and 2, and (b) is an EL (Electroluminescence) spectrum diagram of the elements of Examples 3 to 5.
  • (A) is a chromaticity diagram of the elements of Examples 1 and 2, and (b) is a chromaticity diagram of the elements of Examples 3 to 5.
  • 14 is a graph showing luminance-voltage (LV) characteristics of the device of Example 6.
  • 10 is an EL (Electroluminescence) spectrum diagram of the element of Example 6.
  • 10 is a chromaticity diagram of an element according to Example 6.
  • FIG. 14 is a graph showing luminance-voltage (LV) characteristics of the device of Example 7.
  • 10 is an EL (Electroluminescence) spectrum diagram of the device of Example 7.
  • FIG. 10 is a chromaticity diagram of the element of Example 7.
  • FIG. 5 is an EL (Electroluminescence) spectrum diagram of the elements of Comparative Examples 1 to 4.
  • FIG. 6 is a chromaticity diagram of each element of Comparative Examples 1 to 4.
  • the light-emitting composition of the present invention contains a first conductive polymer, a second conductive polymer, a polymer electrolyte, and an electrolytic salt, and among these, the first conductive polymer and the second conductive polymer are light-emitting compounds.
  • This luminescent composition can be preferably used, for example, to form a luminescent layer of a luminescent electrochemical device in which a first electrode, a luminescent layer, and a second electrode are laminated in this order.
  • the absolute value of the energy difference between the highest occupied orbit (HOMO) or the lowest unoccupied orbit (LUMO) of the first conductive polymer and the second conductive polymer is 0.5 eV or less, Preferably it is 0.3 eV or less.
  • Such an energy difference may be provided between HOMOs or LUMOs, and both may be such energy differences.
  • Such light emission from the conductive polymer is obtained by applying a voltage.
  • the first conductive polymer emits blue light
  • the second conductive polymer emits red-orange light, so that the whole emits white light.
  • the first conductive polymer emits blue light
  • the second conductive polymer emits red-orange light
  • the exciplex formed by the first conductive polymer and / or the second conductive polymer emits fluorescence.
  • the exciplex is an excimer formed by the first conductive polymer or the second conductive polymer, and an exciplex or electroplex formed between the first conductive polymer and the second conductive polymer. Emits fluorescence, exciplex fluorescence, or electroplex fluorescence.
  • an excimer, an exciplex, or an electroplex is an excited dimer composed of the same or different types of atoms or molecules, and the excited state atoms or molecules are the same or other types of atoms or molecules in the ground state. It is formed by combining with.
  • Excimer fluorescence, exciplex fluorescence or electroplex fluorescence is fluorescence emitted when an excited excimer, exciplex or electroplex is deactivated.
  • This exciplex is an excited dimer formed from a donor molecule in which holes are injected into HOMO and an acceptor molecule in which electrons are injected into LUMO, and the wave functions of the donor molecule and the acceptor molecule overlap. Electrons and holes are delocalized. Light is emitted by recombination of electrons and holes in the excited dimer. In addition, in the electroplex, the overlap of the wave function between the donor molecule in which holes are injected into HOMO and the acceptor molecule in which electrons are injected into LUMO is small, and charge delocalization hardly occurs. Therefore, light emission is caused by direct transition of electrons from the LUMO of the acceptor molecule to the HOMO of the donor molecule.
  • the first conductive polymer Or only one of the second conductive polymers, or only the exciplex formed between the first conductive polymer and the second conductive polymer, only the electroplex, or only the exciplex and the electroplex.
  • the light emission may be far from white light emission.
  • the light emission of the first conductive polymer and the light emission of the second conductive polymer satisfy the complementary color relationship, but it is extremely difficult to find a compound having a complementary color relationship.
  • the white light may not be obtained.
  • the first conductive polymer and the second conductive polymer emit light themselves, and the exciplex formed by the first conductive polymer and / or the second conductive polymer as described above, Good white light emission can be obtained by designing to emit light with a fluorescent color that complements the light emission of the first and second conductive polymers.
  • the first conductive polymer contained in the light emitting composition of the present invention has an electron and / or hole transport function, and is a conductive polymer that can efficiently transport electrons and / or holes.
  • a conductive polymer having a fluorene skeleton is preferable in that it excites good excimer fluorescence or exciplex fluorescence between the first conductive polymers or in combination with the second conductive polymer.
  • a polymer having a fluorene skeleton emits blue light by itself, and excimer fluorescence is emitted by forming an excimer between the first conductive polymers, or exciplex fluorescence is emitted by forming an exciplex with the second conductive polymer. You can do it.
  • the first conductive polymer having a fluorene skeleton may be a homopolymer or a copolymer.
  • the copolymer may be a copolymer of a plurality of fluorene monomers having different structural formulas having a fluorene skeleton, or a copolymer of a monomer having a fluorene skeleton and another monomer having no fluorene skeleton.
  • the first conductive polymer having the fluorene skeleton is preferably a conductive polymer having at least a structural unit represented by the following formula (1). This is because white light with high whiteness can be obtained.
  • R is an alkyl group having 1 to 20 carbon atoms.
  • a polymer represented by the following formula (1-1) can be exemplified.
  • R represents an alkyl group having 1 to 20 carbon atoms
  • m represents a degree of polymerization, and represents an integer of 5 or more, preferably 10 or more, more preferably 20 or more.
  • Examples of the conductive polymer having the fluorene skeleton of the above formula (1) include the following compounds.
  • n represents the degree of polymerization and represents an integer of 5 or more, preferably 10 or more, more preferably 20 or more.
  • the copolymer include poly [9,9-di-n-hexylfluorenyl-2,7-diyl-co-anthracene-9,10-diyl].
  • n represents the degree of polymerization and represents an integer of 5 or more, preferably 10 or more, more preferably 20 or more.
  • n represents the degree of polymerization, and represents an integer of 5 or more, preferably 10 or more, more preferably 20 or more.
  • n represents the degree of polymerization and represents an integer of 5 or more, preferably 10 or more, more preferably 20 or more.
  • the polymerization degree of the first conductive polymer is not particularly limited as long as the light emitting layer can be formed by a method such as melting or dissolving the light emitting composition in a solvent and applying it to the electrode.
  • poly (9,9-di-n-dodecylfluorenyl-2,7-diyl) represented by the formula (1d) is particularly preferable. This is because white light with higher whiteness can be obtained.
  • the energy difference of HOMO or LUMO with the first conductive polymer is within the above range, and the second conductive polymer is excited with the first conductive polymer. If it forms a plex or an electroplex, there is no restriction
  • the second conductive polymer having a phenylene vinylene skeleton is preferably a conductive polymer having at least a structural unit represented by the following formula (2) or (3).
  • the conductive polymer having at least a structural unit represented by the following formula (4) is preferable.
  • These conductive polymers are preferable in that they have high hole mobility, can form excitons efficiently, and white light with high whiteness can be obtained.
  • polymer examples include a polymer represented by the following formula (2-1).
  • W represents the degree of polymerization, and represents an integer of 5 or more, preferably 10 or more, more preferably 20 or more.
  • polymer examples include a polymer represented by the following formula (3-1).
  • X represents the degree of polymerization, and represents an integer of 5 or more, preferably 10 or more, more preferably 20 or more.
  • polymer examples include a polymer represented by the following formula (4-1).
  • Y and Z each represent a degree of polymerization and each independently represents an integer of 5 or more, preferably 10 or more, more preferably 20 or more, and may be the same or different.
  • the second conductive polymer having the phenylene vinylene skeleton or thiophene skeleton may be a homopolymer or a copolymer.
  • the copolymer has a phenylene vinylene skeleton or a thiophene skeleton, a copolymer with a plurality of phenylene vinylene or thiophene monomers having different structural formulas, and a monomer having a phenylene vinylene skeleton or thiophene skeleton and no phenylene vinylene skeleton or thiophene skeleton Copolymers with other monomers may also be used.
  • the polymerization degree of the second conductive polymer is not particularly limited as long as the light emitting layer can be formed by a method such as melting or dissolving the light emitting composition in a solvent and applying it to the electrode.
  • the second conductive polymer examples include poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene], poly [2-methoxy-5- (3 ′, 7′-). Dimethyloctyloxy) -1,4-phenylenevinylene], poly [3-octylthiophene-2,5-diyl-co-3-decyloxythiophene-2,5-diyl] (POT-co-DOT) and the like are used. be able to.
  • the content ratio of the first conductive polymer to the second conductive polymer is preferably 1 to 200 parts by weight of the second conductive polymer with respect to 100 parts by weight of the first conductive polymer. It is more preferable that If it is in the said range, more favorable fluorescence light emission will be obtained, luminous efficiency can be made more favorable, and it will become white light of high whiteness. Furthermore, since it becomes easy to form an exciplex by the first conductive polymer and / or the second conductive polymer, the fluorescence of this exciplex complements the light emission by the first conductive polymer and the second conductive polymer. Good white light emission can be obtained. When the content ratio of the first conductive polymer and the second conductive polymer is out of the above range, good fluorescence may not be obtained.
  • the polymer electrolyte contained in the light emitting composition of the present invention is preferably a polymer having an ethylene oxide skeleton.
  • a resin having an ethylene oxide skeleton represented by the following formula (5) and having a branched structure as a structure having this ethylene oxide skeleton in the main chain or side chain can be given. -(CH 2 -CH 2 -O) n- (5)
  • a hydrogen atom may be substituted with an alkyl group such as methyl or ethyl, or an aryl group having an aromatic ring such as a phenyl group.
  • polyalkylene oxide is preferable, and polyethylene oxide is more preferable. This is because it is excellent in terms of workability, ionic conductivity, mechanical properties, and transparency.
  • Polyethylene oxide preferably has a viscosity average molecular weight (Mv) of 100,000 to 2,000,000, more preferably 300,000 to 900,000. Workability and ionic conductivity become better.
  • Mv viscosity average molecular weight
  • the content of the polymer electrolyte in the luminescent composition is preferably 10 to 400 parts by weight, more preferably 40 to 160 parts by weight, with respect to 100 parts by weight of the total amount of the first and second conductive polymers.
  • the polymer electrolyte content is less than 10 parts by weight, the light emitting layer is thin and may be short-circuited easily. When it exceeds 400 parts by weight, clean surface light emission may not be obtained.
  • the light-emitting composition of the present invention further contains an electrolytic salt.
  • the electrolytic salt include LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiPF 6 , LiCF 3 SO 3 and other lithium salts, such as KCl, KI, Potassium salts such as KBr and KCF 3 SO 3 , sodium salts such as NaCl, NaI, and NaBr, tetraethylammonium borofluoride, tetraethylammonium perchlorate, tetrabutylammonium borofluoride, tetrabutylammonium perchlorate, tetrabutylammonium Mention may be made of tetraalkylammonium salts such as halides.
  • alkyl chain lengths of the quaternary ammonium salts described above may be the same or different, and only one kind may be used as necessary, or two or more kinds may be used in combination.
  • KCF 3 SO 3 is preferable from the viewpoints of ionic conductivity, compatibility, and stability.
  • an ionic liquid can be used as the electrolytic salt contained in the luminescent composition.
  • an ionic liquid means a salt that exists as a liquid at room temperature (25 ° C.).
  • the cation of the ionic liquid include an imidazolium cation, a pyridinium cation, a pyrrolidinium cation, a piperidinium cation, a tetraalkylammonium cation, a pyrazolium cation, and a tetraalkylphosphonium cation.
  • imidazolium cation examples include 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-allyl-3-methylimidazolium, -Allyl-3-ethylimidazolium, 1-allyl-3-butylimidazolium, 1,3-diallylimidazolium and the like.
  • Examples of the pyridinium cation include 1-propylpyridinium, 1-butylpyridinium, 1-ethyl-3- (hydroxymethyl) pyridinium, 1-ethyl-3-methylpyridinium, and the like.
  • Examples of the pyrrolidinium cation include N-methyl-N-propylpyrrolidinium, N-methyl-N-butylpyrrolidinium, N-methyl-N-methoxymethylpyrrolidinium and the like.
  • piperidinium cation examples include N-methyl-N-propylpiperidinium.
  • Examples of the tetraalkylammonium cation include N, N, N-trimethyl-N-propylammonium and methyltrioctylammonium.
  • Examples of the pyrazolium cation include 1-ethyl-2,3,5-trimethylpyrazolium, 1-propyl-2,3,5-trimethylpyrazolium, 1-butyl-2,3,5- And trimethylpyrazolium.
  • tetraalkylphosphonium cation examples include tetramethylphosphonium and tetrabutylphosphonium.
  • examples of the anion that forms the ionic liquid in combination with the cation include BF 4 ⁇ , NO 3 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , CH 3 CH 2 OSO 3 ⁇ , CH 3 CO 2 ⁇ , or CF 3 CO 2 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N - [ bis (trifluoromethylsulfonyl) imide], (CF 3 SO 2) 3 C - mentioned fluoroalkyl group-containing anions such as It is done.
  • the content of the electrolytic salt in the luminescent composition is preferably 0.01 to 40 parts by weight, more preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the total amount of the first and second conductive polymers. It is.
  • the electrolytic salt content is less than 0.01 parts by weight, there is a possibility that current does not flow when the light emitting composition is used as the light emitting layer, and there is a possibility that no light emission occurs. May be prone to occur.
  • the light-emitting electrochemical element of the present invention is formed by laminating a first electrode, a light-emitting layer, and a second electrode in this order, and the light-emitting layer is made of the light-emitting composition of the present invention.
  • the layer thickness of the light emitting layer of the light emitting electrochemical device of the present invention can be set to any layer thickness because the light emitting performance does not depend on the film thickness in principle.
  • the desired layer thickness is applied in the range of 1 nm to 1000 nm, more preferably in the range of 10 to 500 nm, and still more preferably in the range of 50 nm to 250 nm.
  • the layer thickness is less than 1 nm, a short circuit may occur, and when it exceeds 1000 nm, the efficiency of exciplex formation by the first conductive polymer and / or the second conductive polymer may be low.
  • At least one of the first electrode and the second electrode constituting the light-emitting electrochemical element of the present invention is a translucent electrode, that is, a transparent electrode, and can extract light emitted from the light-emitting layer.
  • the material for the transparent electrode include tin oxide, zinc oxide, indium oxide, indium tin oxide, indium oxide / zinc oxide compound, tin oxide / antimony compound, gallium oxide / zinc oxide compound, and metals such as platinum. .
  • the other electrode need not be a transparent electrode, for example, aluminum, indium, magnesium, tungsten, titanium, molybdenum, calcium, sodium, potassium, yttrium, lithium, manganese, gold, silver, copper, palladium, platinum, tin, Metals such as lead and nickel, and alloys of these metals can be used. Of course, it may be a transparent electrode.
  • ITO indium tin oxide
  • aluminum is preferable in terms of conductivity and economy.
  • Examples of a method for forming the first electrode or the second electrode on a transparent substrate such as glass include a sputtering method and a vacuum deposition method.
  • the light-emitting composition of the present invention was dissolved and dispersed in a solvent on the surface of an ITO electrode or the like provided as the first electrode 1 on a transparent substrate such as glass.
  • the dispersion solution is applied by, for example, a spin coat film forming method, and the solvent is removed by drying to laminate the light emitting layer 2.
  • the solvent for the dispersion solution is not particularly limited as long as it dissolves each constituent component.
  • a solvent such as chloroform, cyclohexanone, toluene, or a mixed solvent thereof can be used.
  • the light emitting electrochemical device 10 can be manufactured by laminating aluminum as the second electrode 3 on the light emitting layer 2 by vapor deposition and film formation, for example, by a vacuum vapor deposition method.
  • the element characteristics of the light-emitting electrochemical element 10 of the present invention can be evaluated by luminance-voltage (LV) characteristics, EL spectrum diagrams, and chromaticity diagrams (chromaticity coordinates).
  • LV luminance-voltage
  • EL spectrum diagrams EL spectrum diagrams
  • chromaticity diagrams chromaticity coordinates
  • the relationship between the drive voltage and the luminance of the emitted light can be evaluated.
  • the details of the emission color can be grasped by the emission intensity for each wavelength when a voltage is applied.
  • the luminescent color can be expressed by the numerical value of the xy coordinates using a chromaticity diagram, and the degree of whiteness of white light which is an object of the present invention can be evaluated by the numerical value of the xy coordinates.
  • the light-emitting device of the present invention has a configuration including the light-emitting electrochemical element of the present invention and a voltage unit for applying a voltage to the light-emitting electrochemical element.
  • a voltage unit either a DC voltage or an AC voltage may be applied.
  • A1 First conductive polymer; poly (9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) of formula (1d) (manufactured by Aldrich).
  • LUMO -3.2 eV
  • HOMO -6.1 eV
  • Second conductive polymer poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene] (MEH-PPV) of the above formula (2-1) (Aldrich) Made).
  • LUMO -3.4 eV
  • HOMO -5.5 eV
  • Second conductive polymer poly [2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) -1,4-phenylenevinylene] of the above formula (3-1) (MDMO-PPV ) (Aldrich).
  • LUMO -3.2 eV
  • HOMO -5.4 eV
  • Second conductive polymer poly [3-octylthiophene-2,5-diyl-co-3-decyloxythiophene-2,5-diyl] of formula (4-1) (POT-co -DOT) (Aldrich).
  • the HOMO level of the conductive polymer is determined by determining the oxidation potential E (ferrocene standard) from the rising edge of the oxidation wave of the cyclic boil tomogram (CV), and then setting the work function of the ferrocene standard to 5.23 eV. -(EE + 5.23).
  • E oxidation potential
  • e is a unit charge.
  • the band gap energy (Eg) was determined from the rise of the absorption peak in the UV-visible spectrum.
  • Example 1 Light emitting composition 1> As the luminescent composition 1, the above components A1, A2-1, A3, and A4 were mixed in the mixing ratio shown in Table 1. The LUMO difference (absolute value) between the first conductive polymer A1 and the second conductive polymer A2-1 is shown in Table 1.
  • ⁇ Light-emitting electrochemical element Preparation of element A> An ITO electrode was provided as a first electrode 1 on a glass substrate, and UV ozone cleaning was performed. Thereafter, 150 ⁇ L of a 9.5 mg / mL solvent solution prepared by dissolving the luminescent composition 1 in a chloroform / cyclohexanone (1.62: 1.0) mixed solvent is applied to the first electrode 1 by a spin coating film forming method. Then, the mixed solvent was removed by drying, and a light emitting layer 2 having a thickness of 150 nm was laminated. Further, aluminum was vacuum-deposited on the light emitting layer 2 and a second electrode 3 having a thickness of 100 nm was laminated to produce an element A.
  • the obtained device A was evaluated for luminescent color based on LV characteristics, EL spectrum, and chromaticity diagram.
  • FIG. 2A shows the LV characteristics
  • FIG. 3A shows the EL spectrum
  • FIG. 4A shows the chromaticity diagram
  • Table 2 shows the xy coordinates of the chromaticity coordinates on the chromaticity diagram.
  • the LV characteristic and EL spectrum were measured using an instantaneous multi-photometry system (wide dynamic range type) MCPD9800 (manufactured by Otsuka Electronics Co., Ltd.).
  • the distance from the detector to the element light emitting surface is 0.028 m
  • the light emitting area is 9 ⁇ 10 ⁇ 6 m 2 (3 mm ⁇ 3 mm)
  • the applied voltage is 0V to 15V. All measurements were performed in a dark room.
  • ⁇ Luminescent Electrochemical Element Production of Elements B, C, D, and E> Devices B, C, D, and E were produced in the same manner as in Example 1 except that the luminescent composition 1 of Example 1 was changed to luminescent compositions 2 to 5, and evaluated in the same manner. The results are shown in FIGS. 2 to 4 and Table 2.
  • Example 6 Light emitting composition 6> As the luminescent composition 6, the above components A1, A2-2, A3, and A4 were mixed at the blending ratio shown in Table 1. Table 1 shows the LUMO difference (absolute value) between the first conductive polymer and the second conductive polymer.
  • Example 7 Light emitting composition 7> As the luminescent composition 7, the above components A1, A2-3, A3, and A4 were mixed in the mixing ratio shown in Table 1. Table 1 shows the LUMO difference (absolute value) between the first conductive polymer and the second conductive polymer.
  • Example 1 ⁇ Luminescent Electrochemical Device: Production of Device I> A device I was produced in the same manner as in Example 1 except that the luminescent composition 1 of Example 1 was changed to the luminescent composition 9, and evaluated in the same manner. The results are shown in FIGS. 11 and 12 and Table 2.
  • FIG. 11 shows the light emission behavior of the first conductive polymer A1 alone, and A1 emits light at 400 to 500 nm with a maximum value around 450 nm. This light emission is the light emission of the first conductive polymer A1 alone.
  • Device I in FIG. 11 shows the light emission behavior of the second conductive polymer A2-1 alone, and A2-1 alone emits light with a maximum value in the vicinity of 600 nm.
  • the emission spectra of the elements A to E are obtained by superimposing emission spectra having maximum values in the vicinity of 450 nm, 500 nm, and 600 nm.
  • the emission near 500 nm is excimer fluorescence of A1.
  • the elements A to E have white light emission that is almost as white as the blue light emission of A1, the red-orange light emission of A2-1, and the light emission of about 500 nm by the excimer of A1. I understand that.
  • the emission spectrum of the element F shows emission having a maximum value near 500 nm, and the emission due to the excimer of A1 near 500 nm is superimposed on the emission of A1 and A2-2. The light is emitted. From the chromaticity diagram of FIG. 7, it can be seen that the element F has white light emission that is almost white due to blue light emission of A1, reddish-orange light emission of A2-2, and light emission of about 500 nm by the excimer of A1. .
  • the element K in FIG. 11 shows the light emission behavior of the second conductive polymer A2-3 alone, and the light emission of 600 nm or more is caused by A2-3 alone.
  • the light emission spectrum of the element G is a combination of light emission having a maximum value in the vicinity of 400 nm to 500 nm and shoulder light emission in the vicinity of 600 nm. Luminescence due to the excimer is observed. Further, according to the chromaticity diagram of FIG. 10, the element G emits white light that is almost as white as possible by the blue light emission of A1, the red-orange light emission of A2-3, and the light emission near 500 nm by the excimer of A1. I understand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

第1導電性ポリマー、第2導電性ポリマー、ポリマー電解質、及び電解塩を含有し、前記第1導電性ポリマーと前記第2導電性ポリマーの最高被占軌道(HOMO)間、又は最低空軌道(LUMO)間のエネルギー差の絶対値が0.5eV以下である発光組成物が提供される。また、第1電極、この発光組成物からなる発光層、及び第2電極がこの順番に積層された発光電気化学素子、及び該発光電気化学素子を有する発光装置が提供される。この発光装置では、発光電気化学素子の各層が簡素な構成からなる素子構造でありながら、限りなく白に近い白色発光が得られる。

Description

発光組成物、発光電気化学素子、及び発光装置
 本発明は、発光組成物、この発光組成物で発光層を形成した発光電気化学素子、及び該発光電気化学素子を有する発光装置に関する。
 近年、有機電界発光素子(以降、OLED;Organic Light-Emitting Diodeとも称する。)は一般に、軽量で薄く大面積の発光面を形成することが可能であることから、照明、ディスプレイ等の各種発光デバイスへの利用が期待されている。
 この有機電界発光素子は、一般に、陽極、陰極、及び発光層から構成され、両極間に電圧を印加することにより、陽極から注入された正孔(ホール)と、陰極から注入された電子とが発光層で結合することにより発光する。この有機電界発光素子の発光効率を高めるためには、発光層の他に、正孔と電子との再結合効率を向上させるための正孔注入層や電子注入層等を設けて多層構造とする必要がある。しかしながらこの場合、発光素子の構造が複雑になると共に製造工程も煩雑になってしまうという課題を有する。更に、発光素子の駆動に高電界が必要であることも課題となっている。
 上記した有機電界発光素子の課題を解決する素子として、発光電気化学素子(以降、LEC;Light-emitting Electrochemical Cellと略称することもある。)が、例えば特許文献1、特許文献2等にて提案されている。
 このLECは、第1電極、第2電極、及び両電極間に設けられた発光層から構成される。発光層は、発光材料である導電性ポリマー及び電解塩を電解質に分散して形成される。このLECにおいては、両極間に電圧を印加することによって、電極からの正負電荷の注入と電解塩の正負両イオンの移動によりp-n接合又はp-i-n接合が形成され、正孔と電子が発光層内の発光材料分子上で再結合して発光分子を励起し、励起状態から基底状態に失活することにより発光すると推定されている。
 このLECは一般的に、OLEDに対して、(1)駆動電圧が低い、(2)大気中で安定な電極の使用が可能、(3)単一の発光層での素子の製造が可能になるため素子構成が簡単、等の優位性を持つ。中でも、固体電解質を使用するLECは、素子製造時の電解質の封止が容易であることや、素子破損時に環境に与える影響が少ないことから、特に注目されている。
特開2008-291230号公報 特表2012-516033号公報
 このようなLECを、照明やディスプレイ等の用途に適用する場合、白色発光させる必要がある。従来のLECの開発は、上記特許文献1及び2にも示されているように、青色(B)、緑色(G)、赤色(R)等の単色発光素子の性能向上に向けられており、LECによる白色発光は未開拓の領域となっている。白色発光のLECとするには、例えば、発光層を赤、緑、及び青で構成する三層構造とするか、フィルタを設けて色変換することが考えられる。しかしながら、性能、コスト、製法で満足のいく白色発光のLECはいまだ得られていない。
 そこで、本発明の課題は、発光層が単一層である簡素な素子構造でありながら、限りなく白に近い白色発光が得られる発光組成物、この発光組成物で発光層を形成した発光電気化学素子、及び該発光電気化学素子を有する発光装置を提供することにある。
 本発明者らは前記課題について鋭意研究した結果、第1電極、発光層、及び第2電極が、この順番に積層されたLECにおいて、発光層が、第1導電性ポリマー、第2導電性ポリマー、ポリマー電解質、及び電解塩を含有し、第1導電性ポリマー及び第2導電性ポリマーの最高被占軌道(HOMO)間、又は最低空軌道(LUMO)間のエネルギー差の絶対値が0.5eV以下である発光組成物からなるLECを開発し、本発明を完成させるに至った。
 具体的には、第1電極と第2電極との間に電圧を印加することにより、第1導電性ポリマーが青色発光し、第2導電性ポリマーが赤橙色発光することで、発光層が白色発光し、又は、第1導電性ポリマーが青色発光し、第2導電性ポリマーが赤橙色発光し、更に、第1導電性ポリマー及び/又は第2導電性ポリマーにより形成される励起錯体が蛍光を発光することで、発光層が白色発光する。この励起錯体は、第1導電性ポリマー又は第2導電性ポリマーにより形成されるエキサイマー、第1導電性ポリマーと第2導電性ポリマーとの間に形成されるエキサイプレックス若しくはエレクトロプレックスであり、それぞれエキサイマー蛍光、エキサイプレックス蛍光若しくはエレクトロプレックス蛍光を発光することが好ましい。このように2種以上の発光の組み合わせによって低駆動電圧で高輝度の優れた白色光が発光されることを見出し、本発明を完成させた。
 すなわち、本発明によれば、第1導電性ポリマー、第2導電性ポリマー、ポリマー電解質、及び電解塩を含有し、前記第1導電性ポリマー及び前記第2導電性ポリマーの最高被占軌道(HOMO)間、又は最低空軌道(LUMO)間のエネルギー差の絶対値が0.5eV以下であることを特徴とする発光組成物が提供される。
 また本発明によれば、第1電極、発光層、及び第2電極がこの順番に積層された発光電気化学素子において、前記発光層が、上記発光組成物からなることを特徴とする発光電気化学素子が提供される。
 さらに本発明によれば、上記発光電気化学素子と、該発光電気化学素子の第1電極と第2電極との間に電圧を印加する電圧部とを有することを特徴とする発光装置が提供される。
 さらに本発明によれば、フルオレン骨格を有する導電性ポリマーの少なくとも一種と、フェニレンビニレン骨格を有する導電性ポリマー及チオフェン骨格を有する導電性ポリマーから選択される少なくとも一種との組合わせの、発光電気化学素子の製造への使用であって、 前記発光電気化学素子は、第1電極、発光層、及び第2電極がこの順番に積層されてなり、前記発光層が、前記フルオレン骨格を有する導電性ポリマーの少なくとも一種、前記フェニレンビニレン骨格を有する導電性ポリマー及びチオフェン骨格を有する導電性ポリマーから選択される少なくとも一種、ポリマー電解質、及び電解塩を含有し、
 前記フルオレン骨格を有する導電性ポリマーの少なくとも一種、及び前記フェニレンビニレン骨格を有する導電性ポリマー及びチオフェン骨格を有する導電性ポリマーから選択される少なくとも一種の最高被占軌道(HOMO)間、又は最低空軌道(LUMO)間のエネルギー差の絶対値が0.5eV以下である、フルオレン骨格を有する導電性ポリマーの少なくとも一種と、フェニレンビニレン骨格を有する導電性ポリマー及びチオフェン骨格を有する導電性ポリマーから選択される少なくとも一種との組合わせの、発光電気化学素子の製造への使用が提供される。
 本発明の発光組成物を用いれば、低駆動電圧で、高輝度かつ限りなく白に近い白色発光が得られる発光電気化学素子の発光層を、容易に作製することができる。
 本発明の発光電気化学素子は、単一の発光層とすることができ、簡素な素子構造でありながら、低駆動電圧で、高輝度かつ限りなく白に近い白色発光が得られる。
 本出願において、限りなく白に近い白色とは、色度図においてx及びyが、0.33±0.09の範囲に入るものをいうものとする。本発明の発光電気化学素子や該素子に係る化合物の発光色は、「瞬間マルチ測光システム(広ダイナミックレンジタイプ)MCPD9800」(大塚電子株式会社製)で測定した結果を、CIE色度座標に当てはめたときの色とする。以降、このように白色度の良好なものを高白色度と称する場合もある。
 また、本発明の発光電気化学素子を用いることにより、高輝度かつ高白色度の白色光が得られる発光装置とすることができる。
本発明の発光電気化学素子の概略断面図である。 (a)は実施例1及び2の素子の輝度-電圧(L-V)特性を示すグラフであり、(b)は実施例3~5の素子の輝度-電圧(L-V)特性を示すグラフである。 (a)は実施例1及び2の素子のEL(Electroluminescence)スペクトル図であり、(b)は実施例3~5の素子のEL(Electroluminescence)スペクトル図である。 (a)は実施例1及び2の素子の色度図であり、(b)は実施例3~5の素子の色度図である。 実施例6の素子の輝度-電圧(L-V)特性を示すグラフである。 実施例6の素子のEL(Electroluminescence)スペクトル図である。 実施例6の素子の色度図である。 実施例7の素子の輝度-電圧(L-V)特性を示すグラフである。 実施例7の素子のEL(Electroluminescence)スペクトル図である。 実施例7の素子の色度図である。 比較例1~4の素子のEL(Electroluminescence)スペクトル図である。 比較例1~4の各素子の色度図である。
 以下、本発明について詳述する。
 本発明の発光組成物は、第1導電性ポリマー、第2導電性ポリマー、ポリマー電解質、及び電解塩を含有し、このうち第1導電性ポリマー及び第2導電性ポリマーは発光化合物である。この発光組成物は、例えば、第1電極、発光層、第2電極がこの順番に積層された発光電気化学素子の発光層を形成するのに好ましく使用することができる。
 本発明の発光組成物において、第1導電性ポリマー及び前記第2導電性ポリマーの最高被占軌道(HOMO)間、又は最低空軌道(LUMO)間のエネルギー差の絶対値は0.5eV以下、好ましくは0.3eV以下である。このようなエネルギー差は、HOMO間又はLUMO間のいずれかで有していればよく、両者がこのようなエネルギー差であってもよい。このように最高被占軌道(HOMO)間、又は最低空軌道(LUMO)間のエネルギー差の絶対値を小さくすることにより、この組成物で発光電気化悪素子の発光層を形成した場合に両導電性ポリマーに電荷が注入されやすくなり、発光が得られやすい。
 このような導電性ポリマーからの発光は、電圧が印加されることにより得られ、第1導電性ポリマーが青色発光し、第2導電性ポリマーが赤橙色発光することで、全体が白色発光する。あるいは第1導電性ポリマーが青色発光し、第2導電性ポリマーが赤橙色発光し、第1導電性ポリマー及び/又は第2導電性ポリマーにより形成される励起錯体が蛍光を発光することで、全体が白色発光する。この励起錯体は、第1導電性ポリマー又は第2導電性ポリマーにより形成されるエキサイマー、第1導電性ポリマーと第2導電性ポリマーとの間に形成されるエキサイプレックス若しくはエレクトロプレックスであり、それぞれエキサイマー蛍光、エキサイプレックス蛍光若しくはエレクトロプレックス蛍光を発光する。
 ここで、エキサイマー、エキサイプレックス又はエレクトロプレックスとは、同一若しくは種類の異なる原子又は分子からなる励起二量体であり、励起状態の原子又は分子が、基底状態の同一又は他の種類の原子又は分子と結合することにより形成される。また、エキサイマー蛍光、エキサイプレックス蛍光又はエレクトロプレックス蛍光とは、励起状態のエキサイマー、エキサイプレックス又はエレクトロプレックスが失活するときに発光される蛍光のことである。
 このエキサイプレックスは、正孔がHOMOに注入されたドナー分子と、電子がLUMOに注入されたアクセプター分子とから形成される励起二量体であり、ドナー分子とアクセプター分子との波動関数が重なっており、電子及び正孔は非局在化している。励起二量体中の電子と正孔が再結合することにより発光する。また、エレクトロプレックスでは、正孔がHOMOに注入されたドナー分子と、電子がLUMOに注入されたアクセプター分子との波動関数の重なりが小さく、電荷の非局在化はほとんど起こっていない。そのため、発光は、アクセプター分子のLUMOからドナー分子のHOMOへ電子が直接遷移することによって起こる。
 前述した第1導電性ポリマー及び第2導電性ポリマーの最高被占軌道(HOMO)間、又は最低空軌道(LUMO)間のエネルギー差の絶対値が0.5eVを超える場合、第1導電性ポリマー又は第2導電性ポリマーの何れか一方のみの発光、あるいは第1導電性ポリマーと第2導電性ポリマーの間に形成されるエキサイプレックスのみ、若しくはエレクトロプレックスのみ、又はエキサイプレックス及びエレクトロプレックスのみの発光となり、白色発光からほど遠い発光となってしまうことがある。
 白色発光を得るためには、第1導電性ポリマーの発光と第2導電性ポリマーの発光とが補色関係を満たすことが好ましいが、補色関係となる化合物を見つけることは極めて困難であり、補色関係からずれて、良好な白色発光を得られないことがある。
 このため、本発明においては、第1導電性ポリマーと第2導電性ポリマーが自ら発光すると共に、上述のように第1導電性ポリマー及び/又は第2導電性ポリマーにより形成される励起錯体が、第1及び第2導電性ポリマーの発光を補完する蛍光色で発光するように設計することで、良好な白色発光を得ることができる。
 本発明の発光組成物に含有される第1導電性ポリマーは、電子及び/又は正孔輸送機能を有するものであり、電子及び/又は正孔を効率よく輸送できる導電性ポリマーである。なかでも、第1導電性ポリマー同士で、又は第2導電性ポリマーとの組み合わせにおいて良好なエキサイマー蛍光又はエキサイプレックス蛍光を発光する点で、フルオレン骨格を有する導電性ポリマーが好ましい。フルオレン骨格を有すポリマーは、自ら青色発光すると共に、第1導電性ポリマー同士でエキサイマーを形成してエキサイマー蛍光を発光したり、第2導電性ポリマーとエキサイプレックスを形成してエキサイプレックス蛍光を発光したりすることができる。
 上記フルオレン骨格を有する第1導電性ポリマーは、ホモポリマーであってもコポリマーであってもよい。コポリマーにおいては、フルオレン骨格を有する構造式の異なる複数のフルオレン系モノマーとのコポリマー、及びフルオレン骨格を有するモノマーとフルオレン骨格を有さない他のモノマーとのコポリマーであってもよい。
 上記フルオレン骨格を有する第1導電性ポリマーとしては、少なくとも下記式(1)に示される構造単位を有する導電性ポリマーが好ましい。高白色度の白色光が得られるからである。
Figure JPOXMLDOC01-appb-C000005
式(1)中、Rは炭素数1~20のアルキル基である。
 具体的ポリマーとしては、下記式(1-1)のポリマーを例示できる。
Figure JPOXMLDOC01-appb-C000006
式(1-1)中、Rは炭素数1~20のアルキル基であり、mは重合度を示し、5以上、好ましくは10以上、さらに好ましくは20以上の整数を表す。
 上記式(1)のフルオレン骨格を有する導電性ポリマーとしては、以下の化合物を例として挙げることができる。
 下記式(1a)のポリ(9,9-ジ-n-ヘキシルフルオレニル-2,7-ジイル)。
Figure JPOXMLDOC01-appb-C000007
式(1a)中、nは重合度を示し、5以上、好ましくは10以上、さらに好ましくは20以上の整数を表す。
 また、コポリマーとしては、ポリ[9,9-ジ-n-ヘキシルフルオレニル-2,7-ジイル-co-アントラセン-9,10-ジイル]を例示できる。
 下記式(1b)のポリ[9,9-ビス-(2-エチルヘキシル)-9H-フルオレン-2,7-ジイル]。
Figure JPOXMLDOC01-appb-C000008
式(1b)中、nは重合度を示し、5以上、好ましくは10以上、さらに好ましくは20以上の整数を表す。
 下記式(1c)のポリ(9,9-ジ-n-オクチルフルオレニル-2,7-ジイル)。
Figure JPOXMLDOC01-appb-C000009
式(1c)中、nは重合度を示し、5以上、好ましくは10以上、さらに好ましくは20以上の整数を表す。
 下記式(1d)のポリ(9,9-ジ-n-ドデシルフルオレニル-2,7-ジイル)。
Figure JPOXMLDOC01-appb-C000010
式(1d)中、nは重合度を示し、5以上、好ましくは10以上、さらに好ましくは20以上の整数を表す。
 第1導電性ポリマーの重合度は、特に上限はなく、発光組成物を溶融又は溶媒に溶解して、電極に塗付する等の方法によって発光層を形成できる重合度範囲であればよい。
 上記フルオレン骨格を有する第1導電性ポリマーとしては、特に、式(1d)に示すポリ(9,9-ジ-n-ドデシルフルオレニル-2,7-ジイル)がより好ましい。より一層高白色度の白色光が得られるからである。
 本発明の発光組成物に含有される第2導電性ポリマーとしては、第1導電性ポリマーとのHOMO又はLUMOのエネルギー差が上述の範囲内であって、第1導電性ポリマーとの間でエキサイプレックス又はエレクトロプレックスを形成するものであれば特に制限はなく、電圧を印加した際に、正孔を効率よく輸送する役割を果たすものである。
 フェニレンビニレン骨格を有する第2導電性ポリマーとしては、少なくとも下記式(2)若しくは(3)で表わされる構造単位を有する導電性ポリマーであることが好ましく、チオフェン骨格を有する第2導電性ポリマーとしては、少なくとも下記式(4)で表わされる構造単位を有する導電性ポリマーであることが好ましい。これらの導電性ポリマーは、正孔移動度が高く、効率良くエキシトンを形成でき、高白色度の白色光が得られる点で好ましい。
Figure JPOXMLDOC01-appb-C000011
 具体的ポリマーとしては、下記式(2-1)のポリマーを例示できる。
Figure JPOXMLDOC01-appb-C000012
式(2-1)中、Wは重合度を示し、5以上、好ましくは10以上、さらに好ましくは20以上の整数を表す。
Figure JPOXMLDOC01-appb-C000013
 具体的ポリマーとしては、下記式(3-1)のポリマーを例示できる。
Figure JPOXMLDOC01-appb-C000014
式(3-1)中、Xは重合度を示し、5以上、好ましくは10以上、さらに好ましくは20以上の整数を表す。
Figure JPOXMLDOC01-appb-C000015
 具体的ポリマーとしては、下記式(4-1)のポリマーを例示できる。
Figure JPOXMLDOC01-appb-C000016
式(4-1)中、Y及びZは重合度を示し、それぞれ独立に5以上、好ましくは10以上、さらに好ましくは20以上の整数を表し、同じであっても異なっていてもよい。
 上記フェニレンビニレン骨格又はチオフェン骨格を有する第2導電性ポリマーは、ホモポリマーであってもコポリマーであってもよい。コポリマーにおいては、フェニレンビニレン骨格又はチオフェン骨格を有する構造式の異なる複数のフェニレンビニレン系又はチオフェン系モノマーとのコポリマー、及びフェニレンビニレン骨格又はチオフェン骨格を有するモノマーとフェニレンビニレン骨格又はチオフェン骨格を有さない他のモノマーとのコポリマーであってもよい。
 第2導電性ポリマーの重合度は、特に上限はなく、発光組成物を溶融又は溶媒に溶解して、電極に塗付する等の方法によって発光層を形成できる重合度範囲であればよい。
 具体的な第2導電性ポリマーとしては、ポリ[2-メトキシ-5-(2-エチルヘキシロキシ)-1,4-フェニレンビニレン]、ポリ[2-メトキシ-5-(3’,7’-ジメチルオクチルオキシ)-1,4-フェニレンビニレン]、ポリ[3-オクチルチオフェン-2,5-ジイル-co-3―デシロキシチオフェン―2,5-ジイル](POT-co-DOT)等を用いることができる。
 第1導電性ポリマーと第2導電性ポリマーとの含有比は、第1導電性ポリマー100重量部に対して第2導電性ポリマーが1~200重量部であることが好ましく、10~120重量部であることがより好ましい。当該範囲内であれば、より良好な蛍光発光が得られると共に発光効率をより良好にでき、高白色度の白色光となる。更に、第1導電性ポリマー及び/又は第2導電性ポリマーによる励起錯体を形成し易くなることから、この励起錯体の蛍光により、第1導電性ポリマー及び第2導電性ポリマーによる発光を補完して良好な白色発光を得ることができる。第1導電性ポリマーと第2導電性ポリマーとの含有比が前記範囲外となる場合、良好な蛍光発光が得られなくなる場合がある。
 本発明の発光組成物に含有されるポリマー電解質は、エチレンオキサイド骨格を有するポリマーであることが好ましい。例えば、下記式(5)で表されるエチレンオキサイド骨格を有するポリマーであり、このエチレンオキサイド骨格を主鎖又は側鎖に有する構造として分岐構造を有している樹脂を挙げることができる。
      -(CH-CH-O)-   ・・・・(5)
 また、エチレンオキサイド骨格は、例えば、水素原子が、メチル、エチル等のアルキル基、また、フェニル基等の芳香環を有するアリール基で置換されていてもよい。
 これらの中でも、ポリアルキレンオキサイドが好ましく、更にポリエチレンオキサイドがより好ましい。加工性、イオン伝導度、機械特性、透明性の点で優れているからである。
 ポリエチレンオキサイドは、粘度平均分子量(Mv)が100,000~2,000,000であることが好ましく、より好ましくは300,000~900,000である。加工性、及びイオン伝導度がより良好となる。
 発光組成物中のポリマー電解質の含有量は、第1及び第2導電性ポリマーの合計量100重量部に対して10~400重量部が好まく、より好ましくは40~160重量部である。ポリマー電解質含有量が10重量部未満である場合、発光層が薄く、短絡しやすくなるおそれがあり、400重量部を超える場合、きれいな面発光が得られない可能性がある。
 本発明の発光組成物には、さらに電解塩が含有され、その電解塩としては、LiCl、LiBr、LiI、LiBF、LiClO、LiPF、LiCFSOなどのリチウム塩、KCl、KI、KBr、KCFSOなどのカリウム塩、NaCl、NaI、NaBrなどのナトリウム塩、ほうフッ化テトラエチルアンモニウム、過塩素酸テトラエチルアンモニウム、ほうフッ化テトラブチルアンモニウム、過塩素酸テトラブチルアンモニウム、テトラブチルアンモニウムハライドなどのテトラアルキルアンモニウム塩を挙げることができる。上述の4級アンモニウム塩のアルキル鎖長は同じであっても異なっていても良く、必要に応じて1種のみでも良いし、2種以上組み合わせて用いても良い。これらの中でも、イオン伝導度、相溶性、安定性の点からKCFSOが好ましい。
 また、発光組成物に含有される電解塩として、イオン液体を用いることもできる。本明細書においてイオン液体とは、室温(25℃)で液体として存在する塩を意味する。イオン液体のカチオンとしては、例えば、イミダゾリウムカチオン、ピリジニウムカチオン、ピロリジニウムカチオン、ピペリジニウムカチオン、テトラアルキルアンモニウムカチオン、ピラゾリウムカチオン、又はテトラアルキルホスホニウムカチオン等が挙げられる。
 上記イミダゾリウムカチオンとしては、1-エチル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1-アリル-3-メチルイミダゾリウム、1-アリル-3-エチルイミダゾリウム、1-アリル-3-ブチルイミダゾリウム、1,3-ジアリルイミダゾリウム等が挙げられる。
 上記ピリジニウムカチオンとしては、例えば、1-プロピルピリジニウム、1-ブチルピリジニウム、1-エチル-3-(ヒドロキシメチル)ピリジニウム、1-エチル-3-メチルピリジニウム等が挙げられる。
 上記ピロリジニウムカチオンとしては、例えば、N-メチル-N-プロピルピロリジニウム、N-メチル-N-ブチルピロリジニウム、N-メチル-N-メトキシメチルピロリジニウム等が挙げられる。
 上記ピペリジニウムカチオンとしては、例えば、N-メチル-N-プロピルピペリジニウム等が挙げられる。
 上記テトラアルキルアンモニウムカチオンとしては、例えば、N,N,N-トリメチル-N-プロピルアンモニウム、メチルトリオクチルアンモニウム等が挙げられる。
 上記ピラゾリウムカチオンとしては、例えば、1-エチル-2,3,5-トリメチルピラゾリウム、1-プロピル-2,3,5-トリメチルピラゾリウム、1-ブチル-2,3,5-トリメチルピラゾリウム等が挙げられる。
 上記テトラアルキルホスホニウムカチオンとしては、例えば、テトラメチルホスホニウム、テトラブチルホスホニウム等が挙げられる。
 また、上記カチオンと組み合わされてイオン液体を構成するアニオンとしては、例えば、BF 、NO 、PF 、SbF 、CHCHOSO 、CHCO 、又はCFCO 、CFSO 、(CFSO[ビス(トリフルオロメチルスルフォニル)イミド]、(CFSOなどのフルオロアルキル基含有アニオンが挙げられる。
 発光組成物中の電解塩の含有量は、第1及び第2導電性ポリマーの合計量100重量部に対して0.01~40重量部が好まく、より好ましくは0.1~20重量部である。電解塩含有量が0.01重量部未満である場合、発光組成物を発光層とした際に電流が流れず、発光しない可能性があり、40重量部を超える場合、ドーピングが進みすぎて短絡を起こしやすくなるおそれがある。
 本発明の発光電気化学素子は、第1電極、発光層、及び第2電極がこの順番に積層されてなり、発光層が本発明の発光組成物からなる。
 本発明の発光電気化学素子の発光層の層厚は、原理的には発光性能は膜厚に依存することはないことから、任意の層厚とすることができるが、通常、実用性の点で、1nm~1000nmの範囲であり、より好ましくは10~500nm、さらに好ましくは50nm~250nmの範囲で所望の層厚を適用する。層厚が1nmより薄い場合、短絡することがあり、1000nmを超える場合は、第1導電性ポリマー及び/又は第2導電性ポリマーによる励起錯体形成の効率が低くなる場合がある。
 本発明の発光電気化学素子を構成する第1電極及び第2電極の少なくとも一方は透光性電極、すなわち透明電極であり、発光層が発光した光を取り出すことができる。透明電極の材料としては、酸化錫、酸化亜鉛、酸化インジウム、インジウムスズオキサイド、酸化インジウム・酸化亜鉛化合物、酸化錫・アンチモン化合物、酸化ガリウム・酸化亜鉛化合物、白金などの金属などを挙げることができる。
 他方の電極は透明電極である必要はなく、例えば、アルミニウム、インジウム、マグネシウム、タングステン、チタン、モリブデン、カルシウム、ナトリウム、カリウム、イットリウム、リチウム、マンガン、金、銀、銅、パラジウム、白金、錫、鉛、ニッケル等の金属、これらの金属の合金などを使用できる。もちろん透明電極であってもよい。
 第1電極及び/又は第2電極としては、透明性を有するITO(酸化インジウムスズ)が好ましく、これ以外に、導電性、経済性の点でアルミニウムが好ましい。
 ガラス等の透明基板上に、第1電極又は第2電極を形成する方法としては、スパッタリング法、真空蒸着法等を例示できる。
 次に、本発明の発光電気化学素子の製造方法例について、図1を参照しながら説明する。
 図1に示す発光電気化学素子10を作製するには、ガラス等の透明基板上に第1電極1として設けられたITO電極等の表面に、本発明の発光組成物を溶媒に溶解・分散した分散溶液を、例えばスピンコート成膜法により塗付し、溶媒を乾燥除去して発光層2を積層する。ここで、分散溶液のための溶媒は、各構成成分を溶解するものであれば特に限定されないが、例えば、クロロホルム、シクロヘキサノン、トルエン、若しくはこれらの混合溶媒等の溶媒を使用することができる。
 続いて、発光層2上に第2電極3としてのアルミニウムを、例えば、真空蒸着法により蒸着、製膜させることにより積層して発光電気化学素子10を作製することができる。
 本発明の発光電気化学素子10の素子特性は、輝度-電圧(L-V)特性、ELスペクトル図、及び色度図(色度座標)で評価できる。
 L-V特性評価では、駆動電圧と発光光の輝度との関係を評価できる。ELスペクトル図では、電圧を印加した場合の波長ごとの発光強度により発光色の詳細を把握できる。さらに、色度図を用いてxy座標の数値によって発光色を表すことができ、本発明の一目的である白色光の白色の度合いをxy座標の数値で評価することができる。
 本発明の発光装置は、上記本発明の発光電気化学素子と、該発光電気化学素子に電圧を印加するための電圧部とを有する構成である。当該電圧部としては、直流電圧又は交流電圧の何れを印加するものであってもよい。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[発光層2を構成する各化合物]
(A1)第1導電性ポリマー;上記式(1d)のポリ(9,9-ジ-n-ドデシルフルオレニル-2,7-ジイル)(PFD)(Aldrich社製)。LUMO:-3.2eV、HOMO:-6.1eV
(A2-1)第2導電性ポリマー;上記式(2-1)のポリ[2-メトキシ-5-(2-エチルヘキシロキシ)-1,4-フェニレンビニレン](MEH-PPV)(Aldrich社製)。LUMO:-3.4eV、HOMO:-5.5eV
(A2-2)第2導電性ポリマー;上記式(3-1)のポリ[2-メトキシ-5-(3’,7’-ジメチルオクチルオキシ)-1,4-フェニレンビニレン](MDMO-PPV)(Aldrich社製)。LUMO:-3.2eV、HOMO:-5.4eV
(A2-3)第2導電性ポリマー;上記式(4-1)のポリ[3-オクチルチオフェン-2,5-ジイル-co-3-デシロキシチオフェン-2,5-ジイル](POT-co-DOT)(Aldrich社製)。LUMO:-3.3eV、HOMO:-5.0eV
(A3)ポリマー電解質;ポリエチレンオキサイド(Mv600,000、Aldrich社製)
(A4)電解塩;KCFSO(Aldrich社製)
 なお、上記した各エネルギー準位については、以下の方法により決定した。導電性ポリマーのHOMO準位は、サイクリックボイルタモグラム(CV)の酸化波の立ち上がりから酸化電位E(フェロセン基準)を決定した後、フェロセン基準の仕事関数を5.23eVとし、式:HOMO=-(eE+5.23)を用いて決定した。ここで「e」は単位電荷である。また、バンドギャップエネルギー(Eg)は、紫外可視スペクトルの吸収ピークの立ち上がりから決定した。LUMO準位は、LUMO=HOMO+Egの式から算出したものである。
実施例1
<発光層:発光組成物1>
 発光組成物1として、上記成分A1、A2-1、A3、及びA4を表1に示す配合比で混合した。第1導電性ポリマーA1と第2導電性ポリマーA2-1間のLUMOの差(絶対値)を表1に示す。
<発光電気化学素子:素子Aの作製>
 ガラス基板上に第1電極1として、ITO電極を設けてUVオゾン洗浄した。その後、当該第1電極1上に、発光組成物1をクロロホルム/シクロヘキサノン(1.62:1.0)混合溶媒に溶解した溶液濃度9.5mg/mL溶媒の溶液150μLをスピンコート成膜法により塗付し、続いて当該混合溶媒を乾燥除去して150nmの発光層2を積層した。更に、この発光層2上にアルミニウムを真空蒸着して100nmの第2電極3を積層し、素子Aを作製した。
 得られた素子AについてL-V特性、ELスペクトル、並びに色度図での発光色評価を実施した。L-V特性を図2(a)に、ELスペクトルを図3(a)に、色度図を図4(a)に、及び色度図上の色度座標のxy座標を表2に示す。L-V特性及びELスペクトルは瞬間マルチ測光システム(広ダイナミックレンジタイプ)MCPD9800(大塚電子株式会社製)を用いて測定した。測定条件としては、検出器から素子発光面までの距離は0.028m、発光面積は9×10-6(3mm×3mm)、印加電圧は0Vから15Vである。また、全ての測定は暗室下で行った。
実施例2~5
<発光層:発光組成物2~5>
 発光組成物2~5として、上記成分A1、A2-1、A3、及びA4を表1に示す配合比で混合した。各組成物における第1導電性ポリマーと及び第2導電性ポリマーとのLUMOの差(絶対値)を表1に示す。
<発光電気化学素子:素子B、C、D及びEの作製>
 実施例1の発光組成物1を発光組成物2~5にそれぞれ変更した以外は実施例1と同様にして素子B、C、D及びEを作製し、同様に評価した。結果を図2~図4及び表2に示す。
実施例6
<発光層:発光組成物6>
 発光組成物6として、上記成分A1、A2-2、A3、及びA4を表1に示す配合比で混合した。第1導電性ポリマーと第2導電性ポリマーとのLUMOの差(絶対値)を表1に示す。
<発光電気化学素子:素子Fの作製>
 実施例1の発光組成物1を発光組成物6に変更し、混合溶媒をクロロホルム/シクロヘキサノン(1.67/1.0)混合溶媒とした以外は実施例1と同様にして素子Fを作製し、同様に評価した。結果を図5~図7及び表2に示す。
実施例7
<発光層:発光組成物7>
 発光組成物7として、上記成分A1、A2-3、A3、及びA4を表1に示す配合比で混合した。第1導電性ポリマーと第2導電性ポリマーとのLUMOの差(絶対値)を表1に示す。
<発光電気化学素子:素子Gの作製>
 実施例1の発光組成物1を発光組成物7に変更し、混合溶媒をクロロホルム/シクロヘキサノン(1.97/1.0)混合溶媒とした以外は実施例1と同様にして素子Gを作製し、同様に評価した。結果を図8~図10及び表2に示す。
比較例1
<発光層:発光組成物8>
 発光組成物8として、上記成分A1、A3、及びA4を表1の配合比で混合した。
<発光電気化学素子:素子Hの作製>
 実施例1の発光組成物1を発光組成物8に変更した以外は実施例1と同様にして素子Hを作製し、同様に評価した。結果を図11、図12及び表2に示す。
比較例2
<発光層:発光組成物9>
 発光組成物9として、上記成分A2-1、A3、及びA4を表1の配合比で混合した。
<発光電気化学素子:素子Iの作製>
 実施例1の発光組成物1を発光組成物9に変更した以外は実施例1と同様にして素子Iを作製し、同様に評価した。結果を図11、図12及び表2に示す。
比較例3
<発光層:発光組成物10>
 発光組成物10として、上記成分A2-2、A3、及びA4を表1の配合比で混合した。
<発光電気化学素子:素子Jの作製>
 実施例1の発光組成物1を発光組成物10に変更した以外は実施例1と同様にして素子Jを作製し、同様に評価した。結果を図11、図12及び表2に示す。
比較例4
<発光層:発光組成物11>
 発光組成物11として、上記成分A2-3、A3、及びA4を表1の配合比で混合した。
<発光電気化学素子:素子Kの作製>
 実施例1の発光組成物1を発光組成物11に変更した以外は実施例1と同様にして素子Kを作製し、同様に評価した。結果を図11、図12及び表2に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 図2、図5及び図8のL-V特性に示すように、素子A~Gは、いずれも、駆動電圧4V~15Vで白色発光することが分かる。
 図11の素子Hは第1導電性ポリマーA1単独での発光挙動を示しており、A1は、450nm付近に極大値を有して400~500nmで発光する。この発光は、第1導電性ポリマーA1単独での発光である。図11の素子Iは第2導電性ポリマーA2-1単独での発光挙動を示しており、A2-1単独では、600nm付近に極大値を有して発光する。
 これに対して図3に示すように、素子A~素子Eの発光スペクトルは、450nm、500nm、600nm付近に極大値を有する発光スペクトルを重ね合わせたものとなっている。この500nm付近の発光は、A1のエキサイマー蛍光である。図4の色度図より、素子A~素子Eは、A1の青色発光、A2-1の赤橙色発光及びA1のエキサイマーによる500nm付近の発光により、限りなく白色に近い白色発光が得られていることが分かる。
 また、図6に示すように、素子Fの発光スペクトルは、500nm付近に極大値を有する発光を示しており、A1とA2-2の発光に500nm付近のA1のエキサイマーに起因する発光が重ね合わさった発光となっている。図7の色度図より、素子Fは、A1の青色発光、A2-2の赤橙色発光及びA1のエキサイマーによる500nm付近の発光により、限りなく白色に近い白色発光が得られていることが分かる。
 更に、図11の素子Kは第2導電性ポリマーA2-3単独での発光挙動を示しており、A2-3単独では、600nm以上の領域にて発光する。
 これに対して図9に示すように、素子Gの発光スペクトルは、400nm~500nm付近に極大値を有する発光と、600nm付近以降のショルダーの発光を合わせたものとなっており、500nm付近にA1のエキサイマーに起因する発光が観測される。また、図10の色度図より、素子Gは、A1の青色発光、A2-3の赤橙色発光及びA1のエキサイマーによる500nm付近の発光により、限りなく白色に近い白色発光が得られていることが分かる。
 1 第1電極
 2 発光層
 3 第2電極

Claims (12)

  1.  第1導電性ポリマー、第2導電性ポリマー、ポリマー電解質、及び電解塩を含有し、
     前記第1導電性ポリマー及び前記第2導電性ポリマーの最高被占軌道(HOMO)間、又は最低空軌道(LUMO)間のエネルギー差の絶対値が0.5eV以下であることを特徴とする発光組成物。
  2.  電圧が印加されることにより、前記第1導電性ポリマーが青色発光し、前記第2導電性ポリマーが赤橙色発光することで、全体が白色発光することを特徴とする請求項1に記載の発光組成物。
  3.  電圧が印加されることにより、前記第1導電性ポリマー及び/又は前記第2導電性ポリマーにより励起錯体が形成され、前記励起錯体から蛍光が発光されることを特徴とする請求項1又は2に記載の発光組成物。
  4.  前記励起錯体は、前記第1導電性ポリマー同士若しくは前記第2導電性ポリマー同士により形成されたエキサイマー、又は前記第1導電性ポリマーと前記第2導電性ポリマーとの間に形成されたエキサイプレックス若しくはエレクトロプレックスであり、それぞれエキサイマー蛍光、エキサイプレックス蛍光又はエレクトロプレックス蛍光を発光することを特徴とする請求項3に記載の発光組成物。
  5.  前記第1導電性ポリマーは、フルオレン骨格を有する導電性ポリマーの少なくとも一種であることを特徴とする請求項1~4の何れか一項に記載の発光組成物。
  6.  前記フルオレン骨格を有する第1導電性ポリマーは、少なくとも式(1)で表される構造単位を有する導電性ポリマーであることを特徴とする請求項5に記載の発光組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは炭素数1~20のアルキル基である。)
  7.  前記第2導電性ポリマーは、フェニレンビニレン骨格を有する導電性ポリマー及びチオフェン骨格を有する導電性ポリマーから選択される少なくとも一種の導電性ポリマーであることを特徴とする請求項1~6の何れか一項に記載の発光組成物。
  8.  前記フェニレンビニレン骨格を有する導電性ポリマーは、少なくとも式(2)又は(3)で表される構造単位を有する導電性ポリマーであり、前記チオフェン骨格を有する導電性ポリマーは、少なくとも式(4)で表される構造単位を有する導電性ポリマーであることを特徴とする請求項7に記載の発光組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  9.  前記第1導電性ポリマーは、ポリ(9,9-ジ-n-ドデシルフルオレニル-2,7-ジイル)であることを特徴とする請求項1~8の何れか一項に記載の発光組成物。
  10.  前記ポリマー電解質は、ポリエチレンオキサイドであることを特徴とする請求項1~9の何れか一項に記載の発光組成物。
  11.  第1電極、発光層、及び第2電極がこの順番に積層された発光電気化学素子において、前記発光層が、請求項1~10の何れか1項に記載の発光組成物からなることを特徴とする、発光電気化学素子。
  12.  請求項11に記載の発光電気化学素子と、該発光電気化学素子の第1電極と第2電極との間に電圧を印加する電圧部とを有することを特徴とする発光装置。
PCT/JP2016/053258 2015-02-06 2016-02-03 発光組成物、発光電気化学素子、及び発光装置 WO2016125834A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680008867.9A CN107210383B (zh) 2015-02-06 2016-02-03 发光组合物、发光电化学元件及发光装置
JP2016573404A JP6675611B2 (ja) 2015-02-06 2016-02-03 発光組成物、発光電気化学素子、及び発光装置
KR1020177023290A KR101943078B1 (ko) 2015-02-06 2016-02-03 발광 조성물, 발광 전기 화학 소자 및 발광 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015021920 2015-02-06
JP2015-021920 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016125834A1 true WO2016125834A1 (ja) 2016-08-11

Family

ID=56564173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053258 WO2016125834A1 (ja) 2015-02-06 2016-02-03 発光組成物、発光電気化学素子、及び発光装置

Country Status (4)

Country Link
JP (1) JP6675611B2 (ja)
KR (1) KR101943078B1 (ja)
CN (1) CN107210383B (ja)
WO (1) WO2016125834A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10506747A (ja) * 1994-06-28 1998-06-30 ユニアックス コーポレイション 電気化学発光装置
JP2000506916A (ja) * 1996-03-04 2000-06-06 ユニアックス コーポレイション フォトルミネセンスおよびエレクトロルミネセンス用材料としてのポリフルオレン
JP2009054952A (ja) * 2007-08-29 2009-03-12 Toshiba Corp 発光装置
JP2012516033A (ja) * 2009-01-21 2012-07-12 ルナベイション・エービー 発光電気化学セルおよびシステム、その使用ならびにこれらの操作のための方法
JP2015230955A (ja) * 2014-06-04 2015-12-21 Jx日鉱日石エネルギー株式会社 発光電気化学素子及び該発光電気化学素子を有する発光装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127693A (en) * 1998-07-02 2000-10-03 National Science Council Of Republic Of China Light emitting diode with blue light and red light emitting polymers
DE102005040285A1 (de) * 2005-08-25 2007-03-01 Basf Ag Weiße organische Leuchtdioden (OLEDs) auf der Basis von Exciplexen zweier blau fluoreszierender Verbindungen
JP5671248B2 (ja) * 2010-03-31 2015-02-18 ユー・ディー・シー アイルランド リミテッド 有機薄膜及び有機電界発光素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10506747A (ja) * 1994-06-28 1998-06-30 ユニアックス コーポレイション 電気化学発光装置
JP2000506916A (ja) * 1996-03-04 2000-06-06 ユニアックス コーポレイション フォトルミネセンスおよびエレクトロルミネセンス用材料としてのポリフルオレン
JP2009054952A (ja) * 2007-08-29 2009-03-12 Toshiba Corp 発光装置
JP2012516033A (ja) * 2009-01-21 2012-07-12 ルナベイション・エービー 発光電気化学セルおよびシステム、その使用ならびにこれらの操作のための方法
JP2015230955A (ja) * 2014-06-04 2015-12-21 Jx日鉱日石エネルギー株式会社 発光電気化学素子及び該発光電気化学素子を有する発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI TANG ET AL.: "White Light-Emitting Electrochemical Cell", ACS APPL. MATER. INTERFACES, vol. 3, no. 9, 2011, pages 3384 - 3388 *

Also Published As

Publication number Publication date
KR101943078B1 (ko) 2019-01-28
JP6675611B2 (ja) 2020-04-01
CN107210383A (zh) 2017-09-26
JPWO2016125834A1 (ja) 2017-12-21
CN107210383B (zh) 2019-01-11
KR20170107034A (ko) 2017-09-22

Similar Documents

Publication Publication Date Title
JP6296239B2 (ja) 発光電気化学素子及び該発光電気化学素子を有する発光装置
EP1974590A1 (en) Oled having stacked organic light-emitting units
JP2012516033A (ja) 発光電気化学セルおよびシステム、その使用ならびにこれらの操作のための方法
JP6403108B2 (ja) 有機エレクトロルミネッセンス素子及び該素子を有する発光装置
JP6163185B2 (ja) 電気化学発光セル及び電気化学発光セルの発光層形成用組成物
EP2733188B1 (en) Organic electroluminescent device and a method of producing an organic electroluminescent device
WO2015198073A1 (en) Charge-transfer salt comprising an organic semiconducting material
JP6675611B2 (ja) 発光組成物、発光電気化学素子、及び発光装置
Stroppa et al. High efficient Light-Emitting Electrochemical Cells based on ionic liquids 1, 2, 3-triazolium
JP6564649B2 (ja) 発光電気化学素子及び該発光電気化学素子を有する発光装置
WO2016056529A1 (ja) 電気化学発光セル及び電気化学発光セルの発光層形成用組成物
JP2017028285A (ja) 電気化学発光セルの発光層用添加剤、電気化学発光セルの発光層形成用組成物及び電気化学発光セル
Gaur et al. MgF2 as an interlayer to enhance the stability of thermally activated delayed fluorescence based organic electroluminescence devices
JP6709706B2 (ja) 発光電気化学素子及び該発光電気化学素子を有する発光装置
JP2017155125A (ja) 発光組成物、発光電気化学素子、及び発光装置
JP2019054110A (ja) イオン性化合物キャリア注入材料を用いた有機el素子
JP7138466B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置
WO2018151086A1 (ja) 電気化学発光セル及び電気化学発光セルの発光層形成用組成物
JP2012222013A (ja) 有機薄膜及びこれを発光層に含む有機エレクトロルミネッセンス素子
JP2016129132A (ja) 発光電気化学セルおよびシステム、その使用ならびにこれらの操作のための方法
JP2015029098A (ja) 発光電気化学セルおよびシステム、その使用ならびにこれらの操作のための方法
JP2010177462A (ja) 有機el素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177023290

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16746665

Country of ref document: EP

Kind code of ref document: A1