WO2016121323A1 - 非水電解質二次電池用負極活物質及び非水電解質二次電池 - Google Patents

非水電解質二次電池用負極活物質及び非水電解質二次電池 Download PDF

Info

Publication number
WO2016121323A1
WO2016121323A1 PCT/JP2016/000219 JP2016000219W WO2016121323A1 WO 2016121323 A1 WO2016121323 A1 WO 2016121323A1 JP 2016000219 W JP2016000219 W JP 2016000219W WO 2016121323 A1 WO2016121323 A1 WO 2016121323A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
particles
electrolyte secondary
Prior art date
Application number
PCT/JP2016/000219
Other languages
English (en)
French (fr)
Inventor
博之 南
善雄 加藤
泰三 砂野
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US15/526,041 priority Critical patent/US20170352881A1/en
Priority to JP2016571838A priority patent/JP6613250B2/ja
Priority to CN201680006574.7A priority patent/CN107210436B/zh
Publication of WO2016121323A1 publication Critical patent/WO2016121323A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • Patent Document 1 discloses a nonaqueous electrolyte secondary battery in which SiO x is mixed with graphite to form a negative electrode active material.
  • the non-aqueous electrolyte secondary battery using SiO x as the negative electrode active material has a problem that the initial charge / discharge efficiency is lower than when graphite is used as the negative electrode active material. This is mainly due to the change of SiO x to Li 4 SiO 4 (irreversible reactant) due to the irreversible reaction during charging and discharging. Accordingly, a negative electrode active material represented by SiLi x O y (0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 1.5) has been proposed in order to suppress the irreversible reaction and improve the initial charge / discharge efficiency. (See Patent Document 2).
  • Patent Document 3 discloses a negative electrode active material in which a lithium silicate phase mainly composed of Li 4 SiO 4 is contained in silicon oxide.
  • initial charge / discharge is performed by heat-treating a mixture of SiO x and a lithium compound at a high temperature to convert SiO 2 into Li 4 SiO 4 which is an irreversible reactant. Improving efficiency.
  • SiO 2 remains inside the particle, and Li 4 SiO 4 is generated only on the particle surface.
  • a further high temperature process is required.
  • the heat treatment temperature is increased, the crystal growth of Si and Li 4 SiO 4 is promoted, and Si and Li 4 SiO 4 are unevenly distributed. The dispersibility in the inside decreases.
  • the crystallinity of Si increases, the volume change of Si increases and the expansion of the active material particles also increases.
  • non-aqueous electrolyte secondary batteries are required not only to have high charge capacity and initial charge / discharge efficiency, but also to suppress capacity reduction due to charge / discharge cycles.
  • An object of the present disclosure is to construct a non-aqueous electrolyte secondary battery that includes a silicon material and is a negative electrode active material for a non-aqueous electrolyte secondary battery that has high charge capacity and high initial charge / discharge efficiency and excellent cycle characteristics. It is to provide a negative electrode active material that can be used.
  • a negative electrode active material for a nonaqueous electrolyte secondary battery which is one embodiment of the present disclosure, is dispersed in a lithium silicate phase represented by Li 2z SiO (2 + z) ⁇ 0 ⁇ z ⁇ 2 ⁇ and a lithium silicate phase.
  • a non-aqueous electrolyte secondary battery having high charge capacity and initial charge / discharge efficiency and excellent cycle characteristics can be constructed.
  • the negative electrode active material which is one embodiment of the present disclosure includes a lithium silicate phase represented by Li 2z SiO (2 + z) (0 ⁇ z ⁇ 2) and particles mainly containing Si dispersed in the lithium silicate phase. With.
  • the particles include core particles made of Si and a surface layer made of FeSi alloy.
  • the negative electrode active material that is one embodiment of the present disclosure may contain, for example, SiO 2 of a natural oxide film formed on the surface of core particles made of Si. It should be noted that the nature of SiO 2 of natural oxide film and SiO 2 of conventional SiO x particles are greatly different.
  • SiO x is obtained by dispersing minute Si particles in a SiO 2 matrix, and the following reaction occurs during charge and discharge.
  • Formula 1 is decomposed for Si and 2SiO 2 , the following formula is obtained.
  • Equation 3 is an irreversible reaction, and the generation of Li 4 SiO 4 is the main factor for reducing the initial charge / discharge efficiency.
  • the negative electrode active material which is one embodiment of the present disclosure is a material in which Si-based particles are finely and uniformly dispersed in a lithium silicate phase represented by Li 2z SiO (2 + z) (0 ⁇ z ⁇ 2)
  • the content of SiO 2 is significantly less than that of conventional SiO x .
  • SiO 2 contained in the anode active material is a natural oxide film, SiO 2 and the properties of the conventional SiO x particles differ greatly. Therefore, in the nonaqueous electrolyte secondary battery using the negative electrode active material, the reaction of Formula 3 hardly occurs, and it is considered that the initial charge / discharge efficiency is improved.
  • the negative electrode active material which is one embodiment of the present disclosure, it is possible to construct a non-aqueous electrolyte secondary battery with high charge capacity and initial charge / discharge efficiency and excellent cycle characteristics.
  • a nonaqueous electrolyte secondary battery as an example of the embodiment includes a negative electrode including the negative electrode active material, a positive electrode, and a nonaqueous electrolyte including a nonaqueous solvent.
  • a separator is preferably provided between the positive electrode and the negative electrode.
  • As an example of the structure of the nonaqueous electrolyte secondary battery there is a structure in which an electrode body in which a positive electrode and a negative electrode are wound via a separator, and a nonaqueous electrolyte are housed in an exterior body.
  • the wound electrode body instead of the wound electrode body, other types of electrode bodies such as a stacked electrode body in which a positive electrode and a negative electrode are stacked via a separator may be applied.
  • the nonaqueous electrolyte secondary battery may have any form such as a cylindrical type, a square type, a coin type, a button type, and a laminate type.
  • the positive electrode is preferably composed of a positive electrode current collector made of, for example, a metal foil, and a positive electrode mixture layer formed on the current collector.
  • a positive electrode current collector a metal foil that is stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the positive electrode mixture layer preferably includes a conductive material and a binder in addition to the positive electrode active material.
  • the particle surface of the positive electrode active material may be covered with fine particles of an oxide such as aluminum oxide (Al 2 O 3 ), an inorganic compound such as a phosphoric acid compound, or a boric acid compound.
  • Examples of the positive electrode active material include lithium transition metal oxides containing transition metal elements such as Co, Mn, and Ni.
  • Examples of the lithium transition metal oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1- y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, Ni , Cu, Zn, Al, Cr, Pb, Sb, B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, 2.0 ⁇ z ⁇ 2.3). These may be used individually by 1 type, and may mix and use multiple types.
  • the conductive material is used to increase the electrical conductivity of the positive electrode mixture layer.
  • Examples of the conductive material include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more.
  • the binder is used to maintain a good contact state between the positive electrode active material and the conductive material and to enhance the binding property of the positive electrode active material or the like to the surface of the positive electrode current collector.
  • the binder include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • polyimide resins acrylic resins
  • polyolefin resins polyolefin resins.
  • the negative electrode is preferably composed of, for example, a negative electrode current collector made of a metal foil or the like, and a negative electrode mixture layer formed on the current collector.
  • a negative electrode current collector a metal foil that is stable in the potential range of a negative electrode such as copper, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the negative electrode mixture layer preferably includes a binder in addition to the negative electrode active material.
  • fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin and the like can be used as in the case of the positive electrode.
  • CMC or a salt thereof may be a partially neutralized salt
  • SBR rubber
  • PAA polyacrylic acid
  • PAA-Na, PAA-K, etc. or a partially neutralized salt
  • PVA polyvinyl alcohol
  • FIG. 1 shows a cross-sectional view of negative electrode active material particles 10 as an example of the embodiment.
  • the negative electrode active material particle 10 includes a lithium silicate phase 11 and particles 12 dispersed in the phase.
  • the particle 12 is a particle in which a surface layer 16 made of FeSi alloy is formed on the surface of a core particle 15 made of Si.
  • a conductive layer 14 is preferably formed on the surface of the mother particle 13 composed of the lithium silicate phase 11 and the particle 12.
  • the mother particle 13 may contain a third component other than the lithium silicate phase 11 and the particle 12.
  • the content is preferably less than 10% by mass, more preferably less than 7% by mass. Note that the smaller the particle size of the particles 12, the larger the surface area, and the more SiO 2 of the natural oxide film.
  • the particles 12 are mainly composed of Si as described above. Since Si can occlude more lithium ions than carbon materials such as graphite, the application of the negative electrode active material particles 10 including the particles 12 to the negative electrode active material contributes to an increase in capacity of the battery. In the negative electrode mixture layer, only the negative electrode active material particles 10 may be used alone as the negative electrode active material. However, since the volume change due to charge / discharge is larger than that of graphite, a silicon material may be used in combination with another active material having a small volume change in order to maintain good cycle characteristics while increasing the capacity. As the other active material, a carbon material such as graphite is preferable.
  • Graphite includes graphite conventionally used as a negative electrode active material, such as natural graphite such as flaky graphite, massive graphite, earthy graphite, massive artificial graphite (MAG), graphitized mesophase carbon microbeads (MCMB), etc. Artificial graphite or the like can be used.
  • the ratio of the negative electrode active material particles 10 to graphite is preferably 1:99 to 30:70 in terms of mass ratio.
  • the mass ratio of the negative electrode active material particles 10 and graphite is within the range, it is easy to achieve both high capacity and improved cycle characteristics.
  • the ratio of the negative electrode active material particles 10 to graphite is lower than 1% by mass, the merit of increasing the capacity by adding the negative electrode active material particles 10 is reduced.
  • Li 4 SiO 4 is an unstable compound, and reacts with water to show alkalinity. Therefore, Si is altered and the charge / discharge capacity is reduced.
  • the content of the main component may be more than 50% by mass with respect to the total mass of the lithium silicate phase 11. Preferably, 80 mass% or more is more preferable.
  • the lithium silicate phase 11 is composed of, for example, a collection of fine particles, and is preferably composed of finer particles than the particles 12.
  • the intensity of the diffraction peak on the (111) plane of Si is greater than the intensity of the diffraction peak on the (111) plane of lithium silicate.
  • the negative electrode active material particles 10 after charging / discharging do not contain Li 4 SiO 4 . Since the starting material of the negative electrode active material particles 10 contains only SiO 2 of a natural oxide film, the reaction of the above formula (3) hardly occurs in the first charge / discharge, and Li 4 SiO 4 which is an irreversible reactant. Is difficult to generate.
  • the particles 12 are preferably dispersed substantially uniformly in the lithium silicate phase 11.
  • the negative electrode active material particles 10 base particles 13
  • the negative electrode active material particles 10 have, for example, a sea-island structure in which fine particles 12 are dispersed in a lithium silicate matrix, and the particles 12 are substantially uniform without being unevenly distributed in a partial region in an arbitrary cross section. It is dotted with.
  • the content of the particles 12 is, for example, 20% by mass to 75% by mass, preferably 35% by mass to 50% by mass with respect to the total mass of the mother particles 13 from the viewpoint of increasing capacity and improving cycle characteristics. is there.
  • the content of the particles 12 is too small, the amount of Si contained in the particles 12 decreases, so that, for example, the charge / discharge capacity decreases, and the load characteristics deteriorate due to poor diffusion of lithium ions.
  • the content of the particles 12 is too large, for example, a part of the particles 12 is exposed without being covered with lithium silicate, and the electrolytic solution comes into contact with the cycle characteristics.
  • Particle 12 is a core-shell particle composed of a Si core and a FeSi alloy shell as described above.
  • the surface layer 16 made of FeSi alloy By forming the surface layer 16 made of FeSi alloy, the reaction between Si and lithium silicate during heat treatment is suppressed, and the crystallization of Si is suppressed.
  • the Fe content in the particles 12 is, for example, 15% by mass or less, preferably 0.03% by mass to 12% by mass with respect to the total mass of the particles 12.
  • the Si content is, for example, 85% by mass or more, preferably 87% by mass to 99.97% by mass with respect to the total mass of the particles 12.
  • charge / discharge capacity will fall, for example, and load characteristics will fall by the diffusion failure of lithium ion.
  • the effect which reduces the influence of the lithium silicate at the time of heat processing will reduce, for example.
  • the average particle diameter of the core particles 15 is, for example, 500 nm or less before the first charge, preferably 200 nm or less, and more preferably 50 nm or less. After charging / discharging, 400 nm or less is preferable, and 100 nm or less is more preferable. By making the core particles 15 finer, the volume change at the time of charging / discharging is reduced, and the collapse of the electrode structure is easily suppressed.
  • the average particle diameter of the core particles 15 is measured by observing the cross section of the negative electrode active material particles 10 using a scanning electron microscope (SEM) or a transmission electron microscope (TEM), specifically, 100 cores. It is obtained by averaging the longest diameter of the particles 15.
  • the thickness of the surface layer 16 is preferably 3 nm to 50 nm, more preferably 5 nm to 40 nm in consideration of the reduction of the influence of lithium silicate during heat treatment and the diffusibility of lithium ions into the core particles 15.
  • the thickness of the surface layer 16 can be measured by cross-sectional observation of particles using SEM or TEM.
  • the surface layer 16 is formed by attaching Fe particles to the surface of the Si particles and then heat-treating at a high temperature. For example, when the surface layer 16 is observed with an SEM or the like, it is derived from the Fe particles. The particle interface can be confirmed.
  • the surface layer 16 may be formed so as to cover a part of the surface of the core particle 15 or may be formed so as to cover substantially the entire region.
  • the negative electrode active material particles 10 may include Fe particles that do not adhere to the core particles 15 and are not alloyed with Si.
  • the Fe content is, for example, 7% by mass or less of the total mass of the mother particles 13, preferably 5% by mass or less, more preferably 0.02% by mass to 5% by mass, and particularly preferably 0.5% by mass to 3% by mass.
  • the content of Fe particles that do not adhere to the core particles 15 and are dispersed in the lithium silicate phase 11 is preferably 30% by mass or less, and more preferably 15% by mass or less of the total Fe contained in the mother particles 13.
  • the average particle diameter of the particles constituting the surface layer 16, that is, the particles made of FeSi alloy attached to the surface of the core particles 15 is smaller than the average particle diameter of the core particles 15, for example, 100 nm or less.
  • the average particle size of the particles is preferably 10 nm to 30 nm.
  • the average particle diameter can be measured by the same method as that for the core particles 15.
  • the half width of the diffraction peak of the Si (111) plane is 0.40 ° or more. If the half width of the FeSi alloy is 0.40 ° or more, the reaction between Si and lithium silicate during heat treatment and the crystallization of Si can be suppressed. When the half width of Si is larger than 0.40 °, cycle characteristics are improved.
  • the full width at half maximum of the FeSi alloy is preferably 0.50 or more, and more preferably 0.54 or more.
  • the half width of Si is preferably 0.42 or more, and more preferably 0.45 or more.
  • negative electrode active material particle 10 (base particle 13) preferably has a half-value width of the diffraction peak on the (111) plane of lithium silicate of 0.05 ° or more.
  • the full width at half maximum of the diffraction peak of the (111) plane of suitable lithium silicate varies somewhat depending on the components of the lithium silicate phase 11, but is more preferably 0.09 ° or more, for example, 0.09 ° to 0.55 °. is there.
  • lithium silicate phase 11 mainly composed of Li 2 Si 2 O 5 the half width of the diffraction peak of the (111) plane of Li 2 Si 2 O 5 in the XRD patterns of the anode active material particles 10 is 0.09 °
  • the half width of the diffraction peak of the (111) plane of Li 2 Si 2 O 5 in the XRD patterns of the anode active material particles 10 is 0.09 °
  • the half-value width of the diffraction peak of Li 2 SiO 3 in the XRD patterns of the anode active material particles 10 (111) is a 0.10 ° or more It is preferable.
  • Li 2 SiO 3 is 80% by mass or more with respect to the total mass of the lithium silicate phase 11
  • an example of a preferable half width of the diffraction peak is 0.10 ° to 0.55 °.
  • the half-value width of diffraction peaks of FeSi alloy, Si, and lithium silicate is measured under the following conditions.
  • the full width at half maximum (° (2 ⁇ )) of the (111) plane of all lithium silicates is measured. If the diffraction peak of the (111) plane of lithium silicate overlaps with the diffraction peak of another plane index or the diffraction peak of another substance, the diffraction peak of the (111) plane of lithium silicate is isolated. And measure the half width.
  • Measuring device X-ray diffraction measuring device (model RINT-TTRII) manufactured by Rigaku Corporation Counter cathode: Cu Tube voltage: 50 kv Tube current: 300mA
  • Optical system parallel beam method [incident side: multilayer mirror (divergence angle 0.05 °, beam width 1 mm), solar slit (5 °), light receiving side: long slit PSA200 (resolution: 0.057 °), solar Slit (5 °)] Scanning step: 0.01 ° or 0.02 °
  • Counting time 1-6 seconds
  • the average particle diameter of the negative electrode active material particles 10 is preferably 1 to 15 ⁇ m, more preferably 4 to 10 ⁇ m, from the viewpoint of increasing capacity and improving cycle characteristics.
  • the average particle diameter of the negative electrode active material particles 10 is the particle diameter of primary particles, and the volume in the particle size distribution measured by a laser diffraction scattering method (for example, using “LA-750” manufactured by HORIBA). It means the particle size (volume average particle size) at which the integrated value is 50%. If the average particle diameter of the negative electrode active material particles 10 becomes too small, the surface area increases, and therefore the reaction amount with the electrolyte tends to increase and the capacity tends to decrease.
  • the average particle size of the negative electrode active material particles 10 is not affected (the particle size of the negative electrode active material particles 10). ⁇ particle diameter of mother particle 13).
  • the mother particle 13 is produced through the following steps 1 to 3, for example. All of the following steps are performed in an inert atmosphere.
  • a mixture is prepared by mixing Si powder and Fe powder pulverized to an average particle size of about several ⁇ m to several tens of ⁇ m.
  • the mixture is pulverized into fine particles using a ball mill. At this time, for example, Fe particles having an average particle size of 30 nm or less adhere to the surface of Si particles having an average particle size of 200 nm or less. It is also possible to prepare a mixture after making each raw material powder into fine particles.
  • the pulverized lithium silicate powder having an average particle size of about several ⁇ m to several tens of ⁇ m was mixed with the mixture pulverized in (2), that is, the Fe particles adhered to the surface of the Si particles. Thereafter, it is further pulverized using a ball mill.
  • the mixture pulverized in (3) is heat-treated at, for example, 600 to 800 ° C. In the heat treatment, a sintered body of the mixture may be produced by applying pressure as in hot pressing. At this time, a surface layer made of FeSi alloy is formed on the surface of the Si particles, and the surface layer suppresses the reaction between Si and lithium silicate and suppresses crystallization of Si.
  • the negative electrode active material particles 10 preferably have a conductive layer 14 formed of a material having higher conductivity than the lithium silicate phase 11 enclosing the particles 12 on the particle surface.
  • the conductive material constituting the conductive layer 14 is preferably electrochemically stable, and is preferably at least one selected from the group consisting of carbon materials, metals, and metal compounds.
  • carbon material carbon black, acetylene black, ketjen black, graphite, a mixture of two or more thereof, and the like can be used as in the conductive material of the positive electrode mixture layer.
  • the metal copper, nickel, alloys thereof, and the like that are stable in the potential range of the negative electrode can be used.
  • the metal compound include a copper compound and a nickel compound (the metal or metal compound layer can be formed on the surface of the mother particle 13 by electroless plating, for example). Among these, it is particularly preferable to use a carbon material.
  • Examples of the method of coating the surface of the base particles 13 with carbon include a CVD method using acetylene, methane, etc., a method in which coal pitch, petroleum pitch, phenol resin or the like is mixed with the base particles 13 and heat treatment is performed. Further, the carbon coating layer may be formed by fixing carbon black, ketjen black or the like to the surface of the base particle 13 using a binder.
  • the conductive layer 14 is preferably formed so as to cover substantially the entire surface of the mother particle 13.
  • the thickness of the conductive layer 14 is preferably 1 nm to 200 nm, more preferably 5 nm to 100 nm, in consideration of ensuring conductivity and diffusibility of lithium ions into the mother particles 13. If the thickness of the conductive layer 14 becomes too thin, the conductivity is lowered and it becomes difficult to uniformly coat the mother particles 13. On the other hand, if the thickness of the conductive layer 14 becomes too thick, the diffusion of lithium ions into the mother particles 13 is hindered and the capacity tends to decrease.
  • the thickness of the conductive layer 14 can be measured by cross-sectional observation of particles using SEM or TEM.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • the non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate.
  • Chain carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate, cyclic carboxylic acid esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP ), Chain carboxylic acid esters such as ethyl propionate and ⁇ -butyrolactone.
  • GBL ⁇ -butyrolactone
  • VTL ⁇ -valerolactone
  • MP methyl propionate
  • Chain carboxylic acid esters such as ethyl propionate and ⁇ -butyrolactone.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, diphen
  • a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, a fluorinated chain carboxylate such as methyl fluoropropionate (FMP), or the like.
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic lithium carboxylate, Li Borates such as 2 B 4 O 7 and Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) and imide salts such as ⁇ 1, m is an integer of 1 or more ⁇ .
  • lithium salts may be used alone or in combination of two or more.
  • LiPF 6 is preferably used from the viewpoint of ion conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the nonaqueous solvent.
  • separator a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • olefinic resins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • Example 1 [Production of negative electrode active material]
  • Si powder (3N, 10 ⁇ m pulverized product) and Fe powder (product of high purity chemical, 99.9%, 3-5 ⁇ m pulverized product) were mixed at a mass ratio of 40: 3, and a planetary ball mill (Fritsch P-5) pot (SUS, volume: 500 mL). Twenty-four SUS balls (diameter 20 mm) were placed in the pot, the lid was closed, and pulverized at 200 rpm for 10 hours.
  • Si powder 3N, 10 ⁇ m pulverized product
  • Fe powder product of high purity chemical, 99.9%, 3-5 ⁇ m pulverized product
  • Li 2 SiO 3 powder (10 ⁇ m pulverized product) was additionally added to the pulverized mixed powder so as to have a mass ratio of 43:57, and pulverized at 200 rpm for 50 hours. Thereafter, the powder was taken out in an inert atmosphere, and heat treatment was performed for 4 hours in an inert atmosphere at a temperature of 600 ° C.
  • the heat-treated powder (hereinafter referred to as “mother particles”) is pulverized and passed through a 40 ⁇ m mesh, and then mixed with coal pitch (manufactured by JFE Chemical, MCP250), under a temperature of 800 ° C. under an inert atmosphere for 5 hours.
  • Heat treatment was performed to coat the surface of the mother particles with carbon to form a conductive layer.
  • the coating amount of carbon is 5% by mass with respect to the total mass of the active material particles including the mother particles and the conductive layer.
  • the negative electrode active material was obtained by adjusting an average particle diameter to 5 micrometers using a sieve.
  • the Fe content is 3 mass% of the total weight of the mother particles.
  • FIG. 2 shows an XRD pattern of the negative electrode active material.
  • diffraction peaks mainly derived from Si, FeSi, and Li 2 SiO 3 were confirmed.
  • LiPF 6 was added to a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 so that the concentration would be 1.0 mol / L, and a non-aqueous electrolyte was added.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example 1 and the batteries of Examples and Comparative Examples described below were evaluated by the following methods. The evaluation results are shown in Tables 1 and 2 together with the analysis results of the negative electrode active material.
  • Example 2 A negative electrode active material and a battery A2 were produced in the same manner as in Example 1 except that the heat treatment time was changed to 800 ° C.
  • Example 3 A negative electrode active material and a battery A3 were produced in the same manner as in Example 1 except that the pulverization time after adding the Li 2 SiO 3 powder was 20 hours.
  • Example 4 A negative electrode active material and a battery A4 were produced in the same manner as in Example 1 except that the pulverization time after adding the Li 2 SiO 3 powder was 10 hours.
  • Example 5 A negative electrode active material and a battery A5 were produced in the same manner as in Example 1 except that Li 2 Si 2 O 5 powder was added instead of Li 2 SiO 3 powder.
  • ⁇ Comparative example 2> A negative electrode active material and a battery B2 were produced in the same manner as in Example 1 except that the heat treatment temperature was changed to 500 ° C.
  • Example 6 A negative electrode active material and a battery A6 were produced in the same manner as in Example 1 except that the amount of Fe powder added was changed to 5% by mass (Li 2 SiO 3 was 55% by mass).
  • Example 7 A negative electrode active material and a battery A7 were prepared in the same manner as in Example 1 except that the amount of Fe powder added was changed to 6% by mass (Li 2 SiO 3 was 54% by mass).
  • Example 8> A negative electrode active material and a battery A8 were produced in the same manner as in Example 1 except that the amount of Fe powder added was changed to 0.5% by mass (Li 2 SiO 3 was 59.5% by mass).
  • Example 9 A negative electrode active material and a battery A9 were produced in the same manner as in Example 1 except that the amount of Fe powder added was changed to 0.02% by mass (Li 2 SiO 3 was 59.98% by mass).
  • the batteries A6 to A9 of the examples (when the Fe content is 0.02 mass% to 6 mass%) also have high charge capacity and initial charge / discharge efficiency, and excellent cycle characteristics. was gotten. In particular, particularly good characteristics were obtained when the Fe content was 0.5 mass% to 5 mass%.
  • Negative electrode active material particles 11 Lithium silicate phase, 12 particles, 13 mother particles, 14 conductive layers, 15 core particles, 16 surface layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 シリコン材料を含む非水電解質二次電池用負極活物質であって、充電容量及び初回充放電効率が高く、且つサイクル特性に優れた非水電解質二次電池を構築することが可能な負極活物質を提供する。実施形態の一例である負極活物質粒子(10)は、Li2zSiO(2+z){0<z<2}で表されるリチウムシリケート相(11)と、リチウムシリケート相(11)中に分散した粒子であって、シリコン(Si)からなるコア粒子(15)及びSiを含有する鉄合金(FeSi合金)からなる表面層(16)を含む粒子(12)とを備える。負極活物質粒子(10)は、XRD測定により得られるXRDパターンにおいて、2θ=45°付近のFeSi合金の回析ピークの半値幅が0.40°以上、且つ2θ=28°付近のSiの(111)面の回析ピークの半値幅が0.40°以上である。

Description

非水電解質二次電池用負極活物質及び非水電解質二次電池
 本開示は、非水電解質二次電池用負極活物質及び非水電解質二次電池に関する。
 シリコン(Si)、SiOxで表されるシリコン酸化物などのシリコン材料は、黒鉛などの炭素材料と比べて単位体積当りに多くのリチウムイオンを吸蔵できることが知られている。特にSiOxは、Siよりもリチウムイオンの吸蔵による体積変化が小さいことから、リチウムイオン電池等の負極への適用が検討されている。例えば、特許文献1は、SiOxを黒鉛と混合して負極活物質とした非水電解質二次電池を開示している。
 一方、SiOxを負極活物質として用いた非水電解質二次電池は、黒鉛を負極活物質とした場合に比べて、初回充放電効率が低いという課題がある。これは、充放電時の不可逆反応によりSiOxがLi4SiO4(不可逆反応物)に変化することが主な要因である。そこで、かかる不可逆反応を抑制して初回充放電効率を改善すべく、SiLixy(0<x<1.0、0<y<1.5)で表される負極活物質が提案されている(特許文献2参照)。また、特許文献3は、Li4SiO4を主成分とするリチウムシリケート相がシリコン酸化物中に含まれた負極活物質を開示している。
特開2011-233245号公報 特開2003-160328号公報 特開2007-59213号公報
 特許文献2,3に開示された技術は、いずれもSiOx及びリチウム化合物の混合物を高温で熱処理して、SiO2を不可逆反応物であるLi4SiO4に予め変換することにより、初回充放電効率の改善を図っている。しかし、当該プロセスでは、粒子内部にSiO2が残り、粒子表面のみにLi4SiO4が生成する。粒子内部まで反応させるためには、さらなる高温プロセスが必要であるが、熱処理温度を高くするとSi及びLi4SiO4の結晶増大が助長されると共に、Si及びLi4SiO4がそれぞれ偏在し、粒子内の分散性が低下する。また、Siの結晶性が高くなれば、Siの体積変化が大きくなり、活物質粒子の膨張も大きくなる。他方、Li4SiO4の結晶性が高くなると、リチウムイオン導電性が低下する。これにより、充電容量が低下する。さらに、Si及びLi4SiO4の分散性不良は、粒子内の反応均一性を低下させ、充放電時に粒子崩壊が起こり易くなる。
 ところで、非水電解質二次電池では、充電容量及び初回充放電効率が高いだけでなく、充放電サイクルによる容量低下を抑制することが求められている。本開示の目的は、シリコン材料を含む非水電解質二次電池用負極活物質であって、充電容量及び初回充放電効率が高く、且つサイクル特性に優れた非水電解質二次電池を構築することが可能な負極活物質を提供することである。
 本開示の一態様である非水電解質二次電池用負極活物質は、Li2zSiO(2+z){0<z<2}で表されるリチウムシリケート相と、リチウムシリケート相中に分散した粒子であって、シリコン(Si)からなるコア粒子及びSiを含有する鉄合金(FeSi合金)からなる表面層を含む粒子とを備え、XRD測定により得られるXRDパターンにおいて、2θ=45°付近のFeSi合金の回析ピークの半値幅が0.40°以上、且つ2θ=28°付近のSiの(111)面の回析ピークの半値幅が0.40°以上である。
 本開示の一態様である非水電解質二次電池用負極活物質によれば、充電容量及び初回充放電効率が高く、且つサイクル特性に優れた非水電解質二次電池を構築することができる。
実施形態の一例である負極活物質を模式的に示す断面図である。 実施形態の一例である負極活物質の粒子断面のXRDパターンである。
 以下、実施形態の一例について詳細に説明する。
 実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 本開示の一態様である負極活物質は、Li2zSiO(2+z)(0<z<2)で表されるリチウムシリケート相と、リチウムシリケート相中に分散したSiを主成分とする粒子とを備える。当該粒子は、Siからなるコア粒子及びFeSi合金からなる表面層を含む。本開示の一態様である負極活物質は、例えばSiからなるコア粒子の表面に形成される自然酸化膜程度のSiO2を含有していてもよい。なお、自然酸化膜のSiO2と、従来のSiOx粒子のSiO2は性質が大きく異なる。例えば、本開示の一態様である負極活物質のXRD測定により得られるXRDパターンには、2θ=25°にSiO2の回析ピークが観察されない。これは、自然酸化膜が極めて薄いため、X線が回折しないためであると考えられる。一方、従来のSiOx粒子のXRDパターンには、2θ=25°にSiO2の回析ピークが観察される。
 従来のSiOxは、SiO2のマトリクスの中に微小なSi粒子が分散したものであり、充放電時には下記の反応が起こる。
(1)SiOx(2Si+2SiO2)+16Li++16e-
  →3Li4Si+Li4SiO4
 Si、2SiO2について式1を分解すると下記の式になる。
(2)Si+4Li++4e- → Li4Si
(3)2SiO2+8Li++8e- → Li4Si+Li4SiO4
 上記のように、式3が不可逆反応であり、Li4SiO4の生成が初回充放電効率を低下させる主な要因となっている。
 本開示の一態様である負極活物質は、Siを主成分とする粒子がLi2zSiO(2+z)(0<z<2)で表されるリチウムシリケート相に微小且つ均一に分散したものであり、例えば従来のSiOxに比べてSiO2の含有量が大幅に少ない。また、本負極活物質に含有されるSiO2は自然酸化膜であり、従来のSiOx粒子のSiO2と性質が大きく異なる。したがって、当該負極活物質を用いた非水電解質二次電池では、式3の反応が起こり難く、初回充放電効率が向上するものと考えられる。
 上述のように、Siを主成分とする粒子とリチウムシリケートが活物質粒子内で微小且つ均一に分散した状態を作製することで、初回充放電効率及び充電容量を向上させることができ、また充放電に伴う体積変化を低減して粒子崩壊を抑制できる。しかし、Si粒子とリチウムシリケートを用いて負極活物質を合成した場合は、Si粒子とリチウムシリケートの結着性を高めるための熱処理時においてSiとリチウムシリケートが反応して充放電に寄与するSiが減少し、容量低下を引き起こすことが判明した。また、一般的にSiの結晶性が低いほどサイクル特性が良くなる傾向にあるが、当該熱処理によりSiの結晶性が高くなりサイクル特性が低下することが分かった。なお、Si粒子を単独で熱処理した場合と、Si粒子とリチウムシリケートの混合物を熱処理した場合とでは、熱処理条件が同じであっても、後者のSiの方が結晶性が高くなる。即ち、リチウムシリケートがSiの結晶化を促進していると考えられる。
 そこで、本発明者らは、上述の容量低下及びサイクル特性の低下を抑制すべく鋭意検討した結果、Si粒子の表面にFeSi合金の層を形成することにより、熱処理時におけるリチウムシリケートの影響を低減できることを見出したのである。つまり、熱処理時におけるSiとリチウムシリケートの反応、及びSiの結晶化を抑制することに成功したのである。但し、この効果を得るためには、負極活物質のXRDパターンにおいて、2θ=45°付近のFeSi合金の回析ピークの半値幅が0.40°以上、且つ2θ=28°付近のSiの(111)面の回析ピークの半値幅が0.40°以上であることが要求される。本開示の一態様である負極活物質を用いることにより、充電容量及び初回充放電効率が高く、且つサイクル特性に優れた非水電解質二次電池を構築することができる。
 実施形態の一例である非水電解質二次電池は、上記負極活物質を含む負極と、正極と、非水溶媒を含む非水電解質とを備える。正極と負極との間には、セパレータを設けることが好適である。非水電解質二次電池の構造の一例としては、正極及び負極がセパレータを介して巻回されてなる電極体と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極体の代わりに、正極及び負極がセパレータを介して積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。
 [正極]
 正極は、例えば金属箔等からなる正極集電体と、当該集電体上に形成された正極合材層とで構成されることが好適である。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、正極活物質の他に、導電材及び結着材を含むことが好適である。また、正極活物質の粒子表面は、酸化アルミニウム(Al23)等の酸化物、リン酸化合物、ホウ酸化合物等の無機化合物の微粒子で覆われていてもよい。
 正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4、LiMPO4、Li2MPO4F(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。
 導電材は、正極合材層の電気伝導性を高めるために用いられる。導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結着材は、正極活物質及び導電材間の良好な接触状態を維持し、且つ正極集電体表面に対する正極活物質等の結着性を高めるために用いられる。結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等が例示できる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩(CMC-Na、CMC-K、CMC-NH4等、また部分中和型の塩であってもよい)、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 [負極]
 負極は、例えば金属箔等からなる負極集電体と、当該集電体上に形成された負極合材層とで構成されることが好適である。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質の他に、結着材を含むことが好適である。結着剤としては、正極の場合と同様にフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等を用いることができる。水系溶媒を用いて合材スラリーを調製する場合は、CMC又はその塩(CMC-Na、CMC-K、CMC-NH4等、また部分中和型の塩であってもよい)、スチレン-ブタジエンゴム(SBR)、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等を用いることが好ましい。
 図1に実施形態の一例である負極活物質粒子10の断面図を示す。
 図1で例示するように、負極活物質粒子10は、リチウムシリケート相11と、当該相中に分散した粒子12とを備える。粒子12は、Siからなるコア粒子15の表面にFeSi合金からなる表面層16が形成された粒子である。負極活物質粒子10に含まれるSiO2は、自然酸化膜程度であって、負極活物質粒子10のXRD測定により得られるXRDパターンの2θ=25°にSiO2の回析ピークが観察されないことが好ましい。リチウムシリケート相11及び粒子12で構成される母粒子13の表面には、導電層14が形成されていることが好適である。
 母粒子13は、リチウムシリケート相11及び粒子12以外の第3成分を含んでいてもよい。母粒子13に自然酸化膜のSiO2が含まれる場合、その含有量は、好ましくは10質量%未満、より好ましくは7質量%未満である。なお、粒子12の粒径が小さいほど表面積が大きくなり、自然酸化膜のSiO2が多くなる。
 粒子12は、上述の通りSiを主成分とする。Siは、黒鉛等の炭素材料と比べてより多くのリチウムイオンを吸蔵できることから、粒子12を含む負極活物質粒子10を負極活物質に適用することで電池の高容量化に寄与する。負極合材層には、負極活物質として負極活物質粒子10のみを単独で用いてもよい。但し、シリコン材料は黒鉛よりも充放電による体積変化が大きいことから、高容量化を図りながらサイクル特性を良好に維持すべく、かかる体積変化が小さな他の活物質を併用してもよい。他の活物質としては、黒鉛等の炭素材料が好ましい。
 黒鉛には、従来から負極活物質として使用されている黒鉛、例えば鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛などを用いることができる。黒鉛を併用する場合、負極活物質粒子10と黒鉛との割合は、質量比で1:99~30:70が好ましい。負極活物質粒子10と黒鉛の質量比が当該範囲内であれば、高容量化とサイクル特性向上を両立し易くなる。一方、黒鉛に対する負極活物質粒子10の割合が1質量%よりも低い場合は、負極活物質粒子10を添加して高容量化するメリットが小さくなる。
 リチウムシリケート相11は、Li2zSiO(2+z)(0<z<2)で表されるリチウムシリケートからなる。即ち、リチウムシリケート相11を構成するリチウムシリケートには、Li4SiO4(Z=2)が含まれない。Li4SiO4は、不安定な化合物であり、水と反応してアルカリ性を示すため、Siを変質させて充放電容量の低下を招く。リチウムシリケート相11は、安定性、作製容易性、リチウムイオン導電性等の観点から、Li2SiO3(Z=1/2)及びLi2Si25(Z=1)の少なくとも一方からなり、Li2SiO3又はLi2Si25を主成分とすることが好適である。Li2SiO3又はLi2Si25を主成分(最も質量が多い成分)とする場合、当該主成分の含有量はリチウムシリケート相11の総質量に対して50質量%超過であることが好ましく、80質量%以上がより好ましい。
 リチウムシリケート相11は、例えば微細な粒子の集合により構成され、好ましくは粒子12よりもさらに微細な粒子から構成される。負極活物質粒子10のXRDパターンでは、例えばSiの(111)面の回析ピークの強度が、リチウムシリケートの(111)面の回析ピークの強度よりも大きい。
 充放電後の負極活物質粒子10には、Li4SiO4が含まれないことが好適である。負極活物質粒子10の出発原料には、自然酸化膜程度のSiO2が含まれるだけなので、初回充放電において、上述した式(3)の反応が起こり難く、不可逆反応物であるLi4SiO4が生成し難い。
 粒子12は、リチウムシリケート相11中に略均一に分散していることが好適である。負極活物質粒子10(母粒子13)は、例えばリチウムシリケートのマトリックス中に微細な粒子12が分散した海島構造を有し、任意の断面において粒子12が一部の領域に偏在することなく略均一に点在している。粒子12の含有量は、高容量化及びサイクル特性の向上等の観点から、例えば母粒子13の総質量に対して20質量%~75質量%であり、好ましくは35質量%~50質量%である。粒子12の含有量が少なすぎると、粒子12に含まれるSiの量が減少するため、例えば充放電容量が低下し、またリチウムイオンの拡散不良により負荷特性が低下する。他方、粒子12の含有量が多すぎると、例えば粒子12の一部がリチウムシリケートで覆われず露出して電解液が接触し、サイクル特性が低下する。
 粒子12は、上述のようにSiのコアとFeSi合金のシェルからなるコアシェル粒子である。FeSi合金からなる表面層16を形成することにより、熱処理時におけるSiとリチウムシリケートの反応が抑制されると共に、Siの結晶化が抑制される。粒子12におけるFeの含有量は、例えば粒子12の総質量に対して15質量%以下であり、好ましくは0.03質量%~12質量%である。換言すると、Siの含有量は、例えば粒子12の総質量に対して85質量%以上であり、好ましくは87質量%~99.97質量%である。Feの含有量が多すぎると、例えば充放電容量が低下し、またリチウムイオンの拡散不良により負荷特性が低下する。Feの含有量が少なすぎると、例えば熱処理時におけるリチウムシリケートの影響を低減する効果が減少する。
 コア粒子15の平均粒径は、例えば初回充電前において500nm以下であり、200nm以下が好ましく、50nm以下がより好ましい。充放電後においては、400nm以下が好ましく、100nm以下がより好ましい。コア粒子15を微細化することにより、充放電時の体積変化が小さくなり電極構造の崩壊を抑制し易くなる。コア粒子15の平均粒径は、負極活物質粒子10の断面を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)を用いて観察することにより測定され、具体的には100個のコア粒子15の最長径を平均して求められる。
 表面層16の厚みは、熱処理時におけるリチウムシリケートの影響の低減とコア粒子15へのリチウムイオンの拡散性を考慮して、3nm~50nmが好ましく、5nm~40nmがより好ましい。表面層16の厚みは、SEM又はTEM等を用いた粒子の断面観察により計測できる。表面層16は、詳しくは後述するようにSi粒子の表面にFe粒子を付着させた後、高温で熱処理することにより形成されるため、例えば表面層16をSEM等で観察すると、Fe粒子に由来する粒子界面が確認できる。表面層16は、コア粒子15の表面の一部を覆って形成されていても、略全域を覆って形成されていてもよい。
 表面層16に含まれるFeは、コア粒子15のSiと合金化しており、負極活物質粒子10のXRDパターンにはFeSi合金の回析ピークが表れる。但し、負極活物質粒子10には、コア粒子15に付着せずSiと合金化していないFe粒子が存在していてもよい。Feの含有量は、例えば母粒子13の総質量の7質量%以下であり、好ましくは5質量%以下、より好ましくは0.02質量%~5質量%、特に好ましくは0.5質量%~3質量%である。Feの含有量が多すぎると、重量あたりの容量が低下する。一方、Feの含有量が少なすぎるとコア粒子15の表面に形成されるFeSi合金の量が少なくなり、熱処理時におけるリチウムシリケートの影響を低減する効果が減少する。なお、コア粒子15に付着せずリチウムシリケート相11中に分散しているFe粒子の含有量は、母粒子13に含まれる全Feの30質量%以下が好ましく、15質量%以下がより好ましい。
 表面層16を構成する粒子、即ちコア粒子15の表面に付着したFeSi合金からなる粒子の平均粒径は、コア粒子15の平均粒径よりも小さく、例えば100nm以下である。コア粒子15を保護し、且つ粒子内のリチウムイオンの拡散を阻害しない表面層16を形成するためには、当該粒子の平均粒径は10nm~30nmであることが好ましい。平均粒径は、コア粒子15の場合と同様の方法により測定することができる。
 負極活物質粒子10(母粒子13)は、XRD測定により得られるXRDパターンにおいて、2θ=45°付近のFeSi合金の回析ピークの半値幅が0.40°以上、且つ2θ=28°付近のSiの(111)面の回析ピークの半値幅が0.40°以上である。上記FeSi合金の半値幅が0.40°以上であれば、熱処理時におけるSiとリチウムシリケートの反応、及びSiの結晶化を抑制することができる。そして、上記Siの半値幅が0.40°よりも大きくなると、サイクル特性が向上する。上記FeSi合金の半値幅は、好ましくは0.50以上であり、より好ましくは0.54以上である。上記Siの半値幅は、好ましくは0.42以上であり、より好ましくは0.45以上である。
 負極活物質粒子10(母粒子13)は、XRD測定により得られるXRDパターンにおいて、リチウムシリケートの(111)面の回析ピークの半値幅が0.05°以上であることが好ましい。当該半値幅を0.05°以上に調整することで、リチウムシリケート相の結晶性が低くなり、粒子内のリチウムイオン導電性が向上し、充放電に伴う粒子12の体積変化がより緩和されると考えられる。好適なリチウムシリケートの(111)面の回析ピークの半値幅は、リチウムシリケート相11の成分によっても多少異なるが、より好ましくは0.09°以上、例えば0.09°~0.55°である。
 リチウムシリケート相11がLi2Si25を主成分とする場合、負極活物質粒子10のXRDパターンにおけるLi2Si25の(111)面の回析ピークの半値幅は0.09°以上であることが好ましい。例えば、Li2Si25がリチウムシリケート相11の総質量に対して80質量%以上である場合、好適な当該回析ピークの半値幅の一例は0.09°~0.55°である。また、リチウムシリケート相11がLi2SiO3を主成分とする場合、負極活物質粒子10のXRDパターンにおけるLi2SiO3の(111)の回析ピークの半値幅は0.10°以上であることが好ましい。例えば、Li2SiO3がリチウムシリケート相11の総質量に対して80質量%以上である場合、好適な当該回析ピークの半値幅の一例は0.10°~0.55°である。
 FeSi合金、Si、及びリチウムシリケートの回析ピークの半値幅の測定は、下記の条件で行う。複数のリチウムシリケートを含む場合は、全てのリチウムシリケートの(111)面のピークの半値幅(°(2θ))を測定する。また、リチウムシリケートの(111)面の回析ピークが、他の面指数の回析ピーク又は他の物質の回析ピークと重なる場合は、リチウムシリケートの(111)面の回析ピークを単離して半値幅を測定する。
 測定装置:株式会社リガク社製、X線回折測定装置(型式RINT-TTRII)
 対陰極:Cu
 管電圧:50kv
 管電流:300mA
 光学系:平行ビーム法
[入射側:多層膜ミラー(発散角0.05°、ビーム幅1mm)、ソーラスリット(5°)、受光側:長尺スリットPSA200(分解能:0.057°)、ソーラスリット(5°)]
 走査ステップ:0.01°又は0.02°
 計数時間:1~6秒
 負極活物質粒子10の平均粒径は、高容量化及びサイクル特性の向上等の観点から、1~15μmが好ましく、4~10μmがより好ましい。ここで、負極活物質粒子10の平均粒径とは、一次粒子の粒径であって、レーザー回折散乱法(例えば、HORIBA製「LA-750」を用いて)で測定される粒度分布において体積積算値が50%となる粒径(体積平均粒径)を意味する。負極活物質粒子10の平均粒径が小さくなり過ぎると、表面積が大きくなるため、電解質との反応量が増大して容量が低下する傾向にある。一方、平均粒径が大きくなり過ぎると、充放電による体積変化量が大きくなるため、サイクル特性が低下する傾向にある。なお、母粒子13の表面には導電層14を形成することが好ましいが、導電層14の厚みは薄いため、負極活物質粒子10の平均粒径に影響しない(負極活物質粒子10の粒径≒母粒子13の粒径)。
 母粒子13は、例えば下記の工程1~3を経て作製される。以下の工程は、いずれも不活性雰囲気中で行う。
(1)いずれも平均粒径が数μm~数十μm程度に粉砕されたSi粉末及びFe粉末を混合して混合物を作製する。
(2)次に、ボールミルを用いて上記混合物を粉砕し微粒子化する。このとき、例えば平均粒径200nm以下のSi粒子の表面に、平均粒径30nm以下のFe粒子が付着する。なお、それぞれの原料粉末を微粒子化してから、混合物を作製することも可能である。
(3)次に、(2)で粉砕処理された混合物、即ちSi粒子の表面にFe粒子が付着したものに平均粒径が数μm~数十μm程度に粉砕されたリチウムシリケート粉末を混合した後、ボールミルを用いてさらに粉砕処理する。
(4)次に、(3)で粉砕処理された混合物を、例えば600~800℃で熱処理する。当該熱処理では、ホットプレスのように圧力を印加して上記混合物の燒結体を作製してもよい。このとき、Si粒子の表面にFeSi合金からなる表面層が形成され、当該表面層によってSiとリチウムシリケートとの反応が抑制されると共に、Siの結晶化が抑制される。
 負極活物質粒子10は、粒子12を包むリチウムシリケート相11よりも導電性の高い材料から構成される導電層14を粒子表面に有することが好適である。導電層14を構成する導電材料としては、電気化学的に安定なものが好ましく、炭素材料、金属、及び金属化合物からなる群より選択される少なくとも1種であることが好ましい。当該炭素材料には、正極合材層の導電材と同様に、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛、及びこれらの2種以上の混合物などを用いることができる。当該金属には、負極の電位範囲で安定な銅、ニッケル、及びこれらの合金などを用いることができる。当該金属化合物としては、銅化合物、ニッケル化合物等が例示できる(金属又は金属化合物の層は、例えば無電解めっきにより母粒子13の表面に形成できる)。中でも、炭素材料を用いることが特に好ましい。
 母粒子13の表面を炭素被覆する方法としては、アセチレン、メタン等を用いたCVD法、石炭ピッチ、石油ピッチ、フェノール樹脂等を母粒子13と混合し、熱処理を行う方法などが例示できる。また、カーボンブラック、ケッチェンブラック等を結着材を用いて母粒子13の表面に固着させることで炭素被覆層を形成してもよい。
 導電層14は、母粒子13の表面の略全域を覆って形成されることが好適である。導電層14の厚みは、導電性の確保と母粒子13へのリチウムイオンの拡散性を考慮して、1nm~200nmが好ましく、5nm~100nmがより好ましい。導電層14の厚みが薄くなり過ぎると、導電性が低下し、また母粒子13を均一に被覆することが難しくなる。一方、導電層14の厚みが厚くなり過ぎると、母粒子13へのリチウムイオンの拡散が阻害されて容量が低下する傾向にある。導電層14の厚みは、SEM又はTEMを用いた粒子の断面観察により計測できる。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、メチルエチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ-ブチロラクトン等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等の鎖状エーテル類などが挙げられる。
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiCF3CO2、Li(P(C24)F4)、LiPF6-x(Cn2n+1x(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li247、Li(B(C24)F2)等のホウ酸塩類、LiN(SO2CF32、LiN(C12l+1SO2)(Cm2m+1SO2){l,mは1以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPF6を用いることが好ましい。リチウム塩の濃度は、非水溶媒1L当り0.8~1.8molとすることが好ましい。
 [セパレータ]
 セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [負極活物質の作製]
 不活性雰囲気中で、Si粉末(3N、10μm粉砕品)及びFe粉末(高純度化学製、99.9%、3~5μm粉砕品)を40:3の質量比で混合し、遊星ボールミル(フリッチュ製、P-5)のポット(SUS製、容積:500mL)に充填した。当該ポットにSUS製ボール(直径20mm)を24個入れてフタを閉め、200rpmで10時間粉砕処理した。その後、不活性雰囲気で、粉砕処理した混合粉末に対してLi2SiO3粉末(10μm粉砕品)を43:57の質量比となるように追加投入し、200rpmで50時間粉砕処理した。その後、不活性雰囲気中で粉末を取り出し、温度600℃の条件で、不活性雰囲気・4時間の熱処理を行った。熱処理した粉末(以下、母粒子という)を粉砕し、40μmのメッシュに通した後、石炭ピッチ(JFEケミカル製、MCP250)と混合して、温度800℃の条件で、不活性雰囲気・5時間の熱処理を行い、母粒子の表面を炭素で被覆して導電層を形成した。炭素の被覆量は、母粒子、導電層を含む活物質粒子の総質量に対して5質量%である。その後、篩を用いて平均粒径を5μmに調整することにより負極活物質を得た。なお、Feの含有量は上記母粒子の総重量の3質量%である。
 [負極活物質の分析]
 上記負極活物質の粒子断面をSEMで観察した結果、Si粒子の平均粒径は200nm未満であった。また、Li2SiO3からなるマトリックス中に表面層が形成されたSi粒子が略均一に分散していることが確認された。
 図2は、上記負極活物質のXRDパターンを示す。負極活物質のXRDパターンには、主にSi、FeSi、及びLi2SiO3に由来する回析ピークが確認された。2θ=45°付近のFeSi合金の回析ピークの半値幅は0.546°、2θ=28°付近のSiの(111)面の回析ピークの半値幅は0.480°であった。また、2θ=27.0°付近に現れるLi2SiO3の面指数(111)の半値幅は0.233°であった。なお、2θ=25°にSiO2の回析ピークは観察されなかった。負極活物質A1をSi-NMRで測定した結果、SiO2の含有量は7質量%未満(検出下限値以下)であった。後述の実施例、比較例の各負極活物質についても同様に半値幅を求め、表1及び表2に示した。
 [負極の作製]
 次に、上記負極活物質及びポリアクリロニトリル(PAN)を、95:5の質量比で混合し、N-メチル-2-ピロリドン(NMP)を添加した後、混合機(シンキー製、あわとり練太郎)を用いて攪拌して、負極合材スラリーを調製した。そして、銅箔の片面に負極合材層の1m2当りの質量が25gとなるように当該スラリーを塗布し、大気中、105℃で塗膜を乾燥した後、圧延することにより負極を作製した。負極合材層の充填密度は、1.50g/cm3とした。
 [非水電解液の調製]
 エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)とを、3:7の体積比で混合した混合溶媒に、LiPF6を濃度が1.0mol/Lとなるように添加して非水電解液を調製した。
 [非水電解質二次電池の作製]
 不活性雰囲気中で、Niタブを取り付けた上記負極及びリチウム金属箔を、ポリエチレン製セパレータを介して対向配置させることにより電極体とした。当該電極体をアルミニウムラミネートフィルムで構成される電池外装体内に入れ、非水電解液を電池外装体内に注入し、電池外装体を封止して電池A1を作製した。
 実施例1及び後述の実施例、比較例の各電池について、以下の方法で評価を行った。評価結果は、負極活物質の分析結果と共に表1及び表2に示した。
 [充電容量比の評価]
 ・充電
 0.2Itの電流で電圧が0Vになるまで定電流充電を行い、その後0.05Itの電流で電圧が0Vになるまで定電流充電を行った。
 比較例1の電池B1の充電容量を100として、各電池の充電容量の比率(充電容量比)を算出した。
 充電容量比(%)=(各電池の充電容量/電池B1の充電容量)×100
 [容量維持率比(サイクル特性)の評価]
 ・充電
 0.2Itの電流で電圧が0Vになるまで定電流充電を行い、その後0.05Itの電流で電圧が0Vになるまで定電流充電を行った。
 ・放電
 0.2Itの電流で電圧が1.0Vになるまで定電流放電を行った。
 ・休止
 上記充電と上記放電との間の休止期間は10分とした。
 電池B1の20サイクル後の容量維持率を100として、各電池の20サイクル後の容量維持率の比率(容量維持率比)を算出した。
 容量維持率比(%)
  =(各電池の20サイクル後の容量維持率/電池B1の20サイクル後の容量維持率)×100
 [初回充放電効率の評価]
 上記サイクル特性評価の1サイクル目の充電容量に対する放電容量の割合を、初回充放電効率とした。
 初回充放電効率(%)
  =1サイクル目の放電容量/1サイクル目の充電容量×100
 [負極活物質粒子の外観評価(粒子崩壊の確認)]
 1サイクルの充放電(充放電条件は上記サイクル特性の評価と同様)を行った電池を不活性雰囲気下で分解した。分解した電池から負極を取り出し、不活性雰囲気下でクロスセクションポリッシャー(日本電子製)を用いて負極活物質断面を露出させ、当該断面をSEMで観察して粒子崩壊の有無を確認した。粒子断面において、元々1つの粒子が2個以上の微粒子に割れている状態を粒子崩壊と定義した。
 <実施例2>
 熱処理時間を800℃に変更したこと以外は、実施例1と同様の方法で負極活物質及び電池A2を作製した。
 <実施例3>
 Li2SiO3粉末を添加した後の粉砕時間を20時間にしたこと以外は、実施例1と同様の方法で負極活物質及び電池A3を作製した。
 <実施例4>
 Li2SiO3粉末を添加した後の粉砕時間を10時間にしたこと以外は、実施例1と同様の方法で負極活物質及び電池A4を作製した。
 <実施例5>
 Li2SiO3粉末に代えてLi2Si25粉末を添加したこと以外は、実施例1と同様の方法で負極活物質及び電池A5を作製した。
 <比較例1>
 Fe粉末を添加しなかったこと以外は、実施例1と同様の方法で負極活物質及び電池B1を作製した。
 <比較例2>
 熱処理温度を500℃に変更したこと以外は、実施例1と同様の方法で負極活物質及び電池B2を作製した。
 <比較例3>
 熱処理温度を850℃に変更したこと以外は、実施例1と同様の方法で負極活物質及び電池B3を作製した。
 <比較例4>
 熱処理時間を1000℃に変更したこと以外は、比較例1と同様の方法で負極活物質及び電池B4を作製した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の電池A1~A5はいずれも、容量維持率比が121%以上であり、比較例の電池B1~B4よりも優れたサイクル特性を有していた。また、電池A1~A5では、充放電による負極活物質の粒子崩壊がなく、高い充電容量と初回充放電効率が得られた。つまり、XRDパターンにおいて、2θ=45°付近のFeSi合金の回析ピークの半値幅が0.40°以上、且つ2θ=28°付近のSiの(111)面の回析ピークの半値幅が0.40°以上である負極活物質を用いることにより、充電容量及び初回充放電効率が高く、且つサイクル特性に優れた非水電解質二次電池を構築することができる。
 <実施例6>
 Fe粉末の添加量を5質量%に変更(Li2SiO3が55質量%)したこと以外は、実施例1と同様の方法で負極活物質及び電池A6を作製した。
 <実施例7>
 Fe粉末の添加量を6質量%に変更(Li2SiO3が54質量%)したこと以外は、実施例1と同様の方法で負極活物質及び電池A7を作製した。
 <実施例8>
 Fe粉末の添加量を0.5質量%に変更(Li2SiO3が59.5質量%)したこと以外は、実施例1と同様の方法で負極活物質及び電池A8を作製した。
 <実施例9>
 Fe粉末の添加量を0.02質量%に変更(Li2SiO3が59.98質量%)したこと以外は、実施例1と同様の方法で負極活物質及び電池A9を作製した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例の電池A6~A9(Fe含有量が0.02質量%~6質量%である場合)についても、充電容量及び初回充放電効率が高く、且つ優れたサイクル特性が得られた。中でも、Feの含有量が0.5質量%~5質量%である場合に特に良好な特性が得られた。
 10 負極活物質粒子、11 リチウムシリケート相、12 粒子、13 母粒子、14 導電層、15 コア粒子、16 表面層

Claims (8)

  1.  Li2zSiO(2+z){0<z<2}で表されるリチウムシリケート相と、
     前記リチウムシリケート相中に分散した粒子であって、シリコン(Si)からなるコア粒子及びSiを含有する鉄合金(FeSi合金)からなる表面層を含む粒子と、
     を備え、
     XRD測定により得られるXRDパターンにおいて、2θ=45°付近のFeSi合金の回析ピークの半値幅が0.40°以上、且つ2θ=28°付近のSiの(111)面の回析ピークの半値幅が0.40°以上である、非水電解質二次電池用負極活物質。
  2.  前記XRDパターンにおけるリチウムシリケートの(111)面の回析ピークの半値幅が0.05°以上である、請求項1に記載の非水電解質二次電池用負極活物質。
  3.  Feの含有量は、前記リチウムシリケート相と前記粒子とで構成される母粒子の総質量の5質量%以下である、請求項1又は2に記載の非水電解質二次電池用負極活物質。
  4.  前記XRDパターンの2θ=25°にSiO2の回析ピークが観察されない、請求項1~3のいずれか1項に記載の非水電解質二次電池用負極活物質。
  5.  前記コア粒子の平均粒径は、初回充電前において200nm以下である、請求項1~4のいずれか1項に記載の非水電解質二次電池用負極活物質。
  6.  前記リチウムシリケート相は、Li2SiO3及びLi2Si25の少なくとも一方からなる、請求項1~5のいずれか1項に記載の非水電解質二次電池用負極活物質。
  7.  前記リチウムシリケート相と前記粒子とで構成される母粒子の表面には、導電層が形成されている、請求項1~6のいずれか1項に記載の非水電解質二次電池用負極活物質。
  8.  請求項1~7のいずれか1項に記載の非水電解質二次電池用負極活物質を用いた負極と、正極と、非水電解質と、を備えた非水電解質二次電池。
PCT/JP2016/000219 2015-01-28 2016-01-18 非水電解質二次電池用負極活物質及び非水電解質二次電池 WO2016121323A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/526,041 US20170352881A1 (en) 2015-01-28 2016-01-18 Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2016571838A JP6613250B2 (ja) 2015-01-28 2016-01-18 非水電解質二次電池用負極活物質及び非水電解質二次電池
CN201680006574.7A CN107210436B (zh) 2015-01-28 2016-01-18 非水电解质二次电池用负极活性物质及非水电解质二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-014158 2015-01-28
JP2015014158 2015-01-28
JP2015214262 2015-10-30
JP2015-214262 2015-10-30

Publications (1)

Publication Number Publication Date
WO2016121323A1 true WO2016121323A1 (ja) 2016-08-04

Family

ID=56542948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000219 WO2016121323A1 (ja) 2015-01-28 2016-01-18 非水電解質二次電池用負極活物質及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US20170352881A1 (ja)
JP (1) JP6613250B2 (ja)
CN (1) CN107210436B (ja)
WO (1) WO2016121323A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087771A1 (ja) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2019151026A1 (ja) * 2018-01-30 2019-08-08 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
WO2019151016A1 (ja) * 2018-01-30 2019-08-08 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
US11380887B2 (en) 2018-10-24 2022-07-05 Toyota Jidosha Kabushiki Kaisha Anode active material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209266B2 (ja) * 2017-12-28 2023-01-20 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質
GB201911174D0 (en) * 2019-08-05 2019-09-18 Uea Enterprises Ltd Negative electrode material to a lithium ion battery
CN110752357B (zh) * 2019-10-16 2021-01-15 成都新柯力化工科技有限公司 一种锂电池多孔Fe基非晶态合金包覆硅负极及制备方法
CN111710845A (zh) * 2020-06-28 2020-09-25 贝特瑞新材料集团股份有限公司 硅氧复合负极材料及其制备方法和锂离子电池
CN114204006B (zh) * 2021-11-26 2024-01-30 博赛利斯(南京)有限公司 电池负极活性材料及其制备方法、电池负极以及二次电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222151A (ja) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP2013161705A (ja) * 2012-02-07 2013-08-19 Toyota Industries Corp 二次電池用活物質およびその製造方法
JP2014103019A (ja) * 2012-11-21 2014-06-05 Shin Etsu Chem Co Ltd 蓄電デバイス用負極材、蓄電デバイス用電極および蓄電デバイスならびにそれらの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790282B2 (ja) * 2010-09-30 2015-10-07 大同特殊鋼株式会社 リチウム二次電池用負極活物質およびリチウム二次電池用負極
JP5884573B2 (ja) * 2011-09-30 2016-03-15 大同特殊鋼株式会社 リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極
JP2013235685A (ja) * 2012-05-07 2013-11-21 Furukawa Electric Co Ltd:The リチウムイオン二次電池用負極材料およびそれを用いたリチウムイオン二次電池用負極、並びにそれを用いたリチウムイオン二次電池
CN103400971B (zh) * 2013-07-29 2016-07-06 宁德新能源科技有限公司 硅基复合材料及其制备方法以及其应用
JP2016062860A (ja) * 2014-09-22 2016-04-25 株式会社東芝 非水電解質二次電池用電極活物質およびそれを備えた非水電解質二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222151A (ja) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP2013161705A (ja) * 2012-02-07 2013-08-19 Toyota Industries Corp 二次電池用活物質およびその製造方法
JP2014103019A (ja) * 2012-11-21 2014-06-05 Shin Etsu Chem Co Ltd 蓄電デバイス用負極材、蓄電デバイス用電極および蓄電デバイスならびにそれらの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087771A1 (ja) * 2017-10-31 2019-05-09 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2019151026A1 (ja) * 2018-01-30 2019-08-08 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
WO2019151016A1 (ja) * 2018-01-30 2019-08-08 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
JPWO2019151016A1 (ja) * 2018-01-30 2021-01-07 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
JPWO2019151026A1 (ja) * 2018-01-30 2021-01-14 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
JP7182133B2 (ja) 2018-01-30 2022-12-02 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
JP7182132B2 (ja) 2018-01-30 2022-12-02 パナソニックIpマネジメント株式会社 二次電池用負極活物質及び二次電池
US12062788B2 (en) 2018-01-30 2024-08-13 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material for secondary cell, and secondary cell
US11380887B2 (en) 2018-10-24 2022-07-05 Toyota Jidosha Kabushiki Kaisha Anode active material

Also Published As

Publication number Publication date
CN107210436A (zh) 2017-09-26
JPWO2016121323A1 (ja) 2017-11-02
US20170352881A1 (en) 2017-12-07
JP6613250B2 (ja) 2019-11-27
CN107210436B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
US10312516B2 (en) Negative-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6833511B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP6685938B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP6847667B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP6613250B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP6685939B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2016136180A1 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池
WO2017051500A1 (ja) 非水電解質二次電池用負極活物質及び負極
JP7004764B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
CN111357138B (zh) 锂离子电池用负极活性物质和锂离子电池
JP6918638B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15526041

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016571838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742928

Country of ref document: EP

Kind code of ref document: A1