WO2016124051A1 - 一种木质素燃料电池质子交换膜及制备方法 - Google Patents

一种木质素燃料电池质子交换膜及制备方法 Download PDF

Info

Publication number
WO2016124051A1
WO2016124051A1 PCT/CN2015/099706 CN2015099706W WO2016124051A1 WO 2016124051 A1 WO2016124051 A1 WO 2016124051A1 CN 2015099706 W CN2015099706 W CN 2015099706W WO 2016124051 A1 WO2016124051 A1 WO 2016124051A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
parts
weight
proton exchange
exchange membrane
Prior art date
Application number
PCT/CN2015/099706
Other languages
English (en)
French (fr)
Inventor
陈庆
曾军堂
叶任海
陈兵
Original Assignee
成都新柯力化工科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都新柯力化工科技有限公司 filed Critical 成都新柯力化工科技有限公司
Publication of WO2016124051A1 publication Critical patent/WO2016124051A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of fuel cell proton exchange membranes, and in particular to a lignin fuel cell proton exchange membrane and a preparation method thereof.
  • Proton exchange membrane is one of the key components in proton exchange membrane fuel cells (PEMFC). It is a dense proton-selective membrane that acts as a separator to separate fuel and oxidant from direct reaction. It also plays a role in conducting protons to electronic insulation. Most of the proton exchange membranes put into commercial production and application today are fluorine-containing polymer proton exchange membranes. The proton exchange membranes have good proton conductivity and mechanical properties, but also have high production costs and complicated production processes. It is not resistant to high temperatures, short service life, serious environmental pollution and other important defects.
  • Chinese Patent Publication No. CN102174258A discloses a polysulfone-based proton exchange membrane containing perfluorosulfonic acid and a preparation method thereof, the proton exchange membrane material being a polyaryl ether sulfone backbone and 1, 1, 2, a polymer of 2-tetrafluoro-2-(1,1,2,2-tetrafluoro-2-phenylethoxy)acetamidine sulfonic acid side chain, which has the advantages of low swelling and high proton conductivity, but has a cost High, low material sources, complex processes and environmental pollution.
  • Chinese Patent Publication No. CN103236557A discloses a proton exchange membrane which is a polyparaphenylene benzobisoxazole and a polyphosphoric acid blend membrane (PB0/PPA), and has a preparation method thereof. The process is simple, easy to control, and has high proton conductivity at high temperatures, but its high material cost and environmental pollution are also not suitable for large-scale application of fuel cells.
  • PB0/PPA polyparaphenylene benzobisoxazole and a polyphosphoric acid blend membrane
  • the process is simple, easy to control, and has high proton conductivity at high temperatures, but its high material cost and environmental pollution are also not suitable for large-scale application of fuel cells.
  • Chinese Patent Publication No. CN103715438A discloses a nano-composite proton exchange membrane, which is a sulfonated polyetheretherketone and a polydopamine-modified graphene oxide nanocomposite proton exchange, and a preparation method and application thereof. The membrane
  • Chinese Patent Publication No. CN102477162A discloses a preparation method of a proton exchange membrane which has high electrical conductivity and good high temperature resistance, but also has high cost, less material source, complicated process and environment. There are pollution defects.
  • the existing proton exchange membrane has defects of high cost, less material source, and pollution to the environment. Therefore, development of a low cost, abundant material source, no pollution to the environment, and high protons Conductivity and simple proton exchange membranes are the key to driving large-scale market applications of fuel cells.
  • the present invention provides a lignin fuel cell proton exchange membrane, which is rich in source, low in cost, and biodegradable compared with other fuel cell proton exchange membranes due to the use of lignin which is abundant in plants as a main material. It does not pollute the environment and has been specially treated to form a proton exchange membrane with good proton conductivity and good mechanical properties.
  • a further object of the present invention is to provide a method for preparing a proton exchange membrane of a lignin fuel cell, which is obtained by a process of swelling, reduction, sulfonation, cross-linking, molding, etc., to obtain a proton exchange membrane, and the obtained proton exchange
  • the membrane has excellent proton conductivity and mechanical properties, meets the application of proton exchange membranes on fuel cells, and can be industrially produced on a large scale with stable quality, which is suitable for the promotion and application of fuel cell pairs.
  • the present invention relates to a lignin fuel cell proton exchange membrane characterized by containing modified lignin which is subjected to swelling, reduction and sulfonation treatment, and the raw material components thereof are as follows:
  • the lignin is a guaiac lignin obtained by polymerizing a syringyl lignin and a guaiacyl propylene fluorene structural monomer obtained by polymerizing a syringyl propylene fluorene structural monomer;
  • the conductive resin is one or more of polyethersulfone, polyetheretherketone, polybenzimidazole, polysulfone, and polyimide
  • the proton conductive auxiliary is phosphorus
  • tungstic acid, silicotungstic acid, zirconium phosphate, phosphomolybdic acid, and bismuth hydrogen sulfate said plasticizer is glycerol.
  • the present invention relates to a method for preparing a proton exchange membrane for a lignin fuel cell, and the specific preparation steps are as follows:
  • the sulfonated lignin obtained in the step 3) is 10-20 parts by weight of the proton conductive auxiliary agent, 5-10 parts by weight of the crosslinking agent, and 3-6 parts by weight of the plasticizer are high.
  • the cross-linking reaction is carried out by twin-screw extrusion, and a film having a thickness of less than 1 mm is prepared by hot pressing;
  • the reducing agent is one or more of mercaptoethanol, sodium sulfide, potassium sulfide, and sodium thiosulfate.
  • the sulfonating agent is one or more of concentrated sulfuric acid, fuming sulfuric acid, chlorosulfonic acid, and sulfur trioxide.
  • the crosslinking agent is one of benzoyl peroxide, glycerin, ethylene glycol, oxalic acid, and boric acid. Or a variety.
  • Lignin not only has the advantages of wide source, low cost, renewable, environmental protection, but also lignin is polymerized from aromatic alcohol, can graft multiple sulfonic acid groups by sulfonation, and can form a fixed proton conducting channel. Therefore, the proton conductivity is better. Therefore, the present invention selects lignin as a raw material to prepare a proton exchange membrane, and the lignin molecular chain is fully expanded by a swelling process to completely expose the active group, and then the reduction method is adopted.
  • Reducing a portion of the active group in the lignin to a hydroxyl group increases the number of groups capable of undergoing a sulfonation reaction, thereby increasing the proton conductivity of the sulfonated lignin, and grafting the sulfonic acid group by a sulfonation reaction.
  • the lignin has good proton conductivity, and the sulfonated lignin forms a network structure through cross-linking reaction, increasing its water resistance, and assisting with conductive resin and proton conductive auxiliary agent to increase its alcohol resistance and mechanics.
  • Performance and proton conductivity resulting in a rich source, low cost, and easy biodegradable, non-staining Environment, good proton conductivity, good mechanical properties of proton exchange membrane, and the method can be large-scale industrial production, stable quality, suitable for application of the fuel cell.
  • Table 1 Comparison of performance of the present invention with proton exchange membrane of perfluorosulfonic acid fuel cell
  • the present invention selects a lignin having a wide range of sources, low cost, renewable, and environmental protection as a raw material to prepare a proton exchange membrane.
  • the proton exchange membrane prepared by the invention has the advantages of low cost, easy biodegradation, no pollution to the environment, good proton conductivity and good mechanical properties. [0032] 3.
  • the proton exchange membrane prepared by the method of the invention satisfies the application on the fuel cell, and can be industrially produced on a large scale, has stable quality, and is suitable for the promotion and application of the fuel cell pair.
  • the sulfonation reaction is carried out after the sulfonation reaction is carried out for 0.5 hr, after the sulfonation reaction is carried out for a period of 0. 5 h, the distillation is carried out after the sulfonation reaction is carried out. , obtaining sulfonated lignin;
  • Crosslinking Mixing the sulfonated lignin obtained in the step 3) with 20 parts by weight of phosphomolybdic acid, 5 parts by weight of ethylene glycol, and 6 parts by weight of glycerin in a high-mixer. , the cross-linking reaction is carried out by twin-screw extrusion, and a film having a thickness of less than 1 mm is prepared by hot pressing;
  • the sulfonation reaction is carried out after the sulfonation reaction is carried out for 0.5 h, Distillation to obtain sulfonated lignin;
  • cross-linking after the sulfonated lignin obtained in the step 3) is uniformly mixed with 15 parts by weight of zirconium phosphate, 6 parts by weight of oxalic acid, and 5 parts by weight of glycerin in a high-mixer, The cross-linking reaction is carried out by twin-screw extrusion, and a film having a thickness of less than 1 mm is prepared by hot pressing;
  • step 3 the sulfonated lignin obtained in step 3) is mixed with 20 parts by weight of silicotungstic acid, 8 parts by weight of boric acid, and 3 parts by weight of glycerin in a high-mixer, and then used.
  • the twin-screw extrusion is carried out to carry out a crosslinking reaction, and a film having a thickness of less than 1 mm is prepared by a hot pressing method;
  • the sulfonation reaction is carried out after the sulfonation reaction is carried out for 0.5 h, Distillation to obtain sulfonated lignin;
  • Crosslinking Mixing the sulfonated lignin obtained in the step 3) with 20 parts by weight of phosphomolybdic acid, 5 parts by weight of ethylene glycol, and 6 parts by weight of glycerin in a high-mixer. , the cross-linking reaction is carried out by twin-screw extrusion, and a film having a thickness of less than 1 mm is prepared by hot pressing;
  • the invention selects a plant lignin having a wide range of sources, low cost, renewable and environmental protection as a raw material to prepare a proton exchange membrane, and obtains a source rich by swelling, reduction, sulfonation, cross-linking and molding.
  • Proton exchange membrane with low cost, easy biodegradation, no pollution to the environment, good proton conductivity and good mechanical properties, and the method can be mass-produced industrially, with stable quality, suitable for the promotion and application of fuel cell pairs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

一种木质素燃料电池质子交换膜及制备方法。本发明选取具有来源广泛,成本低廉,可再生,环保的植物木质素作为原材料制备质子交换膜,通过溶胀、还原、磺化、交联、制模的方法得到一种具有来源丰富,成本低廉,且易生物降解,不污染环境,质子电导性好、力学性能好的质子交换膜,且该方法能大规模工业化生产,质量稳定,适合燃料电池对的推广应用。

Description

说明书 发明名称: 一种木质素燃料电池质子交换膜及制备方法 技术领域
[0001] 本发明涉及燃料电池质子交换膜领域, 具体涉及一种木质素燃料电池质子交换 膜及制备方法。
背景技术
[0002] 质子交换膜是质子交换膜燃料电池 (PEMFC)中的关键部件之一, 是一种致密的 质子选择透过的功能膜,起着分隔燃料和氧化剂 ,防止它们直接发生反应作用, 同时也起着传导质子对电子绝缘的作用。 现今投入商业化生产和应用的质子交 换膜大多是含氟类的高分子质子交换膜, 该类质子交换膜具有较好的质子电导 性和力学性能, 但也存在生产成本高, 生产工艺复杂, 不耐高温, 使用寿命较 短, 污染环境严重等重要缺陷。 随着今后燃料电池的大量发展和普及使用, 质 子交换膜的用量也将会大幅度增加, 但其高昂的成本, 不可再生原材料的缺乏 和废弃后对环境的污染将成为限制燃料电池广泛应用的关键问题, 因而, 质子 交换膜的成本、 原材料选择和环保性也成为衡量质子交换膜综合性能的重要指 标。 针对目前质子交换膜存在的问题, 人们提出了非氟和非全氟质子交换 膜, 但其制备的材料依然是通过合成而得到的高分子聚合物, 成本高昂, 工艺 复杂, 材料来源少的问题同样没有得到解决, 因此对燃料电池的发展和应用帮 助有限。
[0003] 中国专利公开号为 CN102174258A公开了一种含全氟磺酸的聚醚砜类质子交换膜 及其制备方法, 该质子交换膜材料是聚芳醚砜主链和 1, 1, 2, 2-四氟 -2- (1, 1 , 2, 2-四氟 -2-苯乙氧基)乙垸磺酸侧链的聚合物, 具有低溶胀、 高质子传导率 的优点, 但存在成本高、 材料来源少、 工艺复杂且对环境有污染的缺陷。
[0004] 中国专利公开号为 CN103236557A公开了一种质子交换膜及其制备方法, 该质子 交换膜为聚对苯撑苯并二噁唑与多聚磷酸共混膜 (PB0/PPA), 具有制备工艺简单 , 易于控制, 在高温下质子传导率较高的优点, 但其高昂的材料成本和对环境 有污染的缺陷同样不适于燃料电池的大规模应用。 [0005] 中国专利公开号为 CN103715438A公开了一种纳米复合质子交换膜及其制备方法 和应用, 该纳米复合质子交换膜为磺化聚醚醚酮和聚多巴胺修饰的氧化石墨烯 纳米复合质子交换膜, 具有优良的质子导电性能, 适合在高温无水条件下使用 , 但同样由于其高昂的材料成本, 不适于燃料电池的大规模应用。
[0006] 中国专利公开号为 CN102477162A公开了一种质子交换膜的制备方法, 该质子交 换膜具有高电导率和良好的耐高温性能, 但同样存在成本高、 材料来源少、 工 艺复杂且对环境有污染的缺陷。
[0007] 根据上述, 现有的质子交换膜存在成本高、 材料来源少和对环境有污染的缺陷 , 因此, 开发一种具有低廉的成本, 材料来源丰富, 对环境无污染, 同时具有 高质子电导率、 成膜简单的质子交换膜成为推动燃料电池大规模市场应用的关 键。
发明概述
技术问题
[0008] 目前质子交换膜存在成本高、 材料来源少和对环境有污染的缺陷。
问题的解决方案
技术解决方案
[0009] 本发明提供一种木质素燃料电池质子交换膜, 与其它燃料电池质子交换膜相比 , 由于采用植物中大量存在的木质素作为主要材料, 因而来源丰富, 成本低廉 , 且易生物降解, 不污染环境, 并且经过特殊处理制成质子交换膜, 质子电导 性好、 力学性能好。
[0010] 本发明进一步的目的是提供一种木质素燃料电池质子交换膜的制备方法, 该方 法通过溶胀、 还原、 磺化、 交联、 制模等工艺制得质子交换膜, 得到的质子交 换膜具有优异的质子电导性和力学性能, 满足质子交换膜在燃料电池上的应用 , 且能大规模工业化生产, 质量稳定, 适合燃料电池对的推广应用。
[0011] 本发明一种木质素燃料电池质子交换膜, 其特征在于含有通过溶胀、 还原、 磺 化处理的改性木质素, 其原料重量份组成如下:
[0012] 木质素 65-75份,
[0013] 导电树脂 15-25份, [0014] 质子导电辅助剂 10-20份,
[0015] 增塑剂 3-6份,
[0016] 其中所说的木质素为由紫丁香基丙垸结构单体聚合而成的紫丁香基木质素、 愈 创木基丙垸结构单体聚合而成的愈创木基木质素中的一种或两种; 所说的导电 树脂为聚醚砜、 聚醚醚酮、 聚苯并咪唑、 聚砜、 聚酰亚胺中的一种或多种; 所 说的质子导电辅助剂为磷钨酸、 硅钨酸、 磷酸锆、 磷钼酸、 硫酸氢铯中的一种 或多种; 所说的增塑剂为丙三醇。
[0017] 本发明一种木质素燃料电池质子交换膜的制备方法, 其具体制备步骤如下:
[0018] 1) 溶胀: 将 65-75重量份的木质素、 20_30重量份的甲基溶纤剂、 100-150重量 份的蒸馏水加入到反应釜中, 以 120_150r/min的速度搅拌, 升温到 80_90°C, 溶 胀 2- 3h;
[0019] 2 ) 还原: 在步骤 1 ) 中溶胀的木质素中加入 5-10重量份的还原剂, 保持搅拌速 度不变, 降温到 55-60°C, 进行还原反应 l_2h;
[0020] 3 ) 磺化: 在步骤 2 ) 得到的还原后的木质素溶液中加入 20-30重量份的磺化剂
, 保持搅拌速度不变, 温度不变, 进行磺化反应 0. 5-lh后, 进行蒸馏, 得到磺 化木质素;
[0021] 4) 交联: 将步骤 3 ) 得到的磺化木质素与 10-20重量份的质子导电辅助剂、 5_1 0重量份的交联剂、 3-6重量份的增塑剂在高混机中混合均匀后, 采用双螺杆挤 出进行交联反应, 并采用热压法制备得到厚度小于 lmm的薄膜;
[0022] 5 ) 制模: 将 15-25重量份的导电树脂溶解在溶剂中, 制成溶液, 将该溶液均匀 涂覆在步骤 4) 得到的膜的两侧, 烘干后得到质子交换膜。
[0023] 在上述一种木质素燃料电池质子交换膜的制备方法中, 其中所述的还原剂为疏 基乙醇、 硫化钠、 硫化钾、 硫代硫酸钠中的一种或多种。
[0024] 在上述一种木质素燃料电池质子交换膜的制备方法中, 其中所述的磺化剂为浓 硫酸、 发烟硫酸、 氯磺酸、 三氧化硫中的一种或多种。
[0025] 在上述一种木质素燃料电池质子交换膜的制备方法中, 其中所述的交联剂为过 氧化苯甲酰、 丙三醇、 乙二醇、 乙二酸、 硼酸中的一种或多种。
[0026] 在上述一种木质素燃料电池质子交换膜的制备方法中, 其中所述的溶剂为二甲 基酰胺、 乙二胺、 异丙醇中的一种或多种。
[0027] 木质素不仅具有来源广泛, 成本低廉, 可再生, 环保的优点, 而且木质素由芳 香醇聚合而成, 能通过磺化接枝多个磺酸基, 且能形成固定的质子传导通道, 从而具有较好的质子导电性, 因此本发明选取木质素作为原材料制备质子交换 膜, 通过溶胀的工艺, 将木质素分子链充分展开, 使其活性基团完全暴露, 然 后采用还原的方法, 将木质素中部分的活泼基团还原成羟基、 这样增加了能进 行磺化反应的基团数量, 从而提高了磺化木质素的质子导电性, 再通过磺化反 应将磺酸基接枝在链上, 使木质素具有良好的质子导电性, 并通过交联反应使 磺化木质素形成网络结构, 增加其耐水性, 再辅助以导电树脂和质子导电辅助 剂, 增加其阻醇性、 力学性能和质子导电性, 从而得到一种具有来源丰富, 成 本低廉, 且易生物降解, 不污染环境, 质子电导性好、 力学性能好的质子交换 膜, 且该方法能大规模工业化生产, 质量稳定, 适合燃料电池对的推广应用。
[0028] 表一: 本发明与全氟磺酸燃料电池质子交换膜的性能对比
[] [表 1]
Figure imgf000005_0001
发明的有益效果
有益效果
[0029] 本发明突出的特点和有益效果在于:
[0030] 1、 本发明选取了具有来源广泛, 成本低廉, 可再生, 环保的木质素作为原材 料制备得到了质子交换膜。
[0031] 2、 本发明制备的质子交换膜具成本低廉, 易生物降解, 不污染环境, 质子电 导性好、 力学性能好的优点。 [0032] 3、 本发明方法制备得到的质子交换膜满足在燃料电池上的应用, 且能大规模 工业化生产, 质量稳定, 适合燃料电池对的推广应用。
实施该发明的最佳实施例
本发明的最佳实施方式
[0033] 实施例 1
[0034] 1) 溶胀: 将 65重量份的紫丁香基木质素木质素、 20重量份的甲基溶纤剂、 100 重量份的蒸馏水加入到反应釜中, 以 120r/min的速度搅拌, 升温到 90°C, 溶胀 2 h;
[0035] 2 ) 还原: 在步骤 1 ) 中溶胀的木质素中加入 5重量份的疏基乙醇, 保持搅拌速 度不变, 降温到 55°C, 进行还原反应 lh;
[0036] 3 ) 磺化: 在步骤 2 ) 得到的还原后的木质素溶液中加入 20重量份的浓硫酸, 保 持搅拌速度不变, 温度不变, 进行磺化反应 0. 5h后, 进行蒸馏, 得到磺化木质 素;
[0037] 4) 交联: 将步骤 3 ) 得到的磺化木质素与 10重量份的质磷钨酸、 10重量份的过 氧化苯甲酰、 3重量份的丙三醇在高混机中混合均匀后, 采用双螺杆挤出进行交 联反应, 并采用热压法制备得到厚度小于 lmm的薄膜;
[0038] 5 ) 制模: 将 15重量份的聚醚砜溶解在二甲基酰胺中, 制成溶液, 将该溶液均 匀涂覆在步骤 4) 得到的膜的两侧, 烘干后得到质子交换膜。
发明实施例
本发明的实施方式
[0039] 实施例 2
[0040] 1)
溶胀: 将 75重量份的愈创木基木质素木质素、 30重量份的甲基溶纤剂、 150重量 份的蒸馏水加入到反应釜中, 以 150r/min的速度搅拌, 升温到 80°C, 溶胀 3h;
[0041] 2 ) 还原: 在步骤 1 ) 中溶胀的木质素中加入 10重量份的硫化钠, 保持搅拌速度 不变, 降温到 60°C, 进行还原反应 2h;
[0042] 3 ) 磺化: 在步骤 2 ) 得到的还原后的木质素溶液中加入 30重量份的发烟硫酸, 保持搅拌速度不变, 温度不变, 进行磺化反应 lh后, 进行蒸馏, 得到磺化木质 素;
[0043] 4) 交联: 将步骤 3 ) 得到的磺化木质素与 20重量份的磷钼酸、 5重量份的乙二 醇、 6重量份的丙三醇在高混机中混合均匀后, 采用双螺杆挤出进行交联反应, 并采用热压法制备得到厚度小于 lmm的薄膜;
[0044] 5 ) 制模: 将 25重量份的聚醚醚酮溶解在乙二胺中, 制成溶液, 将该溶液均匀 涂覆在步骤 4) 得到的膜的两侧, 烘干后得到质子交换膜。
[0045] 实施例 3
[0046] 1) 溶胀: 将 70重量份的紫丁香基木质素木质素、 25重量份的甲基溶纤剂、 120 重量份的蒸馏水加入到反应釜中, 以 140r/min的速度搅拌, 升温到 5°C, 溶胀 2. 5h;
[0047] 2 ) 还原: 在步骤 1 ) 中溶胀的木质素中加入 6重量份的硫化钾, 保持搅拌速度 不变, 降温到 55°C, 进行还原反应 lh;
[0048] 3 ) 磺化: 在步骤 2 ) 得到的还原后的木质素溶液中加入 25重量份的氯磺酸, 保 持搅拌速度不变, 温度不变, 进行磺化反应 0. 5h后, 进行蒸馏, 得到磺化木质 素;
[0049] 4) 交联: 将步骤 3 ) 得到的磺化木质素与 15重量份的磷酸锆、 6重量份的乙二 酸、 5重量份的丙三醇在高混机中混合均匀后, 采用双螺杆挤出进行交联反应, 并采用热压法制备得到厚度小于 lmm的薄膜;
[0050] 5 ) 制模: 将 20重量份的聚苯并咪唑溶解在异丙醇中, 制成溶液, 将该溶液均 匀涂覆在步骤 4) 得到的膜的两侧, 烘干后得到质子交换膜。
[0051] 实施例 4
[0052] 1) 溶胀: 将 75重量份的愈创木基木质素木质素、 25重量份的甲基溶纤剂、 140 重量份的蒸馏水加入到反应釜中, 以 125r/min的速度搅拌, 升温到 90°C, 溶胀 3 h;
[0053] 2 ) 还原: 在步骤 1 ) 中溶胀的木质素中加入 6重量份的硫代硫酸钠, 保持搅拌 速度不变, 降温到 60°C, 进行还原反应 2h;
[0054] 3 ) 磺化: 在步骤 2 ) 得到的还原后的木质素溶液中加入 30重量份的三氧化硫, 保持搅拌速度不变, 温度不变, 进行磺化反应 lh后, 进行蒸馏, 得到磺化木质 素;
[0055] 4) 交联: 将步骤 3 ) 得到的磺化木质素与 20重量份的硅钨酸、 8重量份的硼酸 、 3重量份的丙三醇在高混机中混合均匀后, 采用双螺杆挤出进行交联反应, 并 采用热压法制备得到厚度小于 lmm的薄膜;
[0056] 5 ) 制模: 将 15重量份的聚砜溶解在二甲基酰胺中, 制成溶液, 将该溶液均匀 涂覆在步骤 4) 得到的膜的两侧, 烘干后得到质子交换膜。
[0057] 实施例 5
[0058] 1)
溶胀: 将 73重量份的紫丁香基木质素木质素、 28重量份的甲基溶纤剂、 150重量 份的蒸馏水加入到反应釜中, 以 150r/min的速度搅拌, 升温到 80°C, 溶胀 3h;
[0059] 2 ) 还原: 在步骤 1 ) 中溶胀的木质素中加入 10重量份的硫化钠, 保持搅拌速度 不变, 降温到 58°C, 进行还原反应 2h;
[0060] 3 ) 磺化: 在步骤 2 ) 得到的还原后的木质素溶液中加入 30重量份的发烟硫酸, 保持搅拌速度不变, 温度不变, 进行磺化反应 0. 5h后, 进行蒸馏, 得到磺化木 质素;
[0061] 4) 交联: 将步骤 3 ) 得到的磺化木质素与 20重量份的磷钼酸、 5重量份的乙二 醇、 6重量份的丙三醇在高混机中混合均匀后, 采用双螺杆挤出进行交联反应, 并采用热压法制备得到厚度小于 lmm的薄膜;
[0062] 5 ) 制模: 将 20重量份的聚醚醚酮溶解在乙二胺中, 制成溶液, 将该溶液均匀 涂覆在步骤 4) 得到的膜的两侧, 烘干后得到质子交换膜。
工业实用性
[0063] 本发明选取具有来源广泛, 成本低廉, 可再生, 环保的植物木质素作为原材料 制备质子交换膜, 通过溶胀、 还原、 磺化、 交联、 制模的方法得到一种具有来 源丰富, 成本低廉, 且易生物降解, 不污染环境, 质子电导性好、 力学性能好 的质子交换膜, 且该方法能大规模工业化生产, 质量稳定, 适合燃料电池对的 推广应用。

Claims

权利要求书
[权利要求 1] 种木质素燃料电池质子交换膜, 其特征在于含有通过溶胀、 还原、 磺化处理的改性木质素, 其重量份组成如下:
木质素 65-75份,
导电树月1 15- 25份, 质子导电辅助剂 10-20份,
增塑剂 3-6份,
其中所说的木质素为由紫丁香基丙垸结构单体聚合而成的紫丁香基木 质素、 愈创木基丙垸结构单体聚合而成的愈创木基木质素中的一种或 两种; 所说的导电树脂为聚醚砜、 聚醚醚酮、 聚苯并咪唑、 聚砜、 聚 酰亚胺中的一种或多种; 所说的质子导电辅助剂为磷钨酸、 硅钨酸、 磷酸锆、 磷钼酸、 硫酸氢铯中的一种或多种; 所说的增塑剂为丙三醇
[权利要求 ] 种木质素燃料电池质子交换膜的制备方法, 其具体制备步骤如下: 溶胀: 将 65-75重量份的木质素、 20-30重量份的甲基溶纤剂、 100-15 0重量份的蒸馏水加入到反应釜中, 以 120-150r/min的速度搅拌, 升 温到 80-90 °C, 溶胀 2-3h;
2 ) 还原: 在步骤 1 ) 中溶胀的木质素中加入 5-10重量份的还原剂, 保 持搅拌速度不变, 降温到 55-60°C, 进行还原反应 l_2h;
3 ) 磺化: 在步骤 2 ) 得到的还原后的木质素溶液中加入 20-30重量份 的磺化剂, 保持搅拌速度不变, 温度不变, 进行磺化反应 0. 5-lh后, 进行蒸馏, 得到磺化木质素;
4) 交联: 将步骤 3 ) 得到的磺化木质素与 10-20重量份的质子导电辅 助剂、 5-10重量份的交联剂、 3-6重量份的增塑剂在高混机中混合均 匀后, 采用双螺杆挤出进行交联反应, 并采用热压法制备得到厚度小 于 lmm的薄膜;
5 ) 制模: 将 15-25重量份的导电树脂溶解在溶剂中, 制成溶液, 将该 溶液均匀涂覆在步骤 4) 得到的膜的两侧, 烘干后得到质子交换膜。
[权利要求 3] 根据权利要求 2—种木质素燃料电池质子交换膜的制备方法, 其特征 在于所述的还原剂为疏基乙醇、 硫化钠、 硫化钾、 硫代硫酸钠中的一 种或多种。
[权利要求 4] 根据权利要求 2—种木质素燃料电池质子交换膜的制备方法, 其特征 在于所述的磺化剂为浓硫酸、 发烟硫酸、 氯磺酸、 三氧化硫中的一种 或多种。
[权利要求 5] 根据权利要求 2—种木质素燃料电池质子交换膜的制备方法, 其特征 在于所述的交联剂为过氧化苯甲酰、 丙三醇、 乙二醇、 乙二酸、 硼酸 中的一种或多种。
[权利要求 6] 根据权利要求 2—种木质素燃料电池质子交换膜的制备方法, 其特征 在于所述的溶剂为二甲基酰胺、 乙二胺、 异丙醇中的一种或多种。
PCT/CN2015/099706 2015-02-05 2015-12-30 一种木质素燃料电池质子交换膜及制备方法 WO2016124051A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510058802.2 2015-02-05
CN201510058802.2A CN104681832B (zh) 2015-02-05 2015-02-05 一种木质素燃料电池质子交换膜及制备方法

Publications (1)

Publication Number Publication Date
WO2016124051A1 true WO2016124051A1 (zh) 2016-08-11

Family

ID=53316609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099706 WO2016124051A1 (zh) 2015-02-05 2015-12-30 一种木质素燃料电池质子交换膜及制备方法

Country Status (2)

Country Link
CN (1) CN104681832B (zh)
WO (1) WO2016124051A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190126264A1 (en) * 2017-10-31 2019-05-02 Rohm And Haas Electronic Materials Llc Ion exchange resins, purification methods and methods of making ionic resins

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681832B (zh) * 2015-02-05 2017-01-11 成都新柯力化工科技有限公司 一种木质素燃料电池质子交换膜及制备方法
CN105136892B (zh) * 2015-09-06 2017-12-12 广东南海普锐斯科技有限公司 一种电化学传感器用纤维素‑杂多酸质子交换膜及其制法
CN107658410A (zh) * 2017-09-30 2018-02-02 惠州佳合能新能源科技有限公司 一种动力电池组用组合桑蚕丝的隔离膜及其制备方法
CN107946620B (zh) * 2017-12-13 2020-06-16 南通市多乾新材料科技有限公司 一种燃料电池用改性全氟磺酸类质子交换膜的制备方法
CN111525167B (zh) * 2020-03-20 2021-05-18 山东奥德储能科技有限公司 全氟磺酸树脂/改性木质素复合离子交换膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315463A (zh) * 2011-08-05 2012-01-11 上海交通大学 一种柔性无机/有机复合质子交换膜制备方法
JP2013206591A (ja) * 2012-03-27 2013-10-07 Daicel Corp 蓄電素子用セパレータ及びその製造方法
CN103928649A (zh) * 2014-04-10 2014-07-16 佛山市金辉高科光电材料有限公司 一种新型改性无纺布锂离子电池隔膜及其制备方法
CN104681832A (zh) * 2015-02-05 2015-06-03 成都新柯力化工科技有限公司 一种木质素燃料电池质子交换膜及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259593A (ja) * 2003-02-26 2004-09-16 Mitsubishi Chemicals Corp イオン伝導体用多孔質材料及びイオン伝導体、並びに燃料電池
US7767324B2 (en) * 2003-05-06 2010-08-03 Gas Technology Institute Direct methanol fuel cell electrode catalyst
CN101350415B (zh) * 2008-07-22 2010-06-23 山东东岳神舟新材料有限公司 一种微孔膜增强的含氟交联掺杂离子交换膜及其制备方法
EA019500B1 (ru) * 2009-04-20 2014-04-30 Фукутоме Хирофуми Фотоэлектрический элемент
CN104201402B (zh) * 2014-09-05 2017-12-12 张力 一种燃料电池质子交换膜材料及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315463A (zh) * 2011-08-05 2012-01-11 上海交通大学 一种柔性无机/有机复合质子交换膜制备方法
JP2013206591A (ja) * 2012-03-27 2013-10-07 Daicel Corp 蓄電素子用セパレータ及びその製造方法
CN103928649A (zh) * 2014-04-10 2014-07-16 佛山市金辉高科光电材料有限公司 一种新型改性无纺布锂离子电池隔膜及其制备方法
CN104681832A (zh) * 2015-02-05 2015-06-03 成都新柯力化工科技有限公司 一种木质素燃料电池质子交换膜及制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190126264A1 (en) * 2017-10-31 2019-05-02 Rohm And Haas Electronic Materials Llc Ion exchange resins, purification methods and methods of making ionic resins
CN109718869A (zh) * 2017-10-31 2019-05-07 罗门哈斯电子材料有限责任公司 离子交换树脂、纯化方法和制备离子树脂的方法
US10821433B2 (en) * 2017-10-31 2020-11-03 Rohm And Haas Electronic Materials Llc Ion exchange resins, purification methods and methods of making ionic resins
CN109718869B (zh) * 2017-10-31 2022-05-27 罗门哈斯电子材料有限责任公司 离子交换树脂、纯化方法和制备离子树脂的方法

Also Published As

Publication number Publication date
CN104681832A (zh) 2015-06-03
CN104681832B (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2016124051A1 (zh) 一种木质素燃料电池质子交换膜及制备方法
Zhang et al. Cross-linked membranes based on sulfonated poly (ether ether ketone)(SPEEK)/Nafion for direct methanol fuel cells (DMFCs)
CN104659395B (zh) 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法
Wang et al. Novel sulfonated poly (ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications
Devi et al. Fabrication and electrochemical properties of SPVdF-co-HFP/SPES blend proton exchange membranes for direct methanol fuel cells
Hasani-Sadrabadi et al. Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)
Li et al. A cross-linked fluorinated poly (aryl ether oxadiazole) s using a thermal cross-linking for anion exchange membranes
KR101292214B1 (ko) 전기방사에 의한 연료전지용 술폰화 폴리에테르에테르케톤 나노 이온교환막의 제조방법
WO2016124052A1 (zh) 一种燃料电池质子交换膜及其制备方法
CN104201402B (zh) 一种燃料电池质子交换膜材料及其应用
WO2016124053A1 (zh) 一种角蛋白燃料电池质子交换膜及制备方法
CN113690474A (zh) 一种超薄、低渗氢质子交换膜及其制备方法
CN103724643B (zh) 一种半互穿网络结构质子交换膜及其制备方法
CN105789667B (zh) 一类侧链含多磺酸结构聚芳醚砜酮质子交换膜材料及其制备方法
CN103996865A (zh) 高阻醇聚合物电解质膜及其制备方法
CN113717417B (zh) 一种质子交换膜及其制备方法和应用
Gil-Castell et al. Functionalised poly (vinyl alcohol)/graphene oxide as polymer composite electrolyte membranes
CN112310452A (zh) 一种磷钨酸掺杂磺化聚芳醚腈质子交换膜及其制备方法
CN109103483B (zh) 一种用于全钒液流电池的两性离子膜
CN115181210A (zh) 一种高质子传导率的酸性水凝胶膜及其燃料电池应用
CN111892727A (zh) 磺化石墨烯改性全氟磺酸离子交换膜及其制备方法
CN113488688B (zh) 一种用于燃料电池的交联结构侧链磺化聚合物质子交换膜的制备方法
CN108878938A (zh) 一种用于燃料电池的超薄型质子交换膜及制备方法
CN113921876B (zh) 一种复合质子交换膜及其制备方法
CN114122469B (zh) 一种复合型膦酸化酚醛树脂高温质子交换膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880992

Country of ref document: EP

Kind code of ref document: A1