WO2016125225A1 - 多孔質造粒焼成体及びその製造方法 - Google Patents

多孔質造粒焼成体及びその製造方法 Download PDF

Info

Publication number
WO2016125225A1
WO2016125225A1 PCT/JP2015/052795 JP2015052795W WO2016125225A1 WO 2016125225 A1 WO2016125225 A1 WO 2016125225A1 JP 2015052795 W JP2015052795 W JP 2015052795W WO 2016125225 A1 WO2016125225 A1 WO 2016125225A1
Authority
WO
WIPO (PCT)
Prior art keywords
spraying
raw material
granulated
primary
alumina
Prior art date
Application number
PCT/JP2015/052795
Other languages
English (en)
French (fr)
Inventor
陽 ▲高▼橋
純也 下里
貴彦 中村
典之 田村
Original Assignee
伊藤忠セラテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊藤忠セラテック株式会社 filed Critical 伊藤忠セラテック株式会社
Priority to EP15881042.4A priority Critical patent/EP3255025B1/en
Priority to PCT/JP2015/052795 priority patent/WO2016125225A1/ja
Priority to US15/546,372 priority patent/US20180009719A1/en
Publication of WO2016125225A1 publication Critical patent/WO2016125225A1/ja
Priority to US16/792,585 priority patent/US11639314B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms

Definitions

  • the present invention relates to a porous granulated fired body and a method for producing the same.
  • firing means that a granulated body made of countless ceramic particles typified by alumina particles is subjected to high temperature treatment at a temperature higher than the temperature (for example, 700 ° C.) at which alumina precipitate crystals are obtained in the pores. To do. However, complete sintering in which the pores are completely blocked is not included.
  • % and “part” indicating a blending unit mean “% by mass” and “part by mass”, respectively, unless otherwise specified.
  • Average particle diameter means the median diameter, a value measured by laser diffraction method (average particle diameter less than 50 ⁇ m) or a value based on JIS standard mesh sieve (average particle diameter of 50 ⁇ m or more).
  • Specific surface area A value measured according to JIS Z 8830 “Method for measuring specific surface area of powder by gas adsorption” (BET method).
  • Compressive strength Value measured according to JISR1608 “Testing method for compressive strength of fine ceramics”.
  • Soda component Value measured according to JISR2216“ Fluorescent X-ray analysis method for refractory products ”.
  • Alumina is widely used based on its high heat resistance and low reactivity.
  • a porous body of ⁇ -alumina is used as a material for functional products in various applications, catalyst carriers, microorganism fixed beds, culture beds, and filtration media.
  • alumina porous bodies are required to be able to control the pore distribution easily and inexpensively and be used as a high-strength catalyst carrier, and further to contain low soda (patents). Reference 1).
  • Patent Document 1 proposes a method for manufacturing an ⁇ -alumina molded body (granulated body) having the following configuration (claim 1, abstract, etc.).
  • At least partially rehydratable alumina powder obtained by calcining gibbsite crystal aluminum hydroxide with controlled particle size and bulk density is mixed with water, and this mixture is molded to form a molded body
  • a method for producing an ⁇ -alumina molded body in which the molded body is rehydrated by holding it in a humid atmosphere of 110 to 200 ° C. or in water vapor, and then the rehydrated molded body is fired at 1200 ° C. or higher.
  • the calcined rehydratable alumina powder material is formed into a spherical granule having a diameter of 2 to 4 mm while spraying water using a dish-type granulator. And firing the granulated body.
  • Patent Document 2 proposes a method for producing a transition alumina molded body (activated alumina molded body) (precursor of a porous sintered body) having the following configuration. (Claim 1, abstract, etc.).
  • Transition alumina powder having at least partially rehydratability is wet-molded, rehydrated, and then the rehydrated molded body is fired to produce a transition alumina molded body.
  • mixed powder obtained by adding polymethyl methacrylate, which is a pore-forming agent, to calcined rehydratable alumina is sprayed with water using a dish granulator.
  • a spherical granulated body (wet molding) having a diameter of 2 to 4 mm is formed, and the granulated body is fired after rehydration treatment.
  • any of the above methods for producing a porous granulated fired body or a precursor thereof requires that the tumbled granulated body be put into an autoclave or the like to be rehydrated, resulting in production man-hours and thermal energy costs. Was bulky.
  • these porous fired bodies are required to have a larger specific surface area and a higher strength at the same specific surface area when they have controlled pores of the same diameter.
  • An object of the present invention is to provide an alumina porous granulated fired body capable of solving the above problems (problems and demands) and a method for producing the same.
  • porous granulated fired body (1) having the following constitution and a production method (2) thereof.
  • the porous granulated calcined product according to the present invention is a porous granulated product in which countless alumina particles are consolidated by leaving the pores communicating mainly in the entire cross-section of the granulated particles.
  • the pore In the fired body, the pore has an inner diameter controlled by a droplet diameter of the pore-forming agent and has an infinite number of alumina precipitated crystals on the inner surface.
  • the pores that mainly communicate are formed in a mesh shape in the entire cross section of the granulated particles, it is easy to obtain a large specific surface area, and since the mesh pore size is uniform, the strength of the granulated fired body and Quality is easy to stabilize. In addition, since there are innumerable alumina precipitated crystals on the inner surfaces of the pores, the specific surface area is further increased. Furthermore, when the opposing precipitated crystals formed on the inner surface of the pores are fused and bonded, a pseudo reinforcing column is formed, and the strength is relatively increased.
  • the method for producing a porous granulated fired body according to the present invention comprises a granulation step of wet granulating a raw material made of fine alumina powder while spraying a liquid agent using a rolling granulator equipped with a rotating dish. And a firing step of firing the granulated body,
  • the granulation step includes 1) A step of primary spraying of a crystal precipitation agent on a raw material which is introduced from an upper part side facing a discharge part located at an obliquely lower part of a rotating dish and performs primary rolling circulation along an outer peripheral part of the rotating dish.
  • each spray position is not the reversal side part of rolling circulation, the overlap of each primary and secondary rolling circulation is large, and spraying at another position becomes difficult.
  • A, B, and C are an SEM photograph ( ⁇ 50 times) and an enlarged SEM photograph ( ⁇ 1000 times) of each granulated fired body in Examples and Comparative Examples 1 and 2, respectively.
  • porous granulated fired body of the present invention and the production method thereof will be described with reference to the drawings.
  • the particles 11 of the porous granulated and fired body are formed by innumerable alumina particles solidifying with pores (hereinafter simply referred to as “pores”) 13 that mainly communicate with each other (see FIG. 1).
  • the pore 13 has an inner diameter controlled by the droplet diameter of the pore-forming agent, and has countless alumina precipitated crystals 15 on the inner surface.
  • Average particle diameter (median diameter): 0.1 to 5 mm (preferably 0.5 to 5 mm), 2) Specific surface area (BET): 0.1 to 20 m 2 / g (preferably 0.5 to 15 m 2 / g), 3) Sphericality: 1.0-1.5, 4) Pore diameter: 0.5-50 ⁇ m, 5) Alumina precipitated crystal size (biaxial average diameter): 0.1 to 5 ⁇ m.
  • the characteristics of the fine alumina powder used as a raw material vary depending on the required characteristics of the granulated fired product.
  • the porous granulated fired body is required to have a characteristic that the soda content is low and the pore distribution is dense.
  • ⁇ alumina low soda alumina fine powders
  • the alumina fine powder as a raw material may be ⁇ alumina or ⁇ alumina (including ⁇ , ⁇ , ⁇ , and ⁇ ).
  • crystal precipitation agent primary spray solution
  • secondary spray solution pore-forming agent
  • 3) binder tertiary spray solution
  • Crystal precipitation agent (primary spray):
  • the aluminum compound that is the dispersoid of the crystal precipitating agent may be organic or inorganic.
  • the organic system include aluminum lactate, aluminum alkoxide, methylaluminum (Al 2 (CH 3 ) 6 ), ethylaluminum (Al 2 (C 2 H 5 ) 6 ), aluminum acetate, and the like, and inorganic systems include aluminum nitrate, Aluminum chloride or the like can be suitably used.
  • organoaluminum compounds particularly aluminum lactate
  • concentration of the primary spray solution is appropriately adjusted in the range of 1 to 30% according to the required characteristics (specific surface area, compressive strength, etc.).
  • the form of the spray liquid is usually a solution, but may be an emulsion or a suspension.
  • Pore forming agent (secondary spray):
  • water-insoluble polymers synthetic resin, natural rubber or synthetic rubber
  • the reason why water is used as a dispersion medium is that the drying speed can be easily controlled.
  • the pore-forming agent is preferably one that does not have wettability with respect to the particle surface of the raw material after primary spraying (contact angle is obtuse). This is because the pore-forming agent droplets do not spread on the particle surface and the droplet diameter can be easily controlled.
  • the synthetic resin may be thermoplastic or thermosetting.
  • polyvinyl acetates PVAC (including copolymers), acrylic resins (polyacrylic acid ester, polymethacrylic acid ester), novolac-type phenolic resin, which can be smoothly eliminated during firing, Polyolefin, copolymerized nylon, copolymerized polyester and the like can be suitably used.
  • polyisoprene can be preferably used.
  • PVACs are desirable because they are easy to prepare a spray solution (emulsion) with good fluidity.
  • the form of the spray liquid is usually an emulsion, but may be a latex or a suspension.
  • the concentration of the secondary spray solution is 1 to 50%, preferably 5 to 15% in the case of an emulsion.
  • concentration is too high, it becomes difficult to obtain a granulated body composed of particles with high sphericity. If the concentration is too low, it is difficult to obtain an appropriate pore size in the granulated particles.
  • Binder (tertiary spray):
  • the binder may be inorganic or organic.
  • An organic system which is thermally decomposed and volatilized by firing and does not substantially remain in the alumina fine particles is desirable. In the case of an inorganic system, if it remains, it may become a catalyst poison, which may hinder the function of the alumina crystal.
  • a water-soluble organic polymer that is excellent in handling of the spray liquid is desirable.
  • the water-soluble organic polymer polyvinyl alcohol (PVAL), polyvinyl acetal / polyvinylpyrrolidone, acrylic monomer, cellulose derivative (CMC / HPC / HPMC, etc.), starch and the like can be suitably used.
  • the mode of the tertiary spray liquid is usually an aqueous solution, but the volatility may be adjusted by appropriately containing a polar solvent.
  • the concentration of the tertiary spray solution is 1 to 30%, preferably 5 to 15%. When the concentration is high, it becomes difficult to obtain a granulated body with high sphericity.
  • Lubricant As long as the lubricant increases the fluidity of the granulated body, it does not matter whether it is inorganic or organic. An organic lubricant that adheres to the granulated body and is pyrolyzed and volatilized by firing and does not require a separation operation is desirable.
  • organic lubricant synthetic resin fine powder, fatty acid esters, metal soaps, hydrocarbons (such as paraffin wax), and the like can be used. Of these, a synthetic resin fine powder having a low water absorption rate (for example, ASTM D570: 0.5% or less) is desirable. This is because the handleability is good and the fluidity increasing action is stable. Specific examples include fine powders such as PMMA, polyethylene, and polyester (PET). The average particle size of these lubricants is 1 to 50 ⁇ m.
  • the present invention includes a granulation step of wet granulating a raw material composed of fine alumina powder using a rolling granulator equipped with a rotating dish while spraying with a liquid agent, and a firing step of firing the granulated body. Assuming that.
  • This granulation step includes the following sub-steps: 1) primary spraying step, 2) secondary spraying step, 3) tertiary spraying step, and 4) granulating step.
  • the unit of spray amount: part / min is for 100 parts of the alumina raw material powder.
  • a primary spray solution, a secondary spray solution and a tertiary spray solution are prepared prior to the spraying process, etc.
  • three two-fluid atomizers (sprayers) for mixing and spraying each spray solution and air are attached to the rolling granulator (not shown).
  • the nozzles of each sprayer are arranged along an inclination diameter (inclination angle of 30 to 45 °) D extending obliquely upward from the discharge portion (discharge chute 19) of the rotating dish 17.
  • the spray nozzles are arranged along the inclined diameter D because the sprayer nozzles are easily separated from each other (lateral (horizontal) direction and vertical direction), and the spray liquids during spraying are unlikely to overlap each other. It is.
  • the primary spray site A zone, the secondary spray site B zone and the tertiary spray site C zone have substantially the same width, respectively.
  • a spray nozzle is arranged to enable spraying.
  • the spray width at this time is 30 to 70 mm when the inner diameter of the rotating dish is 300 mm.
  • the rotating dish is adjusted to the average particle diameter of the raw material at a rotation speed of 10 to 60 min- 1 , preferably 10 to 45 min- 1 , and an inclination angle of 20 to 70 °, preferably 40 to 70 °. Rotate in correspondence. These conditions are appropriately adjusted while monitoring the granulation state in the rotating dish. Outside these rotational speeds and tilt angle ranges, it is difficult to roll and circulate while classifying the raw material, the raw material after primary spraying, the raw material after secondary spraying, and the raw material after tertiary spraying.
  • the raw material undergoes primary rolling circulation along the outer peripheral portion (inside the rim portion 17a) of the rotating dish 17.
  • the gravity is reversed by surpassing the centrifugal force. Then, a large circular arc is drawn, and the primary rolling circulation through the primary spray site A zone is performed.
  • the crystal deposition agent (primary spray liquid) is primarily sprayed on the raw material (see FIG. 4 (1)).
  • the spraying conditions for this primary spraying are appropriately selected within the range of droplet diameter: 10 to 1000 ⁇ m, preferably 10 to 300 ⁇ m, unit time spraying amount: 0.01 to 4.5 parts / min, preferably 1 to 3 parts / min.
  • the total spray amount is 1 to 30 parts, preferably 1 to 25 parts, per 100 parts of the alumina raw material powder.
  • the droplet diameter is too small, it becomes dry mist (non-wetting droplet), and it becomes difficult for the crystal precipitation agent to coat each particle of the raw material.
  • the droplet diameter is too large, agglomeration phenomenon between particles occurs and granulation tends to occur, and it becomes difficult to coat each particle of the pore-forming agent, and it becomes difficult to form alumina precipitated crystals in the pores. . In any case, it is difficult to obtain the object of the present invention (porous granulated fired body having precipitated crystals in the pores).
  • Secondary spraying process The primary sprayed raw material (fine powder) composed of particles coated with the primary spray liquid is circulated in a secondary rolling manner inside the primary rolling circulation.
  • the position superior to the centrifugal force of gravity is on the near side of the raw material, and does not reach the upper position of the A band, and the middle arc Draw and do secondary rolling circulation through secondary spray site B zone.
  • covered with the primary spray liquid is primary-rolled and circulated, reaches A zone, and primary spray is repeated.
  • a pore-forming agent (secondary spray solution) is secondarily sprayed on the raw material after the primary spraying in the B zone (reverse side portion of the secondary rolling circulation).
  • This pore-forming agent aggregates the particles of the raw material after the primary spraying and performs primary granulation, and at the same time, controls the gap between the particles by the droplet size of the pore-forming agent, and has the pore size formed in the firing step. Responsible for regulation (Fig. 4 (2)).
  • the spraying conditions for secondary spraying are appropriately selected within the range of droplet diameter: 10 to 1000 ⁇ m, preferably 10 to 200 ⁇ m, unit time spraying amount: 0.01 to 4.5 parts / min, preferably 1 to 3 parts / min.
  • the total spray amount is 1 to 30 parts, preferably 1 to 25 parts, per 100 parts of the alumina raw material powder.
  • the unit time spray amount or the total spray amount of the pore forming agent When the unit time spray amount or the total spray amount of the pore forming agent is small, it is difficult to obtain sufficient pore density or pores in the granulated fired body. On the other hand, when the spray amount per unit time or the total spray amount is large, the degree of variation in pore diameter and the pore density increase, and the granulated shape tends to be irregular or irregular.
  • covered with the secondary spray liquid is secondary-rolled and circulated to the B zone, and the secondary spray is repeated.
  • the binder tertiary spray liquid
  • the binder is tertiary sprayed on the raw material after secondary spraying (primary granule).
  • This binder binds the granulated particles of the raw material after secondary spraying (primary granulated body) to form a secondary granulated body (coarse).
  • the spraying conditions for the tertiary spraying are appropriately selected within the range of droplet diameter: 10 to 1000 ⁇ m, preferably 10 to 300 ⁇ m, unit time spraying amount: 0.01 to 4.5 parts / min, preferably 1 to 3 parts / min.
  • the total spray amount is 1 to 30 parts, preferably 1 to 15 parts, with respect to 100 parts of the alumina raw material powder.
  • the spray amount per unit time or the total spray amount is small, it is difficult to obtain a secondary granulated body (coarse grain) having a sufficient particle size (size), and it is difficult to obtain network-like pores in the granulated fired body. Conversely, even if the spray amount per unit time or the total spray amount is large, it is difficult to obtain network-like pores in the granulated fired body.
  • Granulation process The raw material after the tertiary spraying in which the particles of the primary granulated body are coated with the above-mentioned tertiary spraying liquid undergoes rolling circulation that passes near the inside of the C zone, which substantially overlaps with the tertiary rolling circulation, and further, the tertiary spraying is repeated.
  • the growth of granulation proceeds and the secondary granulated product (product granulated product) having the required diameter is sized. Thereafter, the product granule (secondary granule) is discharged from the discharge chute 19.
  • the above-mentioned lubricant when adding the raw materials. This is because the raw material after spraying is prevented from adhering to the rotating dish rim, and the raw material is crushed more smoothly.
  • the amount of lubricant added at this time is 1 to 50 parts, preferably 10 to 40 parts, with respect to 100 parts of the raw material added.
  • the product granule prepared above is fired using an electric furnace or the like.
  • the crystal precipitating agent covering the above-mentioned alumina fine particles is sprayed and dried to precipitate and grow an aluminum compound. Further, by firing, it becomes ⁇ -alumina and further alumina-precipitated crystals of ⁇ -alumina.
  • the firing conditions at this time are as follows.
  • Temperature rising rate 100 to 700 ° C / h, desirably 200 to 400 ° C / h. If the heating rate is too fast, cracks are likely to occur in the fired body. Conversely, if it is too slow, productivity will decrease.
  • the ultimate temperature and holding time are 500 to 1300 ° C. ⁇ 1 to 24 hours, preferably 600 to 1100 ° C. ⁇ 1 to 20 hours when ⁇ -alumina is precipitated.
  • the temperature is set to 1000 to 2000 ° C. ⁇ 0.1 to 3 h, preferably 1650 to 1850 ° C. ⁇ 0.5 to 1 h.
  • FIG. 5 shows a model of the firing process for forming ⁇ -alumina precipitated crystals.
  • the present invention relates to a ceramic fine powder fired body (1) having the following configuration in which the alumina fine powder is replaced with a ceramic fine powder, and a method for producing the same (2). It also extends.
  • a porous granulated fired body in which a myriad of ceramic particles are mainly consolidated by leaving the pores communicating with each other in a net-like manner throughout the cross-section of the granulated particles, the pores having an inner diameter thereof Is controlled by the droplet diameter of the pore-forming agent and has innumerable alumina precipitated crystals on its inner surface.
  • a method for producing the porous granulated sintered body Including a granulation step of wet granulation while spraying a liquid material using a rolling granulator equipped with a rotating dish with a raw material made of ceramic fine powder, and a firing step of firing the granulated body,
  • the granulation step includes 1) A step of primary spraying of a crystal precipitation agent on a raw material which is introduced from an upper part side facing a discharge part located at an obliquely lower part of a rotating dish and performs primary rolling circulation along an outer peripheral part of the rotating dish.
  • Examples of the ceramic as the raw material (fine powder) include magnesium oxide (MgO), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), calcium oxide (CaO), and beryllium oxide (BeO).
  • MgO magnesium oxide
  • ZrO 2 zirconium oxide
  • TiO 2 titanium oxide
  • CaO calcium oxide
  • BeO beryllium oxide
  • the rolling granulator used in both the examples and comparative examples was equipped with a pan-type rotating dish having an inner diameter of 300 mm.
  • the A-band, B-band, and C-band, which are the spray bands in the rotating dish 15, are as shown in FIG. 3, and the width of each spray band is 50 mm.
  • Raw materials-Calcined alumina fine powder (low soda alumina): average particle diameter: 2.5 ⁇ m, Na 2 O: 0.08%, specific surface area: 1.4 g / m 2
  • Activated alumina average particle size: 1.5 ⁇ m, Na 2 O: 0.45%, specific surface area: 1.5 g / m 2
  • Drug ⁇ Crystal precipitation agent (primary spray solution) ...
  • Example> 100 g of low-soda alumina, which is the raw material, is charged from the raw material charging site (above A band) into a rotating pan that is adjusted to an inclination angle of 55 ° and rotates at a rotational speed of 25 min ⁇ 1. The rotational speed and the tilt angle are adjusted so that dynamic circulation occurs in the raw material powder.
  • the adjustment range was the former: 25 to 35 min -1 and the latter: 55 to 62 °.
  • the primary spray solution was sprayed in the A zone on the raw material that undergoes primary rolling circulation. At this time, spraying was carried out while adjusting the spray pressure and the spray amount per unit time so that the droplet diameter was 10 ⁇ m. The total spray amount at this time was set to 20 parts with respect to 100 parts of the raw material. In this embodiment, since the spray amount per unit time is 2.5 parts / min, the total spray time is 8 minutes.
  • a pore-forming agent (secondary spray solution) was sprayed in the B zone on the raw material after the primary spraying that circulates in a secondary rolling manner.
  • the total spray amount of the secondary spray liquid at this time was set to 20 parts with respect to 100 parts of the raw material.
  • the unit spray amount of the secondary spray solution was set at 2.5 parts / min so as to correspond to the total spray time of 8 minutes of the primary spray solution. This is to enable continuous granulation by simultaneous spraying.
  • the binder (tertiary spray liquid) was sprayed in the C zone on the post-secondary sprayed raw material that circulates in a tertiary rolling manner.
  • the total spray amount of the binder at this time was set to 10 parts (in terms of solid content) with respect to 100 parts of the raw material including the next granulation step.
  • the unit time spray amount of the tertiary spray solution was set to 2.5 parts / min so as to correspond to the total spray time of the primary and secondary spray solutions of 8 minutes. This is to enable continuous granulation by simultaneous spraying.
  • the unit time input is 2.5 parts / min. In this way, it was dividedly charged from the raw material charging site.
  • the temperature of the spray liquid and the spray amount per unit time were adjusted so that the temperature in the rotating dish was 28 ° C. or lower and 18 ° C. or higher. This is because if the temperature is too high or too low, the volatilization rate of the spray liquid is too fast or too slow, and granulation is not performed smoothly.
  • the electric heater was arrange
  • the wet granulate thus prepared is heated to an ultimate temperature of 900 ° C. at a heating rate of 300 ° C./h and held for 3 hours, and further heated to an ultimate temperature of 1650 ° C. at the same heating rate and held for 0.5 h. Thus, a fired body was obtained.
  • the wet granulate thus prepared was fired under the same conditions as in the examples.
  • Comparative Example 2 a wet granulated material that was tumbled and granulated in the same manner using the low-soda alumina used in the examples as a raw material was fired under the same conditions.
  • the particle strength of the example is notably higher than the fired body made of activated alumina powder as a raw material (Comparative Example 1), but also the fired body made by the conventional method using the same low soda alumina as the raw material (Example 1). It was substantially equivalent to Comparative Example 2). It is presumed that it was not blocked by high-temperature firing (sintering) due to the presence of alumina precipitated crystals in the pores.
  • the specific surface area of the example is slightly higher than that of Comparative Example 1, and is significantly larger than that of the fired body obtained by the conventional method using the same low soda alumina as the raw material (Comparative Example 2). It is presumed that this is due to the presence of alumina precipitated crystals on the pore inner surface as well as the porosity. The decrease in the specific surface area of Comparative Example 1 is presumed to be due to the pores of activated alumina being blocked by sintering.
  • the soda component of the example was about 1 ⁇ 4 of the raw material and was much lower than that of Comparative Example 2 as well as being much less than that of Comparative Example 1.
  • the decrease in the soda component in Example / Comparative Example 2 is presumed to be due to volatilization of the soda component by high-temperature firing (sintering).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 無数のアルミナ粒子同士が、主として連通する気孔を造粒体粒子(11)の断面全体に網目状に残存させて固結してなる多孔質造粒焼成体。気孔(13)は、その内径が気孔形成剤の液滴径で制御されているとともに、その内面に無数のアルミナ析出結晶(15)を有している。気孔形成剤(エマルション)を原料に対して噴霧し、気孔形成剤の被覆層を原料粒子の表面に形成して、気孔の内径を制御して製造する。こうして、簡単な製造方法により、大きな比表面積を有するともに、同一比表面積においてさらなる高強度を有する、アルミナの多孔質造粒焼成体を提供できる。

Description

多孔質造粒焼成体及びその製造方法
 本発明は、多孔質造粒焼成体及びその製造方法に関する。
 ここで、「焼成」とは、アルミナ粒子に代表される無数のセラミック粒子からなる造粒体を、気孔内にアルミナ析出結晶が得られる温度(例えば、700℃)以上で高温処理して固結することをいう。ただし、気孔が完全に塞がれる完全焼結は含まない。
 なお、以下の説明で、配合単位を示す「%」、「部」は、特に断らない限り、それぞれ「質量%」および「質量部」を意味する。
 また、各特性値は、下記の如く定義されるものである。
  「平均粒径」・・・メジアン径を意味し、レーザ回折法で測定した値(平均粒径50μm未満)又はJIS標準網ふるいによる値(平均粒径50μm以上)。
  「比表面積」・・・JIS  Z 8830「ガス吸着による粉体の比表面積測定方法」(BET法)に準拠して測定した値。
  「真球度」・・・走査式電子顕微鏡(SEM)による画像解析法による二値化測定法で測定した算術平均値(n=10)。
  「気孔径」・・・走査式電子顕微鏡(SEM)を用いた画像解析法の内の二値価測定法により求めた算術平均値(n=10)。
  「圧縮強度」・・・JISR1608「ファインセラミックスの圧縮強さ試験方法」に準拠して測定した値。
  「析出結晶の大きさ」・・・走査式電子顕微鏡(SEM)により計測した析出結晶の長径と短径の算術平均値(二軸平均径)(n=10)。
  「ソーダ成分」・・・JISR2216「耐火物製品の蛍光X線分析方法」に準拠して計測した値。
 アルミナは、その高耐熱性及び低反応性に基づき、多岐にわたり利用されている。特にαアルミナの多孔質体は、機能性製品の材料として様々な用途、触媒担体、微生物固定床、培養床、ろ過媒体に使用されている。
 そして、これらのアルミナの多孔質体には、簡便かつ安価に、細孔分布を制御でき高強度の触媒担体として使用可能であり、さらには、低ソーダ含有であることが要求されている(特許文献1)。
 これらの要求に応えるために、特許文献1において、下記構成のαアルミナ成形体(造粒体)の製造方法が提案されている(請求項1、要約書等)。
 「粒径と重装嵩密度を制御したギブサイト結晶水酸化アルミニウムを仮焼することにより得られる少なくとも部分的に再水和性を有するアルミナ粉を水と混合し、この混合物を成形して成形体を得、この成形体を110~200℃の湿潤雰囲気中または水蒸気中に保持して再水和させ、次いで再水和させた成形体を1200℃以上で焼成するα-アルミナ成形体の製造方法。」
 そして、特許文献1段落0051・0052には、仮焼した再水和性アルミナの粉末原料を、皿形造粒機を用いて、水をスプレーしながら直径2~4mmの球状の造粒体とし、該造粒体を焼成することが記載されている。
 また、αアルミナの多孔質焼成体に関するものではないが、特許文献2では、下記構成の遷移アルミナ成形体(活性アルミナ成形体)(多孔質焼成体の前駆体)の製造方法が提案されている(請求項1、要約書等)。
 「少なくとも部分的に再水和性を有する遷移アルミナ粉末を湿式成形し、再水和し、次いで再水和後の成形体を焼成して遷移アルミナ成形体の製造方法において、遷移アルミナ粉末の湿式成形時に中心粒径が0.01~100μmのポリメタクリル酸エステルを主成分とする粉末もしくはラテックスを存在せしめることを特徴とする遷移アルミナ成形体の製造方法。」
 そして、特許文献2段落0032には、仮焼した再水和性アルミナに対して気孔形成剤であるポリメタクリル酸メチルを添加した混合粉末を、皿形造粒機を用いて、水をスプレーしながら直径2~4mmの球状の造粒体(湿式成形)とし、該造粒体を再水和処理後、焼成することが記載されている。
特開2003-48768号公報 特開平8-245281号公報
 しかし、上記多孔質造粒焼成体又はその前駆体の製造方法は、いずれも、転動造粒した造粒体をオートクレーブ等に投入して再水和させる必要があり、生産工数および熱エネルギーコストが嵩んだ。また、これらの多孔質焼成体は、制御された同一径の気孔を有する場合においてさらなる大きな比表面積が、同一比表面積においてさらなる高強度を有することが要望されている。
 本発明の目的は、上記課題(問題点及び要望)を解決することができるアルミナの多孔質造粒焼成体及びその製造方法を提供することにある。
 本発明者らは、上記課題を解決するために、鋭意開発に努力をした結果、下記構成の多孔質造粒焼成体 (1)およびその製造方法(2)に想到した。
 (1)本発明に係る多孔質造粒焼成体は、無数のアルミナ粒子同士が、主として連通する気孔を造粒体粒子の断面全体に網目状に残存させて固結してなる多孔質造粒焼成体であって、前記気孔は、その内径が気孔形成剤の液滴径で制御されているとともに、その内面に無数のアルミナ析出結晶を有していることを特徴とする。
 主として連通する気孔が造粒体粒子の断面全体に網目状に形成されているため、比表面積の大きなものが得やすいとともに、網目状の気孔径が均質であるため、造粒焼成体の強度および品質が安定し易い。また、気孔の内面に無数のアルミナ析出結晶を有するため、さらに比表面積が増大する。さらには、気孔の内面に形成された対向する析出結晶相互が融着結合することにより疑似的な補強柱が形成されて相対的に強度が増大する。
 (2)本発明に係る多孔性造粒焼成体の製造方法は、アルミナ微粉体からなる原料を、回転皿を備えた転動造粒機を用いて液剤噴霧しながら湿式造粒する造粒工程と、該造粒体を焼成する焼成工程とを含み、
 前記造粒工程は、
  1)回転皿の斜め下方部に位置する排出部に対向する上方部側から投入され、回転皿の外周部に沿って一次転動循環をする原料に対して、結晶析出剤を一次噴霧する工程、
  2)前記一次転動循環の内側を二次転動循環する一次噴霧後原料に対して気孔形成剤を二次噴霧する工程、
  3)前記二次転動循環の内側を三次転動循環する二次噴霧後原料に対して、結合剤を三次噴霧する工程、及び、
  4)三次噴霧後原料を、さらなる転動循環により造粒成長を進行させて所要径の造粒体に整粒する工程、
 の各副工程を含み、
 前記一次・二次・三次噴霧を、それぞれ、一次・二次・三次転動循環する反転側部位で行う、ことを特徴とする。
 上記製造方法においては、従来の如く、湿式造粒後の造粒体をオートクレーブ等に投入して再水和する必要がなく、生産工数および熱エネルギーコストが削減できる。また、各噴霧液を回転皿の別位置で噴霧することにより、それらの薬剤の単位時間噴霧量を調節でき、均質な比表面積、気孔径及び粒径を有する多孔質造粒焼成体を容易に得ることができる。
 なお、各噴霧位置が転動循環の反転側部位でないと、一次・二次の各転動循環の重なりが大きく、別位置での噴霧が困難となる。
本発明の多孔質造粒焼成体の造粒体粒子におけるモデル断面図である。 本発明に使用する転動造粒機の回転皿のモデル側面図である。 同じく回転皿の作用説明平面図である。 本発明の製造方法における造粒工程のモデル説明図である。 同じく焼成工程のモデル説明図である。 A・B・Cは、それぞれ実施例および比較例1・2における各造粒焼成体のSEM写真(×50倍)およびその拡大SEM写真(×1000倍)である。
 以下、本発明の多孔質造粒焼成体およびその製造方法について、図面を参照にしながら説明する。
 多孔質造粒焼成体の粒子11は、無数のアルミナ粒子同士が、主として連通する気孔(以下単に「気孔」という。)13を残存させて固結してなるものである(図1参照)。そして、気孔13は、その内径が気孔形成剤の液滴径で制御されているとともに、その内面に無数のアルミナ析出結晶15を有している。
 ここで、本造粒焼成体の実用的な特性を下記する。それらの範囲から適宜選定する。
 1)平均粒径(メジアン径):0.1~5mm(望ましくは0.5~5mm)、
 2)比表面積(BET):0.1~20m2/g(望ましくは0.5~15m2/g)、
 3)真球度:1.0~1.5、
 4)気孔径:0.5~50μm、
 5)アルミナ析出結晶の大きさ(二軸平均径):0.1~5μm。
 なお、気孔径が大きすぎると、造粒焼成粒子に必要な強度を得難くなる。
 次に、本発明の多孔質造粒焼成体の製造方法について、図2~5に基づいて説明する。
 アルミナ微粉体を原料とし、回転皿を備えた転動造粒機を用いて薬剤被覆しながら造粒する造粒工程と、該造粒体を焼成する焼成工程とを含むことを前提とする。
 原料として使用するアルミナ微粉体の特性は、製品である造粒焼成体における要求特性により異なる。例えば、触媒担体等に使用する場合は、多孔質造粒焼成体にソーダ含有率が低く且つ気孔分布が密である特性が要求される。このため、相対的に安価である仮焼アルミナ微粉体のうち、低ソーダアルミナ微粉体(αアルミナ)として上市されているものを好適に使用できる。具体的には、ソーダ(Na2O基準)含有率において、0.3%以下、さらには0.1%以下、粒径(メジアン)において、0.1~100μm、さらには1~5μmのものを使用することが望ましい。なお、原料であるアルミナ微粉体は、βアルミナやγアルミナ(ρ、χ、η、δを含む。)であってもよい。
 薬剤としては、1)結晶析出剤(一次噴霧液)、2)気孔形成剤(二次噴霧液)、3)結合剤(三次噴霧液)を用いる。具体的には、下記の通りである。
 1)結晶析出剤(一次噴霧液):
 結晶析出剤の分散質であるアルミニウム化合物としては、有機系、無機系を問わない。有機系としては、乳酸アルミニウム、アルミニウムアルコキシド、メチルアルミニウム(Al2(CH36)、エチルアルミニウム(Al2(C256)、酢酸アルミニウム等を、無機系としては、硝酸アルミニウム、塩化アルミニウム等を好適に使用できる。
 これらの結晶析出剤は、有機アルミニウム化合物、特に、乳酸アルミニウムが、溶解度(25℃:30%)が高くて噴霧液を調製し易いため望ましい。この一次噴霧液の濃度は、要求特性(比表面積、圧縮強度等)に応じて、1~30%の範囲で適宜調節する。噴霧液の態様は、通常、溶液とするが、エマルション、サスペンションであってもよい。
 2)気孔形成剤(二次噴霧液):
 気孔形成剤としては、それぞれ非水溶性高分子(合成樹脂、天然ゴム又は合成ゴム)を水分散させたものが使用可能である。水を分散媒とするのは、乾燥速度の制御が容易なためである。また、該気孔形成剤は、一次噴霧後原料の粒子表面に対して濡れ性を有しない(接触角が鈍角)ものが好ましい。気孔形成剤の液滴が粒子表面で広がらず、液滴径を制御し易いためである。
 合成樹脂としては、熱可塑性でも熱硬化性でもよい。具体的には、焼成時の消失が円滑に行える、ポリ酢酸ビニル(PVAC)類(共重合体を含む。)、アクリル樹脂類(ポリアクリル酸エステル、ポリメタクリル酸エステル)、ノボラック型フェノール樹脂、ポリオレフィン・共重合ナイロン・共重合ポリエステル等を好適に使用できる。合成ゴムとしては、ポリイソプレン等を好適に使用できる。
 これらのうちで、PVAC類が流動性の良好な噴霧液(エマルション)を調製し易くて望ましい。噴霧液の態様は、通常、エマルションとするが、ラテックス、サスペンションでもよい。
 二次噴霧液の濃度は、エマルションの場合、1~50%、望ましくは5~15%とする。濃度が高すぎると、真球度の高い粒子からなる造粒体を得難くなる。濃度が低すぎると、適切な気孔径を造粒体の粒子に得ることが困難となる。
 3)結合剤(三次噴霧液):
 結合剤としては、無機系・有機系を問わない。焼成により熱分解・揮散してアルミナ微粒子に実質的に残存しない有機系が望ましい。無機系の場合、残存すると触媒毒となるおそれがあり、アルミナ結晶の機能を阻害するおそれがある。有機系のうち、噴霧液の取扱い性に優れている水溶性有機高分子が望ましい。水溶性有機高分子としては、ポリビニルアルコール(PVAL)、ポリビニルアセタール・ポリビニルピロリドン、アクリルモノマー、セルロース誘導体(CMC・HPC・HPMC等)、澱粉等を好適に使用できる。
 この三次噴霧液の態様は、通常、水溶液とするが、適宜、極性溶剤を含有させて揮発度を調節してもよい。三次噴霧液の濃度は、1~30%、望ましくは5~15%とする。濃度が高いと、真球度の高い造粒体を得難くなる。
 なお、有機系の場合において、上記気孔形成剤と同一又は同種樹脂を使用して、別位置で噴霧して結合剤とすることも可能である。
 4)滑剤
 滑剤としては、造粒体の流動性を増大させるものなら、無機系・有機系を問わない。造粒体に付着した後、焼成により熱分解・揮散して分離操作が不要な有機系滑剤が望ましい。有機系滑剤としては、合成樹脂微粉体や、脂肪酸エステル類、金属石鹸、炭化水素類(パラフィンワックス等)、等を使用可能である。これらの内で吸水率が低い(例えば、ASTMD570:0.5%以下)合成樹脂微粉体が望ましい。取扱い性が良好で流動性増大作用が安定しているためである。具体的には、PMMA、ポリエチレン、ポリエステル(PET)、等の微粉体を挙げることができる。これらの滑剤の平均粒径は、1~50μmとする。
 本発明は、アルミナ微粉体からなる原料を、回転皿を備えた転動造粒機を用いて液剤噴霧しながら湿式造粒する造粒工程と、該造粒体を焼成する焼成工程とを含む、ことを前提とする。
 本造粒工程は、下記1)一次噴霧工程、2)二次噴霧工程、3)三次噴霧工程、及び、4)整粒工程、の各副工程を含むものとする。
 より具体的には、下記の如く行う。以下の説明で、噴霧量の単位:部/minは、アルミナ原料粉100部に対するものである。
 噴霧工程等に先立ち、一次噴霧液、二次噴霧液および三次噴霧液を調製する。また、それらの噴霧液を噴霧するために、各噴霧液とエアとを混合噴霧する二流体アトマイザー(噴霧器)を転動造粒機に3基付設する(図示せず。)。そして、本実施形態では、各噴霧器のノズルは、回転皿17の排出部位(排出シュート19)から斜め上方に伸びる傾斜直径(傾斜角度30~45°)Dに沿って配する。ここで、噴霧ノズルを傾斜直径Dに沿って配するのは、噴霧器ノズル相互の離間距離(横(水平)方向および縦方向)を取りやすく、噴霧時の噴霧液相互に重なりが発生し難いためである。
 図例では、排出部位と対向した回転皿の外周部位近傍に配される原料投入部位側から、一次噴霧部位A帯、二次噴霧部位B帯および三次噴霧部位C帯に、それぞれ、略同一幅で噴霧可能に噴霧ノズルを配する。このときの噴霧幅は、回転皿の内径が300mmの場合、それぞれ、30~70mmとする。
 そして、回転皿を、回転数:10~60min-1、望ましくは10~45min-1の範囲で、傾斜角度:20~70°、望ましくは40~70°の範囲で、原料の平均粒径に対応させて回転させておく。これらの条件は、回転皿内の造粒状態等を監視しながら、適宜調節する。これらの回転数、傾斜角度範囲外では、原料、一次噴霧後原料、二次噴霧後原料、三次噴霧後原料を分級させながら転動循環させることが困難となる。
 なお、粒子が濡れ状態(湿態時)では安息角が大きくなるため、傾斜角度も相対的に大きく設定する必要がある。
 1)一次噴霧工程:
 運転中の回転皿17の原料投入部位(A帯の上側部)に、アルミナ微粉体である原料(低ソーダアルミナ微粉)を投入する。
 原料は、回転皿17の外周部(リム部17a内側)に沿って一次転動循環する。すなわち、遠心力により回転皿の外周部に沿って、回転皿の下端外周部を経て回転皿の上端部を超えてA帯上方位置まで持ち上げられた後、重力が遠心力に勝ることにより反転して、大円弧を描いて、一次噴霧部位A帯を経る一次転動循環をする。
 該A帯(一次転動循環の反転側部位、望ましくは反転直後部位)で、原料に対して、結晶析出剤(一次噴霧液)を一次噴霧する(図4(1)参照)。
 反転直後部位では、転動循環する原料の下方への広がりが殆どなく、粉体の集合密度が高いうちに噴霧でき、噴霧効率が良好となる(以下、二次噴霧・三次噴霧も同様である。)。
 この一次噴霧の噴霧条件は、液滴径:10~1000μm、望ましくは10~300μm、単位時間噴霧量:0.01~4.5部/min、望ましくは1~3部/minの範囲で適宜選定する。合計噴霧量は、アルミナ原料粉100部に対して、1~30部、望ましくは、1~25部とする。
 液滴径が小さすぎては、ドライミスト(濡れない液滴)となり、結晶析出剤が原料の各粒子を被覆し難くなる。逆に液滴径が大きすぎては、粒子相互の凝集現象が発生して造粒されやすくなり、気孔形成剤の各粒子に対する被覆がされ難くなり、気孔内にアルミナ析出結晶を形成し難くなる。いずれにしても、本発明の目的物(気孔内に析出結晶を有する多孔質造粒焼成体)を得難くなる。
 また、単位時間噴霧量が少ないと作業時間が増加し、逆に、単位時間噴霧量が多いと凝集現象が発生して造粒されやすくなり、本発明の目的物(造粒体粒子の気孔内に析出結晶を有する多孔質造粒焼成体)を得難くなる。
 2)二次噴霧工程:
 上記一次噴霧液が被覆された粒子からなる一次噴霧後原料(微粉体)は、一次転動循環の内側を二次転動循環する。すなわち、一次噴霧後原料は、結晶析出剤の被覆により重量が増大するため、重力の遠心力に勝る位置が、原料よりも手前側となり、A帯の上方位置まで至らず反転し、中円弧を描いて、二次噴霧部位B帯を経る二次転動循環をする。
 なお、一次噴霧液で被覆されなかった原料(粒子群)は、一次転動循環されてA帯に至って一次噴霧が繰り返えされる。
 そして、上記B帯(二次転動循環の反転側部位)で、一次噴霧後原料に対して気孔形成剤(二次噴霧液)を二次噴霧する。
 この気孔形成剤は、一次噴霧後原料の粒子相互を凝集させて一次造粒すると同時に、気孔形成剤の液滴径により粒子相互間の間隙を制御して、焼成工程で形成される気孔径の調節作用を担う(図4(2))。
 二次噴霧の噴霧条件は、液滴径:10~1000μm、望ましくは10~200μm、単位時間噴霧量:0.01~4.5部/min、望ましくは1~3部/minの範囲で適宜選定する。合計噴霧量は、アルミナ原料粉100部に対して、1~30部、望ましくは、1~25部とする。
 気孔形成剤の単位時間噴霧量乃至合計噴霧量が少ないと、十分な気孔密度乃至気孔を造粒焼成体に得難い。逆に、単位時間噴霧量乃至合計噴霧量が多いと、気孔径のバラツキ度や気孔密度が高くなって造粒形状が異形乃至不揃いとなりやすい。
 3)三次噴霧工程:
 上記二次噴霧液が被覆された一次造粒体粒子からなる二次噴霧後原料は、二次転動循環の内側を、小円弧を描いて三次転動循環する。すなわち、二次噴霧後原料は、気孔形成剤の被覆および一次造粒により重量が増大するため、重力の遠心力に勝る位置が、一次噴霧後原料より手前側で反転して、B帯の上方位置まで至らず反転し、小円弧を描いて、三次噴霧部位C帯を経る三次転動循環をする。
 なお、二次噴霧液で被覆されなかった粒子群は、二次転動循環されてB帯に至り、二次噴霧が繰り返えされる。
 上記C帯(三次転動循環の反転側部位)で、二次噴霧後原料(一次造粒体)に対して結合剤(三次噴霧液)を三次噴霧する。
 この結合剤は、二次噴霧後原料(一次造粒体)の造粒体粒子相互を結合させて二次造粒体(粗粒)とする。
 三次噴霧の噴霧条件は、液滴径:10~1000μm、望ましくは10~300μm、単位時間噴霧量:0.01~4.5部/min、望ましくは1~3部/minの範囲で適宜選定する。合計噴霧量は、アルミナ原料粉100部に対して、1~30部、望ましくは、1~15部とする。
 単位時間噴霧量乃至合計噴霧量が少なくては、十分な粒度(大きさ)の二次造粒体(粗粒)を得難く、かつ、造粒焼成体に網目状の気孔を得難い。逆に、単位時間噴霧量乃至合計噴霧量が多くても、造粒焼成体に網目状の気孔を得難い。
 4)整粒工程:
 上記三次噴霧液で一次造粒体の粒子が被覆された三次噴霧後原料は、三次転動循環と略重なるC帯の内側寄りを通過する転動循環をしながら、さらには三次噴霧も繰り返されて、造粒の成長が進行して所要径の二次造粒体(製品造粒体)に整粒される。その後、製品造粒体(二次造粒体)は排出シュート19から排出される。
 なお、原料の追加投入に際して、前記滑剤を添加することが望ましい。各噴霧後原料が回転皿リムに付着するのを防止するとともに、原料の解砕がより円滑に行われるためである。このときの滑剤の添加量は、追加投入する原料100部に対して1~50部、望ましくは10~40部とする。
 次に、上記で調製した製品造粒体を、電気炉等を用いて、焼成処理を行って焼成させる。
 ここで、前述のアルミナ微粒子を被覆する結晶析出剤が、噴霧後乾燥してアルミニウム化合物が析出成長し、さらに、焼成によりγアルミナさらにはαアルミナのアルミナ析出結晶となる。
 このときの焼成条件を下記する。
 昇温速度:100~700℃/h、望ましくは200~400℃/hとする。昇温速度が速すぎると、焼成体にクラックが発生しやすくなる。逆に遅すぎると、生産性が低下する。
 到達温度・保持時間は、γアルミナの析出結晶とする場合、500~1300℃×1~24h、望ましくは600~1100℃×1~20hとする。また、αアルミナの析出結晶とする場合、1000~2000℃×0.1~3h、望ましくは、1650~1850℃×0.5~1hとする。αアルミナの析出結晶とする焼成工程のモデルを図5に示す。
 この焼成工程において、図5A・B・C・Dに示す如く、焼結が進行するにしたがって、造粒体粒子は縮み、気孔径も縮径し圧縮強度が漸増し、さらには、対向する析出結晶相互が融着して圧縮強度がさらに増大する。こうして、図1に示す如く、アルミナの析出結晶を内部に備えた気孔が造粒体粒子の断面全体に網目状に形成される。
 以上、原料がアルミナ微粉体である場合を例に採り説明したが、本発明は、アルミナ微粒体をセラミック微粉体に替えた下記構成のセラミック微粉焼成体(1)及びその製造方法(2)にも及ぶものである。
 (1) 無数のセラミック粒子同士が、主として連通する気孔を造粒体粒子の断面全体に網目状に残存させて固結してなる多孔質造粒焼成体であって、前記気孔は、その内径が気孔形成剤の液滴径で制御されているとともに、その内面に無数のアルミナ析出結晶を有していることを特徴とする。
 (2) 上記多孔質造粒焼結体の製造方法であって、
 セラミック微粉体からなる原料を、回転皿を備えた転動造粒機を用いて液剤噴霧しながら湿式造粒する造粒工程と、該造粒体を焼成する焼成工程とを含み、
 前記造粒工程は、
  1)回転皿の斜め下方部に位置する排出部に対向する上方部側から投入され、回転皿の外周部に沿って一次転動循環をする原料に対して、結晶析出剤を一次噴霧する工程、
  2)前記一次転動循環の内側を二次転動循環する一次噴霧後原料に対して気孔形成剤を二次噴霧する工程、
  3)前記二次転動循環の内側を三次転動循環する二次噴霧後原料に対して、結合剤を三次噴霧する工程、及び、
  4)三次噴霧後原料を、さらなる転動循環により造粒成長を進行させて所要径の造粒体に整粒する工程、
 の各副工程を含み、
 前記一次・二次・三次噴霧を、それぞれ、一次・二次・三次転動循環する反転側部位で行う、ことを特徴とする。
 上記原料(微粉体)となるセラミックとしては、酸化マグネシウム(MgO)、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、酸化カルシウム(CaO)、酸化ベリリウム(BeO)等を挙げることができる。
 以下、本発明の効果を確認するために比較例とともに行った実施例について説明する。なお、転動造粒機は、実施例・比較例ともに、内径300mmのパン型の回転皿を備えたものを使用した。そして、回転皿15における各噴霧帯であるA帯、B帯及びC帯は前述の図3に示す通りとし、各噴霧帯の幅は、50mmとした。
 また、使用原料および薬剤、仕様は、それぞれ下記の通りである。
 1)原料
  ・仮焼アルミナ微粉体(低ソーダアルミナ)・・・平均粒径:2.5μm、Na2O:0.08%、比表面積:1.4g/m2
  ・活性アルミナ・・・平均粒径:1.5μm、Na2O:0.45%、比表面積:1.5g/m2
2)薬剤
  ・結晶析出剤(一次噴霧液)・・・乳酸アルミニウムの30%水溶液、
  ・気孔形成剤(二次噴霧液)・・・PVAC(平均粒径:10μm)の10%エマルション、PVAC粒径:1μm
  ・結合剤(三次噴霧液)・・・PVALの10%水溶液、
  ・滑剤・・・PMMA微粉体(平均粒径5μm)
 <実施例>
 傾斜角度55°に調節され回転数25min-1で回転する回転皿に、原料である低ソーダアルミナ100gを原料投入部位(A帯の上方)から投入した後、回転皿を起動させ、適正な転動循環が原料粉体に発生するように回転数及び傾斜角度を調節する。調節範囲は、前者:25~35min-1及び後者:55~62°とした。
 1)一次転動循環する原料に対して、A帯で一次噴霧液を噴霧した。このとき、液滴径が10μmになるように噴霧圧・単位時間噴霧量を調節して噴霧した。このときの合計噴霧量は、原料100部に対して20部に設定した。そして、本実施例では単位時間噴霧量2.5部/minとしたので、噴霧合計時間は8分となる。
 2)二次転動循環する一次噴霧後原料に対して、B帯で、気孔形成剤(二次噴霧液)を噴霧した。このときの二次噴霧液の合計噴霧量は、原料100部に対して20部に設定した。なお、二次噴霧液の単位時間噴霧量を2.5部/minに設定して、前記一次噴霧液の合計噴霧時間8分と対応するようにした。同時噴霧して連続造粒を可能とするためである。
 3)三次転動循環する二次噴霧後原料に対して、C帯で結合剤(三次噴霧液)を噴霧した。このときの結合剤の合計噴霧量は、次の整粒工程を含めて、原料100部に対して10部(固形分換算)に設定した。なお、三次噴霧液の単位時間噴霧量を2.5部/minに設定して、前記一次・二次噴霧液の合計噴霧時間8分と対応するようにした。同時噴霧して連続造粒を可能とするためである。
 4)三次噴霧後原料は、C帯の内側寄りを経る転動循環を繰り返して、造粒の成長が所要の造粒径(平均粒径:2mm)となるまで整粒する。
 なお、この整粒の最終段階である二次造粒完了の直前、本実施例では10分前に、原料20部に滑剤5部を添加したものを、単位時間投入量2.5部/minとなるように原料投入部位から分割投入した。
 上記転動造粒の運転中において、回転皿内の温度は28℃以下18℃以上になるように、噴霧液の温度・単位時間噴霧量を調節した。温度が高すぎても低すぎても、噴霧液の揮発速度が速すぎたり、遅すぎたりして、造粒が円滑に行われないためである。なお、蒸発熱により回転皿内の温度が低下するために、回転皿の裏側位置に電熱ヒータを非接触式で配した。
 次に、こうして調製した湿式造粒体を、昇温速度300℃/hで到達温度900℃まで昇温させ3h保持後、さらに、同一昇温速度で到達温度1650℃まで昇温させ0.5h保持して、焼成体とした。
 <比較例1>
 上記実施例において、原料として、活性アルミナ(Na2O:0.45%、中心粒径1.5μm、比表面積200m2/g)100gを投入し、該原料を同一条件で転動循環させながら、一次・二次噴霧被覆をせずに、結合剤(PVAL10%水溶液)をA帯で単位時間噴霧量25g(固形分2.5g)/minで合計噴霧量100g(固形分10g)となるように合計時間4min噴霧した。
 こうして調製した湿式造粒体を、実施例と同様の条件で焼成させた。
 <比較例2>
 比較例1において、原料として、実施例に使用した低ソーダアルミナを用いて、同様にして転動造粒した湿式造粒体を、同様の条件で焼成させた。
 こうして調製した実施例・比較例1,2の各比表面積、ソーダ成分および圧縮強度(粒子強度)を計測したので表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例および比較例1・2との結果から、下記のことが判明した。
 (1)実施例の粒子強度は、活性アルミナ粉体を原料とする焼成体(比較例1)より格段に高いことはもとより、実施例と同じ低ソーダアルミナを原料とする従来法による焼成体(比較例2)と略同等であった。気孔内のアルミナ析出結晶の存在により、高温焼成(焼結)によって塞がれなかったためと推定される。
 (2)実施例の比表面積は、比較例1より若干高いとともに、実施例と同じ低ソーダアルミナを原料とする従来法による焼成体(比較例2)より格段に大きい。多孔質であるとともに気孔内面にアルミナ析出結晶が存在するためであると推定される。また、比較例1の比表面積の低下は、活性アルミナの気孔が焼結により塞がれたためと推定される。
 (3)実施例のソーダ成分は原料の約1/4で、比較例1より格段に少ないことは勿論、比較例2よりもさらに低くなっていた。実施例・比較例2におけるソーダ成分の低下は、高温焼成(焼結)によりソーダ成分が揮発したためと推定される。
 そして、各実施例・比較例の造粒体の走査型電子顕微鏡(SEM)写真を低倍率及び高倍率で撮影した。それらのSEM写真を図6(A)・(B)・(C)に示す。図6のSEM写真から、本発明の実施例は、比較例1・2と真球度は余り変わらないが、比較例1・2に比して気孔密度がより均質であることが分かる。
  11  多孔質造粒焼成体の粒子
  13  気孔
  15  アルミナ析出結晶
                                                                        

Claims (10)

  1.  無数のアルミナ粒子同士が、主として連通する気孔を造粒体粒子の断面全体に網目状に残存させて固結してなる多孔質造粒焼成体であって、前記気孔は、その内径が気孔形成剤の液滴径で制御されているとともに、その内面に無数のアルミナ析出結晶を有していることを特徴とする多孔質造粒焼成体。
  2.  ソーダ成分(Na2O換算;以下同じ。)の含有率が0.03%未満であることを特徴とする請求項1記載の多孔質造粒焼成体。
  3.  前記造粒体粒子における気孔の平均隙間(算術平均)が0.5~50μmの範囲に調節されているとともに、前記アルミナ析出結晶の二軸平均径(長径と短径の算術平均)が0.1~5μmであることを特徴とする請求項1記載の多孔質造粒焼成体。
  4.  造粒体粒子の平均粒径(メジアン径):0.1~5mmであるとともに、比表面積(BET法):0.1~20m2/gであることを特徴とする請求項3記載の多孔質造粒焼成体。
  5.  請求項1~4のいずれかに記載の多孔質造粒焼成体の製造方法であって、
     アルミナ微粉体からなる原料を、回転皿を備えた転動造粒機を用いて液剤噴霧しながら湿式造粒する造粒工程と、該造粒体を焼成する焼成工程とを含み、
     前記造粒工程は、
      1)回転皿の斜め下方部に位置する排出部に対向する上方部側から投入され、回転皿の外周部に沿って一次転動循環をする原料に対して、結晶析出剤を一次噴霧する工程、
      2)前記一次転動循環の内側を二次転動循環する一次噴霧後原料に対して気孔形成剤を二次噴霧する工程、
      3)前記二次転動循環の内側を三次転動循環する二次噴霧後原料に対して、結合剤を三次噴霧する工程、及び、
      4)三次噴霧後原料を、さらなる転動循環により造粒成長を進行させて所要径の造粒体に整粒する工程、
     の各副工程を含み、
     前記一次・二次・三次噴霧を、それぞれ、一次・二次・三次転動循環する反転側部位で行う、
     ことを特徴とする多孔質造粒焼成体の製造方法。
  6.  前記原料が、Na2O含量:0.3%以下のアルミナ微粉体であることを特徴とする請求項5記載の多孔質造粒焼成体の製造方法。
  7.  前記アルミナ微粉体が、Na2O含量:0.1%以下、メジアン粒径:0.1~100μmの仮焼アルミナ微粉体であることを特徴とする請求項6記載の多孔質造粒焼成体の製造方法。
  8.  前記回転皿の投入部位に前記原料をバッチ的又は連続的に投入するに際して、滑剤を同時に添加することを特徴とする請求項5記載の多孔質造粒焼成体の製造方法。
  9.  無数のセラミック粒子同士が、主として連通する気孔を造粒体粒子の断面全体に網目状に残存させて固結してなる多孔質造粒焼成体であって、前記気孔は、その内径が気孔形成剤の液滴径で制御されているとともに、その内面に無数のアルミナ析出結晶を有していることを特徴とする多孔質造粒焼成体。
  10.  請求項9記載の多孔質造粒焼成体の製造方法であって、
     セラミック微粉体からなる原料を、回転皿を備えた転動造粒機を用いて液剤噴霧しながら湿式造粒する造粒工程と、該造粒体を焼成する焼成工程とを含み、
     前記造粒工程は、
      1)回転皿の斜め下方部に位置する排出部に対向する上方部側から投入され、回転皿の外周部に沿って一次転動循環をする原料に対して、結晶析出剤を一次噴霧する工程、
      2)前記一次転動循環の内側を二次転動循環する一次噴霧後原料に対して気孔形成剤を二次噴霧する工程、
      3)前記二次転動循環の内側を三次転動循環する二次噴霧後原料に対して、結合剤を三次噴霧する工程、及び、
      4)三次噴霧後原料を、さらなる転動循環により造粒成長を進行させて所要径の造粒体に整粒する工程、
     の各副工程を含み、
     前記一次・二次・三次噴霧を、それぞれ、一次・二次・三次転動循環する反転側部位で行う、
     ことを特徴とする多孔質造粒焼成体の製造方法。

                                                                            
PCT/JP2015/052795 2015-02-02 2015-02-02 多孔質造粒焼成体及びその製造方法 WO2016125225A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15881042.4A EP3255025B1 (en) 2015-02-02 2015-02-02 Process for producing porous fired granulated body
PCT/JP2015/052795 WO2016125225A1 (ja) 2015-02-02 2015-02-02 多孔質造粒焼成体及びその製造方法
US15/546,372 US20180009719A1 (en) 2015-02-02 2015-02-02 Porous fired granulated body and method for manufacturing the same
US16/792,585 US11639314B2 (en) 2015-02-02 2020-02-17 Porous fired granulated body and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052795 WO2016125225A1 (ja) 2015-02-02 2015-02-02 多孔質造粒焼成体及びその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/546,372 A-371-Of-International US20180009719A1 (en) 2015-02-02 2015-02-02 Porous fired granulated body and method for manufacturing the same
US16/792,585 Division US11639314B2 (en) 2015-02-02 2020-02-17 Porous fired granulated body and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2016125225A1 true WO2016125225A1 (ja) 2016-08-11

Family

ID=56563591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052795 WO2016125225A1 (ja) 2015-02-02 2015-02-02 多孔質造粒焼成体及びその製造方法

Country Status (3)

Country Link
US (2) US20180009719A1 (ja)
EP (1) EP3255025B1 (ja)
WO (1) WO2016125225A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105222A (ja) * 2013-12-02 2015-06-08 伊藤忠セラテック株式会社 多孔質造粒焼成体及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176385A (ja) * 1987-01-13 1988-07-20 日立金属株式会社 導電性セラミツクス複合体の製造方法
JPH02160679A (ja) * 1988-12-14 1990-06-20 Kanebo Ltd アルミナ系多孔体の製造法
JPH04110042A (ja) * 1990-08-31 1992-04-10 Mitsubishi Materials Corp アルミナ複合触媒担体及びその製造方法
JP2001270783A (ja) * 2000-03-28 2001-10-02 Idemitsu Kosan Co Ltd アルミナ多孔体
JP2005154227A (ja) * 2003-11-27 2005-06-16 Ngk Insulators Ltd アルミナ焼結体及びその製造方法
JP2006089345A (ja) * 2004-09-27 2006-04-06 Kyocera Corp 導電性多孔質セラミックス焼結体およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1569559A (en) * 1976-09-15 1980-06-18 Cawoods Refractories Ltd Refractory compositions
CN1142119C (zh) * 1994-08-09 2004-03-17 株式会社丰田中央研究所 复合材料、其制法及由其构成的热敏电阻材料及制法
JP3680342B2 (ja) 1995-03-10 2005-08-10 住友化学株式会社 遷移アルミナ成形体の製造方法
US5922403A (en) * 1996-03-12 1999-07-13 Tecle; Berhan Method for isolating ultrafine and fine particles
US6793873B2 (en) * 1997-03-21 2004-09-21 Daimlerchrysler Ag Melted-infiltrated fiber-reinforced composite ceramic
US6472075B1 (en) * 1999-09-08 2002-10-29 Ngk Spark Plug Co., Ltd. Sintered silicon nitride member and ceramic ball
US20030082100A1 (en) * 2001-04-20 2003-05-01 Institut Francais Du Petrole Alumina spheres having a high impact resistance
US20020197204A1 (en) 2001-05-31 2002-12-26 Sumitomo Chemical Company, Limited Method for producing alpha-alumina formed body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176385A (ja) * 1987-01-13 1988-07-20 日立金属株式会社 導電性セラミツクス複合体の製造方法
JPH02160679A (ja) * 1988-12-14 1990-06-20 Kanebo Ltd アルミナ系多孔体の製造法
JPH04110042A (ja) * 1990-08-31 1992-04-10 Mitsubishi Materials Corp アルミナ複合触媒担体及びその製造方法
JP2001270783A (ja) * 2000-03-28 2001-10-02 Idemitsu Kosan Co Ltd アルミナ多孔体
JP2005154227A (ja) * 2003-11-27 2005-06-16 Ngk Insulators Ltd アルミナ焼結体及びその製造方法
JP2006089345A (ja) * 2004-09-27 2006-04-06 Kyocera Corp 導電性多孔質セラミックス焼結体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255025A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105222A (ja) * 2013-12-02 2015-06-08 伊藤忠セラテック株式会社 多孔質造粒焼成体及びその製造方法

Also Published As

Publication number Publication date
US20200181030A1 (en) 2020-06-11
EP3255025B1 (en) 2019-11-20
EP3255025A4 (en) 2018-10-10
US20180009719A1 (en) 2018-01-11
US11639314B2 (en) 2023-05-02
EP3255025A1 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6562977B2 (ja) 粉末積層造形に用いる粉末材料およびそれを用いた粉末積層造形法
CN108178656B (zh) 一种高孔隙率多孔陶瓷微球及其制备方法
RU2167841C2 (ru) Сферические керамические элементы, полученные формованием, способ их изготовления
US3896196A (en) Method of producing spherical thermoplastic particles
US3942903A (en) Unitary porous themoplastic writing nib
CN112808160B (zh) 一种双氧化物纳米团聚喷涂复合粉末的制备方法
JP6276011B2 (ja) 多孔質造粒焼成物の製造方法
JP6321357B2 (ja) アルミナ微粉焼成物の製造方法
US11639314B2 (en) Porous fired granulated body and method for manufacturing the same
EP3347328B1 (en) Method of forming porous ceramic particles
JP6276010B2 (ja) 多孔質造粒焼成体の製造方法
JPH0324255B2 (ja)
JP6979754B2 (ja) 溶射材料および溶射皮膜
CN105732085A (zh) 一种纳米结构刚玉质蜂窝陶瓷体及其制备方法
JP2004122057A (ja) 流動層装置
Amirjan et al. Fluidized bed coating efficiency and morphology of coatings for producing Al-based nanocomposite hollow spheres
JPH0343201B2 (ja)
JPS63274647A (ja) セラミックス顆粒の製造方法
JP4707225B2 (ja) 表面コーティングしたセラミックファイバー成形体の製造方法
JP4041769B2 (ja) ジルコニアビーズの製造方法
JPH03257081A (ja) 多孔質セラミックスの製造方法
WO2023105011A1 (en) Eco-friendly simple processing of pure alkali silicate construction parts based on water-glass
US20050225013A1 (en) Method for the production of hybrid spherical molded bodies from soluble polymers
JP2009249246A (ja) ジルコニア粒子とその製造方法
JPH08259304A (ja) 陶磁器用原料の造粒方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15546372

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015881042

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP