WO2016123852A1 - Amoled像素驱动电路 - Google Patents

Amoled像素驱动电路 Download PDF

Info

Publication number
WO2016123852A1
WO2016123852A1 PCT/CN2015/075686 CN2015075686W WO2016123852A1 WO 2016123852 A1 WO2016123852 A1 WO 2016123852A1 CN 2015075686 W CN2015075686 W CN 2015075686W WO 2016123852 A1 WO2016123852 A1 WO 2016123852A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
electrically connected
control signal
scan control
Prior art date
Application number
PCT/CN2015/075686
Other languages
English (en)
French (fr)
Inventor
聂诚磊
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/655,736 priority Critical patent/US20160307509A1/en
Publication of WO2016123852A1 publication Critical patent/WO2016123852A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an AMOLED pixel driving circuit.
  • OLED Organic Light Emitting Display
  • OLED Organic Light Emitting Display
  • the OLED display device can be divided into two types: passive matrix OLED (PMOLED) and active matrix OLED (AMOLED), namely direct addressing and thin film transistor (Thin Film Transistor, according to the driving method). TFT) matrix addressing two types.
  • the AMOLED has pixels arranged in an array, belongs to an active display type, has high luminous efficiency, and is generally used as a high-definition large-sized display device.
  • the AMOLED is a current driving device. When a current flows through the organic light emitting diode, the organic light emitting diode emits light, and the luminance of the light is determined by the current flowing through the light emitting diode itself. Since the threshold voltage of the driving thin film transistor drifts with the operation time in the driving circuit of the AMOLED, resulting in unstable illumination of the OLED, it is necessary to employ a pixel driving circuit capable of compensating for the threshold voltage drift of the driving thin film transistor.
  • FIG. 1 shows a conventional AMOLED pixel driving circuit, comprising: a second switching thin film transistor SW2, whose gate is electrically connected to the nth second scanning control signal gate2(n), and the source is electrically connected to The data signal data is electrically connected to the drain of the mirrored thin film transistor MR and one end of the second capacitor Cst2.
  • the mirrored thin film transistor MR has a gate electrically connected to the gate of the driving thin film transistor DR via the first node D.
  • the source is electrically connected to the source of the first switching thin film transistor SW1, and the drain is electrically connected to the drain of the second switching thin film transistor SW2 and one end of the second capacitor Cst2;
  • the first switching thin film transistor SW1 has a gate Connected to the nth stage first scan control signal gate1(n), the source is electrically connected to the source of the mirrored thin film transistor MR, the drain is electrically connected to the first node D;
  • the precharge thin film transistor PC has a gate And the drain is electrically connected to the n-1th stage second scan control signal Gate2(n-1), the source is electrically connected to the first node D;
  • the thin film transistor DR is driven, and the gate thereof is electrically connected to the first node D Connected to the gate of the mirrored thin film transistor MR, the source is electrically Connected to the ground GND, the drain is electrically connected to the cathode of the organic light emitting diode OLED; one end of the first capacitor Cst1 is electrical
  • the compensation process of the circuit includes four stages of pre-charge, program write, reset, and drive.
  • the precharge phase the potential of the first node D is raised to the high potential of the n-1th second scan control signal Gate2(n-1), and the driving thin film transistor DR is turned on, resulting in precharge, data writing.
  • the organic light emitting diode OLED is always in a light emitting state.
  • the panel only needs to emit light of the organic light emitting diode OLED in the driving light emitting stage, and the light emission of the organic light emitting diode OLED in the other three stages is unnecessary light.
  • FIG. 3 is a simulation diagram of the driving current of the organic light emitting diode OLED in the pixel driving circuit.
  • the driving current Ioled of the organic light emitting diode OLED exists in four stages, resulting in the organic light emitting diode OLED in four stages. All of them emit light, but only the illumination in the driving illumination stage is normal and necessary. In the other three stages before the driving illumination stage, the driving current Ioled of the organic light emitting diode OLED is large, so there is a relatively large non-essential illumination. . This kind of unnecessary illumination will affect the life of the OLED, and will also affect the actual display effect of the panel, such as reducing contrast and light leakage.
  • the object of the present invention is to provide an AMOLED pixel driving circuit, which solves the problem that the existing AMOLED pixel driving circuit generates non-essential illumination during the process of compensating for the threshold voltage drift of the driving thin film transistor, so that the OLED is turned off during the non-essential lighting time. It can extend the life of the OLED and optimize the actual display of the panel.
  • the present invention provides an AMOLED pixel driving circuit, including: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a sixth thin film transistor, and a first capacitor. , a second capacitor, and an organic light emitting diode;
  • the gate of the sixth thin film transistor is electrically connected to the nth second scan control signal, the source is electrically connected to the data signal, and the drain is electrically connected to the drain of the third thin film transistor and one end of the first capacitor ;
  • the gate of the third thin film transistor is electrically connected to the gate of the fourth thin film transistor via a first node, the source is electrically connected to the source of the first thin film transistor, and the drain is electrically connected to the sixth thin film transistor. a drain and one end of the first capacitor;
  • the gate of the first thin film transistor is electrically connected to the nth stage first scan control signal, the source is electrically connected to the source of the third thin film transistor, and the drain is electrically connected to the first node;
  • the gate and the drain of the fifth thin film transistor are electrically connected to the n-1th stage second scan control signal, and the source is electrically connected to the first node;
  • the gate of the second thin film transistor is electrically connected to the light emission control signal, the source is electrically connected to the DC power supply voltage, and the drain is electrically connected to the anode of the organic light emitting diode;
  • the gate of the fourth thin film transistor is electrically connected to the first node, the source is electrically connected to the ground, and the drain is electrically connected to the cathode of the organic light emitting diode;
  • One end of the first capacitor is electrically connected to the drain of the sixth thin film transistor and the drain of the third thin film transistor, and the other end is electrically connected to the ground end;
  • One end of the second capacitor is electrically connected to the first node, and the other end is electrically connected to the ground end;
  • the anode of the organic light emitting diode is electrically connected to the drain of the second thin film transistor, and the cathode is electrically connected to the drain of the fourth thin film transistor;
  • the DC power supply voltage provides a DC high potential
  • the light emission control signal provides high and low alternating potentials according to timing, and controls whether the organic light emitting diode emits light.
  • the first thin film transistor, the second thin film transistor, the third thin film transistor, the fourth thin film transistor, the fifth thin film transistor, and the sixth thin film transistor are both low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin films Transistor.
  • the combination of the nth second scan control signal, the nth first scan control signal, the n-1th second scan control signal, and the illumination control signal corresponds to a precharge phase, a data write phase, The reset phase and the driving illumination phase;
  • the light emission control signal provides a low potential in the precharge phase, the data writing phase, and the reset phase, and controls the organic light emitting diode to not emit light; and provides a high potential in the driving light emitting phase to control the organic light emitting diode to emit light.
  • the n-th second scan control signal is low, the n-th first scan control signal is low, and the n-1th second scan control signal is high;
  • the nth stage second scan control signal is high, the nth stage first scan control signal is high, and the n-1th second scan control signal is low;
  • the nth stage second scan control signal is high, the nth stage first scan control signal is low, and the n-1th second scan control signal is low;
  • the nth stage second scan control signal is low, the nth stage first scan control signal is low, and the n-1th second scan control signal is low.
  • the data signal In the data writing phase, the data signal is high; in the reset phase, The data signal is low.
  • the present invention further provides another AMOLED pixel driving circuit, comprising: a first thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a sixth thin film transistor, a first capacitor, a second capacitor, and an organic light emitting diode;
  • the gate of the sixth thin film transistor is electrically connected to the nth second scan control signal, the source is electrically connected to the data signal, and the drain is electrically connected to the drain of the third thin film transistor and one end of the first capacitor ;
  • the gate of the third thin film transistor is electrically connected to the gate of the fourth thin film transistor via a first node, the source is electrically connected to the source of the first thin film transistor, and the drain is electrically connected to the sixth thin film transistor. a drain and one end of the first capacitor;
  • the gate of the first thin film transistor is electrically connected to the nth stage first scan control signal, the source is electrically connected to the source of the third thin film transistor, and the drain is electrically connected to the first node;
  • the gate and the drain of the fifth thin film transistor are electrically connected to the n-1th stage second scan control signal, and the source is electrically connected to the first node;
  • the gate of the fourth thin film transistor is electrically connected to the first node, the source is electrically connected to the ground, and the drain is electrically connected to the cathode of the organic light emitting diode;
  • One end of the first capacitor is electrically connected to the drain of the sixth thin film transistor and the drain of the third thin film transistor, and the other end is electrically connected to the ground end;
  • One end of the second capacitor is electrically connected to the first node, and the other end is electrically connected to the ground end;
  • the anode of the organic light emitting diode is electrically connected to the alternating current power supply voltage, and the cathode is electrically connected to the drain of the fourth thin film transistor;
  • the AC power supply voltage alternately provides high and low potentials according to timing, and controls whether the organic light emitting diode emits light.
  • the first thin film transistor, the third thin film transistor, the fourth thin film transistor, the fifth thin film transistor, and the sixth thin film transistor are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin film transistors.
  • the combination of the nth second scan control signal, the nth first scan control signal, the n-1th second scan control signal, and the AC power voltage sequentially corresponds to a precharge phase, a data write phase, The reset phase and the driving illumination phase;
  • the AC power supply voltage provides a low potential in the pre-charging phase, the data writing phase, and the reset phase, and controls the organic light-emitting diode to not emit light; and provides a high potential in the driving light-emitting phase to control the organic light-emitting diode to emit light.
  • the n-th second scan control signal is low, the n-th first scan control signal is low, and the n-1th second scan control signal is high;
  • the nth stage second scan control signal is high, the nth stage first scan control signal is high, and the n-1th second scan control signal is low;
  • the nth stage second scan control signal is high, the nth stage first scan control signal is low, and the n-1th second scan control signal is low;
  • the nth stage second scan control signal is low, the nth stage first scan control signal is low, and the n-1th second scan control signal is low.
  • the data signal In the data writing phase, the data signal is high; in the reset phase, the data signal is low.
  • the present invention also provides an AMOLED pixel driving circuit, comprising: a first thin film transistor, a third thin film transistor, a fourth thin film transistor, a fifth thin film transistor, a sixth thin film transistor, a first capacitor, a second capacitor, and an organic light emitting diode ;
  • the gate of the sixth thin film transistor is electrically connected to the nth second scan control signal, the source is electrically connected to the data signal, and the drain is electrically connected to the drain of the third thin film transistor and one end of the first capacitor ;
  • the gate of the third thin film transistor is electrically connected to the gate of the fourth thin film transistor via a first node, the source is electrically connected to the source of the first thin film transistor, and the drain is electrically connected to the sixth thin film transistor. a drain and one end of the first capacitor;
  • the gate of the first thin film transistor is electrically connected to the nth stage first scan control signal, the source is electrically connected to the source of the third thin film transistor, and the drain is electrically connected to the first node;
  • the gate and the drain of the fifth thin film transistor are electrically connected to the n-1th stage second scan control signal, and the source is electrically connected to the first node;
  • the gate of the fourth thin film transistor is electrically connected to the first node, the source is electrically connected to the ground, and the drain is electrically connected to the cathode of the organic light emitting diode;
  • One end of the first capacitor is electrically connected to the drain of the sixth thin film transistor and the drain of the third thin film transistor, and the other end is electrically connected to the ground end;
  • One end of the second capacitor is electrically connected to the first node, and the other end is electrically connected to the ground end;
  • the anode of the organic light emitting diode is electrically connected to the alternating current power supply voltage, and the cathode is electrically connected to the drain of the fourth thin film transistor;
  • the alternating current power supply voltage alternately provides high and low potentials according to timing, and controls whether the organic light emitting diode emits light;
  • the first thin film transistor, the third thin film transistor, the fourth thin film transistor, the fifth thin film transistor, and the sixth thin film transistor are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin film transistors;
  • nth stage second scan control signal corresponds to the precharge phase, the data writing phase, the reset phase, and the driving illumination phase
  • the AC power supply voltage provides a low potential in the pre-charging phase, the data writing phase, and the reset phase, and controls the organic light-emitting diode to not emit light; and provides a high potential in the driving light-emitting phase to control the organic light-emitting diode to emit light.
  • the AMOLED pixel driving circuit provided by the present invention controls an organic light emitting diode by adding a thin film transistor controlled by an emission control signal between an organic light emitting diode and a direct current power supply voltage, or by using an alternating current power supply voltage.
  • the light-emitting control signal or the alternating current power supply voltage is set to provide a high potential only in the driving light-emitting phase, and the low-potential is provided in the remaining stages, so that the OLED is turned off in the non-essential lighting time, preventing the OLED from emitting light in the unnecessary light-emitting time, and solving
  • the existing AMOLED pixel driving circuit can generate non-essential illumination during the process of compensating for the threshold voltage drift of the driving thin film transistor, which can prolong the life of the OLED and optimize the actual display effect of the panel.
  • FIG. 1 is a circuit diagram of a conventional AMOLED pixel driving circuit
  • FIG. 2 is a timing diagram of the AMOLED pixel driving circuit shown in FIG. 1;
  • FIG. 3 is a simulation graph of driving current of an organic light emitting diode of the AMOLED pixel driving circuit shown in FIG. 1;
  • FIG. 4 is a circuit diagram of a first embodiment of an AMOLED pixel driving circuit of the present invention.
  • FIG. 5 is a timing diagram of the AMOLED pixel driving circuit shown in FIG. 4;
  • FIG. 6 is a simulation graph of driving current of an organic light emitting diode of the AMOLED pixel driving circuit shown in FIG. 4;
  • FIG. 7 is a comparison diagram of simulation curves of driving currents of an organic light emitting diode of a first embodiment of an AMOLED pixel driving circuit of the present invention and a conventional AMOLED pixel driving circuit;
  • FIG. 8 is a circuit diagram of a second embodiment of an AMOLED pixel driving circuit of the present invention.
  • FIG. 9 is a timing diagram of the AMOLED pixel driving circuit shown in FIG. 8.
  • FIG. 10 is a driving electric power of an organic light emitting diode of the AMOLED pixel driving circuit shown in FIG. a simulated curve of the flow;
  • FIG. 11 is a comparison diagram of a simulation curve of a driving current of a second embodiment of an AMOLED pixel driving circuit of the present invention and an organic light emitting diode of a conventional AMOLED pixel driving circuit.
  • the circuit diagram of the first embodiment of the AMOLED pixel driving circuit of the present invention includes: a first thin film transistor M1, a second thin film transistor M2, a third thin film transistor M3, a fourth thin film transistor M4, and a fifth thin film transistor M5. a sixth thin film transistor M6, a first capacitor C1, a second capacitor C2, and an organic light emitting diode D1.
  • the gate of the sixth thin film transistor M6 is electrically connected to the nth second scan control signal Gate2(n), the source is electrically connected to the data signal Data, and the drain is electrically connected to the drain of the third thin film transistor M3.
  • a terminal of the third thin film transistor M3 is electrically connected to the gate of the fourth thin film transistor M4 via the first node D, and the source is electrically connected to the source of the first thin film transistor M1
  • the drain is electrically connected to the drain of the sixth thin film transistor M6 and one end of the first capacitor C1; the gate of the first thin film transistor M1 is electrically connected to the nth first scan control signal Gate1(n)
  • the source is electrically connected to the source of the third thin film transistor M3, and the drain is electrically connected to the first node D.
  • the gate and the drain of the fifth thin film transistor M5 are electrically connected to the n-1th stage.
  • a second scan control signal Gate2(n-1) the source is electrically connected to the first node D; the gate of the second thin film transistor M2 is electrically connected to the light emission control signal EM, and the source is electrically connected to the DC power source a voltage VDD, a drain electrically connected to an anode of the organic light emitting diode D1; the fourth thin film crystal
  • the gate of M4 is electrically connected to the first node D, the source is electrically connected to the ground GND, and the drain is electrically connected to the cathode of the organic light emitting diode D1; one end of the first capacitor C1 is electrically connected to the sixth
  • the drain of the thin film transistor M6 and the drain of the third thin film transistor M3 are electrically connected to the ground GND; one end of the second capacitor C2 is electrically connected to the first node D, and the other end is electrically connected to the ground.
  • the anode of the organic light emitting diode D1 is electrically connected to the drain of the second
  • the first thin film transistor M1, the second thin film transistor M2, the third thin film transistor M3, the fourth thin film transistor M4, the fifth thin film transistor M5, and the sixth thin film transistor M6 are both low temperature polysilicon thin film transistors and oxides.
  • the sixth thin film transistor M6 is a switching thin film transistor
  • the third thin film transistor M3 is a mirror thin film transistor
  • the fourth thin film transistor M4 is a driving thin film transistor
  • the fifth thin film transistor M5 is a pre-charging thin film transistor.
  • the second thin film transistor M2 is a light-emitting control thin film transistor.
  • the DC power supply voltage VDD provides a high potential
  • the light emission control signal EM provides high and low alternating potentials according to timing, and controls whether the organic light emitting diode D1 emits light.
  • the nth stage second scan control signal Gate2(n), the nth stage first scan control signal Gate1(n), the nth The first-stage second scan control signal Gate2(n-1) and the light-emission control signal EM are combined to correspond to the pre-charge phase Pre-charge, the data write phase program, the reset phase Restore, and the drive illumination phase Drive.
  • the light-emission control signal EM provides a low potential in the pre-charge phase Pre-charge, the data write phase Program, and the reset phase Restore, and controls the organic light-emitting diode D1 not to emit light; in the driving light-emitting phase, the Drive provides a high potential, and the control station The organic light emitting diode D1 emits light.
  • the pre-charge phase Pre-charge the light-emission control signal EM is low, the n-th second scan control signal Gate2(n) is low, and the n-th first scan control signal Gate1(n) Is low, the n-1th second scan control signal Gate2(n-1) is high;
  • the illumination control signal EM is low, the nth second scan The control signal Gate2(n) is at a high potential, the nth stage first scan control signal Gate1(n) is at a high potential, and the n-1th second scan control signal Gate2(n-1) is at a low potential;
  • Stage Restore the light emission control signal EM is low, the nth second scan control signal Gate2(n) is high, and the nth first scan control signal Gate1(n) is low, the n-1th stage
  • the second scan control signal Gate2(n-1) is at a low potential; in the driving illumination phase Drive, the illumination control signal EM is at a high potential, and the n
  • the first embodiment described above adds an illumination control signal EM and a second thin film transistor M2, which is an illumination control thin film transistor controlled by the illumination control signal EM, as compared with the prior art.
  • the second thin film transistor M2 is disposed between the organic light emitting diode D1 and the DC power supply voltage VDD. Only when the second thin film transistor M2 is turned on, the organic light emitting diode D1 is turned on with the DC power supply voltage VDD, thereby generating a current through.
  • the organic light emitting diode D1 drives the organic light emitting diode D1 to emit light.
  • the second thin film transistor M2 Since the light-emission control signal EM provides a low potential in the pre-charge phase Pre-charge, the data write phase Program, and the reset phase Restore, the second thin film transistor M2 is turned off, blocking the organic light-emitting diode D1 and the DC power supply voltage VDD. Connected, the organic light emitting diode D1 does not emit light; the light emission control signal EM provides a high potential in driving the light emitting phase, The second thin film transistor M2 is turned on, the organic light emitting diode D1 is turned on with the direct current power supply voltage VDD, and the organic light emitting diode D1 emits light. As shown in FIG.
  • the driving current through the organic light emitting diode D1 in the first embodiment of the present invention is in the pre-charge phase Pre-charge, the data writing phase Program, and the reset phase Restore.
  • the driving currents are equal in the driving light-emitting phase, and the organic light-emitting diode D1 is successfully prevented from emitting light during the unnecessary lighting time, which solves the problem that the existing AMOLED pixel driving circuit generates the threshold voltage drift of the compensation driving thin film transistor.
  • the problem of non-essential illumination can extend the life of the OLED and optimize the actual display of the panel.
  • the circuit diagram of the second embodiment of the AMOLED pixel driving circuit of the present invention includes: a first thin film transistor M1, a third thin film transistor M3, a fourth thin film transistor M4, a fifth thin film transistor M5, and a sixth thin film transistor M6.
  • the gate of the sixth thin film transistor M6 is electrically connected to the nth second scan control signal Gate2(n), the source is electrically connected to the data signal Data, and the drain is electrically connected to the drain of the third thin film transistor M3.
  • a terminal of the third thin film transistor M3 is electrically connected to the gate of the fourth thin film transistor M4 via the first node D, and the source is electrically connected to the source of the first thin film transistor M1
  • the drain is electrically connected to the drain of the sixth thin film transistor M6 and one end of the first capacitor C1; the gate of the first thin film transistor M1 is electrically connected to the nth first scan control signal Gate1(n)
  • the source is electrically connected to the source of the third thin film transistor M3, and the drain is electrically connected to the first node D.
  • the gate and the drain of the fifth thin film transistor M5 are electrically connected to the n-1th stage.
  • a second scan control signal Gate2(n-1) the source is electrically connected to the first node D; the gate of the fourth thin film transistor M4 is electrically connected to the first node D, and the source is electrically connected to the ground GND, the drain is electrically connected to the cathode of the organic light emitting diode D1; one end of the first capacitor C1 is electrically connected The other end of the second capacitor C2 is electrically connected to the first node D, and the other end is electrically connected to the drain of the sixth thin film transistor M6 and the drain of the third thin film transistor M3.
  • the anode of the OLED D1 is electrically connected to the AC power supply voltage VDD, and the cathode is electrically connected to the drain of the fourth thin film transistor M4.
  • the first thin film transistor M1, the third thin film transistor M3, the fourth thin film transistor M4, the fifth thin film transistor M5, and the sixth thin film transistor M6 are both low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or non- Crystalline silicon thin film transistor.
  • the sixth thin film transistor M6 is a switching thin film transistor, and the third thin film transistor M3 is a mirror thin film.
  • the film transistor, the fourth thin film transistor M4 is a driving thin film transistor, and the fifth thin film transistor M5 is a pre-charged thin film transistor.
  • the second embodiment does not include the second thin film transistor M2, that is, the light emission control thin film transistor and the light emission control signal EM, but uses the alternating current power supply voltage VDD to alternately provide high timing according to the timing.
  • the low potential controls whether the organic light emitting diode D1 emits light, which simplifies the circuit structure. Please refer to FIG. 8 , FIG. 9 and FIG. 10 simultaneously.
  • the nth stage second scan control signal Gate2(n), the nth stage first scan control signal Gate1(n), the nth The first-stage second scan control signal Gate2(n-1) and the AC power supply voltage VDD are combined to correspond to the pre-charge phase Pre-charge, the data write phase program, the reset phase Restore, and the drive illumination phase Drive.
  • the AC power supply voltage VDD provides a low potential in the pre-charge phase Pre-charge, the data write phase Program, and the reset phase Restore, and controls the organic light-emitting diode D1 not to emit light; in the driving illumination phase, the Drive provides a high potential, and the control station provides a high potential.
  • the organic light emitting diode D1 emits light.
  • the n-th second scan control signal Gate2(n) is at a low potential, and the n-th first scan control signal Gate1(n) is at a low potential, the n-th The first-stage second scan control signal Gate2(n-1) is at a high potential; in the data writing phase Program, the n-th second scan control signal Gate2(n) is at a high potential, the n-th first scan The control signal Gate1(n) is at a high potential, and the n-1th second scan control signal Gate2(n-1) is at a low potential; in the reset phase Restore, the nth-stage second scan control signal Gate2(n) Is high, the nth first scan control signal Gate1(n) is low, the n-1th second scan control signal Gate2(n-1) is low; in the driving illumination phase, Drive The nth second scan control signal Gate2(n) is low, the nth first scan control signal Gate1(n) is low, and
  • the second embodiment described above changes the DC power supply voltage to the AC power supply voltage, and only when the AC power supply voltage VDD provides a high potential can the current be generated to drive the organic light emitting diode D1 to emit light. Since the AC power supply voltage VDD provides a low potential in the pre-charge phase Pre-charge, the data write phase Program, and the reset phase Restore, the organic light-emitting diode D1 does not emit light; the AC power supply voltage VDD provides high in the driving illumination phase Drive. At the potential, the organic light emitting diode D1 emits light. As shown in FIG.
  • the organic light emitting diode D1 in the pre-charge phase Pre-charge, the data writing phase Program, and the reset phase Restore, no current passes through the organic light-emitting diode D1, and the organic light-emitting diode D1 does not emit light; in the driving light-emitting phase, there is a current.
  • the organic light emitting diode D1 is driven to emit light by the organic light emitting diode D1.
  • the driving current through the organic light emitting diode D1 in the first embodiment of the present invention is significantly reduced in the pre-charge phase Pre-charge, the data writing phase Program, and the reset phase Restore.
  • the two currents are equal, which successfully prevents the organic light-emitting diode D1 from emitting light during the unnecessary light-emitting time, and solves the problem that the existing AMOLED pixel driving circuit generates unnecessary in the process of compensating for the threshold voltage drift of the driving thin film transistor.
  • the problem of illumination can extend the life of the OLED and optimize the actual display of the panel.
  • the AMOLED pixel driving circuit of the present invention controls whether the organic light emitting diode emits light by adding a thin film transistor controlled by an emission control signal between the organic light emitting diode and the direct current power supply voltage, or by using an alternating current power supply voltage.
  • Some AMOLED pixel driving circuits can generate non-essential illumination during the process of compensating for the threshold voltage drift of the driving thin film transistor, which can prolong the life of the OLED and optimize the actual display effect of the panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种AMOLED像素驱动电路,通过在有机发光二极管(D1)与直流电源电压(VDD)之间加入由发光控制信号(EM)控制的薄膜晶体管(M2)的方式、或采用交流电源电压(VDD)的方式来控制有机发光二极管(D1)是否发光,设置所述发光控制信号(EM)或交流电源电压(VDD)仅在驱动发光阶段(Drive)提供高电位,其余阶段均提供低电位,使OLED在非必要发光时间处于关闭状态,阻止OLED在非必要发光时间发光,解决了现有的AMOLED像素驱动电路在补偿驱动薄膜晶体管阈值电压漂移过程中会产生非必要发光的问题,能够延长OLED寿命,优化面板的实际显示效果。

Description

AMOLED像素驱动电路 技术领域
本发明涉及显示技术领域,尤其涉及一种AMOLED像素驱动电路。
背景技术
有机发光二极管(Organic Light Emitting Display,OLED)显示装置具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED显示装置按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管(Thin Film Transistor,TFT)矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。AMOLED是电流驱动器件,当有电流流过有机发光二极管时,有机发光二极管发光,且发光亮度由流过有发光二极管自身的电流决定。由于在AMOLED的驱动电路中,驱动薄膜晶体管的阈值电压会随着工作时间而漂移,从而导致OLED的发光不稳定,因此需要采用能够补偿驱动薄膜晶体管的阈值电压漂移的像素驱动电路。
图1所示为一种现有的AMOLED像素驱动电路,包括:第二开关薄膜晶体管SW2,其栅极电性连接于第n级第二扫描控制信号gate2(n),源极电性连接于数据信号data,漏极电性连接于镜像薄膜晶体管MR的漏极及第二电容Cst2的一端;镜像薄膜晶体管MR,其栅极经由第一节点D电性连接于驱动薄膜晶体管DR的栅极,源极电性连接于第一开关薄膜晶体管SW1的源极,漏极电性连接于第二开关薄膜晶体管SW2的漏极及第二电容Cst2的一端;第一开关薄膜晶体管SW1,其栅极电性连接于第n级第一扫描控制信号gate1(n),源极电性连接于镜像薄膜晶体管MR的源极,漏极电性连接于第一节点D;预充电薄膜晶体管PC,其栅极与漏极均电性连接于第n-1级第二扫描控制信号Gate2(n-1),源极电性连接于第一节点D;驱动薄膜晶体管DR,其栅极经由第一节点D电性连接于镜像薄膜晶体管MR的栅极,源极电性连接于接地端GND,漏极电性连接于有机发光二极管OLED的阴极;第一电容Cst1的一端电性连接于第一节点D,另一端电 性连接于接地端GND;第二电容Cst2的一端电性连接于第二开关薄膜晶体管SW2的漏极及镜像薄膜晶体管MR的漏极,另一端电性连接于接地端GND;有机发光二极管OLED的阳极电性连接于直流电源电压VDD,阴极电性连接于驱动薄膜晶体管DR的漏极;直流电源电压VDD提供高电位。图2所示为对应于图1电路的时序图,该电路的补偿过程依次包括预充电(Pre-charge)、数据写入(Program)、复位(Restore)、驱动发光(Drive)四个阶段,在预充电阶段,第一节点D的电位被抬升至第n-1级第二扫描控制信号Gate2(n-1)的高电位,驱动薄膜晶体管DR被导通,导致在预充电、数据写入、复位三个阶段中,有机发光二极管OLED始终处于发光状态,然而,面板所需的仅为驱动发光阶段里有机发光二极管OLED的发光,其余三个阶段有机发光二极管OLED的发光为非必要发光。图3所示为上述像素驱动电路中有机发光二极管OLED的驱动电流模拟图,由图3可知,有机发光二极管OLED的驱动电流Ioled在四个阶段均存在,导致有机发光二极管OLED在四个阶段均发光,但只有在驱动发光阶段的发光才是正常和必要的,在驱动发光阶段之前的其余三个阶段内,有机发光二极管OLED的驱动电流Ioled较大,因此存在比较大的非必要发光。这种非必要发光会对OLED的寿命产生影响,同时也会影响面板的实际显示效果,如降低对比度,出现漏光现象等。
发明内容
本发明的目的在于提供一种AMOLED像素驱动电路,解决现有的AMOLED像素驱动电路在补偿驱动薄膜晶体管阈值电压漂移过程中会产生非必要发光的问题,使OLED在非必要发光时间处于关闭状态,能够延长OLED寿命,优化面板的实际显示效果。
为实现上述目的,本发明提供一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、第一电容、第二电容、及有机发光二极管;
所述第六薄膜晶体管的栅极电性连接于第n级第二扫描控制信号,源极电性连接于数据信号,漏极电性连接于第三薄膜晶体管的漏极及第一电容的一端;
所述第三薄膜晶体管的栅极经由第一节点电性连接于第四薄膜晶体管的栅极,源极电性连接于第一薄膜晶体管的源极,漏极电性连接于第六薄膜晶体管的漏极及第一电容的一端;
所述第一薄膜晶体管的栅极电性连接于第n级第一扫描控制信号,源极电性连接于第三薄膜晶体管的源极,漏极电性连接于第一节点;
所述第五薄膜晶体管的栅极与漏极均电性连接于第n-1级第二扫描控制信号,源极电性连接于第一节点;
所述第二薄膜晶体管的栅极电性连接于发光控制信号,源极电性连接于直流电源电压,漏极电性连接于有机发光二极管的阳极;
所述第四薄膜晶体管的栅极电性连接于第一节点,源极电性连接于接地端,漏极电性连接于有机发光二极管的阴极;
所述第一电容的一端电性连接于第六薄膜晶体管的漏极及第三薄膜晶体管的漏极,另一端电性连接于接地端;
所述第二电容的一端电性连接于第一节点,另一端电性连接于接地端;
所述有机发光二极管的阳极电性连接于第二薄膜晶体管的漏极,阴极电性连接于第四薄膜晶体管的漏极;
所述直流电源电压提供直流高电位;
所述发光控制信号按照时序提供高、低交替电位,控制所述有机发光二极管是否发光。
所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、与第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
所述第n级第二扫描控制信号、第n级第一扫描控制信号、第n-1级第二扫描控制信号、及发光控制信号相组合,先后对应于预充电阶段、数据写入阶段、复位阶段、及驱动发光阶段;
所述发光控制信号在预充电阶段、数据写入阶段、及复位阶段均提供低电位,控制所述有机发光二极管不发光;在驱动发光阶段提供高电位,控制所述有机发光二极管发光。
在所述预充电阶段,所述第n级第二扫描控制信号为低电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为高电位;
在所述数据写入阶段,所述第n级第二扫描控制信号为高电位,第n级第一扫描控制信号为高电位,第n-1级第二扫描控制信号为低电位;
在所述复位阶段,所述第n级第二扫描控制信号为高电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为低电位;
在所述驱动发光阶段,所述第n级第二扫描控制信号为低电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为低电位。
在所述数据写入阶段,所述数据信号为高电位;在所述复位阶段,所 述数据信号为低电位。
本发明还提供另一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、第一电容、第二电容、及有机发光二极管;
所述第六薄膜晶体管的栅极电性连接于第n级第二扫描控制信号,源极电性连接于数据信号,漏极电性连接于第三薄膜晶体管的漏极及第一电容的一端;
所述第三薄膜晶体管的栅极经由第一节点电性连接于第四薄膜晶体管的栅极,源极电性连接于第一薄膜晶体管的源极,漏极电性连接于第六薄膜晶体管的漏极及第一电容的一端;
所述第一薄膜晶体管的栅极电性连接于第n级第一扫描控制信号,源极电性连接于第三薄膜晶体管的源极,漏极电性连接于第一节点;
所述第五薄膜晶体管的栅极与漏极均电性连接于第n-1级第二扫描控制信号,源极电性连接于第一节点;
所述第四薄膜晶体管的栅极电性连接于第一节点,源极电性连接于接地端,漏极电性连接于有机发光二极管的阴极;
所述第一电容的一端电性连接于第六薄膜晶体管的漏极及第三薄膜晶体管的漏极,另一端电性连接于接地端;
所述第二电容的一端电性连接于第一节点,另一端电性连接于接地端;
所述有机发光二极管的阳极电性连接于交流电源电压,阴极电性连接于第四薄膜晶体管的漏极;
所述交流电源电压按照时序交替提供高、低电位,控制所述有机发光二极管是否发光。
所述第一薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
所述第n级第二扫描控制信号、第n级第一扫描控制信号、第n-1级第二扫描控制信号、及交流电源电压相组合,先后对应于预充电阶段、数据写入阶段、复位阶段、及驱动发光阶段;
所述交流电源电压在预充电阶段、数据写入阶段、及复位阶段均提供低电位,控制所述有机发光二极管不发光;在驱动发光阶段提供高电位,控制所述有机发光二极管发光。
在所述预充电阶段,所述第n级第二扫描控制信号为低电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为高电位;
在所述数据写入阶段,所述第n级第二扫描控制信号为高电位,第n级第一扫描控制信号为高电位,第n-1级第二扫描控制信号为低电位;
在所述复位阶段,所述第n级第二扫描控制信号为高电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为低电位;
在所述驱动发光阶段,所述第n级第二扫描控制信号为低电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为低电位。
在所述数据写入阶段,所述数据信号为高电位;在所述复位阶段,所述数据信号为低电位。
本发明还提供一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、第一电容、第二电容、及有机发光二极管;
所述第六薄膜晶体管的栅极电性连接于第n级第二扫描控制信号,源极电性连接于数据信号,漏极电性连接于第三薄膜晶体管的漏极及第一电容的一端;
所述第三薄膜晶体管的栅极经由第一节点电性连接于第四薄膜晶体管的栅极,源极电性连接于第一薄膜晶体管的源极,漏极电性连接于第六薄膜晶体管的漏极及第一电容的一端;
所述第一薄膜晶体管的栅极电性连接于第n级第一扫描控制信号,源极电性连接于第三薄膜晶体管的源极,漏极电性连接于第一节点;
所述第五薄膜晶体管的栅极与漏极均电性连接于第n-1级第二扫描控制信号,源极电性连接于第一节点;
所述第四薄膜晶体管的栅极电性连接于第一节点,源极电性连接于接地端,漏极电性连接于有机发光二极管的阴极;
所述第一电容的一端电性连接于第六薄膜晶体管的漏极及第三薄膜晶体管的漏极,另一端电性连接于接地端;
所述第二电容的一端电性连接于第一节点,另一端电性连接于接地端;
所述有机发光二极管的阳极电性连接于交流电源电压,阴极电性连接于第四薄膜晶体管的漏极;
所述交流电源电压按照时序交替提供高、低电位,控制所述有机发光二极管是否发光;
其中,所述第一薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管;
其中,所述第n级第二扫描控制信号、第n级第一扫描控制信号、第 n-1级第二扫描控制信号、及交流电源电压相组合,先后对应于预充电阶段、数据写入阶段、复位阶段、及驱动发光阶段;
所述交流电源电压在预充电阶段、数据写入阶段、及复位阶段均提供低电位,控制所述有机发光二极管不发光;在驱动发光阶段提供高电位,控制所述有机发光二极管发光。
本发明的有益效果:本发明提供的AMOLED像素驱动电路,通过在有机发光二极管与直流电源电压之间加入由发光控制信号控制的薄膜晶体管的方式、或采用交流电源电压的方式来控制有机发光二极管是否发光,设置所述发光控制信号或交流电源电压仅在驱动发光阶段提供高电位,其余阶段均提供低电位,使OLED在非必要发光时间处于关闭状态,阻止OLED在非必要发光时间发光,解决了现有的AMOLED像素驱动电路在补偿驱动薄膜晶体管阈值电压漂移过程中会产生非必要发光的问题,能够延长OLED寿命,优化面板的实际显示效果。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为一种现有的AMOLED像素驱动电路的电路图;
图2为图1所示AMOLED像素驱动电路的时序图;
图3为图1所示AMOLED像素驱动电路的有机发光二级管的驱动电流的模拟曲线图;
图4为本发明AMOLED像素驱动电路的第一实施例的电路图;
图5为图4所示AMOLED像素驱动电路的时序图;
图6为图4所示AMOLED像素驱动电路的有机发光二级管的驱动电流的模拟曲线图;
图7为本发明AMOLED像素驱动电路的第一实施例与现有的AMOLED像素驱动电路的有机发光二级管的驱动电流的模拟曲线对比图;
图8为本发明AMOLED像素驱动电路的第二实施例的电路图;
图9为图8所示AMOLED像素驱动电路的时序图;
图10为图8所示AMOLED像素驱动电路的有机发光二级管的驱动电 流的模拟曲线图;
图11为本发明AMOLED像素驱动电路的第二实施例与现有的AMOLED像素驱动电路的有机发光二级管的驱动电流的模拟曲线对比图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
本发明AMOLED像素驱动电路第一实施例的电路图,如图4所示,包括:第一薄膜晶体管M1、第二薄膜晶体管M2、第三薄膜晶体管M3、第四薄膜晶体管M4、第五薄膜晶体管M5、第六薄膜晶体管M6、第一电容C1、第二电容C2、及有机发光二极管D1。所述第六薄膜晶体管M6的栅极电性连接于第n级第二扫描控制信号Gate2(n),源极电性连接于数据信号Data,漏极电性连接于第三薄膜晶体管M3的漏极及第一电容C1的一端;所述第三薄膜晶体管M3的栅极经由第一节点D电性连接于第四薄膜晶体管M4的栅极,源极电性连接于第一薄膜晶体管M1的源极,漏极电性连接于第六薄膜晶体管M6的漏极及第一电容C1的一端;所述第一薄膜晶体管M1的栅极电性连接于第n级第一扫描控制信号Gate1(n),源极电性连接于第三薄膜晶体管M3的源极,漏极电性连接于第一节点D;所述第五薄膜晶体管M5的栅极与漏极均电性连接于第n-1级第二扫描控制信号Gate2(n-1),源极电性连接于第一节点D;所述第二薄膜晶体管M2的栅极电性连接于发光控制信号EM,源极电性连接于直流电源电压VDD,漏极电性连接于有机发光二极管D1的阳极;所述第四薄膜晶体管M4的栅极电性连接于第一节点D,源极电性连接于接地端GND,漏极电性连接于有机发光二极管D1的阴极;所述第一电容C1的一端电性连接于第六薄膜晶体管M6的漏极及第三薄膜晶体管M3的漏极,另一端电性连接于接地端GND;所述第二电容C2的一端电性连接于第一节点D,另一端电性连接于接地端GND;所述有机发光二极管D1的阳极电性连接于第二薄膜晶体管M2的漏极,阴极电性连接于第四薄膜晶体管M4的漏极。
具体地,所述第一薄膜晶体管M1、第二薄膜晶体管M2、第三薄膜晶体管M3、第四薄膜晶体管M4、第五薄膜晶体管M5、与第六薄膜晶体管M6均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。其中,所述第六薄膜晶体管M6为开关薄膜晶体管,所述第三薄膜晶体管M3为镜像薄膜晶体管,所述第四薄膜晶体管M4为驱动薄膜晶体管,所述第五薄膜晶体管M5为预充电薄膜晶体管,所述第二薄膜晶体管 M2为发光控制薄膜晶体管。
特别需要说明的是:所述直流电源电压VDD提供高电位;所述发光控制信号EM按照时序提供高、低交替电位,控制所述有机发光二极管D1是否发光。请同时参阅图4、图5、图6,在该第一实施例中,所述第n级第二扫描控制信号Gate2(n)、第n级第一扫描控制信号Gate1(n)、第n-1级第二扫描控制信号Gate2(n-1)、及发光控制信号EM相组合,先后对应于预充电阶段Pre-charge、数据写入阶段Program、复位阶段Restore、及驱动发光阶段Drive。所述发光控制信号EM在预充电阶段Pre-charge、数据写入阶段Program、及复位阶段Restore均提供低电位,控制所述有机发光二极管D1不发光;在驱动发光阶段Drive提供高电位,控制所述有机发光二极管D1发光。
具体地,在所述预充电阶段Pre-charge,所述发光控制信号EM为低电位,第n级第二扫描控制信号Gate2(n)为低电位,第n级第一扫描控制信号Gate1(n)为低电位,第n-1级第二扫描控制信号Gate2(n-1)为高电位;在所述数据写入阶段Program,所述发光控制信号EM为低电位,第n级第二扫描控制信号Gate2(n)为高电位,第n级第一扫描控制信号Gate1(n)为高电位,第n-1级第二扫描控制信号Gate2(n-1)为低电位;在所述复位阶段Restore,所述发光控制信号EM为低电位,第n级第二扫描控制信号Gate2(n)为高电位,第n级第一扫描控制信号Gate1(n)为低电位,第n-1级第二扫描控制信号Gate2(n-1)为低电位;在所述驱动发光阶段Drive,所述发光控制信号EM为高电位,第n级第二扫描控制信号Gate2(n)为低电位,第n级第一扫描控制信号Gate1(n)为低电位,第n-1级第二扫描控制信号Gate2(n-1)为低电位。进一步地,在所述数据写入阶段Program,所述数据信号Data为高电位;在所述复位阶段Restore,所述数据信号Data为低电位。
上述第一实施例与现有技术相比增加了一发光控制信号EM、及受所述发光控制信号EM控制的发光控制薄膜晶体管即第二薄膜晶体管M2。所述第二薄膜晶体管M2设于有机发光二级管D1与直流电源电压VDD之间,只有当第二薄膜晶体管M2开启时,有机发光二极管D1才与直流电源电压VDD导通,从而产生电流通过有机发光二极管D1,驱动有机发光二极管D1发光。由于所述发光控制信号EM在预充电阶段Pre-charge、数据写入阶段Program、及复位阶段Restore均提供低电位,第二薄膜晶体管M2关闭,阻断了有机发光二极管D1与直流电源电压VDD的连接,有机发光二极管D1不发光;所述发光控制信号EM在驱动发光阶段Drive提供高电位, 第二薄膜晶体管M2开启,有机发光二极管D1与直流电源电压VDD导通,有机发光二极管D1发光。如图6所示,在预充电阶段Pre-charge、数据写入阶段Program、及复位阶段Restore,没有电流通过所述有机发光二极管D1,有机发光二极管D1不发光;在驱动发光阶段Drive,有电流正常通过有机发光二极管D1,驱动有机发光二极管D1发光。如图7所示,与现有的AMOLED像素驱动电路相比,本发明第一实施例中通过有机发光二极管D1的驱动电流在预充电阶段Pre-charge、数据写入阶段Program、及复位阶段Restore明显减小,在驱动发光阶段Drive两者电流相等,成功地阻止了有机发光二极管D1在非必要发光时间发光,解决了现有的AMOLED像素驱动电路在补偿驱动薄膜晶体管阈值电压漂移过程中会产生非必要发光的问题,能够延长OLED寿命,优化面板的实际显示效果。
本发明AMOLED像素驱动电路第二实施例的电路图,如图8所示,包括:第一薄膜晶体管M1、第三薄膜晶体管M3、第四薄膜晶体管M4、第五薄膜晶体管M5、第六薄膜晶体管M6、第一电容C1、第二电容C2、及有机发光二极管D1。所述第六薄膜晶体管M6的栅极电性连接于第n级第二扫描控制信号Gate2(n),源极电性连接于数据信号Data,漏极电性连接于第三薄膜晶体管M3的漏极及第一电容C1的一端;所述第三薄膜晶体管M3的栅极经由第一节点D电性连接于第四薄膜晶体管M4的栅极,源极电性连接于第一薄膜晶体管M1的源极,漏极电性连接于第六薄膜晶体管M6的漏极及第一电容C1的一端;所述第一薄膜晶体管M1的栅极电性连接于第n级第一扫描控制信号Gate1(n),源极电性连接于第三薄膜晶体管M3的源极,漏极电性连接于第一节点D;所述第五薄膜晶体管M5的栅极与漏极均电性连接于第n-1级第二扫描控制信号Gate2(n-1),源极电性连接于第一节点D;所述第四薄膜晶体管M4的栅极电性连接于第一节点D,源极电性连接于接地端GND,漏极电性连接于有机发光二极管D1的阴极;所述第一电容C1的一端电性连接于第六薄膜晶体管M6的漏极及第三薄膜晶体管M3的漏极,另一端电性连接于接地端GND;所述第二电容C2的一端电性连接于第一节点D,另一端电性连接于接地端GND;所述有机发光二极管D1的阳极电性连接于交流电源电压VDD,阴极电性连接于第四薄膜晶体管M4的漏极。
具体地,所述第一薄膜晶体管M1、第三薄膜晶体管M3、第四薄膜晶体管M4、第五薄膜晶体管M5、与第六薄膜晶体管M6均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。其中,所述第六薄膜晶体管M6为开关薄膜晶体管,所述第三薄膜晶体管M3为镜像薄 膜晶体管,所述第四薄膜晶体管M4为驱动薄膜晶体管,所述第五薄膜晶体管M5为预充电薄膜晶体管。
特别需要说明的是:与第一实施例相比,该第二实施例不包括第二薄膜晶体管M2即发光控制薄膜晶体管与发光控制信号EM,而是采用交流电源电压VDD按照时序交替提供高、低电位,控制所述有机发光二极管D1是否发光,简化了电路结构。请同时参阅图8、图9、图10,在该第二实施例中,所述第n级第二扫描控制信号Gate2(n)、第n级第一扫描控制信号Gate1(n)、第n-1级第二扫描控制信号Gate2(n-1)、及交流电源电压VDD相组合,先后对应于预充电阶段Pre-charge、数据写入阶段Program、复位阶段Restore、及驱动发光阶段Drive。所述交流电源电压VDD在预充电阶段Pre-charge、数据写入阶段Program、及复位阶段Restore均提供低电位,控制所述有机发光二极管D1不发光;在驱动发光阶段Drive提供高电位,控制所述有机发光二极管D1发光。
具体地,在所述预充电阶段Pre-charge,所述第n级第二扫描控制信号Gate2(n)为低电位,第n级第一扫描控制信号Gate1(n)为低电位,第n-1级第二扫描控制信号Gate2(n-1)为高电位;在所述数据写入阶段Program,所述第n级第二扫描控制信号Gate2(n)为高电位,第n级第一扫描控制信号Gate1(n)为高电位,第n-1级第二扫描控制信号Gate2(n-1)为低电位;在所述复位阶段Restore,所述第n级第二扫描控制信号Gate2(n)为高电位,第n级第一扫描控制信号Gate1(n)为低电位,第n-1级第二扫描控制信号Gate2(n-1)为低电位;在所述驱动发光阶段Drive,所述第n级第二扫描控制信号Gate2(n)为低电位,第n级第一扫描控制信号Gate1(n)为低电位,第n-1级第二扫描控制信号Gate2(n-1)为低电位。进一步地,在所述数据写入阶段Program,所述数据信号Data为高电位;在所述复位阶段Restore,所述数据信号Data为低电位。
上述第二实施例与现有技术相比,将直流电源电压改为交流电源电压,只有当所述交流电源电压VDD提供高电位时,才能产生电流驱动所述有机发光二极管D1发光。由于所述交流电源电压VDD在预充电阶段Pre-charge、数据写入阶段Program、及复位阶段Restore均提供低电位,有机发光二极管D1不发光;所述交流电源电压VDD在驱动发光阶段Drive提供高电位,有机发光二极管D1发光。如图10所示,在预充电阶段Pre-charge、数据写入阶段Program、及复位阶段Restore,没有电流通过所述有机发光二极管D1,有机发光二极管D1不发光;在驱动发光阶段Drive,有电流正常通过有机发光二极管D1,驱动有机发光二极管D1发光。如图 11所示,与现有的AMOLED像素驱动电路相比,本发明第一实施例中通过有机发光二极管D1的驱动电流在预充电阶段Pre-charge、数据写入阶段Program、及复位阶段Restore明显减小,在驱动发光阶段Drive两者电流相等,成功地阻止了有机发光二极管D1在非必要发光时间发光,解决了现有的AMOLED像素驱动电路在补偿驱动薄膜晶体管阈值电压漂移过程中会产生非必要发光的问题,能够延长OLED寿命,优化面板的实际显示效果。
综上所述,本发明的AMOLED像素驱动电路,通过在有机发光二极管与直流电源电压之间加入由发光控制信号控制的薄膜晶体管的方式、或采用交流电源电压的方式来控制有机发光二极管是否发光,设置所述发光控制信号或交流电源电压仅在驱动发光阶段提供高电位,其余阶段均提供低电位,使OLED在非必要发光时间处于关闭状态,阻止OLED在非必要发光时间发光,解决了现有的AMOLED像素驱动电路在补偿驱动薄膜晶体管阈值电压漂移过程中会产生非必要发光的问题,能够延长OLED寿命,优化面板的实际显示效果。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、第一电容、第二电容、及有机发光二极管;
    所述第六薄膜晶体管的栅极电性连接于第n级第二扫描控制信号,源极电性连接于数据信号,漏极电性连接于第三薄膜晶体管的漏极及第一电容的一端;
    所述第三薄膜晶体管的栅极经由第一节点电性连接于第四薄膜晶体管的栅极,源极电性连接于第一薄膜晶体管的源极,漏极电性连接于第六薄膜晶体管的漏极及第一电容的一端;
    所述第一薄膜晶体管的栅极电性连接于第n级第一扫描控制信号,源极电性连接于第三薄膜晶体管的源极,漏极电性连接于第一节点;
    所述第五薄膜晶体管的栅极与漏极均电性连接于第n-1级第二扫描控制信号,源极电性连接于第一节点;
    所述第二薄膜晶体管的栅极电性连接于发光控制信号,源极电性连接于直流电源电压,漏极电性连接于有机发光二极管的阳极;
    所述第四薄膜晶体管的栅极电性连接于第一节点,源极电性连接于接地端,漏极电性连接于有机发光二极管的阴极;
    所述第一电容的一端电性连接于第六薄膜晶体管的漏极及第三薄膜晶体管的漏极,另一端电性连接于接地端;
    所述第二电容的一端电性连接于第一节点,另一端电性连接于接地端;
    所述有机发光二极管的阳极电性连接于第二薄膜晶体管的漏极,阴极电性连接于第四薄膜晶体管的漏极;
    所述直流电源电压提供高电位;
    所述发光控制信号按照时序提供高、低交替电位,控制所述有机发光二极管是否发光。
  2. 如权利要求1所述的AMOLED像素驱动电路,其中,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、与第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
  3. 如权利要求1所述的AMOLED像素驱动电路,其中,所述第n级第二扫描控制信号、第n级第一扫描控制信号、第n-1级第二扫描控制信号、 及发光控制信号相组合,先后对应于预充电阶段、数据写入阶段、复位阶段、及驱动发光阶段;
    所述发光控制信号在预充电阶段、数据写入阶段、及复位阶段均提供低电位,控制所述有机发光二极管不发光;在驱动发光阶段提供高电位,控制所述有机发光二极管发光。
  4. 如权利要求3所述的AMOLED像素驱动电路,其中,
    在所述预充电阶段,所述第n级第二扫描控制信号为低电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为高电位;
    在所述数据写入阶段,所述第n级第二扫描控制信号为高电位,第n级第一扫描控制信号为高电位,第n-1级第二扫描控制信号为低电位;
    在所述复位阶段,所述第n级第二扫描控制信号为高电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为低电位;
    在所述驱动发光阶段,所述第n级第二扫描控制信号为低电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为低电位。
  5. 如权利要求4所述的AMOLED像素驱动电路,其中,在所述数据写入阶段,所述数据信号为高电位;在所述复位阶段,所述数据信号为低电位。
  6. 一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、第一电容、第二电容、及有机发光二极管;
    所述第六薄膜晶体管的栅极电性连接于第n级第二扫描控制信号,源极电性连接于数据信号,漏极电性连接于第三薄膜晶体管的漏极及第一电容的一端;
    所述第三薄膜晶体管的栅极经由第一节点电性连接于第四薄膜晶体管的栅极,源极电性连接于第一薄膜晶体管的源极,漏极电性连接于第六薄膜晶体管的漏极及第一电容的一端;
    所述第一薄膜晶体管的栅极电性连接于第n级第一扫描控制信号,源极电性连接于第三薄膜晶体管的源极,漏极电性连接于第一节点;
    所述第五薄膜晶体管的栅极与漏极均电性连接于第n-1级第二扫描控制信号,源极电性连接于第一节点;
    所述第四薄膜晶体管的栅极电性连接于第一节点,源极电性连接于接地端,漏极电性连接于有机发光二极管的阴极;
    所述第一电容的一端电性连接于第六薄膜晶体管的漏极及第三薄膜晶体管的漏极,另一端电性连接于接地端;
    所述第二电容的一端电性连接于第一节点,另一端电性连接于接地端;
    所述有机发光二极管的阳极电性连接于交流电源电压,阴极电性连接于第四薄膜晶体管的漏极;
    所述交流电源电压按照时序交替提供高、低电位,控制所述有机发光二极管是否发光。
  7. 如权利要求6所述的AMOLED像素驱动电路,其中,所述第一薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
  8. 如权利要求6所述的AMOLED像素驱动电路,其中,所述第n级第二扫描控制信号、第n级第一扫描控制信号、第n-1级第二扫描控制信号、及交流电源电压相组合,先后对应于预充电阶段、数据写入阶段、复位阶段、及驱动发光阶段;
    所述交流电源电压在预充电阶段、数据写入阶段、及复位阶段均提供低电位,控制所述有机发光二极管不发光;在驱动发光阶段提供高电位,控制所述有机发光二极管发光。
  9. 如权利要求8所述的AMOLED像素驱动电路,其中,
    在所述预充电阶段,所述第n级第二扫描控制信号为低电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为高电位;
    在所述数据写入阶段,所述第n级第二扫描控制信号为高电位,第n级第一扫描控制信号为高电位,第n-1级第二扫描控制信号为低电位;
    在所述复位阶段,所述第n级第二扫描控制信号为高电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为低电位;
    在所述驱动发光阶段,所述第n级第二扫描控制信号为低电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为低电位。
  10. 如权利要求9所述的AMOLED像素驱动电路,其中,在所述数据写入阶段,所述数据信号为高电位;在所述复位阶段,所述数据信号为低电位。
  11. 一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、第一电容、第二电容、及有机发光二极管;
    所述第六薄膜晶体管的栅极电性连接于第n级第二扫描控制信号,源极电性连接于数据信号,漏极电性连接于第三薄膜晶体管的漏极及第一电容的一端;
    所述第三薄膜晶体管的栅极经由第一节点电性连接于第四薄膜晶体管的栅极,源极电性连接于第一薄膜晶体管的源极,漏极电性连接于第六薄膜晶体管的漏极及第一电容的一端;
    所述第一薄膜晶体管的栅极电性连接于第n级第一扫描控制信号,源极电性连接于第三薄膜晶体管的源极,漏极电性连接于第一节点;
    所述第五薄膜晶体管的栅极与漏极均电性连接于第n-1级第二扫描控制信号,源极电性连接于第一节点;
    所述第四薄膜晶体管的栅极电性连接于第一节点,源极电性连接于接地端,漏极电性连接于有机发光二极管的阴极;
    所述第一电容的一端电性连接于第六薄膜晶体管的漏极及第三薄膜晶体管的漏极,另一端电性连接于接地端;
    所述第二电容的一端电性连接于第一节点,另一端电性连接于接地端;
    所述有机发光二极管的阳极电性连接于交流电源电压,阴极电性连接于第四薄膜晶体管的漏极;
    所述交流电源电压按照时序交替提供高、低电位,控制所述有机发光二极管是否发光;
    其中,所述第一薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管;
    其中,所述第n级第二扫描控制信号、第n级第一扫描控制信号、第n-1级第二扫描控制信号、及交流电源电压相组合,先后对应于预充电阶段、数据写入阶段、复位阶段、及驱动发光阶段;
    所述交流电源电压在预充电阶段、数据写入阶段、及复位阶段均提供低电位,控制所述有机发光二极管不发光;在驱动发光阶段提供高电位,控制所述有机发光二极管发光。
  12. 如权利要求11所述的AMOLED像素驱动电路,其中,
    在所述预充电阶段,所述第n级第二扫描控制信号为低电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为高电位;
    在所述数据写入阶段,所述第n级第二扫描控制信号为高电位,第n级第一扫描控制信号为高电位,第n-1级第二扫描控制信号为低电位;
    在所述复位阶段,所述第n级第二扫描控制信号为高电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为低电位;
    在所述驱动发光阶段,所述第n级第二扫描控制信号为低电位,第n级第一扫描控制信号为低电位,第n-1级第二扫描控制信号为低电位。
  13. 如权利要求12所述的AMOLED像素驱动电路,其中,在所述数据写入阶段,所述数据信号为高电位;在所述复位阶段,所述数据信号为低电位。
PCT/CN2015/075686 2015-02-03 2015-04-01 Amoled像素驱动电路 WO2016123852A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/655,736 US20160307509A1 (en) 2015-02-03 2015-04-01 Amoled pixel driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510059889.5 2015-02-03
CN201510059889.5A CN104575395B (zh) 2015-02-03 2015-02-03 Amoled像素驱动电路

Publications (1)

Publication Number Publication Date
WO2016123852A1 true WO2016123852A1 (zh) 2016-08-11

Family

ID=53091319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075686 WO2016123852A1 (zh) 2015-02-03 2015-04-01 Amoled像素驱动电路

Country Status (3)

Country Link
US (1) US20160307509A1 (zh)
CN (1) CN104575395B (zh)
WO (1) WO2016123852A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882094A (zh) * 2015-04-30 2015-09-02 武汉精测电子技术股份有限公司 一种oled面板驱动电路、驱动方法及显示装置
US10332446B2 (en) * 2015-12-03 2019-06-25 Innolux Corporation Driving circuit of active-matrix organic light-emitting diode with hybrid transistors
KR102561294B1 (ko) 2016-07-01 2023-08-01 삼성디스플레이 주식회사 화소 및 스테이지 회로와 이를 가지는 유기전계발광 표시장치
CN106023891B (zh) * 2016-07-22 2018-05-04 京东方科技集团股份有限公司 一种像素电路、其驱动方法及显示面板
CN106448563B (zh) * 2016-10-31 2018-12-07 昆山国显光电有限公司 Amoled照明装置
CN107622759B (zh) * 2017-10-19 2020-03-27 京东方科技集团股份有限公司 像素控制电路及其控制方法、显示器
CN109872692B (zh) * 2017-12-04 2021-02-19 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN109192140B (zh) * 2018-09-27 2020-11-24 武汉华星光电半导体显示技术有限公司 像素驱动电路和显示装置
KR102668648B1 (ko) 2018-12-14 2024-05-24 삼성디스플레이 주식회사 표시 장치
CN109767724A (zh) * 2019-03-11 2019-05-17 合肥京东方显示技术有限公司 像素电路、显示面板、显示装置和像素驱动方法
CN110070830B (zh) * 2019-04-19 2021-08-06 深圳市华星光电半导体显示技术有限公司 像素驱动电路及显示面板
CN110688004A (zh) 2019-09-10 2020-01-14 武汉华星光电半导体显示技术有限公司 显示面板和电子装置以及电子装置的操作方法
CN111477174A (zh) * 2020-04-23 2020-07-31 京东方科技集团股份有限公司 像素电路及其驱动方法、显示基板
CN111477172A (zh) * 2020-05-07 2020-07-31 Tcl华星光电技术有限公司 一种像素驱动电路及显示装置
KR20220067304A (ko) * 2020-11-17 2022-05-24 엘지디스플레이 주식회사 표시 장치
KR20220067297A (ko) * 2020-11-17 2022-05-24 엘지디스플레이 주식회사 표시 장치
CN112750845B (zh) 2020-12-29 2024-05-17 武汉天马微电子有限公司 一种显示面板及显示装置
CN114333699B (zh) * 2022-01-13 2023-06-30 京东方科技集团股份有限公司 像素驱动电路及显示基板
CN115171607B (zh) 2022-09-06 2023-01-31 惠科股份有限公司 像素电路、显示面板及显示装置
CN115547254B (zh) * 2022-12-01 2023-03-10 惠科股份有限公司 像素驱动电路、像素驱动方法及显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2495715A1 (en) * 2005-01-26 2006-07-26 Ignis Innovation Inc. Fast settling time current-programmed driver for amoled displays
CN203085133U (zh) * 2012-12-17 2013-07-24 华南理工大学 有源有机电致发光显示器的交流像素驱动电路
CN203134326U (zh) * 2013-03-21 2013-08-14 京东方科技集团股份有限公司 像素电路及显示装置
CN103280183A (zh) * 2013-05-31 2013-09-04 京东方科技集团股份有限公司 一种amoled像素电路及驱动方法
CN203250517U (zh) * 2013-05-31 2013-10-23 京东方科技集团股份有限公司 一种amoled像素电路
CN104217679A (zh) * 2014-08-26 2014-12-17 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515299B1 (ko) * 2003-04-30 2005-09-15 삼성에스디아이 주식회사 화상 표시 장치와 그 표시 패널 및 구동 방법
US7339560B2 (en) * 2004-02-12 2008-03-04 Au Optronics Corporation OLED pixel
KR100653846B1 (ko) * 2005-04-11 2006-12-05 실리콘 디스플레이 (주) 유기 발광 다이오드의 구동 회로 및 구동 방법
KR101298302B1 (ko) * 2006-09-07 2013-08-26 더 리젠츠 오브 더 유니버시티 오브 미시간 유기 발광다이오드 표시장치와 그의 구동방법
KR100833753B1 (ko) * 2006-12-21 2008-05-30 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 그 구동방법
CN102290027B (zh) * 2010-06-21 2013-10-30 北京大学深圳研究生院 一种像素电路及显示设备
CN101980330B (zh) * 2010-11-04 2012-12-05 友达光电股份有限公司 有机发光二极管的像素驱动电路
CN102651189B (zh) * 2011-05-17 2014-07-02 京东方科技集团股份有限公司 有机发光二极管驱动电路、显示面板及显示器
EP3404646B1 (en) * 2011-05-28 2019-12-25 Ignis Innovation Inc. Method for fast compensation programming of pixels in a display
JP5795893B2 (ja) * 2011-07-07 2015-10-14 株式会社Joled 表示装置、表示素子、及び、電子機器
US9747834B2 (en) * 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
CN102915703B (zh) * 2012-10-30 2014-12-17 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法
CN103531149B (zh) * 2013-10-31 2015-07-15 京东方科技集团股份有限公司 一种交流驱动的像素电路、驱动方法及显示装置
CN103531151B (zh) * 2013-11-04 2016-03-02 京东方科技集团股份有限公司 Oled像素电路及驱动方法、显示装置
CN103700342B (zh) * 2013-12-12 2017-03-01 京东方科技集团股份有限公司 Oled像素电路及驱动方法、显示装置
JP2016001266A (ja) * 2014-06-12 2016-01-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示回路、および表示装置
CN104091564B (zh) * 2014-06-30 2016-07-06 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2495715A1 (en) * 2005-01-26 2006-07-26 Ignis Innovation Inc. Fast settling time current-programmed driver for amoled displays
CN203085133U (zh) * 2012-12-17 2013-07-24 华南理工大学 有源有机电致发光显示器的交流像素驱动电路
CN203134326U (zh) * 2013-03-21 2013-08-14 京东方科技集团股份有限公司 像素电路及显示装置
CN103280183A (zh) * 2013-05-31 2013-09-04 京东方科技集团股份有限公司 一种amoled像素电路及驱动方法
CN203250517U (zh) * 2013-05-31 2013-10-23 京东方科技集团股份有限公司 一种amoled像素电路
CN104217679A (zh) * 2014-08-26 2014-12-17 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置

Also Published As

Publication number Publication date
CN104575395A (zh) 2015-04-29
CN104575395B (zh) 2017-10-13
US20160307509A1 (en) 2016-10-20

Similar Documents

Publication Publication Date Title
WO2016123852A1 (zh) Amoled像素驱动电路
JP6799166B2 (ja) Amoled画素駆動回路および駆動方法
WO2016155053A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016145693A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016145692A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2018068393A1 (zh) Oled像素混合补偿电路及混合补偿方法
WO2018072298A1 (zh) Amoled像素驱动电路及驱动方法
CN112489599B (zh) Amoled像素驱动电路、驱动方法及显示面板
WO2018045667A1 (zh) Amoled像素驱动电路及驱动方法
WO2016119304A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2018133144A1 (zh) Amoled像素驱动系统及amoled像素驱动方法
WO2017156826A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016123855A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2017117940A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
WO2018068392A1 (zh) Amoled像素驱动电路及驱动方法
WO2017020360A1 (zh) Amoled像素驱动电路及像素驱动方法
TW201803108A (zh) 像素、使用其之有機發光顯示裝置以及驅動有機發光顯示裝置的方法
WO2018149008A1 (zh) Amoled像素驱动电路及amoled像素驱动方法
WO2018228202A1 (zh) 像素电路、像素驱动方法和显示装置
US11348516B2 (en) Amoled pixel driving circuit and driving method
WO2016123854A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016119305A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2015180278A1 (zh) 像素电路及其驱动方法、显示装置
WO2016123856A1 (zh) Amoled像素驱动电路及像素驱动方法
US10056033B2 (en) AMOLED pixel driving circuit and pixel driving method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14655736

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880807

Country of ref document: EP

Kind code of ref document: A1