WO2016121642A1 - SiC被覆炭素複合材 - Google Patents

SiC被覆炭素複合材 Download PDF

Info

Publication number
WO2016121642A1
WO2016121642A1 PCT/JP2016/051835 JP2016051835W WO2016121642A1 WO 2016121642 A1 WO2016121642 A1 WO 2016121642A1 JP 2016051835 W JP2016051835 W JP 2016051835W WO 2016121642 A1 WO2016121642 A1 WO 2016121642A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
cvd
graphite
carbon composite
coated carbon
Prior art date
Application number
PCT/JP2016/051835
Other languages
English (en)
French (fr)
Inventor
靖隆 古賀
正俊 奥田
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to JP2016571993A priority Critical patent/JPWO2016121642A1/ja
Priority to US15/546,884 priority patent/US10294163B2/en
Priority to CN201680007750.9A priority patent/CN107207373A/zh
Publication of WO2016121642A1 publication Critical patent/WO2016121642A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to a SiC-coated carbon composite material including a graphite base material and a SiC coating covering the graphite base material, and a method for producing the same.
  • Structural materials used at high temperatures such as semiconductor manufacturing equipment members and heating furnace members are required to have heat resistance, chemical stability, strength, and the like.
  • Graphite is widely used as such a material. Although graphite is excellent in heat resistance, chemical stability, and strength, it is weak against reaction with oxygen and easily oxidizes and wears, is soft and easy to wear, has reactivity with hydrogen, ammonia, etc. at high temperatures, It is not a universal material.
  • a ceramic composite material in which a ceramic coating such as SiC is formed on the surface of graphite is widely used.
  • the graphite and the ceramic coating are different materials. Therefore, it is required to firmly bond the ceramic coating and the graphite base material to ensure thermal shock resistance.
  • Patent Document 1 discloses a graphite member in which a SiC substrate is coated with a SiC coating by a CVD method, and the graphite substrate has an average pore diameter of 0.4 to 3 ⁇ m and a maximum porosity. It has a porosity of 10 to 100 ⁇ m and has a SiC occupancy ratio of 15 to 50% in the surface of the graphite substrate having a depth of 150 ⁇ m from the surface of the graphite substrate. The average crystal grain size of the SiC coating is 1 to 3 ⁇ m A SiC-coated graphite member is described.
  • Such graphite with high porosity has a substantially low ratio of the solid part, and accordingly, the strength of the graphite base material itself is lowered. For this reason, the SiC-coated graphite member disclosed in Patent Document 1 provides excellent thermal shock resistance by firmly bonding the ceramic coating and the graphite substrate while sacrificing the strength of the graphite substrate.
  • CVD-SiC film penetrates deeply into the surface of the graphite substrate having a high porosity, there is a risk that deformation due to a difference in thermal expansion will also increase.
  • An object of the present invention is to provide a SiC-coated carbon composite material that uses a graphite base material having a strength that can withstand practical use, and in which the coating is difficult to peel off and hardly undergoes thermal deformation, and a method for producing the same.
  • the SiC-coated carbon composite material of the present invention is a SiC-coated carbon composite material including a graphite base material and a CVD-SiC coating covering the graphite base material, wherein the porosity of the core portion of the graphite base material is 12 And a SiC permeation layer extending from the CVD-SiC coating around the core, and the SiC permeation layer from the first surface on the CVD-SiC coating side. It is comprised by the some area
  • a graphite substrate having a core portion with a porosity of 12 to 20% is used.
  • the porosity of the core is 12% or more, the raw material gas easily penetrates into the pores during CVD, and an SiC-penetrated layer in which SiC penetrates into the pores can be easily formed. Further, when the porosity of the core is 20% or less, sufficient strength can be provided as structural graphite.
  • a SiC permeation layer extending from the CVD-SiC coating is provided around the core of the graphite base, and the SiC permeation layer is formed from the first surface on the CVD-SiC coating side to the second side on the graphite base side. It is comprised by the some area
  • the SiC permeation layer of the SiC-coated carbon composite material of the present invention is configured such that the Si content is reduced in a stepped manner, by adjusting the width of this region as appropriate, the thermal expansion difference can be further reduced.
  • the SiC permeation layer of the SiC-coated carbon composite can be formed stepwise so that the influence can be reduced.
  • the Si content of the SiC permeation layer is Si derived from SiC, and the relative amount can be confirmed by measuring the strength by EDX (energy dispersive X-ray analysis). That is, in order to confirm the ratio of SiC with respect to SiC that has permeated into the graphite substrate, the relative content can be compared by confirming the strength of Si contained only in SiC.
  • EDX energy dispersive X-ray analysis
  • the SiC-coated carbon composite material of the present invention is preferably in the following manner.
  • the SiC permeation layer is composed of a first region to an i-th region to an n-th region arranged in order from the first surface to the second surface, and the Si content in the i-region is , Greater than the Si content of the (i + 1) th region.
  • the SiC permeation layer of the SiC-coated carbon composite of the present invention is configured so that the Si content in the region on the first surface side on the CVD-SiC coating side is high. For this reason, the SiC permeation layer efficiently and gradually relaxes the stress due to the difference in thermal expansion generated between the core material of the graphite base material and the CVD-SiC coating. For this reason, the curvature resulting from a thermal expansion difference and peeling can be suppressed more.
  • a SiC-coated carbon composite material including a graphite base material having a porosity of 12 to 20% in a core part, and a CVD-SiC coating covering the graphite base material, and around the core part,
  • the SiC-penetrated layer extends from the CVD-SiC coating, and the SiC-penetrated layer is disposed on the CVD-SiC coating side, and is disposed on the graphite substrate side. It is comprised by 2nd area
  • a graphite substrate having a core portion with a porosity of 12 to 20% is used.
  • the porosity of the core is 12% or more, the source gas easily penetrates into the pores during CVD, and an SiC permeation layer in which SiC penetrates into the pores can be easily formed. Further, when the porosity of the core is 20% or less, sufficient strength can be provided as structural graphite.
  • a SiC permeation layer extending from the CVD-SiC coating is provided around the core of the graphite base, the SiC permeation layer including a first region disposed on the CVD-SiC coating side, and a graphite base
  • the second region is arranged on the side and has a smaller Si content than the first region.
  • the thermal expansion difference can be further increased by appropriately adjusting the width of the region.
  • the SiC permeation layer of the SiC-coated carbon composite can be formed so that the influence of the above can be reduced.
  • the SiC permeation layer has a thickness of 150 ⁇ m or more.
  • the thermal stress due to the difference in thermal expansion generated between the core of the graphite substrate and the CVD-SiC coating can be reduced, and the CVD-SiC coating is peeled off. Can be difficult.
  • the SiC permeation layer has a thickness of 300 ⁇ m or more.
  • the thermal stress due to the thermal expansion difference generated between the core of the graphite base and the CVD-SiC coating can be further reduced, and the CVD-SiC coating is further peeled off. Can be difficult.
  • the SiC permeation layer of the present invention is formed stepwise in regions where the Si content is different, the Si content in the region on the deep side of the SiC permeation layer can be adjusted to a low level. The thermal stress due to the difference in thermal expansion between the SiC permeation layer of the material and the deep portion can be further reduced.
  • the core has a porosity of 15 to 17%.
  • the porosity of the core of the graphite base is 15% or more, the source gas easily penetrates into the pores during CVD, and it is possible to more easily form a SiC permeation layer in which SiC penetrates into the pores.
  • the porosity of the core portion is 17% or less, sufficient strength can be provided as structural graphite.
  • the true density of the core is 2.15 to 2.23 g / cm 3 .
  • the true density of the core portion of the graphite base material is 2.15 g / cm 3 or more
  • close to the theoretical density 2.26 g / cm 3 of graphite crystals is a graphite advanced more crystallinity.
  • the graphite material can obtain a true density of 2.15 g / cm 3 or more by being heat-treated at 2000 ° C. or more in the production process. For this reason, even if the SiC-coated carbon composite material is placed under a high temperature, the crystallization (graphitization) of the graphite base material is less likely to proceed, and the SiC-coated carbon composite material that is difficult to deform and has high dimensional accuracy is provided.
  • the manufacturing method of the SiC-coated carbon composite material of the present invention preferably has the following mode. (7)
  • the graphite substrate having a porosity of 12 to 20% is used, the CVD process is divided into a plurality of stages, and the diffusion rate of the raw material gas is decreased with each passing of the step, or the raw material gas
  • the CVD-SiC coating and the SiC permeation layer are formed on the surface of the graphite base material while changing the decomposition rate of the graphite.
  • the SiC permeation layer can be formed deep inside the pores in the first stage by changing the diffusion rate of the raw material gas at each stage or changing the raw material gas so as to increase the decomposition rate. At the same time, SiC can be efficiently formed in the vicinity of the pore entrance at a later stage.
  • the manufacturing method of the SiC-coated carbon composite material of the present invention preferably has the following mode.
  • (8) Raise the reaction temperature through the step.
  • the decomposition rate of the raw material gas can be increased with each step.
  • the SiC permeation layer can be formed deep inside the pores in the first stage, and SiC can be efficiently formed in the vicinity of the pore inlets in the later stage.
  • a graphite substrate having a core portion with a porosity of 12 to 20% is used.
  • the porosity of the core is 12% or more, the raw material gas easily penetrates into the pores during CVD, and an SiC-penetrated layer in which SiC penetrates into the pores can be easily formed. Further, when the porosity of the core is 20% or less, sufficient strength can be provided as structural graphite.
  • the SiC permeation layer extending from the CVD-SiC coating around the core of the graphite substrate, and the SiC permeation layer has a stepwise Si content from the surface (surface on the CVD-SiC coating side). It is composed of a plurality of regions that become smaller. For this reason, the difference in thermal expansion generated between the core of the graphite substrate and the CVD-SiC coating can be mitigated by a plurality of regions that become smaller in steps. Furthermore, since the SiC permeation layer of the SiC-coated carbon composite material of the present invention is configured such that the Si content is reduced in a stepped manner, by adjusting the width of this region as appropriate, the thermal expansion difference can be further reduced. The SiC permeation layer of the SiC-coated carbon composite can be formed stepwise so that the influence can be reduced.
  • a graphite base material having a core portion porosity of 12 to 20% is used.
  • the porosity of the core is 12% or more, the source gas easily penetrates into the pores during CVD, and an SiC permeation layer in which SiC penetrates into the pores can be easily formed. Further, when the porosity of the core is 20% or less, sufficient strength can be provided as structural graphite.
  • a SiC permeation layer extending from the CVD-SiC coating is provided around the core of the graphite base, and the SiC permeation layer includes a first region and a first region in order from the surface (surface on the CVD-SiC coating side).
  • the second region has a smaller Si content than the region.
  • the SiC permeation layer of the SiC-coated carbon composite material of the present invention is configured to be divided into a first region and a second region having different Si contents, by adjusting the width of the region as appropriate, The SiC-penetrated layer of the SiC-coated carbon composite material can be formed so as to reduce the influence of the difference in thermal expansion.
  • FIG. 1 is an operation electron micrograph of a cross section of a sample of a SiC-coated carbon composite material of an example.
  • FIG. 2 is a graph obtained by analyzing the detected intensity of Si in the depth direction by EDX (energy dispersive X-ray analysis) of the sample of FIG.
  • FIG. 3 is an operation electron micrograph of a cross section of a sample of the SiC-coated carbon composite material of Comparative Example 1.
  • FIG. 4 is a graph obtained by analyzing the detected intensity of Si in the depth direction by EDX (energy dispersive X-ray analysis) of the sample of FIG.
  • FIG. 5 is an operation electron micrograph of a cross section of a sample of the SiC-coated carbon composite material of Comparative Example 5.
  • 6 is a graph obtained by analyzing the detected intensity of Si in the depth direction by EDX (energy dispersive X-ray analysis) of the sample of FIG.
  • the SiC-coated carbon composite material of the present invention is a SiC-coated carbon composite material including a graphite base material and a CVD-SiC coating covering the graphite base material.
  • the porosity of the core portion of the graphite base material is 12 to 20%, and a SiC permeation layer extending from the CVD-SiC coating is provided around the core portion of the graphite base material.
  • the SiC permeation layer is composed of a plurality of regions in which the Si content decreases stepwise from the surface.
  • the core part of the graphite base material is a part of the graphite base material excluding the SiC permeation layer.
  • the Si content decreases stepwise in order from the surface means that a plurality of regions are formed in the SiC permeation layer, and the first surface on the CVD-SiC coating side to the second surface on the graphite substrate side. It means that the content of Si in each region is gradually decreased toward the surface.
  • the SiC-coated carbon composite material of the present invention uses a graphite base material having a core part porosity of 12 to 20%.
  • the porosity of the core is 12% or more, the raw material gas easily penetrates into the pores during CVD, and an SiC-penetrated layer in which SiC penetrates into the pores can be easily formed. Further, when the porosity of the core is 20% or less, sufficient strength can be provided as structural graphite.
  • SiC permeation layer extending from the CVD-SiC coating around the core of the graphite substrate, and the SiC permeation layer has a stepwise Si content from the surface (surface on the CVD-SiC coating side). It is composed of a plurality of regions that become smaller. For this reason, the difference in thermal expansion that occurs between the core of the graphite substrate and the CVD-SiC coating can be mitigated by the plurality of regions.
  • the SiC permeation layer of the SiC-coated carbon composite material of the present invention is configured such that the Si content decreases stepwise, the width of this region (the width in the thickness direction of the SiC permeation layer) is reduced.
  • the SiC infiltration layer of the SiC-coated carbon composite material can be formed stepwise so that the influence of the difference in thermal expansion can be further reduced.
  • the Si content of the SiC permeation layer is Si derived from SiC, and the relative amount can be confirmed by measuring the strength by EDX (energy dispersive X-ray analysis). That is, in order to confirm the ratio of SiC with respect to SiC that has permeated into the graphite substrate, the relative content can be compared by confirming the strength of Si contained only in SiC.
  • EDX energy dispersive X-ray analysis
  • the strength of Si is calculated as follows.
  • A) Polishing The SiC-coated carbon composite material is cut and the cross section is polished by an ion polishing method.
  • Equipment: JEOL, SM-090110 Acceleration voltage: 6 kV Time: 13 hours
  • EDX energy dispersive X-ray analysis
  • Equipment: OXFORD INSTRUMENTS Energy 250 Acceleration voltage: 15.0kV
  • Line analysis Measurement of 9 traces / sample with 60 ⁇ m interval
  • Si intensity is read at 2.8 ⁇ m intervals for each trace, and the data of 12 points is obtained after totaling the Si intensity of the same part The moving average of is calculated. As a result, a graph in which the detected intensity of Si is analyzed in the depth direction is obtained.
  • the SiC permeation layer is composed of a first region to an i-th region to an n-th region arranged in order from the surface (surface on the CVD-SiC coating side), and the Si content in the i-th region is the same as the (i + 1) -th region. It is desirable that it is always greater than the Si content.
  • i and n are positive integers greater than 1, and 1 ⁇ i ⁇ n.
  • the SiC permeation layer of the SiC-coated carbon composite is configured so that the Si content in the surface side region (CVD-SiC coating side region) is always higher than the reverse side region (graphite substrate side region). Is done. For this reason, the SiC permeation layer efficiently and gradually relaxes the stress due to the difference in thermal expansion generated between the core material of the graphite base material and the CVD-SiC coating. For this reason, the curvature resulting from a thermal expansion difference and peeling can be suppressed more.
  • the SiC-coated carbon composite material of the present invention is a SiC-coated carbon composite material including a graphite base material having a core portion with a porosity of 12 to 20% and a CVD-SiC coating covering the graphite base material.
  • a SiC permeation layer extending from the CVD-SiC coating.
  • the SiC permeation layer is composed of a first region disposed on the CVD-SiC coating side and a second region disposed on the graphite substrate side and having a lower Si content than the first region.
  • the SiC-coated carbon composite material of the present invention uses a graphite base material having a core part porosity of 12 to 20%.
  • the porosity of the core is 12% or more, the source gas easily penetrates into the pores during CVD, and an SiC permeation layer in which SiC penetrates into the pores can be easily formed. Further, when the porosity of the core is 20% or less, sufficient strength can be provided as structural graphite.
  • the SiC permeation layer extending from the CVD-SiC coating around the core of the graphite substrate, and the SiC permeation layer includes a first region arranged in order from the surface (surface on the CVD-SiC coating side) and The second region has a smaller Si content than the first region. For this reason, the thermal expansion difference generated between the core of the graphite substrate and the CVD-SiC coating is mitigated stepwise by the first region and the second region having a lower Si content than the first region in order from the surface. can do. For this reason, the curvature resulting from a thermal expansion difference and peeling can be suppressed more.
  • the SiC permeation layer of the SiC-coated carbon composite material of the present invention is configured by being divided into a first region and a second region having different Si contents, the width of the region (the thickness direction of the SiC permeation layer)
  • the SiC permeation layer of the SiC-coated carbon composite material can be formed so that the influence of the difference in thermal expansion can be further reduced.
  • the thickness of the SiC permeation layer is preferably 150 ⁇ m or more.
  • the thermal stress due to the difference in thermal expansion generated between the core of the graphite substrate and the CVD-SiC coating can be reduced, and the CVD-SiC coating is peeled off. Can be difficult.
  • the thickness of the SiC permeation layer is desirably 300 ⁇ m or more.
  • the thermal stress due to the thermal expansion difference generated between the core of the graphite base and the CVD-SiC coating can be further reduced, and the CVD-SiC coating is further peeled off. Can be difficult.
  • a plurality of regions having different Si contents are formed side by side in an adjacent state.
  • the Si content in the region disposed on the deep side (graphite base material side) of the SiC permeation layer can be adjusted to be small, and the thermal stress due to the thermal expansion difference between the SiC permeation layer of the graphite base material and the deep part. Can be made smaller.
  • the SiC-coated carbon composite material has a SiC permeation layer thickness of 1000 ⁇ m or less.
  • SiC permeation layer thickness 1000 ⁇ m or less, even if the SiC permeation layer is formed and SiC permeates into the graphite base material, a sufficiently thick core can be left, and warpage and deformation can be made difficult to occur. .
  • the SiC-coated carbon composite desirably has a porosity of 15 to 17% at the core of the graphite substrate.
  • the porosity of the core of the graphite base is 15% or more, the source gas easily penetrates into the pores during CVD, and it is possible to more easily form a SiC permeation layer in which SiC penetrates into the pores.
  • the porosity of the core portion is 17% or less, sufficient strength can be provided as structural graphite.
  • the SiC-coated carbon composite material preferably has a true density of the core of the graphite base material of 2.15 to 2.23 g / cm 3 .
  • the SiC-coated carbon composite material of the present invention is close to the theoretical density of graphite crystals of 2.26 g / cm 3 , and is more crystallized.
  • Advanced graphite The graphite material can obtain a true density of 2.15 g / cm 3 or more by being heat-treated at 2000 ° C. or more in the production process.
  • the crystallization (graphitization) of the graphite base material is less likely to proceed, and the SiC-coated carbon composite material that is difficult to deform and has high dimensional accuracy is provided. Can do. Further, when the true density of the core of the graphite substrate is 2.23 g / cm 3 or less, the crystallization of graphite does not proceed excessively and the graphite crystals are disturbed.
  • the porosity can be obtained by calculating the product of the amount of pores [cm 3 / g] per unit weight of the graphite substrate and the bulk density [g / cm 3 ]. For this reason, the porosity is a volume-based porosity expressed in units of [Vol / Vol].
  • Bulk density is obtained by simply dividing the mass of the sample by the volume of the sample.
  • the amount of pores per unit weight can be measured using a mercury porosimeter.
  • the specific measuring device and method are as follows.
  • Sample preparation A ⁇ 8 ⁇ 10 mm sample is ultrasonically washed with methanol for 5 minutes and dried. By this operation, the powder adhering to the surface is removed.
  • Device Pascal 240 from Thermo Electron SpA Pressure range: atmospheric pressure to 200MPa Mercury contact angle set value: 141.3 ° Can be measured.
  • the true density can be measured in accordance with the butanol method described in JIS R7212-1995 (Test method for carbon block).
  • the method for producing a SiC-coated carbon composite material of the present invention uses a graphite base material having a porosity of 12 to 20%, divides the CVD process into a plurality of stages, and slows the diffusion rate of the source gas with each stage. In such a manner, the CVD-SiC coating and the SiC permeation layer are formed on the surface of the graphite substrate by changing the decomposition rate of the raw material gas to be high.
  • an SiC permeation layer can be formed deep inside the pores at the first stage, and at the later stage SiC can be efficiently formed in the vicinity of the entrance of the.
  • the manufacturing method of the SiC-coated carbon composite material of the present invention preferably has the following mode.
  • the reaction temperature is raised through the steps.
  • the decomposition rate of the raw material gas can be increased with each step.
  • the SiC permeation layer can be formed deep inside the pores in the first stage, and SiC can be efficiently formed in the vicinity of the pore inlets in the later stage.
  • the SiC permeation layer can be formed deep inside the pores in the first stage, and SiC can be efficiently formed in the vicinity of the pore inlets in the later stage.
  • the concentration of the raw material gas is raised through the steps.
  • the concentration of the raw material gas is raised through the steps.
  • the reaction rate of the raw material gas can be increased with each step. For this reason, the SiC permeation layer can be formed deep inside the pores in the first stage, and SiC can be efficiently formed in the vicinity of the pore inlets in the later stage.
  • the SiC-coated carbon composite material of the present invention can be obtained by a CVD process for forming a CVD-SiC coating on a graphite base material obtained by processing a graphite material into a target shape.
  • the used graphite material remains as it is in the core portion excluding the SiC permeation layer into which the SiC source gas permeates. Further, the portion of the SiC permeation layer other than the permeated SiC is composed of the original graphite material. That is, in the graphite base material, SiC permeates into the surface layer portion of the graphite material processed through the CVD process to form a SiC permeation layer.
  • the graphite material is processed according to the target shape to obtain a graphite substrate.
  • the CVD-SiC coating is applied to a thickness of about 10 to 200 ⁇ m, for example. Therefore, the target shape can be obtained by processing the CVD-SiC coating to be smaller than the target dimension.
  • the porosity of the graphite substrate used is preferably 12 to 20%. Even if a graphite base material passes through a CVD process, characteristics, such as a porosity of a core part, do not change. Therefore, the desirable porosity range does not change before and after the CVD process.
  • the porosity of the graphite base material is 12% or more, the source gas easily penetrates into the pores during CVD, and an SiC-penetrated layer in which SiC penetrates into the pores can be easily formed.
  • the porosity of the graphite base material is 20% or less, sufficient strength can be provided as structural graphite.
  • the porosity of the graphite substrate used is 15 to 17%.
  • the porosity of the graphite substrate is 15% or more, the source gas easily penetrates into the pores during CVD, and a SiC-penetrated layer in which SiC penetrates into the pores can be formed more easily.
  • the porosity of the graphite base material is 17% or less, sufficient strength can be provided as structural graphite.
  • the true density of the graphite substrate used is preferably 2.15 to 2.23 g / cm 3 at least in the core. Even if a graphite base material passes through a CVD process, characteristics, such as a true density of graphite itself, do not change.
  • the true density of at least the core of the graphite base material is 2.15 g / cm 3 or more, the graphite is closer to the theoretical density of 2.26 g / cm 3 of the crystal of graphite and is more crystallized.
  • the graphite material can obtain a true density of 2.15 g / cm 3 or more by being heat-treated at 2000 ° C. or more in the production process.
  • the crystallization (graphitization) of the graphite base material is less likely to proceed, and the SiC-coated carbon composite material that is difficult to deform and has high dimensional accuracy is provided. Can do. Further, when the true density of at least the core of the graphite base material is 2.23 g / cm 3 or less, the crystallization of graphite does not proceed excessively, and the graphite crystals are disturbed.
  • the SiC-coated carbon composite of the present invention has a SiC-penetrated layer extending from the CVD-SiC coating, and the SiC-penetrated layer has a Si content that decreases stepwise in order from the surface (surface on the CVD-SiC-coated side). It is composed of a plurality of areas.
  • the SiC permeation layer having such a configuration can be formed, for example, as follows.
  • the formation of the SiC permeation layer of the SiC-coated carbon composite of the present invention utilizes the following principle.
  • the CVD-SiC coating is formed by the CVD method, since the raw material is a gas, SiC is also deposited inside the pores of the graphite substrate.
  • the depth at which the source gas reaches inside the pores is determined by the balance between the decomposition rate of the source gas by CVD and the diffusion rate of the source gas.
  • the source gas When the decomposition rate is higher than the diffusion rate of the source gas, the source gas does not reach deep inside the pores, and SiC is formed near the inlet of the pores at a high rate. Conversely, when the diffusion rate is higher than the decomposition rate of the source gas, SiC is difficult to form near the entrance of the pores, so that the source gas reaches deep inside the pores, while the formation rate of SiC inside the pores is reduced. For this reason, when the diffusion rate is higher than the decomposition rate of the raw material gas, sufficient SiC can be permeated into the pores by forming a film over time.
  • the Si content is stepped in order from the surface (surface on the CVD-SiC coating side). It is possible to form a SiC permeation layer constituted by a plurality of regions that are extremely small.
  • the diffusion rate of the source gas depends on the pressure in the furnace, the reaction temperature, and the like
  • the decomposition rate of the source gas depends on the reaction temperature, the concentration of the source gas, the source gas partial pressure, and the like.
  • the decomposition temperature has an overwhelmingly higher influence on the decomposition speed than the influence on the diffusion speed of the raw material gas, and can be suitably used as a means for adjusting the decomposition speed and the diffusion speed of the raw material gas.
  • the reaction temperature increases, the decomposition rate is more easily affected than the diffusion rate, and the decomposition rate rapidly increases, and SiC is likely to be formed in the vicinity of the pore entrance.
  • SiC is easily formed up to the inside of the pores, but the rate at which SiC is formed is reduced.
  • the concentration of the source gas has a higher influence on the decomposition rate than on the diffusion rate of the source gas, and can be suitably used as a means for adjusting the decomposition rate and diffusion rate of the source gas.
  • concentration of the source gas increases, the probability of collision increases, so the decomposition rate increases, and SiC is likely to be formed near the entrance of the pores.
  • concentration of the raw material gas is reduced, the probability of collision is reduced, so that the decomposition rate is reduced, and SiC is easily formed to the inside of the pores.
  • the pressure in the furnace has a higher influence on the diffusion rate than the influence on the decomposition rate of the source gas, and can be suitably used as a means for adjusting the decomposition rate and diffusion rate of the source gas.
  • the mean free path becomes smaller, so the decomposition rate becomes faster than the diffusion rate, and SiC is easily formed in the vicinity of the pore inlet.
  • the pressure in the furnace decreases, the mean free path increases, so the diffusion rate becomes faster than the decomposition rate, and SiC is easily formed to the inside of the pores.
  • the SiC-coated carbon composite material of the present invention can be obtained by dividing the CVD process into a plurality of stages and changing the raw material gas diffusion rate so as to slow down or increase the decomposition rate at each step.
  • a manufacturing method for increasing the concentration of the source gas can be selected for each.
  • a plurality of steps may be configured by combining a plurality of means.
  • the decomposition rate of the source gas and the magnitude of the diffusion rate are not the same dimension, and thus are determined not by direct comparison but by relative comparison.
  • the raw material gas in the CVD process of the method for producing the SiC-coated carbon composite of the present invention is not particularly limited.
  • a carbon source and a silicon source can be combined and used as a source gas.
  • the carbon source for example, methane, ethane, propane and the like can be used.
  • the silicon source for example, silane, halogenated silane, or the like can be used.
  • it can be used as a raw material gas simultaneously with a carbon source and a silicon source.
  • source gases that simultaneously use a carbon source and a silicon source include methylsilane, methylchlorosilane, methyldichlorosilane, methyltrichlorosilane (MTS), methylbromosilane, methyl, and the like. Dibromosilane, methyltribromosilane, and the like can be used.
  • a graphite substrate of 15 ⁇ 15 ⁇ 5 mm is prepared using EX-60 manufactured by Ibiden Co., Ltd. The processing steps are common to the examples and comparative examples.
  • the porosity of the graphite substrate is 16%, and the true density is 2.20 g / cm 3 .
  • a graphite base material of 15 ⁇ 15 ⁇ 5 mm is similarly prepared using an artificial graphite electrode.
  • the porosity of the graphite substrate is 23%, and the true density is 2.25 g / cm 3 .
  • the source gas can be used as a source gas by combining, for example, a carbon source and a silicon source.
  • a carbon source for example, methane, ethane, propane and the like can be used.
  • the silicon source for example, silane, halogenated silane, or the like can be used.
  • it can be used as a raw material gas simultaneously with a carbon source and a silicon source.
  • Examples of source gases that simultaneously use a carbon source and a silicon source include methylsilane, methylchlorosilane, methyldichlorosilane, methyltrichlorosilane (MTS), methylbromosilane, methyl, and the like. Dibromosilane, methyltribromosilane, and the like can be used. Since both the examples and comparative examples have sufficient thickness, the core portion of the graphite base material remains, and the core portion has the same porosity and true density as the original graphite base material.
  • the relative amount was confirmed by measuring the detected intensity of Si by EDX (energy dispersive X-ray analysis) (FIGS. 2, 4, and 6).
  • the vertical axis of the graph represents the detected intensity of Si, and the horizontal axis represents the scale in the depth direction.
  • the peel strength was measured by adhering a ⁇ 3 mm pin to the CVD-SiC coating of the SiC-coated carbon composite and pulling.
  • the deformation of the SiC-coated carbon composite is confirmed by the flatness of a 15 ⁇ 15 sample using a non-contact type three-dimensional measuring device (QVI: Quality Vision International, model name: SmartScope ZIP 300) and used as the SiC-coated carbon composite. Judgment was made on whether it was a harmful deformation. ⁇ indicates “available”, ⁇ indicates “influenced”, and x indicates “not usable”.
  • Example 1 the CVD process was divided into two stages. The CVD process was performed so that the concentration of the source gas (MTS) was 1.6% in the first stage and 6.4% in the second stage. The reaction temperature was 1200 ° C.
  • MTS source gas
  • the concentration of the source gas is higher in the second stage than in the first stage, and the decomposition rate of the source gas is faster. For this reason, in the first stage, the SiC permeation layer is formed up to a region far from the surface (second region). Next, in the second stage, the SiC permeation layer is formed up to a region closer to the surface (first region). In this way, it is possible to form a SiC permeation layer composed of a plurality of regions in which the Si content decreases stepwise in order from the surface. In other words, it is possible to form a SiC permeation layer including a first region and a second region having a lower Si content than the first region in order from the surface.
  • the thickness of the SiC infiltration layer is formed up to 313 ⁇ m.
  • Comparative Example 1 the CVD process was performed in one stage.
  • the concentration of the source gas (MTS) is 6.4%, which is the same as that in the second stage of the first embodiment.
  • the reaction temperature was 1300 ° C.
  • the CVD process was performed in one stage.
  • the concentration of the source gas (MTS) is 6.4%, which is the same as that in the second stage of the first embodiment.
  • the reaction temperature was 1350 ° C.
  • the graphite base material used in the examples has a porosity of 16% and is sufficiently small. Therefore, a CVD-SiC coating is formed to form a SiC permeation layer composed of two regions having different Si contents.
  • a CVD-SiC coating is formed to form a SiC permeation layer composed of two regions having different Si contents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 黒鉛基材と、黒鉛基材を覆うCVD-SiC被覆と、を含むSiC被覆炭素複合材である。黒鉛基材の芯部の気孔率は12~20%であるとともに、黒鉛基材の芯部の周囲には、CVD-SiC被覆から延びるSiC浸透層を有する。SiC浸透層は、CVD-SiC被覆側の第1の面から黒鉛基材側の第2の面に向かって順に、Siの含有量がステップ状に小さくなるように配置された複数の領域によって構成されている。

Description

SiC被覆炭素複合材
 本発明は、黒鉛基材と当該黒鉛基材を覆うSiC被覆とを含むSiC被覆炭素複合材およびその製造方法に関する。
 半導体製造装置用部材、加熱炉用部材など、高温で使用される構造材料は、耐熱性、化学的安定性、強度などが要求される。このような材料として黒鉛が広く用いられている。黒鉛は、耐熱性、化学的安定性、強度には優れているものの、酸素との反応に弱く酸化消耗しやすいこと、軟らかく磨耗しやすいこと、高温で水素、アンモニアなどと反応性を有すること、など万能の素材ではない。
 このような黒鉛の弱点を補うため、黒鉛の表面にSiCなどのセラミック被覆を形成したセラミック複合材が広く用いられている。このようなセラミック複合材においては、黒鉛とセラミック被覆とは異質材料であるため、セラミック被覆と黒鉛基材とを強固に接着し、耐熱衝撃性を確保することが求められる。
 このような課題を解決するため、特許文献1には、黒鉛基材面にCVD法によりSiC被覆を被着した黒鉛部材であって、黒鉛基材が平均気孔径0.4~3μm、最大気孔径10~100μmの気孔性状を備え、黒鉛基材面から深さ150μmの黒鉛基材表層部におけるSiCの占有率が15~50%であって、SiC被覆の平均結晶粒径が1~3μmであるSiC被覆黒鉛部材が記載されている。
日本国特開2002-3285号公報
 しかしながら、特許文献1のSiC被覆黒鉛部材では、黒鉛基材面から深さ150μmの黒鉛基材表層部におけるSiCの占有率が15~50%であるので、アンカー効果は十分に得られることが予測される。しかしながら、黒鉛基材である黒鉛の占有率がその残部である85~50%以下となるため、熱膨張差によって反りが発生しやすくなる。このため、表面にセラミック被覆を有するセラミック複合材が薄肉になるほど寸法精度が悪くなるおそれがある。
 また、黒鉛基材面から150μmにおけるSiCの占有率が、15~50%であるとすると、この深さにおける黒鉛の気孔率が、15~50%でなければCVD法によりSiCを析出させることができない。この深さにSiCの原料ガスを到達させるためには、黒鉛基材自体はさらに高い気孔率でないと、特許文献1のSiC被覆黒鉛部材を実現することができない。
 このような気孔率の高い黒鉛は、実質的に固体部分の比率が低く、それに伴って黒鉛基材自体の強度が低くなってしまう。このため、特許文献1のSiC被覆黒鉛部材は、黒鉛基材の強度を犠牲にしつつ、セラミック被覆と黒鉛基材とを強固に接着し、優れた耐熱衝撃性を得るものである。
 また、気孔率が高い黒鉛基材の表面に深くCVD-SiC膜が浸透しているので、熱膨張差による変形も大きくなってしまうおそれがある。
 本発明は、実用に耐えうる強度の黒鉛基材を用いるとともに、被覆が剥離しにくく、熱変形の起こりにくいSiC被覆炭素複合材およびその製造方法を提供することを目的とする。
 本発明のSiC被覆炭素複合材は、黒鉛基材と、前記黒鉛基材を覆うCVD-SiC被覆と、を含むSiC被覆炭素複合材であって、前記黒鉛基材の芯部の気孔率が12~20%であるとともに、前記芯部の周囲には、前記CVD-SiC被覆から延びるSiC浸透層を有し、前記SiC浸透層は、前記CVD-SiC被覆側の第1の面から前記黒鉛基材側の第2の面に向かって順に、Siの含有量がステップ状に小さくなるように配置された複数の領域によって構成されている。
 本発明のSiC被覆炭素複合材によれば、芯部の気孔率が12~20%の黒鉛基材を用いている。芯部の気孔率が12%以上であると、CVDの際に原料ガスが気孔内部に浸透しやすく、気孔内部にSiCが浸透したSiC浸透層を容易に形成することができる。また、芯部の気孔率が20%以下であると、構造用の黒鉛として十分な強度を備えることができる。
 また、黒鉛基材の芯部の周囲には、CVD-SiC被覆から延びるSiC浸透層を有し、SiC浸透層は、CVD-SiC被覆側の第1の面から黒鉛基材側の第2の面に向かって順に、Siの含有量がステップ状に小さくなるように配置された複数の領域によって構成されている。このため、黒鉛基材の芯部とCVD-SiC被覆との間に発生する熱膨張差をステップ状に小さくなる複数の領域によって緩和することができる。
 さらに、本発明のSiC被覆炭素複合材のSiC浸透層は、Siの含有量がステップ状に小さくなるように構成されているので、この領域の幅を適宜調整することによって、より熱膨張差の影響を小さくできるようにSiC被覆炭素複合材のSiC浸透層を段階的に形成することができる。
 なお、SiC浸透層のSiの含有量とは、SiCに由来するSiであり、EDX(エネルギー分散型X線分析)によって、強度を測定することにより、相対的な量を確認することができる。すなわち、黒鉛基材に浸透したSiCに関してSiCの比率を確認するためには、SiCのみに含まれるSiの強度を確認すれば相対的な含有量の比較をすることができる。
 本発明のSiC被覆炭素複合材は次の態様であることが好ましい。
(1)前記SiC浸透層は、前記第1の面から前記第2の面に向かって順に配置された第1領域~第i領域~第n領域によって構成され、第i領域のSi含有量は、第(i+1)領域のSi含有量より大きい。
 すなわち本発明のSiC被覆炭素複合材のSiC浸透層は、CVD-SiC被覆側の第1の面側の領域のSi含有量が高くなるように構成される。このため、SiC浸透層が、黒鉛基材の芯材とCVD-SiC被覆との間に発生する熱膨張差による応力を効率よく徐々に緩和する。このため、熱膨張差に起因する反り、剥離をより抑えることができる。
(2)芯部の気孔率が12~20%の黒鉛基材と、前記黒鉛基材を覆うCVD-SiC被覆と、を含むSiC被覆炭素複合材であって、前記芯部の周囲には、前記CVD-SiC被覆から延びるSiC浸透層を有し、前記SiC浸透層は、前記CVD-SiC被覆側に配置された第1領域と、前記黒鉛基材側に配置され、前記第1領域よりSiの含有量が小さい第2領域によって構成されている。
 本発明のSiC被覆炭素複合材によれば、芯部の気孔率が12~20%の黒鉛基材を用いている。芯部の気孔率が12%以上であるあると、CVDの際に原料ガスが気孔内部に浸透しやすく、気孔内部にSiCが浸透したSiC浸透層を容易に形成することができる。また、芯部の気孔率が20%以下であると、構造用の黒鉛として十分な強度を備えることができる。
 また、黒鉛基材の芯部の周囲には、前記CVD-SiC被覆から延びるSiC浸透層を有し、前記SiC浸透層は、CVD-SiC被覆側に配置された第1領域と、黒鉛基材側に配置され、第1領域よりSiの含有量が小さい第2領域によって構成されている。このため、黒鉛基材の芯部とCVD-SiC被覆との間に発生する熱膨張差を表面から順に第1領域と、第1領域よりSiの含有量が小さい第2領域によって段階的に緩和することができる。このため、熱膨張差に起因する反り、剥離をより抑えることができる。
 さらに、SiC被覆炭素複合材のSiC浸透層は、Siの含有量が異なる第1領域と第2領域とに分けて構成されているので、領域の幅を適宜調整することによって、より熱膨張差の影響を小さくできるようにSiC被覆炭素複合材のSiC浸透層を形成することができる。
(3)前記SiC浸透層は、厚さが150μm以上である。
 SiC浸透層の厚さが150μm以上であると、黒鉛基材の芯部と、CVD-SiC被覆との間に発生する熱膨張差による熱応力を小さくすることができ、CVD-SiC被覆を剥離しにくくすることができる。
(4)前記SiC浸透層は、厚さが300μm以上である。
 SiC浸透層が300μm以上であると、黒鉛基材の芯部と、CVD-SiC被覆との間に発生する熱膨張差による熱応力をより小さくすることができ、CVD-SiC被覆をより剥離しにくくすることができる。また、本発明のSiC浸透層は、Siの含有量が異なる領域が段階的に形成されているので、SiC浸透層の深い側の領域のSiの含有量を少なく調節することができ、黒鉛基材のSiC浸透層と、深部との熱膨張差による熱応力をより小さくすることができる。
(5)前記芯部の気孔率は、15~17%である。
 黒鉛基材の芯部の気孔率が15%以上であると、CVDの際に原料ガスが気孔内部に浸透しやすく、気孔内部にSiCが浸透したSiC浸透層をより形成しやすくすることができる。また、芯部の気孔率が17%以下であると、構造用の黒鉛としてより十分な強度を備えることができる。
(6)前記芯部の真密度が2.15~2.23g/cmである。
 黒鉛基材の芯部の真密度が2.15g/cm以上であると、黒鉛の結晶の理論密度2.26g/cmに近く、より結晶化の進んだ黒鉛である。黒鉛材料は、製造過程で2000℃以上で熱処理されることにより2.15g/cm以上の真密度を得ることができる。このため、SiC被覆炭素複合材が高温下に置かれても、黒鉛基材の結晶化(黒鉛化)がそれ以上進行しにくく、変形しにくく寸法精度の高いSiC被覆炭素複合材を提供することができる。また黒鉛基材の芯部の真密度が2.23g/cm以下であると、黒鉛の結晶化が過度に進行しておらず、黒鉛結晶に乱れを有している。このためa軸及びb軸方向の結晶の広がりが小さく、ファンデルワールス力により結合しているc軸方向の剥離を防止でき、黒鉛基材からCVD-SiC被覆を剥離しにくくすることができる。
 本発明のSiC被覆炭素複合材の製造方法は、次の態様が望ましい。
(7)気孔率が12~20%である前記黒鉛基材を用い、CVD工程を複数の段階に分けるとともに、前記段階を経るごとに原料ガスの拡散速度を遅くするように、または前記原料ガスの分解速度が速くなるように変えて前記黒鉛基材の表面にCVD-SiC被覆及び前記SiC浸透層を形成する。
 段階を経るごとに原料ガスの拡散速度を遅くするように、または原料ガスの分解速度が速くなるように変えて行うことにより、最初の段階で気孔内部深くにSiC浸透層を形成することができるとともに、後の段階で気孔の入口近傍にSiCを効率よく形成することができる。
 さらに本発明のSiC被覆炭素複合材の製造方法は、次の態様が望ましい。
(8)段階を経ることに反応温度を上げる。
 段階を経るごとに反応温度を上げることにより、原料ガスの分解速度を、段階を経るごとに速くすることができる。このため最初の段階で気孔内部深くにSiC浸透層を形成することができるとともに、後の段階で気孔の入口近傍にSiCを効率よく形成することができる。
(9)段階を経ることに炉内圧力を上げる。
 段階を経るごとに炉内圧力を上げることにより、原料ガスの拡散速度を、段階を経るごとに遅くすることができる。このため最初の段階で気孔内部深くにSiC浸透層を形成することができるとともに、後の段階で気孔の入口近傍にSiCを効率よく形成することができる。
(10)段階を経ることに原料ガスの濃度を上げる。
 段階を経ることに原料ガスの濃度を上げる。原料ガスの反応速度を、段階を経るごとに速くすることができる。このため最初の段階で気孔内部深くにSiC浸透層を形成することができるとともに、後の段階で気孔の入口近傍にSiCを効率よく形成することができる。
 本発明のSiC被覆炭素複合材によれば、芯部の気孔率が12~20%の黒鉛基材を用いている。芯部の気孔率が12%以上であると、CVDの際に原料ガスが気孔内部に浸透しやすく、気孔内部にSiCが浸透したSiC浸透層を容易に形成することができる。また、芯部の気孔率が20%以下であると、構造用の黒鉛として十分な強度を備えることができる。
 また、黒鉛基材の芯部の周囲には、CVD-SiC被覆から延びるSiC浸透層を有し、SiC浸透層は、表面(CVD-SiC被覆側の面)から順にSiの含有量がステップ状に小さくなる複数の領域によって構成されている。このため、黒鉛基材の芯部とCVD-SiC被覆との間に発生する熱膨張差をステップ状に小さくなる複数の領域によって緩和することができる。さらに、本発明のSiC被覆炭素複合材のSiC浸透層は、Siの含有量がステップ状に小さくなるように構成されているので、この領域の幅を適宜調整することによって、より熱膨張差の影響を小さくできるようにSiC被覆炭素複合材のSiC浸透層を段階的に形成することができる。
 また、本発明のSiC被覆炭素複合材によれば、芯部の気孔率が12~20%の黒鉛基材を用いている。芯部の気孔率が12%以上であるあると、CVDの際に原料ガスが気孔内部に浸透しやすく、気孔内部にSiCが浸透したSiC浸透層を容易に形成することができる。また、芯部の気孔率が20%以下であると、構造用の黒鉛として十分な強度を備えることができる。
 また、黒鉛基材の芯部の周囲には、CVD-SiC被覆から延びるSiC浸透層を有し、SiC浸透層は、表面(CVD-SiC被覆側の面)から順に第1領域と、第1領域よりSiの含有量が小さい第2領域によって構成されている。このため、黒鉛基材の芯部とCVD-SiC被覆との間に発生する熱膨張差を表面から順に第1領域と、第1領域よりSiの含有量が小さい第2領域によって段階的に緩和することができる。このため、熱膨張差に起因する反り、剥離をより抑えることができる。
 さらに、本発明のSiC被覆炭素複合材のSiC浸透層は、Siの含有量が異なる第1領域と第2領域とに分けて構成されているので、領域の幅を適宜調整することによって、より熱膨張差の影響を小さくできるようにSiC被覆炭素複合材のSiC浸透層を形成することができる。
図1は、実施例のSiC被覆炭素複合材の試料を切断した断面の操作型電子顕微鏡写真。 図2は、図1の試料をEDX(エネルギー分散型X線分析)により深さ方向にSiの検出強度を解析したグラフ。 図3は、比較例1のSiC被覆炭素複合材の試料を切断した断面の操作型電子顕微鏡写真。 図4は、図3の試料をEDX(エネルギー分散型X線分析)により深さ方向にSiの検出強度を解析したグラフ。 図5は、比較例5のSiC被覆炭素複合材の試料を切断した断面の操作型電子顕微鏡写真。 図6は、図5の試料をEDX(エネルギー分散型X線分析)により深さ方向にSiの検出強度を解析したグラフ。
 本発明のSiC被覆炭素複合材は、黒鉛基材と、黒鉛基材を覆うCVD-SiC被覆と、を含むSiC被覆炭素複合材である。黒鉛基材の芯部の気孔率が12~20%であるとともに、黒鉛基材の芯部の周囲には、CVD-SiC被覆から延びるSiC浸透層を有する。SiC浸透層は、表面から順にSiの含有量がステップ状に小さくなる複数の領域によって構成されている。
 黒鉛基材の芯部とは、黒鉛基材のうちSiC浸透層を除く部分である。
 「表面から順にSiの含有量がステップ状に小さくなる」とは、複数の領域がSiC浸透層内に形成され、CVD-SiC被覆側の第1の面から黒鉛基材側の第2の面に向かって順に、各領域のSiの含有量が徐々に小さくなっていることを意味する。
 本発明のSiC被覆炭素複合材は、芯部の気孔率が12~20%の黒鉛基材を用いている。芯部の気孔率が12%以上であると、CVDの際に原料ガスが気孔内部に浸透しやすく、気孔内部にSiCが浸透したSiC浸透層を容易に形成することができる。また、芯部の気孔率が20%以下であると、構造用の黒鉛として十分な強度を備えることができる。
 また、黒鉛基材の芯部の周囲には、CVD-SiC被覆から延びるSiC浸透層を有し、SiC浸透層は、表面(CVD-SiC被覆側の面)から順にSiの含有量がステップ状に小さくなる複数の領域によって構成されている。このため、黒鉛基材の芯部とCVD-SiC被覆との間に発生する熱膨張差を複数の領域によって緩和することができる。
 さらに、本発明のSiC被覆炭素複合材のSiC浸透層は、Siの含有量がステップ状に小さくなるように構成されているので、この領域の幅(SiC浸透層の厚さ方向の幅)を適宜調整することによって、より熱膨張差の影響を小さくできるようにSiC被覆炭素複合材のSiC浸透層を段階的に形成することができる。
 なお、SiC浸透層のSiの含有量とは、SiCに由来するSiであり、EDX(エネルギー分散型X線分析)によって、強度を測定することにより、相対的な量を確認することができる。すなわち、黒鉛基材に浸透したSiCに関してSiCの比率を確認するためには、SiCのみに含まれるSiの強度を確認すれば相対的な含有量の比較をすることができる。
 本発明においてSiの強度は、次のように算出する。
 (a)研磨
 SiC被覆炭素複合材を切断し、断面をイオンポリッシング法によって研磨する。
 装置    :JEOL, SM-090110 
 加速電圧  :6kV 
 時間    :13時間
 (b)EDX(エネルギー分散型X線分析)
 装置:OXFORD INSTRUMENTS, Energy 250
 加速電圧:15.0kV
 線分析:60μmの間隔をあけて9トレース/試料の測定を実施
 解析:1トレースごとに2.8μmの間隔をあけSiの強度を読み取り、同一部位のSi強度を合計したのち、12点のデータの移動平均を算出する。これによって深さ方向にSiの検出強度を解析したグラフを得る。
 SiC浸透層は、表面(CVD-SiC被覆側の面)から順に配置された第1領域~第i領域~第n領域によって構成され、第i領域のSi含有量は、第(i+1)領域のSi含有量より常に大きいことが望ましい。ここで、iおよびnは1より大きい正の整数であり、1<i<nである。
 すなわちSiC被覆炭素複合材のSiC浸透層は、常に表面側の領域(CVD-SiC被覆側の領域)のSi含有量が、逆側の領域(黒鉛基材側の領域)より高くなるように構成される。このため、SiC浸透層が、黒鉛基材の芯材とCVD-SiC被覆との間に発生する熱膨張差による応力を効率よく徐々に緩和する。このため、熱膨張差に起因する反り、剥離をより抑えることができる。
 また、本発明のSiC被覆炭素複合材は、芯部の気孔率が12~20%の黒鉛基材と、黒鉛基材を覆うCVD-SiC被覆と、を含むSiC被覆炭素複合材である。黒鉛基材の芯部の周囲には、CVD-SiC被覆から延びるSiC浸透層を有する。SiC浸透層は、CVD-SiC被覆側に配置された第1領域と、黒鉛基材側に配置され、第1領域よりSiの含有量が小さい第2領域によって構成されている。
 本発明のSiC被覆炭素複合材は、芯部の気孔率が12~20%の黒鉛基材を用いている。芯部の気孔率が12%以上であるあると、CVDの際に原料ガスが気孔内部に浸透しやすく、気孔内部にSiCが浸透したSiC浸透層を容易に形成することができる。また、芯部の気孔率が20%以下であると、構造用の黒鉛として十分な強度を備えることができる。
 また、黒鉛基材の芯部の周囲には、CVD-SiC被覆から延びるSiC浸透層を有し、SiC浸透層は、表面(CVD-SiC被覆側の面)から順に配置された第1領域と、第1領域よりSiの含有量が小さい第2領域によって構成されている。このため、黒鉛基材の芯部とCVD-SiC被覆との間に発生する熱膨張差を表面から順に第1領域と、第1領域よりSiの含有量が小さい第2領域によって段階的に緩和することができる。このため、熱膨張差に起因する反り、剥離をより抑えることができる。
 さらに、本発明のSiC被覆炭素複合材のSiC浸透層は、Siの含有量が異なる第1領域と第2領域とに分けて構成されているので、領域の幅(SiC浸透層の厚さ方向の幅)を適宜調整することによって、より熱膨張差の影響を小さくできるようにSiC被覆炭素複合材のSiC浸透層を形成することができる。
 SiC被覆炭素複合材は、SiC浸透層の厚さが150μm以上であることが望ましい。
 SiC浸透層の厚さが150μm以上であると、黒鉛基材の芯部と、CVD-SiC被覆との間に発生する熱膨張差による熱応力を小さくすることができ、CVD-SiC被覆を剥離しにくくすることができる。
 SiC被覆炭素複合材は、SiC浸透層の厚さが300μm以上であることが望ましい。
 SiC浸透層が300μm以上であると、黒鉛基材の芯部と、CVD-SiC被覆との間に発生する熱膨張差による熱応力をより小さくすることができ、CVD-SiC被覆をより剥離しにくくすることができる。また、本発明のSiC浸透層では、Siの含有量が異なる複数の領域が隣接した状態で並んで形成されている。よって、SiC浸透層の深い側(黒鉛基材側)に配置された領域のSiの含有量を少なく調節することができ、黒鉛基材のSiC浸透層と、深部との熱膨張差による熱応力をより小さくすることができる。
 また、SiC被覆炭素複合材は、SiC浸透層の厚さが1000μm以下であることが望ましい。SiC浸透層が1000μm以下であると、SiC浸透層が形成され黒鉛基材にSiCが浸透してきても、十分な厚さの芯部を残すことができ、反り、変形を起こりにくくすることができる。
 SiC被覆炭素複合材は、黒鉛基材の芯部の気孔率が、15~17%であることが望ましい。
 黒鉛基材の芯部の気孔率が15%以上であると、CVDの際に原料ガスが気孔内部に浸透しやすく、気孔内部にSiCが浸透したSiC浸透層をより形成しやすくすることができる。また、芯部の気孔率が17%以下であると、構造用の黒鉛としてより十分な強度を備えることができる。
 SiC被覆炭素複合材は、黒鉛基材の芯部の真密度が2.15~2.23g/cmであることが望ましい。
 本発明のSiC被覆炭素複合材は、黒鉛基材の芯部の真密度が2.15g/cm以上であると、黒鉛の結晶の理論密度2.26g/cmに近く、より結晶化の進んだ黒鉛である。黒鉛材料は、製造過程で2000℃以上で熱処理されることにより2.15g/cm以上の真密度を得ることができる。このため、SiC被覆炭素複合材が高温下に置かれても、黒鉛基材の結晶化(黒鉛化)がそれ以上進行しにくく、変形しにくく寸法精度の高いSiC被覆炭素複合材を提供することができる。また黒鉛基材の芯部の真密度が2.23g/cm以下であると、黒鉛の結晶化が過度に進行しておらず、黒鉛結晶に乱れを有している。このためa軸及びb軸方向の結晶の広がりが小さく、ファンデルワールス力により結合しているc軸方向の剥離を防止でき、黒鉛基材からCVD-SiC被覆を剥離しにくくすることができる。
 本発明において気孔率は、黒鉛基材の単位重量あたりの気孔量[cm/g]とかさ密度[g/cm]の積を算出することにより得ることができる。このため、気孔率は[Vol/Vol]の単位で表される体積基準の気孔率である。
 かさ密度は、単純に試料の質量を試料の体積で除することによって得られる。
 単位重量あたりの気孔量は、水銀ポロシメータを用いて測定することができる。
具体的な測定装置・方法は下記に従う。
 試料準備:φ8×10mmのサンプルを、5分間メタノールを用いて超音波洗浄し乾燥させる。この操作により、表面に付着した粉を除去する。
 装置:Thermo Electron SpA社製 Pascal 240
 圧力範囲:大気圧~200MPa
 水銀接触角設定値:141.3°
にて測定することができる。
 本発明において真密度は、JIS R7212-1995(カーボンブロックの試験方法)に記載のブタノール法に準じて測定することができる。
 本発明のSiC被覆炭素複合材の製造方法について説明する。
 本発明のSiC被覆炭素複合材の製造方法は、気孔率が12~20%である黒鉛基材を用い、CVD工程を複数の段階に分けるとともに、段階を経るごとに原料ガスの拡散速度を遅くするように、または原料ガスの分解速度が速くなるように変えて、黒鉛基材の表面にCVD-SiC被覆及びSiC浸透層を形成する。
 段階を経るごとに原料ガスの拡散速度を遅くあるいは分解速度が速くなるように変えて行うことにより、最初の段階で気孔内部深くにSiC浸透層を形成することができるとともに、後の段階で気孔の入口近傍にSiCを効率よく形成することができる。
 さらに本発明のSiC被覆炭素複合材の製造方法は、次の態様が望ましい。
 段階を経ることに反応温度を上げる。
 段階を経るごとに反応温度を上げることにより、原料ガスの分解速度を、段階を経るごとに速くすることができる。このため最初の段階で気孔内部深くにSiC浸透層を形成することができるとともに、後の段階で気孔の入口近傍にSiCを効率よく形成することができる。
 段階を経ることに炉内圧力を上げる。
 段階を経るごとに炉内圧力を上げることにより、原料ガスの拡散速度を、段階を経るごとに遅くすることができる。このため最初の段階で気孔内部深くにSiC浸透層を形成することができるとともに、後の段階で気孔の入口近傍にSiCを効率よく形成することができる。
 段階を経ることに原料ガスの濃度を上げる。
 段階を経ることに原料ガスの濃度を上げる。原料ガスの反応速度を、段階を経るごとに速くすることができる。このため最初の段階で気孔内部深くにSiC浸透層を形成することができるとともに、後の段階で気孔の入口近傍にSiCを効率よく形成することができる。
 本発明のSiC被覆炭素複合材は、黒鉛材を目的の形状に加工し得られた黒鉛基材にCVD-SiC被覆を形成するCVD工程によって得ることができる。
 CVD法によってCVD-SiC被覆を形成する場合、黒鉛材には化学反応が起こらない。このため、SiCの原料ガスが浸透するSiC浸透層を除く芯部は、使用した黒鉛材がそのまま残る。また、SiC浸透層の浸透したSiC以外の部分は、元々の黒鉛材で構成される。つまり、黒鉛基材は、CVD工程を経て加工された黒鉛材の表層部分にSiCが浸透しSiC浸透層が形成されている。
 黒鉛材は、目的の形状に応じて加工され、黒鉛基材を得る。CVD-SiC被覆は、例えば10~200μm程度の厚さになるように被覆される。このため、目的の寸法よりもCVD-SiC被覆の厚さ分だけ小さめに加工することにより目的の形状を得ることができる。
 使用する黒鉛基材の気孔率は12~20%であることが好ましい。黒鉛基材は、CVD工程を経ても芯部の気孔率など特性は変化しない。このため、CVD工程前後で望ましい気孔率の範囲は変わらない。黒鉛基材の気孔率が12%以上であると、CVDの際に原料ガスが気孔内部に浸透しやすく、気孔内部にSiCが浸透したSiC浸透層を容易に形成することができる。また、黒鉛基材の気孔率が20%以下であると、構造用の黒鉛として十分な強度を備えることができる。
 使用する黒鉛基材の気孔率は15~17%であることがさらに好ましい。黒鉛基材の気孔率が15%以上であると、CVDの際に原料ガスが気孔内部に浸透しやすく、気孔内部にSiCが浸透したSiC浸透層をさらに容易に形成することができる。また、黒鉛基材の気孔率が17%以下であると、構造用の黒鉛としてより十分な強度を備えることができる。
 使用する黒鉛基材の真密度は、少なくとも芯部において2.15~2.23g/cmであることが好ましい。黒鉛基材は、CVD工程を経ても黒鉛自体の真密度など特性は変化しない。少なくとも黒鉛基材の芯部の真密度が2.15g/cm以上であると、黒鉛の結晶の理論密度2.26g/cmに近く、より結晶化の進んだ黒鉛である。黒鉛材料は、製造過程で2000℃以上で熱処理されることにより2.15g/cm以上の真密度を得ることができる。このため、SiC被覆炭素複合材が高温下に置かれても、黒鉛基材の結晶化(黒鉛化)がそれ以上進行しにくく、変形しにくく寸法精度の高いSiC被覆炭素複合材を提供することができる。また、少なくとも黒鉛基材の芯部の真密度が2.23g/cm以下であると、黒鉛の結晶化が過度に進行しておらず、黒鉛結晶に乱れを有している。このためa軸及びb軸方向の結晶の広がりが小さく、ファンデルワールス力により結合しているc軸方向の剥離を防止でき、黒鉛基材からCVD-SiC被覆を剥離しにくくすることができる。
 本発明のSiC被覆炭素複合材は、CVD-SiC被覆から延びるSiC浸透層を有し、SiC浸透層は、表面(CVD-SiC被覆側の面)から順にSiの含有量がステップ状に小さくなる複数の領域によって構成されている。このような構成のSiC浸透層は、例えば次のように形成することができる。
 本発明のSiC被覆炭素複合材のSiC浸透層の形成は、以下の原理を利用する。
 CVD法によってCVD-SiC被覆を形成する際に、原料が気体であるので黒鉛基材の気孔内部にもSiCが析出する。気孔内部のどの深さまで原料ガスが到達するかは、CVDによる原料ガスの分解速度と原料ガスの拡散速度とのバランスで決定される。
 原料ガスの拡散速度に対し分解速度が速い場合には気孔の奥深くに原料ガスが到達せず、気孔の入口近傍にSiCが速い速度で形成される。
 逆に原料ガスの分解速度に対し拡散速度が速い場合には気孔の入口近傍にSiCが形成されにくいので気孔の奥深くに原料ガスが到達する一方、気孔内部へのSiCの形成速度が遅くなる。このため、原料ガスの分解速度に対し拡散速度が速い場合には、時間をかけて製膜することにより気孔内部に十分なSiCを浸透させることができる。
 すなわち、CVD工程を徐々に原料ガスの拡散速度に対し分解速度が速くなるように複数の段階に分けて行うことにより、表面(CVD-SiC被覆側の面)から順にSiの含有量がステップ状に小さくなる複数の領域によって構成されるSiC浸透層を形成することができる。
 実際のSiC浸透層の形成方法について説明する。
 原料ガスの拡散速度は、炉内の圧力、反応温度などに依存し、原料ガスの分解速度は反応温度、原料ガスの濃度、原料ガス分圧などに依存する。
 CVD工程において分解温度は原料ガスの拡散速度に与える影響よりも分解速度に与える影響が圧倒的に高く、原料ガスの分解速度と拡散速度を調整する手段として好適に使用することができる。具体的には、反応温度が高くなると、拡散速度よりも分解速度の方が影響を受けやすく分解速度が急速に速くなり、気孔の入口近傍にSiCが形成され易くなる。逆に反応温度が低くなると、気孔の内部までSiCが形成され易くなるが、SiCが形成される速度は遅くなる。
 CVD工程において原料ガスの濃度は原料ガスの拡散速度に与える影響よりも分解速度に与える影響が高く、原料ガスの分解速度と拡散速度を調整する手段として好適に使用することができる。具体的には、原料ガスの濃度が高くなると、衝突する確率が高くなるので分解速度が速くなり、気孔の入口近傍にSiCが形成され易くなる。逆に原料ガスの濃度が低くなると、衝突する確率が小さくなるので分解速度が遅くなり、気孔の内部までSiCが形成され易くなる。
 CVD工程において、炉内の圧力は、原料ガスの分解速度に与える影響よりも拡散速度に与える影響が高く、原料ガスの分解速度と拡散速度を調整する手段として好適に使用することができる。具体的には、炉内の圧力が高くなると、平均自由工程が小さくなるため拡散速度よりも分解速度の方が速くなり、気孔の入口近傍にSiCが形成され易くなる。逆に炉内の圧力が低くなると、平均自由工程が大きくなるため分解速度よりも拡散速度の方が速くなり、気孔の内部までSiCが形成され易くなる。
 本発明のSiC被覆炭素複合材は、CVD工程を複数の段階に分けるとともに、段階を経るごとに原料ガスの拡散速度を遅くあるいは分解速度が速くなるように変えて行うことにより得ることができる。
 段階を経るごとに原料ガスの拡散速度よりも分解速度が速くなるとは、望ましくは、段階を経るごとに反応温度を上げる製造方法、段階を経るごとに炉内圧力を上げる製造方法、段階を経るごとに原料ガスの濃度を上げる製造方法などを選択することができる。また、複数の手段を組み合わせて複数の段階を構成してもよい。
 なお、原料ガスの分解速度と、拡散速度の大きさは、同一の次元ではないので直接的な比較ではなく、相対的な比較によって判断する。
 本発明のSiC被覆炭素複合材の製造方法のCVD工程における原料ガスは、特に限定されない。例えば、炭素源及び珪素源を組み合わせて原料ガスとして使用することができる。炭素源としては、例えばメタン、エタン、プロパンなどが利用できる。珪素源としては、例えばシラン、ハロゲン化シランなどが利用できる。また、炭素源と珪素源と同時に原料ガスとして使用することができる。炭素源と珪素源を同時に使用する原料ガスとしては、例えばメチルシラン(methylsilane)、メチルクロロシラン(methylchlorosilane)、メチルジクロロシラン(methyldichlorosilane)、メチルトリクロロシラン(MTS:methyltrichlorosilane)、メチルブロモシラン(Methylbromosilane)、メチルジブロモシラン(Methyldibromosilane)、メチルトリブロモシラン(Methyltribromosilane)などが利用できる。
 次に本発明のSiC被覆炭素複合材の実施例および比較例1、2について、順に説明する。
<加工工程>
 実施例および比較例1、2ではイビデン株式会社製EX-60を用いて15×15×5mmの黒鉛基材を作成する。加工工程は、実施例、比較例とも共通である。
 黒鉛基材の気孔率は、16%、真密度は2.20g/cmである。
 比較例3では、人造黒鉛電極を用いて同様に15×15×5mmの黒鉛基材を作成する。黒鉛基材の気孔率は、23%、真密度は2.25g/cmである。
<CVD工程>
 加工工程で得られた黒鉛基材にCVD-SiC被覆を形成する。CVD工程の製造条件は以下のとおりである。なお、実施例、比較例ともに原料ガスは、例えば、炭素源及び珪素源を組み合わせて原料ガスとして使用することができる。炭素源としては、例えばメタン、エタン、プロパンなどが利用できる。珪素源としては、例えばシラン、ハロゲン化シランなどが利用できる。また、炭素源と珪素源と同時に原料ガスとして使用することができる。炭素源と珪素源を同時に使用する原料ガスとしては、例えばメチルシラン(methylsilane)、メチルクロロシラン(methylchlorosilane)、メチルジクロロシラン(methyldichlorosilane)、メチルトリクロロシラン(MTS:methyltrichlorosilane)、メチルブロモシラン(Methylbromosilane)、メチルジブロモシラン(Methyldibromosilane)、メチルトリブロモシラン(Methyltribromosilane)などが利用できる。実施例、比較例とも十分な厚さを備えているので、黒鉛基材の芯部は残り、芯部はもとの黒鉛基材と同一の気孔率、真密度である。
 上記加工工程、CVD工程にしたがって得られた実施例及び比較例の試料を切断し分析した。具体的には断面の走査型電子顕微鏡を用いて観察した(図1、図3、図5)。
 なお、比較例3では、CVD工程を経た後に網目状にクラックが入り、実用に供するものではなかった。
 さらにEDX(エネルギー分散型X線分析)によって、Siの検出強度を測定することにより、相対的な量を確認した(図2、図4、図6)。なお、グラフの縦軸はSiの検出強度であり、横軸は深さ方向のスケールである。
 剥離強度は、φ3mmのピンをSiC被覆炭素複合材のCVD-SiC被覆に接着し、引っ張ることによって測定した。
 またSiC被覆炭素複合材の変形は、非接触式三次元測定器(QVI:Quality Vision International社 型名SmartScope ZIP 300)を用い、15×15試料の平面度によって確認しSiC被覆炭素複合材として使用上有害な変形であるかどうか判定した。○は「使用可能」であり、△は「影響あり」、×は「使用できない」を示す。
 実施例1では、CVD工程を2段階に分けて実施した。原料ガス(MTS)の濃度は、第1段階では1.6%、第2段階では6.4%となるようにCVD工程を行った。なお、反応温度は1200℃であった。
 第1段階よりも第2段階のほうが原料ガスの濃度が高く、原料ガスの分解速度が速くなっている。このため、第1段階では表面から遠い側の領域まで(第2の領域)までSiC浸透層を形成する。次に第2の段階で表面から近い側の領域まで(第1の領域)までSiC浸透層を形成する。このようにして、表面から順にSiの含有量がステップ状に小さくなる複数の領域によって構成されているSiC浸透層を形成することができる。言い換えれば、表面から順に第1領域と、第1領域よりSiの含有量が小さい第2領域によって構成されているSiC浸透層を形成することができる。
 また、本実施例では、SiCの浸透層の厚さは313μmにまで及んで形成されている。
 比較例1では、CVD工程を1段階で行った。原料ガス(MTS)の濃度は実施例1の第2段階と同一の6.4%である。なお、反応温度は1300℃であった。
 比較例2では、CVD工程を1段階で行った。原料ガス(MTS)の濃度は実施例1の第2段階と同一の6.4%である。なお、反応温度は1350℃であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例及び比較例を比較すると、SiCの浸透層が2領域形成された実施例は、剥離強度が比較例1および2に対し十分に大きく、表面から順にSiの含有量がステップ状に小さくなる複数の領域に分けて形成されていることにより強い剥離強度が得られることが確認された。
 また、実施例で使用した黒鉛基材は、気孔率が16%であり十分に小さいので、CVD-SiC被覆を形成してSiの含有量の異なる二つの領域からなるSiC浸透層を形成しても平面度への影響はなく、使用上問題になる有害な変形の発生は見られなかった。これは、表面から遠い側の第2領域のSiCの量が、CVD工程の第1段階で多くなりすぎないように制御されている効果が見られると推定される。
 さらに、実施例、比較例で使用した黒鉛基材は、真密度が2.20g/cmであり十分に高いので、CVD-SiC被覆を形成しても加熱による黒鉛化が進行はなく、変形等は見られなかった。さらに、真密度が高い黒鉛基材を使用していないので、過度に黒鉛化の進行しておらず、強度の弱いc軸方向の影響を受けにくく、十分な剥離強度が得られたと考えられる。
 尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
 本出願は、2015年1月29日出願の日本特許出願、特願2015-015505に基づくものであり、その内容はここに参照として取り込まれる。

Claims (7)

  1.  黒鉛基材と、前記黒鉛基材を覆うCVD-SiC被覆と、を含むSiC被覆炭素複合材であって、
     前記黒鉛基材の芯部の気孔率は12~20%であるとともに、
     前記芯部の周囲には、前記CVD-SiC被覆から延びるSiC浸透層を有し、
     前記SiC浸透層は、前記CVD-SiC被覆側の第1の面から前記黒鉛基材側の第2の面に向かって順に、Siの含有量がステップ状に小さくなるように配置された複数の領域によって構成されているSiC被覆炭素複合材。
  2.  前記SiC浸透層は、前記第1の面から前記第2の面に向かって順に配置された第1領域~第i領域~第n領域によって構成され、前記第i領域のSi含有量は、第(i+1)領域のSi含有量よりに大きい請求項1に記載のSiC被覆炭素複合材。
  3.  芯部の気孔率が12~20%の黒鉛基材と、前記黒鉛基材を覆うCVD-SiC被覆と、を含むSiC被覆炭素複合材であって、
     前記芯部の周囲には、前記CVD-SiC被覆から延びるSiC浸透層を有し、
     前記SiC浸透層は、前記CVD-SiC被覆側に配置された第1領域と、前記黒鉛基材側に配置され、前記第1領域よりSiの含有量が小さい第2領域によって構成されているSiC被覆炭素複合材。
  4.  前記SiC浸透層は、厚さが150μm以上である請求項1から3のいずれか1項に記載のSiC被覆炭素複合材。
  5.  前記SiC浸透層は、厚さが300μm以上である請求項4に記載のSiC被覆炭素複合材。
  6.  前記芯部の気孔率は、15~17%である請求項1から5のいずれか1項に記載のSiC被覆炭素複合材。
  7.  前記芯部の真密度が2.15~2.23g/cmである請求項1から6のいずれか1項に記載のSiC被覆炭素複合材。
PCT/JP2016/051835 2015-01-29 2016-01-22 SiC被覆炭素複合材 WO2016121642A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016571993A JPWO2016121642A1 (ja) 2015-01-29 2016-01-22 SiC被覆炭素複合材
US15/546,884 US10294163B2 (en) 2015-01-29 2016-01-22 SiC-coated carbon composite material
CN201680007750.9A CN107207373A (zh) 2015-01-29 2016-01-22 SiC被覆碳复合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-015505 2015-01-29
JP2015015505 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121642A1 true WO2016121642A1 (ja) 2016-08-04

Family

ID=56543255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051835 WO2016121642A1 (ja) 2015-01-29 2016-01-22 SiC被覆炭素複合材

Country Status (4)

Country Link
US (1) US10294163B2 (ja)
JP (1) JPWO2016121642A1 (ja)
CN (1) CN107207373A (ja)
WO (1) WO2016121642A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019133559A1 (en) * 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133560A1 (en) * 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133557A1 (en) * 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
JP2020026370A (ja) * 2018-08-10 2020-02-20 イビデン株式会社 反応装置
JP2021508660A (ja) * 2017-12-27 2021-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 炭化ケイ素コーティング体を製造するためのプロセス

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514259A1 (en) 2018-01-18 2019-07-24 Heraeus GMSI LLC Process for manufacturing a silicon carbide coated body
EP3514129A1 (en) * 2018-01-18 2019-07-24 Heraeus GMSI LLC Process for manufacturing a silicon carbide coated body
CN108359958B (zh) * 2018-03-14 2020-01-07 深圳市志橙半导体材料有限公司 一种cvd法碳化硅涂层的制备方法
KR20230047427A (ko) 2020-08-06 2023-04-07 에스지엘 카본 에스이 내화성 카바이드 다층

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193705A (ja) * 1990-11-26 1992-07-13 Kobe Steel Ltd 炭素材の製造方法
JPH05310487A (ja) * 1992-05-12 1993-11-22 Tokai Carbon Co Ltd SiC被覆黒鉛材料の製造方法
JPH10236893A (ja) * 1997-02-24 1998-09-08 Sumitomo Metal Ind Ltd 炭化ケイ素被覆炭素材料
JP2000302577A (ja) * 1999-04-22 2000-10-31 Tokai Carbon Co Ltd 炭化珪素被覆黒鉛部材
JP2002003285A (ja) * 2000-06-20 2002-01-09 Tokai Carbon Co Ltd SiC被覆黒鉛部材およびその製造方法
JP2007173696A (ja) * 2005-12-26 2007-07-05 Toshiba Ceramics Co Ltd 熱処理用部材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263568A (ja) * 1993-03-05 1994-09-20 Japan Atom Energy Res Inst 炭素系材料の耐酸化性改良法
FR2935636B1 (fr) * 2008-09-05 2011-06-24 Commissariat Energie Atomique Materiau a architecture multicouche, dedie a une mise en contact avec du silicium liquide
CN102277560B (zh) * 2011-08-23 2013-07-17 南京理工大学 化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193705A (ja) * 1990-11-26 1992-07-13 Kobe Steel Ltd 炭素材の製造方法
JPH05310487A (ja) * 1992-05-12 1993-11-22 Tokai Carbon Co Ltd SiC被覆黒鉛材料の製造方法
JPH10236893A (ja) * 1997-02-24 1998-09-08 Sumitomo Metal Ind Ltd 炭化ケイ素被覆炭素材料
JP2000302577A (ja) * 1999-04-22 2000-10-31 Tokai Carbon Co Ltd 炭化珪素被覆黒鉛部材
JP2002003285A (ja) * 2000-06-20 2002-01-09 Tokai Carbon Co Ltd SiC被覆黒鉛部材およびその製造方法
JP2007173696A (ja) * 2005-12-26 2007-07-05 Toshiba Ceramics Co Ltd 熱処理用部材

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508661A (ja) * 2017-12-27 2021-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 炭化ケイ素コーティング体を製造するためのプロセス
KR20200103082A (ko) * 2017-12-27 2020-09-01 어플라이드 머티어리얼스, 인코포레이티드 탄화규소 코팅된 몸체를 제조하기 위한 프로세스
WO2019133559A1 (en) * 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
KR102567519B1 (ko) 2017-12-27 2023-08-17 어플라이드 머티어리얼스, 인코포레이티드 탄화규소 코팅된 몸체를 제조하기 위한 프로세스
JP2021508659A (ja) * 2017-12-27 2021-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 炭化ケイ素コーティング体を製造するためのプロセス
KR20200104370A (ko) * 2017-12-27 2020-09-03 어플라이드 머티어리얼스, 인코포레이티드 탄화규소 코팅된 몸체를 제조하기 위한 프로세스
CN111801309A (zh) * 2017-12-27 2020-10-20 应用材料公司 用于制造涂覆碳化硅的主体的工艺
JP2021508660A (ja) * 2017-12-27 2021-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 炭化ケイ素コーティング体を製造するためのプロセス
WO2019133557A1 (en) * 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133560A1 (en) * 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
JP2021508662A (ja) * 2017-12-27 2021-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 炭化ケイ素コーティング体を製造するためのプロセス
JP7004822B2 (ja) 2017-12-27 2022-01-21 アプライド マテリアルズ インコーポレイテッド 炭化ケイ素コーティング体を製造するためのプロセス
JP7078726B2 (ja) 2017-12-27 2022-05-31 アプライド マテリアルズ インコーポレイテッド 炭化ケイ素コーティング体を製造するためのプロセス
KR102480454B1 (ko) 2017-12-27 2022-12-30 어플라이드 머티어리얼스, 인코포레이티드 탄화규소 코팅된 몸체를 제조하기 위한 프로세스
JP2022127635A (ja) * 2017-12-27 2022-08-31 アプライド マテリアルズ インコーポレイテッド 炭化ケイ素コーティング体を製造するためのプロセス
JP7093264B2 (ja) 2018-08-10 2022-06-29 イビデン株式会社 反応装置
JP2020026370A (ja) * 2018-08-10 2020-02-20 イビデン株式会社 反応装置

Also Published As

Publication number Publication date
US20180002236A1 (en) 2018-01-04
CN107207373A (zh) 2017-09-26
JPWO2016121642A1 (ja) 2017-08-31
US10294163B2 (en) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2016121642A1 (ja) SiC被覆炭素複合材
JP6196246B2 (ja) 炭化ケイ素−炭化タンタル複合材及びサセプタ
KR101224816B1 (ko) 그라파이트 기질상 -내산화성 세라믹 코팅의 형성방법
TWI526585B (zh) Graphite crucible for single crystal pulling device and method for manufacturing the same
JP2002003285A (ja) SiC被覆黒鉛部材およびその製造方法
JP2017066019A (ja) 炭化珪素単結晶の製造方法
JP2000302577A (ja) 炭化珪素被覆黒鉛部材
Itoh et al. Positron annihilation in porous silicon
KR20110133120A (ko) 이층기공구조를 가지는 진공척용 다공성 세라믹 소재 및 이의 제조방법
JP2017028247A (ja) グラファイトとシリコンとの結合体及びその製造方法
TW201325855A (zh) 樹脂被覆線鋸及切割體
JP5929520B2 (ja) ダイヤモンド系膜の製造方法およびそれに用いられる複合基板
JP2000073171A (ja) 化学蒸着法多層SiC膜の製造方法
JP2011051862A (ja) 高配向窒化アルミニウム結晶膜およびその製造方法
US6071343A (en) Heat treatment jig and method of producing the same
KR20180003096A (ko) 딤플 패턴을 포함하는 탄소막의 제조방법 및 이에 의해 제조된 딤플 패턴을 포함하는 탄소막
JP5929434B2 (ja) AlN系膜の製造方法およびそれに用いられる複合基板
KR100550265B1 (ko) WC-Co 계 초경재료를 모재로 한 다이아몬드 막이코팅된 다이아몬드 코팅 공구 및 내마모 부품
KR20210011884A (ko) 탄소 복합 부재
JP4361177B2 (ja) 炭化ケイ素材料及びrtp装置用治具
WO2023119874A1 (ja) 多結晶SiC成形体
KR20110035560A (ko) 탄화규소 피복 그라파이트 제조방법 및 이에 의한 탄화규소 피복 그라파이트
JP2855458B2 (ja) 半導体用処理部材
JP3150545B2 (ja) 反応焼結Si含浸SiC質半導体製造用熱処理治具及びその製造方法
JPH04358068A (ja) CVD−SiC被覆部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571993

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546884

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743245

Country of ref document: EP

Kind code of ref document: A1