WO2016121860A1 - 酸化鉄系強磁性膜及び酸化鉄系強磁性膜の製造方法 - Google Patents
酸化鉄系強磁性膜及び酸化鉄系強磁性膜の製造方法 Download PDFInfo
- Publication number
- WO2016121860A1 WO2016121860A1 PCT/JP2016/052461 JP2016052461W WO2016121860A1 WO 2016121860 A1 WO2016121860 A1 WO 2016121860A1 JP 2016052461 W JP2016052461 W JP 2016052461W WO 2016121860 A1 WO2016121860 A1 WO 2016121860A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron oxide
- phase
- magnetic
- target material
- ferromagnetic film
- Prior art date
Links
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 title claims abstract description 148
- 230000005294 ferromagnetic effect Effects 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000012528 membrane Substances 0.000 title abstract 6
- 239000000843 powder Substances 0.000 claims abstract description 35
- 239000013077 target material Substances 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000005245 sintering Methods 0.000 claims abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 74
- 239000002245 particle Substances 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 12
- 238000002679 ablation Methods 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000005291 magnetic effect Effects 0.000 abstract description 84
- 239000013078 crystal Substances 0.000 abstract description 13
- 229910000510 noble metal Inorganic materials 0.000 abstract description 5
- 239000003302 ferromagnetic material Substances 0.000 abstract description 3
- 239000007769 metal material Substances 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 73
- 229960005191 ferric oxide Drugs 0.000 description 49
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 239000010409 thin film Substances 0.000 description 18
- 230000005415 magnetization Effects 0.000 description 13
- 239000000696 magnetic material Substances 0.000 description 12
- 239000000470 constituent Substances 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 230000008016 vaporization Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000009834 vaporization Methods 0.000 description 7
- 238000003991 Rietveld refinement Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000002490 spark plasma sintering Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910019222 CoCrPt Inorganic materials 0.000 description 3
- 229910005335 FePt Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical class [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001513 hot isostatic pressing Methods 0.000 description 3
- 229910001004 magnetic alloy Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- SZQUEWJRBJDHSM-UHFFFAOYSA-N iron(3+);trinitrate;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O SZQUEWJRBJDHSM-UHFFFAOYSA-N 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000004690 nonahydrates Chemical class 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- 241000238366 Cephalopoda Species 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/65—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
- G11B5/658—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/851—Coating a support with a magnetic layer by sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/18—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
- H01F10/20—Ferrites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/22—Heat treatment; Thermal decomposition; Chemical vapour deposition
Definitions
- the present invention relates to a ferromagnetic film made of iron oxide (Fe 2 O 3 ) formed on an arbitrary substrate. Specifically, the present invention relates to a magnetic film mainly composed of ⁇ -phase iron oxide and having a magnetic property such as a high coercive force, and a manufacturing method thereof.
- a magnetic recording medium such as a hard disk is required to be able to record a large amount of information in a space-saving and high-density manner.
- This demand has become more severe with the recent technological innovation of IT infrastructure.
- a method by miniaturizing the crystal grain size (crystallite diameter) of the magnetic material constituting the recording layer has been common.
- crystal grain size crystallite diameter
- Magnetic materials such as CoCrPt (a ternary alloy based on a CoCrPt alloy) and an FePt alloy (a ternary alloy based on an FePt alloy) such as CoCrPt are known.
- the material is known.
- the latter FePt alloy-based magnetic material is a magnetic material that has been actively developed since it has high coercive force and high crystal magnetic anisotropy energy and good magnetic properties (Patent Documents 1 and 2).
- the present invention provides a new magnetic thin film made of a ferromagnetic material, the main component of which is a metal material other than a noble metal, and a method for manufacturing the same.
- ⁇ -Fe 2 O 3 is a magnetic material that has traditionally been considered to have the largest class of coercive force among metal oxides, and its thin film is predicted to be useful as a recording layer of a magnetic recording medium. is there.
- the constituent elements are Fe and O, and it seems that it can show an advantage in terms of cost as compared with the prior art mainly composed of noble metals.
- the present invention is an iron oxide-based ferromagnetic film containing iron oxide formed on an arbitrary substrate, wherein the content of the ⁇ phase in the iron oxide is 70% or more, and the crystallite diameter is 2 nm.
- the iron oxide ferromagnetic film having a thickness of 100 nm or less.
- the ferromagnetic film according to the present invention is composed of a Fe 2 O 3 thin film containing an ⁇ phase having a certain content or more.
- the reason why the content ratio of the ⁇ phase with respect to the total Fe 2 O 3 is 70% or more is to ensure the magnetic properties of the magnetic film.
- the content ratio of the ⁇ phase can be analyzed based on the measurement result of the X-ray diffraction (XRD) pattern of the magnetic film.
- XRD X-ray diffraction
- the constituent phase may be measured and calculated by directly observing the magnetic film with an electron microscope.
- the upper limit of the content of the ⁇ phase is preferably 100%.
- Fe 2 O 3 other than the ⁇ phase may be an ⁇ phase or a ⁇ phase. Either one of them may be included, or both may be mixed.
- the crystallite diameter of iron oxide (of all Fe 2 O 3 including the ⁇ phase) is in the range of 2 nm to 100 nm.
- the crystallite size also affects the magnetic properties of the magnetic film.
- a magnetic film composed of microcrystallites of less than 2 nm has poor coercive force and lacks usefulness as a magnetic recording medium.
- the lower limit of the crystallite diameter is preferably 5 nm.
- the coercive force tends to increase as the crystallite diameter increases.
- a magnetic film having a crystallite diameter exceeding 100 nm is limited to 100 nm because the magnetic particles are large and the recording density is not increased and is not useful.
- the upper limit of the crystallite diameter is preferably 30 nm, and more preferably 20 nm.
- the preferable crystallite diameter of the iron oxide phase is an average value, and can be calculated by measuring the XRD pattern of the magnetic film and performing the Rietveld analysis of the half width at half maximum of the XRD peak.
- the magnetic film according to the present invention preferably has a high purity mainly composed of iron oxide (Fe 2 O 3 ).
- Fe 2 O 3 iron oxide
- the inclusion of additional / accompanying constituent elements in consideration of the effects of the following two systems is allowed.
- a part of the Fe site in the Fe 2 O 3 crystal can be substituted with a metal element other than Fe. That is, in the Fe 2 O 3 is present invention, Fe 2 O 3 by other metal elements other than Fe (M) doped (Formula: M a Fe 2-a O 3 (M is one or more substituted metal )) Is included.
- M Fe
- Other metals to be doped include Al, Rh, Ga, In and the like, and at least one of these metals is doped.
- the doping amount of the other metal M is 0 or more and 2 or less with respect to a when M a Fe 2-a O 3 (M is a substituted metal).
- the preferred range for a is 0 to 1 for Al, 0 to 1 for Ga, 0 to 0.5 for Rh, and 0 to 0.3 for In.
- Si is allowed to be included as an incidental constituent element. Si does not affect the magnetic properties of the magnetic film, but is a protective material that is used to stably generate the ⁇ phase when producing Fe 2 O 3 powder, which is the precursor of the magnetic film. is there. In addition, when the Fe 2 O 3 powder is thinned, it also has an effect of maintaining the state of the ⁇ phase. Si exists as an atomic state or an oxide (silica) in the magnetic film.
- the molar ratio of Si to the metal element ([Fe + M]) constituting the magnetic film (Si / [Fe + M]) is , Preferably 0.01 or more and 10 or less, more preferably 0.1 or more and 2.0 or less. Note that the effect of the SiO 2 (silica) in Fe 2 O 3 powder of manufacture will be described in detail later.
- the Fe 2 O 3 ferromagnetic film according to the present invention described above is formed on an arbitrary substrate.
- the type of the substrate is not limited, and glass, metal, plastic, resin, ceramics, or a composite material made of these is appropriately selected. Further, the thickness of the magnetic film is not particularly limited.
- the present invention requires that Fe 2 O 3 constituting the thin film be composed of a certain ⁇ phase or more.
- Fe 2 O 3 constituting the thin film be composed of a certain ⁇ phase or more.
- the present inventors have, ⁇ -Fe 2 O 3 process of a thin film manufacturing which mainly result of studying, ⁇ -Fe 2 O 3 is prepared in a state close to a single phase as long as the fine powder And that it is possible to produce a thin film by using a sintered fine powder ⁇ -Fe 2 O 3 as a precursor (target material). It was.
- the Fe 2 O 3 ferromagnetic film manufacturing method prepares a target material obtained by sintering iron oxide powder having an ⁇ -phase content of 70% or more in Fe 2 O 3 crystals.
- a process a process in which the target material is irradiated with laser to heat and ablate at least a part of the target material, and a process in which iron oxide particles generated by the ablation are deposited on the substrate at high speed.
- the ⁇ -phase fine powder is obtained by subjecting metal compound fine particles such as metal hydroxide and metal oxide containing iron supported in a SiO 2 matrix to a predetermined temperature (1000 ° C. to It can be generated by heat treatment at 1400 ° C.
- the target material for forming a magnetic film according to the present invention can be manufactured by sintering iron oxide powder mainly composed of ⁇ -Fe 2 O 3 manufactured as described above.
- the iron oxide powder preferably has a crystallite diameter of 5 nm to 100 nm.
- the iron oxide powder immediately after manufacture contains silica, it may be sintered as it is to be a target material, but the silica may be removed. When removing silica, the silica can be dissolved and removed by bringing the iron oxide powder into contact with an alkaline solution (such as an aqueous solution of sodium hydroxide).
- the sintering conditions of the iron oxide powder for producing the target material are preferably 800 ° C. or more and 1200 ° C. or less, and the pressure is 90 MPa or more and 196 MPa or less. Sintering is preferably performed by hot isostatic pressing (HIP), spark plasma sintering (SPS), or the like.
- HIP hot isostatic pressing
- SPS spark plasma sintering
- ablation is a phenomenon in which high-energy laser light is irradiated onto a solid target material to locally evaporate and vaporize iron oxide particles. It should be noted in the magnetic film manufacturing process of the present invention that ablation is carried out while maintaining the structure of the iron oxide powder in the target (the crystal structure of ⁇ -Fe 2 O 3 ), and it can quickly reach the substrate. .
- the laser irradiation area is preferably 1.5 mm 2 or less.
- the energy fluence of the irradiating laser is preferably set at 2J / cm 2 or more 100 J / cm 2 or less.
- the laser irradiation is preferably performed in a reduced inert gas atmosphere or in an inert gas and oxygen gas mixed atmosphere.
- the ablated ⁇ -Fe 2 O 3 may be transformed during transport to the substrate. Therefore, it is important to reach the substrate at high speed.
- the transport speed of this ⁇ -Fe 2 O 3 molecule is subsonic (up to Mach number 0.75), transonic (Mach number 0.75 or more and less than 1.0), supersonic speed (Mach number 1.0 or more and 5. It is preferable to increase it to a region of 0 or less.
- a pressure difference is provided between the degree of vacuum in the vaporization region (chamber) of the target material and the degree of vacuum in the film formation region (chamber), and the two chambers are connected by a tube.
- ⁇ -Fe 2 O 3 particles generated by ablating the target can be transported to the film forming chamber together with the gas flow generated by the differential pressure.
- the vaporization chamber is set to a vacuum degree of 0.15 kPa (1.1 Torr) to 90 kPa (675 Torr), while the film forming chamber is set to a high vacuum of 0.1 kPa (0.7 Torr) to 90 kPa (675 Torr). It is preferable to set a pressure difference between the two while setting the degree.
- a nozzle for example, a supersonic nozzle designed using compressible fluid dynamics, a nozzle called a tapered nozzle or a Laval nozzle
- a nozzle is attached to the tip of a pipe connecting the two chambers, and the gas flow is reduced. It can be accelerated.
- a magnetic film is formed by ablation and deposition of iron oxide particles.
- the film thickness can be controlled by the deposition time.
- the present invention relates to a ferromagnetic film mainly composed of ⁇ -Fe 2 O 3 for which there has been no report on an efficient thin film manufacturing method.
- the present invention has excellent properties in magnetic properties required for a magnetic recording medium such as high coercive force according to the properties of ⁇ -Fe 2 O 3 .
- the usage-amount of noble metals, such as Pt can also be reduced and it becomes advantageous also in terms of cost.
- iron hydroxide partially doped with Al was manufactured, and iron oxide mainly composed of ⁇ -Fe 2 O 3 was manufactured therefrom. And it processed into the target material and manufactured the magnetic thin film.
- each process is explained in full detail.
- silica-coated iron and aluminum hydroxide particles were dried and then heat-treated by heating at 1040 ° C. for 4 hours in a furnace in an air atmosphere.
- the target material was manufactured by sintering the manufactured ⁇ -Fe 2 O 3 -containing iron oxide powder with HIP.
- the HIP conditions were a sintering temperature of 900 ° C., a pressure of 100 MPa, and a holding time of 60 minutes.
- the dimensions of the manufactured target material were ⁇ 30 mm and thickness 5 mm.
- FIG. 1 is a schematic configuration of a thin film manufacturing apparatus 100 used in this embodiment.
- the target material T manufactured above is introduced into the vaporization chamber 10.
- the substrate S on which the magnetic film is to be formed is set in the film forming chamber 20.
- the vaporization chamber 10 and the film formation chamber 20 communicate with each other through a transport pipe 30.
- a supersonic nozzle is connected to the tip (substrate side) of the transport pipe 30.
- a laser irradiation device L (light source: Q switch Nd: YAG pulse laser, output 425 mJ) is attached to the vaporizing chamber 10, and the laser light passes through the focus lens so that the target material T has an arbitrary spot area. Laser light is applied.
- the vaporization chamber is set to 80 kPa (600 Torr), and at the same time, the film forming chamber is evacuated to 0.1 kPa (0.75 Torr).
- the degree of vacuum in both chambers reaches a set value
- the laser is irradiated onto the target from the laser irradiation apparatus L to vaporize iron oxide.
- the vaporized iron oxide is accelerated by the gas flow generated by the differential pressure between the vaporization chamber and the film formation chamber and reaches the substrate at a high speed.
- the film formation time is 10 minutes, and the thickness of the magnetic film is 7.6 ⁇ m.
- FIG. 2 shows the XRD-Rietveld analysis results. From this analysis result, it was confirmed that the following phases were generated as constituent phases of iron oxide.
- the overall phase structure of the formed magnetic film is the same as that of the target (iron oxide powder) as the precursor, and the content of the ⁇ phase is maintained at 70% or more (75.7%).
- the distribution of the crystallite diameter of the ⁇ phase in the magnetic film is bipolar, and the particles having the same crystallite diameter (about 20 nm) as the particles constituting the target material and about 3 nm (2.8 nm). It is shown that a lot of small-sized particles are produced. It can be seen that the crystallite diameter has been reduced in the process of forming the magnetic film. This tendency was also observed in the ⁇ phase.
- the average crystallite diameter of iron oxide ((epsilon) phase and (alpha) phase) for each phase and the weighted average ((2.8nmx64.64.) Based on the existence ratio of each crystallite diameter. 7%) + (17.3 nm ⁇ 11.0%) + (2.8 nm ⁇ 18.7%) + (18.4 nm ⁇ 5.6%)).
- the crystallite diameter of iron oxide in the magnetic film of the present embodiment was calculated to be about 5.3 nm.
- a magnetic hysteresis curve was measured with a superconducting quantum interferometer (SQUID) (temperature 300K), and the coercive force (Hc), saturation magnetization (Ms), and residual magnetization (Mr) of the magnetic material were measured.
- the measured magnetic properties were a coercive force of 3.5 kOe, a saturation magnetization (5T) of 2.85 emu / g, and a residual magnetization of 0.3 emu / g.
- Second Embodiment Here, a target was manufactured by SPS using the iron oxide powder containing ⁇ -Fe 2 O 3 manufactured in the first embodiment. Then, a magnetic film was formed from this target.
- the SPS conditions were a sintering temperature of 950 ° C., a pressure of 34 MPa, and a holding time of 10 minutes.
- the manufactured target material had dimensions of 30 mm and a thickness of 3 mm.
- the same thin film manufacturing apparatus as that in the first embodiment (FIG. 1) was used for forming the magnetic film.
- the production conditions of the magnetic film were a vaporization chamber pressure of 40 kPa (300 Torr) and a film formation chamber pressure of 0.1 kPa (0.75 Torr). Other conditions and processes are the same as those in the first embodiment.
- the film thickness was 22.9 ⁇ m.
- the iron oxide phase constituting the magnetic film was analyzed for two components for each of the ⁇ phase and the ⁇ phase, and the results shown in Table 2 were obtained. .
- the magnetic film formed in this embodiment also has an ⁇ -phase content of 70% or more, and maintains the ratio of the target (iron oxide powder) that is the precursor. Also in this magnetic film, the crystallite diameter has been reduced, and in addition to the particles of about 20 nm contained in the target raw material, particles of a small size of about 3 nm were generated. In the magnetic film of this embodiment, the average crystallite diameter of iron oxide ( ⁇ phase and ⁇ phase) was calculated to be about 7.5 nm. In the magnetic film of this embodiment, the molar ratio of Si to the constituent metal elements (Si / [Fe + Al]) is the same as that of the first embodiment. This is because the same iron oxide powder is used.
- the magnetic properties (coercivity, saturation magnetization, remanent magnetization (temperature 300 K)) of this magnetic film were measured.
- the measured magnetic properties were a coercive force of 5.6 kOe, a saturation magnetization (5T) of 4.4 emu / g, and a residual magnetization of 0.9 emu / g.
- An iron oxide powder containing ⁇ -Fe 2 O 3 was manufactured by changing the heat treatment conditions in the same process as in the first embodiment.
- the production of the iron oxide powder is carried out by dropping ammonia water into a raw material solution in which iron (III) nitrate nonahydrate and aluminum nitrate (III) nonahydrate are dissolved to produce hydroxide.
- the product was coated with silica and then heat-treated to obtain iron oxide.
- the heat treatment is performed at 1150 ° C. for 4 hours.
- the ⁇ phase was 80% + ⁇ phase was 20%.
- the crystallite size of each phase was about 23 nm for the ⁇ phase and about 38 nm for the ⁇ phase.
- This ⁇ -Fe 2 O 3 -containing iron oxide powder was sintered by SPS to produce a target material.
- the SPS conditions were the same as in the second embodiment.
- a magnetic film was formed from the manufactured target material.
- the same thin film manufacturing apparatus as in the first and second embodiments was used for the magnetic film deposition.
- the manufacturing conditions of the magnetic film were the same as in the second embodiment.
- the film thickness was 23.1 ⁇ m.
- the iron oxide phase constituting the magnetic film was analyzed for two components for each of the ⁇ phase and the ⁇ phase, and the results shown in Table 3 were obtained. Obtained.
- the magnetic film formed in this embodiment also has an ⁇ -phase content of 70% or more, and maintains the ratio of the target (iron oxide powder) that is the precursor.
- the average crystallite diameter of iron oxide ( ⁇ phase and ⁇ phase) is calculated to be about 17.4 nm.
- the molar ratio of Si to the constituent metal elements (Si / [Fe + Al]) is the same as in the first and second embodiments. It is because the preparation composition of the raw material solution when producing iron oxide powder is the same.
- the magnetic properties (coercivity, saturation magnetization, remanent magnetization (temperature 300 K)) of this magnetic film were measured.
- the measured magnetic properties were a coercive force of 8.6 kOe, a saturation magnetization (5T) of 5.9 emu / g, and a residual magnetization of 1.3 emu / g.
- the magnetic material according to the present invention holds magnetic alloy particles having crystal magnetic anisotropy, and has an effective ordering with respect to the crystal structure of the magnetic alloy particles, and has suitable magnetic properties. By appropriately taking out and using these magnetic alloy particles, development of a magnetic recording medium having a higher recording density than conventional ones can be expected.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
- Magnetic Record Carriers (AREA)
Abstract
本発明は、任意の基板上に形成され、酸化鉄を含む酸化鉄系強磁性膜であって、酸化鉄中のε相の含有割合が70%以上であり、結晶子径が2nm以上100nm以下である酸化鉄系強磁性膜に関する。この磁性膜は、ε相の含有割合が70%以上である酸化鉄粉末を焼結してなるターゲット材にレーザー照射して酸化鉄粉末をアブレーションすると共に、これを高速で基板上に堆積させることで製造可能となる。本発明に係る磁性膜は、貴金属系以外の金属材料を主要成分とする新たな強磁性材料からなる磁性膜である。
Description
本発明は、任意の基板上に形成される酸化鉄(Fe2O3)からなる強磁性膜に関する。詳細には、ε相の酸化鉄を主体としてなり高保磁力等の磁気特性を有する磁性膜及びその製造方法に関する。
ハードディスク等の磁気記録媒体においては、多量の情報を省スペースで高密度に記録できることが求められている。この要求は、近年のITインフラの技術革新に伴い更に過酷なものとなっている。これまで、磁気記録媒体の記録密度向上の手段としては、記録層を構成する磁性材料の結晶粒径(結晶子径)の微小化によるものが一般的なものであった。しかし、磁性粉末の微粒子化による記録密度の向上にも限界があることが指摘されている。磁性材料の過度の微粒子化は熱揺らぎに対する耐性低下の要因となり、磁化が不安定となるという問題があるからである。
そのため最近の検討では、磁性粉末の微粒子化を念頭に置きつつ、構成材料そのものを新たな材料とする動きが出ている。この新規の磁性材料の特性としては、結晶磁気異方性が高く、かつ、保磁力が高い強磁性を発揮し得ることが要求される。こうした強磁性材料としてこれまで知られたものは、CoCrPt系(CoCrPt合金を基本とした3~4元系合金)やFePt系合金(FePt合金を基本とした2~3元系合金)等の磁性材料が知られている。特に、後者のFePt合金系磁性材料は、高保磁力・高結晶磁気異方性エネルギーで磁気特性が良好であることから最近開発が盛んな磁性材料である(特許文献1、2)。
上記の磁性材料は、磁気特性の観点からは有望なものが多いものの、Ptという貴金属の割合が高く、実用化の際にコスト面で支障が生じる可能性がある。そのため、具体的用途や使用環境等に応じることができるよう、多様な磁性材料の開発が求められるところである。そこで、本発明は、強磁性材料からなる磁性薄膜であって、貴金属系以外の金属材料を主要成分とする新たなもの、及び、その製造方法を提供する。
上記課題解決のため本発明者等は、磁性材料としてε(イプシロン)型の酸化鉄(ε-Fe2O3(III))の適用について検討・評価することとした。ε-Fe2O3は、従前から金属酸化物の中でも最大クラスの保磁力を有するとされている磁性材料であり、その薄膜は磁気記録媒体の記録層として有用であることが予見されるところである。そして、その構成元素はFeとOであり、貴金属を主体とする従来技術よりもコスト面でも優位性を示すことができると思われる。
もっとも、ε-Fe2O3については、薄膜化の可能性、及び、薄膜状態における磁気特性・有用性についての具体的な知見が少ないのが現状である。通常、バルクではFe2O3は、α相又はγ相が安定的であり、ε相は自然界では見出されない希少相であり、単一相で作り分けることは困難であるとされてきたからである。また、そもそも、ε-Fe2O3が発揮する高保磁力の起源について、その機構が明らかになっていないことも関連している。そこで本発明者等は、まず、ε相を含有するFe2O3薄膜の製造法について鋭意検討を行った。そして、製造されたFe2O3薄膜について、ε相の含有率、他の相(α相、γ相)の影響、粒子径等について検討を行い本発明に想到した。
即ち、本発明は、任意の基板上に形成され、酸化鉄を含む酸化鉄系強磁性膜であって、前記酸化鉄中のε相の含有割合が70%以上であり、結晶子径が2nm以上100nm以下である酸化鉄系強磁性膜である。
上記の通り、本発明に係る強磁性膜は、一定の含有率以上のε相を含んでなるFe2O3薄膜で構成される。全Fe2O3に対するε相の含有割合を70%以上とするのは、磁性膜の磁気特性を確保するためである。このε相の含有割合は、磁性膜のX線回折(XRD)パターンの測定結果を基に解析することができる。XRDによる回折ピークの解析方法としては、Rietveld解析、RIR解析、WPPF解析による定量分析法等がある。また、磁性膜を電子顕微鏡により直接観察して構成相を測定・算出しても良い。尚、ε相の含有割合の上限については当然に100%が好ましい
ε相以外のFe2O3は、α相であっても良くγ相であっても良い。いずれか一方だけが含まれていても良いが、双方混在していても良い。
そして、本発明に係るFe2O3磁性膜は、酸化鉄の(ε相を含む全Fe2O3の)結晶子径が2nm以上100nm以下の範囲内にある。結晶子径もまた磁性膜の磁気特性に影響を及ぼす。2nm未満の微小結晶子で構成された磁性膜は保磁力に乏しく磁気記録媒体としての有用性に欠ける。結晶子径の下限値は5nmが好ましい。一方、保磁力は結晶子径の増大と共に上昇する傾向があるが、100nmを超える結晶子径の磁性膜は磁性粒子が大きく記録密度が高められず有用性に欠けることから100nmを上限とする。結晶子径の上限値は30nmが好ましく、20nmがより好ましい。尚、この酸化鉄相の好ましい結晶子径とは平均値であり、磁性膜のXRDパターンを測定し、XRDピークの半値半幅をRietveld解析することにより算出することができる。
本発明に係る磁性膜は、組成としては酸化鉄(Fe2O3)を主体とし純度が高いことが好ましい。但し、以下の2つの系統の作用を考慮した付加的・付随的構成元素の含有が許容される。
付加的構成元素として、Fe2O3結晶中のFeサイトの一部にFe以外の他の金属元素を置換することができる。即ち、本発明ではFe2O3とは、Fe以外の他の金属元素(M)がドープされたFe2O3(化学式:MaFe2-aO3(Mは1種類以上の置換金属)で表される)が含まれる。このFeサイトへの他の金属のドープは、磁性膜の磁気特性向上に寄与する。ドープされる他の金属としては、Al、Rh、Ga、In等が挙げられ、これらの少なくとも1種の金属がドープされる。他の金属Mのドープ量は、MaFe2-aO3(Mは置換金属)としたとき、aに対して0以上2以下となる。aの好適な範囲としては、Alについては0以上1以下、Gaについては0以上1以下、Rhについては0以上0.5以下、Inについては0以上0.3以下であるものが好ましい。
また、本発明では、付随的構成元素としてSiの含有が許容される。Siは磁性膜の磁気特性に対して作用するものではないが、磁性膜の前駆材料であるFe2O3粉末を製造する際、安定的にε相を生成するために使用される保護材料である。また、Fe2O3粉末を薄膜化する際、ε相の状態を維持する作用もある。Siは磁性膜中で原子状態又は酸化物(シリカ)として存在する。
Siの含有量については、上記のFeサイトに他の金属Mがドープされた場合を考慮し、磁性膜を構成する金属元素([Fe+M])に対するSiのモル比(Si/[Fe+M])が、0.01以上10以下であるものが好ましく、0.1以上2.0以下であるものがさらに好ましい。尚、Fe2O3粉末の製造におけるSiO2(シリカ)の作用については、後に詳述する。
以上説明した本発明に係るFe2O3系強磁性膜は、任意の基板上に形成される。基板の種類は問われることは無く、ガラス、金属、プラスチック、樹脂、セラミックス、又はこれらから成る複合材料等、適宜に選択される。また、磁性膜の厚さについて特に限定されることはない。
次に、本発明に係るFe2O3系強磁性膜の製造方法について説明する。上記の通り、本発明は、薄膜を構成するFe2O3に対して一定以上のε相で構成されることを要求する。ここで、上記の通り、ε相の作り分けは困難であるとされており、これを薄膜化するのも困難であると考えられる。本発明者等は、ε-Fe2O3を主とする薄膜製造の方法について検討を行った結果、ε-Fe2O3は微粉末状のものであれば単相に近い状態での製造が可能であること、及び、そのようにして製造した微粉末状ε-Fe2O3を前駆材料として焼結したもの(ターゲット材)を利用することで薄膜の製造も可能となることを見出した。
即ち、本発明に係るFe2O3系強磁性膜の製造方法は、Fe2O3結晶におけるε相の含有割合が70%以上である酸化鉄粉末を焼結してなるターゲット材を用意する工程、前記ターゲット材にレーザー照射して、ターゲット材の少なくとも一部を加熱してアブレーションする工程、アブレーションにより生じた酸化鉄粒子を高速で基板上に堆積させる工程を含むものである。
本発明に係る方法で使用するε-Fe2O3を主体とする微粉末、ターゲット及び当該ターゲットを適用する薄膜形成プロセスについて説明する。本発明者等の検討によれば、ε相の微粉末は、SiO2マトリックス中に担持された鉄を含有する金属水酸化物や金属酸化物等の金属化合物微粒子を所定の温度(1000℃~1400℃)で熱処理することで生成することができる。
本発明に係る磁性膜形成のためのターゲット材は、上記のようにして製造したε-Fe2O3を主体とした酸化鉄粉末を焼結して製造することができる。この酸化鉄粉末は、結晶子径が5nm以上100nm以下のものが好ましい。また、製造直後の酸化鉄粉末は、シリカを含むものであるが、これをそのまま焼結してターゲット材としても良いが、シリカを除去しても良い。シリカを除去する場合、酸化鉄粉末をアルカリ溶液(水酸化ナトリウムの水溶液等)に接触させてシリカを溶解・除去できる。
ターゲット材製造のための酸化鉄粉末の焼結条件としては、800℃以上1200℃以下、圧力90MPa以上196MPa以下とするのが好ましい。焼結は、熱間等方圧成型(HIP)、放電プラズマ焼結法(SPS)等によるのが好ましい。
そして、上記ターゲット材を適用する本発明に係る磁性膜の製造は、このターゲット材にレーザーを照射することで酸化鉄ターゲットをアブレーションさせ、アブレーションにより生成させた酸化鉄粒子を基板に堆積させる。ここで、アブレーションとは、高エネルギーのレーザー光を固体であるターゲット材に照射して、局所的に酸化鉄粒子を蒸発・気化させて飛散させる現象である。本発明の磁性膜製造工程において留意すべきは、ターゲット中の酸化鉄粉末の構造(ε-Fe2O3の結晶構造)を維持したままアブレーションし、それを速やかに基板に到達させることである。
そのため、ターゲットの加熱にレーザー加熱が適用される。速やかに高エネルギーを印加することで、結晶構造を維持したままε-Fe2O3をアブレーションさせるためである。このレーザー照射の条件としては、レーザーの照射面積を1.5mm2以下とすることが好ましい。また、照射するレーザーのエネルギーフルエンスが、2J/cm2以上100J/cm2以下で設定するのが好ましい。尚、レーザー照射は、減圧された不活性ガス雰囲気下、或いは、不活性ガスと酸素ガス混合雰囲気下で行うのが好ましい。
そして、アブレーションしたε-Fe2O3は、基板への輸送途中で変態するおそれもある。そのため、高速で基板に到達させることが重要である。このε-Fe2O3分子の輸送速度は、亜音速(マッハ数0.75まで)、遷音速(マッハ数0.75以上1.0未満)、超音速(マッハ数1.0以上5.0以下)の領域にまで高めたものが好ましい。その具体的手段としては、例えば、ターゲット材の気化領域(チャンバー)の真空度と成膜領域(チャンバー)の真空度との間に圧力差を設け、両チャンバー間を管により連結する。このとき、差圧により生起したガス流と共に、ターゲットをアブレーションすることで生成したε-Fe2O3粒子を成膜チャンバーまで搬送することができる。具体的には、気化チャンバーを0.15kPa(1.1Torr)~90kPa(675Torr)の真空度とする一方で、成膜チャンバーを、0.1kPa(0.7Torr)~90kPa(675Torr)の高真空度に設定しつつ、両者に圧力差を設定するのが好ましい。また、両チャンバー間を連結している管の先端にノズル(例えば,圧縮性流体力学を用いて設計される超音速ノズル、先細末広ノズル或いはラバールノズルと称されているノズル)を取り付け、ガス流を加速させることができる。
以上のように、酸化鉄粒子のアブレーション・堆積により磁性膜成膜がなされる。膜厚は堆積時間により制御できる。
以上説明したように、本発明は、これまで効率的な薄膜製造法についての報告例がなかったε-Fe2O3を主体とする強磁性膜に関するものである。本発明は、ε-Fe2O3の特性に従って、高保磁力等の磁気記録媒体に要求される磁気特性において優れた性質を有する。そして、Pt等の貴金属の使用量も低減でき、コスト面でも有利となる。
第1実施形態:以下、本発明の実施形態について説明する。本実施形態では、一部にAlをドープした水酸化鉄を製造し、ここから、ε-Fe2O3を主体とする酸化鉄を製造した。そして、ターゲット材に加工し、磁性薄膜を製造した。以下、各工程を詳述する。
純水4L、硝酸鉄(III)9水和物を540g、硝酸アルミニウム(III)9水和物を26g添加し、室温でよく撹拌しながら溶解させ、原料溶液とした。このときの仕込み組成は、AlとFeのモル比をAl:Fe=x:(2-x)と表すときx=0.1であった。次に、この原料用液を良く撹拌しながら、22.3%アンモニア水420gを滴下することにより、両液を撹拌混合し、鉄及びアルミニウムの水酸化物を生成させた。
次に、反応溶液を撹拌しながら、テトラエトキシシラン430gを加え、約1日撹拌を継続した。これによりシリカ被覆が進行する。そして、この溶液を遠心分離あるいは濾過することにより沈殿物を回収し、複数回洗浄した。回収物は、シリカで被覆された鉄及びアルミニウムの水酸化物粒子である。
得られたシリカ被覆-鉄及びアルミニウムの水酸化物粒子は乾燥後、大気雰囲気下の炉内において1040℃で4時間加熱して熱処理した。
熱処理後の粉末についてXRD分析したところ、ε-Fe2O3の結晶構造(斜方晶、空間群Pna21)に対応するピークが観察されε-Fe2O3結晶の生成が確認された。また、この酸化鉄中のε-Fe2O3の含有率を、XRDパターンをRietveld解析することにより検討した結果、ε相77%+α相23%であることが確認された。また、約20nmの結晶子径の揃った粉末であった。
製造したε-Fe2O3含有酸化鉄粉末をHIPにて焼結してターゲット材を製造した。HIPの条件は、焼結温度900℃、圧力100MPaで保持時間60分とした。製造したターゲット材の寸法は、φ30mm、厚み5mmとした。
図1は、本実施形態で使用した薄膜製造装置100の概略構成である。上記で製造したターゲット材Tは、気化チャンバー10に導入される。一方、磁性膜を形成する基板Sは成膜チャンバー20にセットされている。気化チャンバー10と成膜チャンバー20とは、輸送管30で連通している。輸送管30の先端(基板側)には、超音速ノズルが接続されている。また、気化チャンバー10にはレーザー照射装置L(光源:QスイッチNd:YAGパルスレーザー、出力425mJ)が取り付けられており、レーザー光は焦点レンズを通過することでターゲット材Tに任意のスポット面積でレーザー光が当てられている。
薄膜製造装置100による磁性膜の製造は、まず、気化チャンバーを80kPa(600Torr)にし、同時に成膜チャンバーを0.1kPa(0.75Torr)になるまで真空引きする。両チャンバーの真空度が設定値になったところで、レーザー照射装置Lよりレーザーをターゲットに照射して酸化鉄を気化する。気化した酸化鉄は、気化チャンバーと成膜チャンバーとの差圧により生起するガス流により加速され高速で基板に到達する。本実施形態では、成膜時間を10分とし、磁性膜の厚さを7.6μmとした。
成膜した磁性膜について、XRD分析にて磁性膜を構成する酸化鉄相の種類を検討した。ε相とα相の各相に対して2成分の解析を行った。図2は、XRD-Rietveld解析結果を示す。この解析結果から、酸化鉄の構成相として下記の相が生成していることが確認された。
成膜された磁性膜の全体的な相構成は、前駆材であるターゲット(酸化鉄粉末)と同様であり、ε相の含有率は70%以上(75.7%)を維持している。但し、磁性膜中のε相の結晶子径の分布は二極化しており、ターゲット原料を構成していた粒子と略同じ結晶子径の粒子(約20nm)と、約3nm(2.8nm)の小サイズの粒子が多く生成していることが示されている。磁性膜の成膜過程で結晶子径について微細化が生じていることが分かる。そして、この傾向はα相にも同様のものが見られた。
そして、本実施形態の磁性膜について、酸化鉄(ε相とα相)の平均結晶子径を各相、各結晶子径の存在割合をもとにした加重平均((2.8nm×64.7%)+(17.3nm×11.0%)+(2.8nm×18.7%)+(18.4nm×5.6%))を算出した。本実施形態の磁性膜における酸化鉄の結晶子径は、約5.3nmと計算された。
また、本実施形態で成膜した磁性膜について、構成する金属元素に対するSiのモル比(Si/[Fe+M]:本実施形態ではM=Al)を算出するため、XRF分析により各元素の比率を分析した。その結果、Fe:Al:Si=1.91:0.09:2.85であった。よって、モル比(Si/[Fe+Al])は、約1.4になることが確認された。尚、磁性膜の前駆材であるターゲット(酸化鉄粉末)についても、予め構成金属元素の比率を分析していた。ターゲットにおける各元素の比率は、Fe:Al:Si=1.91:0.09:2.81であった。つまり、ターゲットの構成比と、成膜された磁性膜の構成比はほぼ同じであることが確認できた。
次に、この磁性膜についての磁気特性を評価した。この評価は、超伝導量子干渉計(SQUID)にて磁気ヒステリシス曲線を測定し(温度300K)、磁性材料の保磁力(Hc)、飽和磁化(Ms)、残留磁化(Mr)を測定した。測定された磁気特性は、保磁力が3.5kOe、飽和磁化(5T)が2.85emu/g、残留磁化が0.3emu/gであった。
第2実施形態:ここでは、第1実施形態で製造したε-Fe2O3含有酸化鉄粉末を用いて、SPSによりターゲットを製造した。そして、このターゲットから磁性膜を成膜した。SPSの条件は、焼結温度950℃、圧力34MPaで保持時間10分とした。製造したターゲット材の寸法は、φ30mm、厚み3mmとした。
磁性膜の成膜は、第1実施形態と同じ薄膜製造装置(図1)を使用した。磁性膜の製造条件は、気化チャンバー圧力を40kPa(300Torr)とし、成膜チャンバー圧力を0.1kPa(0.75Torr)とした。その他の条件・工程は第1実施形態と同様とした。膜厚は、22.9μmであった。
成膜した磁性膜について、第1実施形態と同様にして、磁性膜を構成する酸化鉄相についてε相とα相の各相に対して2成分の解析を行い、表2の結果を得た。
本実施形態で成膜された磁性膜もε相の含有率が70%以上となっており、前駆材であるターゲット(酸化鉄粉末)の割合を維持している。また、この磁性膜でも結晶子径の微細化が生じており、ターゲット原料に含まれていた約20nmの粒子に加えて、約3nmの小サイズの粒子が生成していた。本実施形態の磁性膜においては、酸化鉄(ε相とα相)の平均結晶子径は、約7.5nmと計算された。尚、本実施形態の磁性膜における、構成金属元素に対するSiのモル比(Si/[Fe+Al])は第1実施形態と同じである。同じ酸化鉄粉末を使用しているからである。
そして、この磁性膜についての磁気特性(保磁力、飽和磁化、残留磁化(温度300K))を測定した。測定された磁気特性は、保磁力が5.6kOe、飽和磁化(5T)が4.4emu/g、残留磁化が0.9emu/gであった。
第3実施形態:第1実施形態と同様の工程で、熱処理条件を変更してε-Fe2O3含有酸化鉄粉末を製造した。酸化鉄粉末の製造は、硝酸鉄(III)9水和物と硝酸アルミニウム(III)9水和物とを溶解した原料溶液に、アンモニア水を滴下して水酸化物を生成し、この水酸化物をシリカ被覆したのち、熱処理して酸化鉄とした。本実施形態では熱処理条件として、1150℃で4時間加熱とした。
熱処理後の酸化鉄粉末についてのXRD分析及びRietveld解析の結果、ε相80%+α相20%であることが確認された。また、各相の結晶子径は、ε相が約23nmでα相が約38nmであった。
このε-Fe2O3含有酸化鉄粉末をSPSにて焼結してターゲット材を製造した。SPSの条件は、第2実施形態と同様とした。そして、製造したターゲット材から磁性膜を成膜した。磁性膜成膜は、第1、第2実施形態と同じ薄膜製造装置を使用した。磁性膜の製造条件は、第2実施形態と同様とした。膜厚は、23.1μmであった。
成膜した磁性膜について、第1、第2実施形態と同様にして、磁性膜を構成する酸化鉄相についてε相とα相の各相に対して2成分の解析を行い表3の結果を得た。
本実施形態で成膜された磁性膜もε相の含有率が70%以上となっており、前駆材であるターゲット(酸化鉄粉末)の割合を維持している。本実施形態の磁性膜においては、酸化鉄(ε相とα相)の平均結晶子径は、約17.4nmと計算される。尚、本実施形態の磁性膜における、構成金属元素に対するSiのモル比(Si/[Fe+Al])は第1、第2実施形態と同じである。酸化鉄粉末を製造する際の原料溶液の仕込み組成が同じだからである。
そして、この磁性膜についての磁気特性(保磁力、飽和磁化、残留磁化(温度300K))を測定した。測定された磁気特性は、保磁力が8.6kOe、飽和磁化(5T)が5.9emu/g、残留磁化が1.3emu/gであった。
本発明に係る磁性材料は、結晶磁気異方性を有する磁性合金粒子を保持するものであり、磁性合金粒子の結晶構造について効果的な規則化がなされており好適な磁気特性を有する。この磁性合金粒子を適宜に取り出して利用することで、記録密度を従来よりも高めた磁気記録媒体の開発が期待できる。
Claims (8)
- 任意の基板上に形成され、酸化鉄を含む酸化鉄系強磁性膜であって、
前記酸化鉄中のε相の含有割合が70%以上であり、
結晶子径が2nm以上100nm以下である酸化鉄系強磁性膜。 - 酸化鉄系強磁性膜を構成する金属元素([Fe+M]:MはFe以外の金属元素である)に対するSiのモル比(Si/[Fe+M])が、0.01以上10以下である請求項1記載の酸化鉄系強磁性膜。
- 請求項1又は請求項2記載の酸化鉄系強磁性膜の製造方法であって、
酸化鉄を含んでなるターゲット材であって、酸化鉄中のε相の含有割合が70%以上である酸化鉄粉末を焼結してなるターゲット材を用意する工程、
前記ターゲット材にレーザー照射して、ターゲット材の少なくとも一部を加熱してアブレーションする工程、
前記アブレーションにより生じる酸化鉄粒子を高速で基板上に堆積させる工程、を含む酸化鉄系強磁性膜の製造方法。 - 酸化鉄粒子を亜音速、遷音速、超音速のいずれかのガス流によって基板上に輸送し堆積させる請求項3記載の酸化鉄系強磁性膜の製造方法。
- ターゲットに照射するレーザーの照射面積が、1.5mm2以下である請求項3又は請求項4記載の酸化鉄系強磁性膜の製造方法。
- ターゲットに照射するレーザーのエネルギーフルエンスが、2J/cm2以上100J/cm2以下である請求項3~請求項5のいずれかに記載の酸化鉄系強磁性膜の製造方法。
- 請求項1又は請求項2記載の酸化鉄系強磁性膜を任意の基板上に形成するためのターゲット材であって、
酸化鉄粉末を焼結してなり、
前記酸化鉄粉末は、ε相の含有割合が70%以上である酸化鉄からなるターゲット材。 - 酸化鉄粉末の少なくとも一部がSiO2で被覆されている請求項7記載のターゲット材。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016572136A JPWO2016121860A1 (ja) | 2015-01-29 | 2016-01-28 | 酸化鉄系強磁性膜及び酸化鉄系強磁性膜の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-015917 | 2015-01-29 | ||
JP2015015917 | 2015-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121860A1 true WO2016121860A1 (ja) | 2016-08-04 |
Family
ID=56543465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052461 WO2016121860A1 (ja) | 2015-01-29 | 2016-01-28 | 酸化鉄系強磁性膜及び酸化鉄系強磁性膜の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2016121860A1 (ja) |
TW (1) | TW201700756A (ja) |
WO (1) | WO2016121860A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063200A (ja) * | 2006-09-08 | 2008-03-21 | Univ Of Tokyo | 分散性の良いε酸化鉄粉末 |
JP2011029620A (ja) * | 2009-06-24 | 2011-02-10 | Univ Of Tokyo | 磁性薄膜の製造方法、磁性薄膜及び磁性体 |
JP2014224027A (ja) * | 2013-04-26 | 2014-12-04 | 国立大学法人 東京大学 | 酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法 |
-
2016
- 2016-01-28 TW TW105102703A patent/TW201700756A/zh unknown
- 2016-01-28 JP JP2016572136A patent/JPWO2016121860A1/ja active Pending
- 2016-01-28 WO PCT/JP2016/052461 patent/WO2016121860A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063200A (ja) * | 2006-09-08 | 2008-03-21 | Univ Of Tokyo | 分散性の良いε酸化鉄粉末 |
JP2011029620A (ja) * | 2009-06-24 | 2011-02-10 | Univ Of Tokyo | 磁性薄膜の製造方法、磁性薄膜及び磁性体 |
JP2014224027A (ja) * | 2013-04-26 | 2014-12-04 | 国立大学法人 東京大学 | 酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201700756A (zh) | 2017-01-01 |
JPWO2016121860A1 (ja) | 2017-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5974327B2 (ja) | 非磁性物質分散型Fe−Pt系スパッタリングターゲット | |
JP5041262B2 (ja) | 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法 | |
JP5457615B1 (ja) | 磁気記録膜形成用スパッタリングターゲット及びその製造方法 | |
JP5041261B2 (ja) | 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法 | |
TWI633198B (zh) | Non-magnetic material dispersed Fe-Pt sputtering target | |
CN105026589B (zh) | 烧结体、包含该烧结体的磁记录膜形成用溅射靶 | |
JP2008091024A (ja) | 垂直磁気記録媒体 | |
CN114503225A (zh) | 软磁性合金和磁性部件 | |
WO2008026439A1 (fr) | Film mince magnetique | |
Hu et al. | A low temperature and solvent-free direct chemical synthesis of L1 0 FePt nanoparticles with size tailoring | |
JP6353901B2 (ja) | 磁性材料 | |
JP2017098538A (ja) | Mn−X系磁性材料 | |
Bui et al. | Thin films of Co 1.7 Fe 1.3 O 4 prepared by radio frequency sputtering–the first step towards their spinodal decomposition | |
WO2016121860A1 (ja) | 酸化鉄系強磁性膜及び酸化鉄系強磁性膜の製造方法 | |
JP2012216273A (ja) | 垂直磁気記録媒体用Fe−Co系合金軟磁性膜および垂直磁気記録媒体のFe−Co系合金軟磁性膜形成用粉末焼結スパッタリングターゲット材 | |
JP2013033581A (ja) | 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法 | |
JP2016160530A (ja) | 磁気合金スパッタリングターゲット及び磁気記録媒体用記録層 | |
JP4405485B2 (ja) | 磁性体膜および磁性体膜の製造方法 | |
Klemmer et al. | Materials Processing for High Anisotropy ${\rm L1} _ {0} $ Granular Media | |
CN108060391B (zh) | 一种加快FePd薄膜相转变的方法 | |
JP2011181140A (ja) | 磁気記録媒体用Fe−Co系合金軟磁性膜 | |
Semenenko et al. | Thermal stability, structure and phase composition of Ni x (NbO) 100–x composites | |
WO2023038016A1 (ja) | 熱アシスト磁気記録媒体を製造するためのスパッタリングターゲット | |
JP2023148386A (ja) | 磁気記録媒体の軟磁性層用FeCo系合金 | |
JP2728715B2 (ja) | ガーネット系磁性体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16743463 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016572136 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16743463 Country of ref document: EP Kind code of ref document: A1 |