WO2016119987A1 - Motor-pumpen-aggregat für ein bremssystem - Google Patents

Motor-pumpen-aggregat für ein bremssystem Download PDF

Info

Publication number
WO2016119987A1
WO2016119987A1 PCT/EP2015/081321 EP2015081321W WO2016119987A1 WO 2016119987 A1 WO2016119987 A1 WO 2016119987A1 EP 2015081321 W EP2015081321 W EP 2015081321W WO 2016119987 A1 WO2016119987 A1 WO 2016119987A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
motor shaft
pump
magnetic
transducer
Prior art date
Application number
PCT/EP2015/081321
Other languages
English (en)
French (fr)
Inventor
Dirk Foerch
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2017557252A priority Critical patent/JP2018506957A/ja
Priority to EP15823340.3A priority patent/EP3251200B1/de
Priority to CN201580073284.XA priority patent/CN107208614A/zh
Priority to US15/542,288 priority patent/US11201525B2/en
Publication of WO2016119987A1 publication Critical patent/WO2016119987A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/16Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
    • B60T13/20Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs with control of pump driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3675Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units
    • B60T8/368Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/24Devices for sensing torque, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1208Angular position of the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0207Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed

Definitions

  • the invention relates to a motor-pump assembly for a brake system according to the preamble of independent patent claim 1.
  • the motor-pump unit comprises an electric motor, which comprises a motor shaft whose free end is designed as an eccentric output shaft which drives two radially opposite pump tappets, which are arranged in a pump housing.
  • independent claim 1 has the advantage that in addition to the available speed information, the actual position of the motor armature or the motor shaft can be detected without having to conduct additional electrical lines to the engine.
  • This rotary angle Linformation can be used in particular with electronically commutated DC motors.
  • Embodiments of the motor-pump assembly according to the invention make advantageous use of the special basic structure of the motor-pump unit, in which the electric motor and the control unit are flanged to the pump housing.
  • the electric motor and the control unit are flanged to the pump housing.
  • only a minor change to the motor shaft and in the control unit is made to detect angle information.
  • the information of the angle of rotation is detected by means of magnetic field lines, which change with the position of the armature or the motor shaft.
  • This influence of the magnetic field lines is detected by the sensor, evaluated and converted into a rotation angle information or speed information.
  • the conversion can be carried out by a separate evaluation and control unit or by a unit integrated in the sensor.
  • Embodiments of the present invention provide a motor-pump assembly for a brake system with an electric motor having a motor shaft that drives at least one fluid pump disposed in a pump housing.
  • a control device is arranged on the pump housing and adjusts a current rotational speed and / or a current torque of the electric motor.
  • the control unit detects a current rotational angle of the motor shaft contactlessly via a sensor arrangement, which comprises a measuring transducer and a magnetic measuring transducer, and evaluates it for driving the electric motor.
  • the transmitter is arranged at a free end of the motor shaft within the pump housing and, depending on the rotational movement of the motor shaft, influences at least one magnetic variable of a magnetic field detected by the magnetic transducer, which is arranged stationarily in the control device.
  • the fluid pump can be designed, for example, as a piston pump or as a gear pump.
  • the measures and refinements recited in the dependent claims advantageous improvements of the independent claim 1 motor-pump unit for a brake system are possible.
  • the magnetic transducer can have a permanent magnet, which can generate the magnetic field detected by the magnetic transducer.
  • the magnetization axis of the permanent magnet may preferably be parallel to the axis of the motor shaft.
  • To influence the magnetic field of the permanent magnet of the transmitter is designed as a geometric shape, which changes the "air gap" between the permanent magnet and the free end of the motor shaft by the rotational movement of the motor shaft, so that the field strength or the magnetic flux between the permanent magnet and the This change can be detected by the magnetic transducer, ie by the transducer, which responds to the changes in the magnetic field.
  • the geometric shape can be made as a blade which runs at the free end of the motor shaft perpendicular to the axis of the motor shaft
  • the geometrical shape can be embodied as a journal arranged eccentrically on the free end of the motor shaft.
  • the geometric shape embodied as a journal generates a sinusoidal signal in the transducer, the fundamental frequency of which corresponds to the rotational speed of the motor
  • the transmitter can be designed as a permanent magnet, which generates the magnetic field detected by the magnetic transducer.
  • the permanent magnet is mounted on the motor shaft in the motor production and preferably magnetized shortly before the assembly of the electric motor. This can be prevented in an advantageous manner that collect chips on the magnet on the transport path.
  • the magnetization axis of the permanent magnet can be perpendicular to the axis of the motor shaft.
  • the sensor detects the rotational position of the motor shaft based on the orientation of the magnetic field.
  • the senor can a Hall sensor for detecting the Have magnetic field changes. Hall sensors can be procured or produced in an advantageous manner in large quantities at low cost.
  • a housing of the control unit can be flanged to the pump housing.
  • Fig. 1 shows a schematic sectional view of a first embodiment of a motor-pump assembly according to the invention for a brake system.
  • FIG. 2 shows a schematic perspective illustration of the free end of a motor shaft of the motor / pump unit for a brake system from FIG. 1.
  • Fig. 3 shows a sectional view of the free end of the motor shaft of Fig. 2 in a first position.
  • FIG. 4 shows a sectional view of the free end of the motor shaft of Fig. 2 in a second position.
  • Fig. 5 shows a schematic sectional view of a second embodiment of a motor-pump assembly according to the invention for a brake system.
  • the exemplary embodiments of a motor-pump assembly 1, 1A according to the invention for a brake system each include an electric motor 3 which has a motor shaft 7, 7A which drives at least one fluid pump 5.
  • the at least one fluid pump 5 is arranged in a pump housing 4.
  • a control device 10, 10A is arranged on the pump housing 4 and adjusts a current rotational speed and / or a current torque of the electric motor 3.
  • the control unit 10, 10A detects a current rotation angle of the motor shaft 7, 7A via a sensor arrangement 12, 12A, which includes a measuring value transmitter 9, 9A and a magnetic measuring transducer 14, 14A, and evaluates this to actuate the electric motor 3.
  • the transmitter 9, 9A is disposed at a free end 7.2, 7.2A of the motor shaft 7, 7A within the pump housing 4 and influenced in response to the rotational movement of the motor shaft 7, 7A at least one magnetic variable of a detected by the magnetic transducer 14, 14A magnetic field , which is stationary in the control unit 10, 10A arranged.
  • the information of the rotation angle is detected on the basis of magnetic field lines which change with the position of the motor shaft 7, 7A or of the armature of the electric motor 3 connected to the motor shaft 7, 7A.
  • the motor shaft 7, 7A is the moving component of the electric motor 3, which comes closest to the control unit 10, 10A.
  • the influence of the magnetic field is detected by the magnetic transducer 14, 14A, evaluated and converted into a rotation angle signal or a speed signal.
  • the magnetic transducer 14, 14A each includes a Hall sensor 14.1, 14.1A, which detects the magnetic field changes.
  • the conversion can be carried out, for example, by an evaluation and control unit 16, 16A, which is arranged within the control unit 10, 10A on a corresponding printed circuit board 18, 18A and is electrically connected to the measuring sensor 14, 14A.
  • the Hall sensor 14, 14.1 can be integrated into the housing of an integrated circuit, which performs the evaluation and conversion.
  • the motor-pump unit 1, 1A according to the invention in the exemplary embodiments illustrated comprises in each case two fluid pumps 5 designed as piston pumps, each having an axially movable pump piston 5.1.
  • an eccentric 7.1, 7.1A is arranged on the motor shaft 7, 7A, on which abut the pump piston 5.1.
  • the two fluid pumps 5 of the motor-pump assembly 1, 1A according to the invention are arranged in corresponding radially opposite receiving bores in the pump housing 4.
  • the two pump piston 5.1 are in the illustration of Fig. 1 and 5 by the rotational movement of the motor shaft 7, 7A via the eccentric 7.1, 7.1A with a
  • the housing of the control unit 10, 10 A and the electric motor 3 are each flanged to the pump housing 4.
  • the pump housing 4 is therefore located as a hermetic separation between the electric motor 3 and the control unit 10, 10A.
  • the measurement of the angle of rotation of the motor shaft 3 thus takes place through the wall of the pump housing 4, which is preferably designed as an aluminum housing.
  • the fluid pumps 5 are each designed as a gear pump, which are driven by the motor shaft 7, 7A.
  • the magnetic transducer 14 has a permanent magnet 14.2 which generates the magnetic field detected by the magnetic transducer 14.
  • the Hall sensor 14. 1 of the measuring transducer 14 is arranged between the permanent magnet 14 and the measuring transducer 9 at the free end 7. 2 of the motor shaft 7.
  • the transducer 9 is designed as a geometric shape 9.1, which influences the magnetic field of the permanent magnet 14.2.
  • the magnetization axis of the permanent magnet 14.2 extends in an advantageous manner parallel to the axis of the motor shaft. 7
  • the geometric shape 9.1 of the transducer 9 in the illustrated first exemplary embodiment is designed as a blade, which runs perpendicular to the axis of the motor shaft 7 at the free end of the motor shaft 7.
  • FIG. 3 shows a first position of the motor shaft 7, which represents a rotation angle of 0 °.
  • Fig. 4 shows a second position of the motor shaft 7, which represents a rotation angle of 90 °.
  • the geometric shape 9.1 as ex- Centric at the free end of the motor shaft 7 arranged pins are executed.
  • the sensor 9A is designed as a permanent magnet 9.1A, which generates the magnetic field detected by the magnetic transducer 14A.
  • the magnetization axis of the permanent magnet 9.1A is perpendicular to the axis of the motor shaft 7A.
  • the Hall sensor 14.1A of the sensor 14A detects the rotational position of the motor shaft 7A based on the orientation of the corresponding magnetic field generated by the permanent magnet 9.1A.
  • the permanent magnet 9.1A is attached to the motor shaft 7A during motor production and is magnetized shortly before assembly of the electric motor 3. This can be prevented in an advantageous manner that accumulate chips on the magnet 9.1A on the transport.
  • Embodiments of the present invention provide a motor-pump assembly for a brake system in which the rotational angle information of the corresponding electric motor is advantageously detected without additional electrical connection to the electric motor.
  • the transmission of the angle information takes place only by the dependent of the motor shaft position change of magnetic field lines.
  • the magnetic change is preferably detected by means of Hall sensors at the free end of the motor shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft ein Motor-Pumpen-Aggregat (1) für ein Bremssystem mit einem Elektromotor (3), welcher eine Motorwelle (7) aufweist, welche mindestens eine Fluidpumpe (5) antreibt, welche in einem Pumpengehäuse (4) angeordnet ist. Erfindungsgemäß ist ein Steuergerät (10) am Pumpengehäuse (4) angeordnet und stellt eine aktuelle Drehzahl und/oder ein aktuelles Drehmoment des Elektromotors (3) ein, wobei das Steuergerät (10) über eine Sensoranordnung (12), welche einen Messwertgeber (9) und einen magnetischen Messwertaufnehmer (14) umfasst, einen aktuellen Drehwinkel der Motorwelle (7) berührungslos erfasst und zur Ansteuerung des Elektromotors (3) auswertet, wobei der Messwertgeber (9) an einem freien Ende (7.2) der Motorwelle (7) innerhalb des Pumpengehäuses (4) angeordnet ist und in Abhängigkeit von der Drehbewegung der Motorwelle (7) mindestens eine magnetische Größe eines von dem magnetischen Messwertaufnehmer (14) erfassten Magnetfelds beeinflusst, welcher ortsfest im Steuergerät (10) angeordnet ist.

Description

Beschreibung
Titel
Motor-Pumpen-Aggregat für ein Bremssystem Die Erfindung geht aus von einem Motor-Pumpen-Aggregat für ein Bremssystem nach der Gattung des unabhängigen Patentanspruchs 1.
Bei bekannten Bremssystemen mit ESP- und/oder ABS-Funktionalität (ESP: Elektronisches Stabilitätsprogramm, ABS: Antiblockiersystem) wird in der Regel ein Gleichstrommotor eingesetzt, um über einen Exzenter zwei hydraulische
Pumpen zur Förderung von Bremsflüssigkeit zu betreiben. In der Regel handelt es sich hierbei um drehzahlgeregelte oder vollangesteuerte Gleichstrommotoren. Die Drehzahlerfassung erfolgt dabei anhand der vom Motor selbst induzierten generatorischen Spannung in der nicht bestromten Phase der Ansteuerung.
Aus der DE 197 33 147 Cl ist beispielsweise ein Motor-Pumpen-Aggregat für ein Kraftfahrzeugbremssystem mit einer ABS-Funktionalität bekannt. Das Motor- Pumpen-Aggregat umfasst einen Elektromotor, welcher eine Motorwelle umfasst, deren freies Ende als Exzenter-Abtriebswelle ausgeführt ist, welche zwei radial gegenüberliegende Pumpenstößel antreibt, welche in einem Pumpengehäuse angeordnet sind.
Offenbarung der Erfindung Das erfindungsgemäße Motor-Pumpen-Aggregat für ein Bremssystem mit den
Merkmalen des unabhängigen Patentanspruchs 1 hat demgegenüber den Vorteil, dass zusätzlich zur verfügbaren Drehzahlinformation die tatsächliche Position des Motorankers bzw. der Motorwelle erfasst werden kann, ohne dabei zusätzliche elektrische Leitungen zum Motor führen zu müssen. Diese Drehwinke- linformation kann insbesondere bei elektronisch kommutierten Gleichstrommotoren eingesetzt werden.
Ausführungsformen des erfindungsgemäßen Motor-Pumpen-Aggregats nutzen in vorteilhafter Weise den speziellen grundsätzlichen Aufbau des Motor-Pumpen- Aggregats aus, bei welchem der Elektromotor und das Steuergerät jeweils am Pumpengehäuse angeflanscht sind. Um teure zusätzliche Leitungen in den Innenraum des Elektromotors zu vermeiden, wird zur Erfassung von Drehwinkelinformationen lediglich eine kleinere Änderung an der Motorwelle und im Steuergerät vorgenommen. Die Information des Drehwinkels wird anhand von Magnetfeldlinien erfasst, welche sich mit der Position des Ankers bzw. der Motorwelle verändern. Diese Beeinflussung der Magnetfeldlinien wird vom Sensor erfasst, ausgewertet und in eine Drehwinkelinformation bzw. Drehzahlinformation umgerechnet. Die Umrechnung kann dabei von einer separaten Auswerte- und Steuereinheit oder von einer in den Messwertaufnehmer integrierten Einheit durchgeführt werden.
Ausführungsformen der vorliegenden Erfindung stellen ein Motor-Pumpen- Aggregat für ein Bremssystem mit einem Elektromotor zur Verfügung, welcher eine Motorwelle aufweist, welche mindestens eine Fluidpumpe antreibt, welche in einem Pumpengehäuse angeordnet ist. Erfindungsgemäß ist ein Steuergerät am Pumpengehäuse angeordnet und stellt eine aktuelle Drehzahl und/oder ein aktuelles Drehmoment des Elektromotors ein. Hierbei erfasst das Steuergerät über eine Sensoranordnung, welche einen Messwertgeber und einen magnetischen Messwertaufnehmer umfasst, berührungslos einen aktuellen Drehwinkel der Motorwelle und wertet diesen zur Ansteuerung des Elektromotors aus. Der Messwertgeber ist an einem freien Ende der Motorwelle innerhalb des Pumpengehäuses angeordnet und beeinflusst in Abhängigkeit von der Drehbewegung der Motorwelle mindestens eine magnetische Größe eines von dem magnetischen Messwertaufnehmer erfassten Magnetfelds, welcher ortsfest im Steuergerät angeordnet ist.
Die Fluidpumpe kann beispielsweise als Kolbenpumpe oder als Zahnradpumpe ausgeführt werden. Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen des im unabhängigen Patentanspruch 1 angegebenen Motor-Pumpen-Aggregats für ein Bremssystem möglich.
Besonders vorteilhaft ist, dass der magnetische Messwertaufnehmer einen Permanentmagneten aufweisen kann, welcher das von dem magnetischen Messwertaufnehmer erfasste Magnetfeld erzeugen kann. Die Magnetisierungsachse des Permanentmagneten kann vorzugsweise parallel zur Achse der Motorwelle liegen. Zur Beeinflussung des Magnetfelds des Permanentmagneten ist der Messwertgeber als geometrische Form ausgeführt, welche durch die Drehbewegung der Motorwelle den„Luftspalt" zwischen dem Permanentmagneten und dem freien Ende der Motorwelle verändert, so dass sich die Feldstärke bzw. der magnetische Fluss zwischen dem Permanentmagneten und der Motorwelle ebenfalls verändert. Diese Änderung kann von dem magnetischen Messwertaufnehmer, d.h. von dem Messwertaufnehmer, welcher auf die Magnetfeldänderungen reagiert, erfasst werden. Die geometrische Form kann beispielsweise als Klinge ausgeführt werden, welche am freien Ende der Motorwelle senkrecht zur Achse der Motorwelle verläuft. Alternativ kann die geometrische Form als exzentrisch am freien Ende der Motorwelle angeordneter Zapfen ausgeführt werden. Die als Zapfen ausgeführte geometrische Form erzeugt im Messwertaufnehmer ein Sinussignal, dessen Grundfrequenz der Drehzahl der Motorwelle entspricht.
In alternativer Ausgestaltung des erfindungsgemäßen Motor-Pumpen-Aggregats kann der Messwertgeber als Permanentmagnet ausgeführt werden, welcher das von dem magnetischen Messwertaufnehmer erfasste Magnetfeld erzeugt. Der Permanentmagnet wird bei der Motorherstellung an der Motorwelle angebracht und vorzugsweise erst kurz vor der Montage des Elektromotors magnetisiert. Dadurch kann in vorteilhafter Weise verhindert werden, dass sich auf dem Transportweg Späne am Magneten sammeln. Die Magnetisierungsachse des Permanentmagneten kann senkrecht zur Achse der Motorwelle liegen. Der Messwertaufnehmer erkennt die Drehstellung der Motorwelle anhand der Ausrichtung des Magnetfelds.
In weiterer vorteilhafter Ausgestaltung des erfindungsgemäßen Motor-Pumpen- Aggregats kann der Messwertaufnehmer einen Hallsensor zur Erfassung der Magnetfeldänderungen aufweisen. Hallsensoren können in vorteilhafter Weise in großer Stückzahl kostengünstig beschafft bzw. hergestellt werden.
In weiterer vorteilhafter Ausgestaltung des erfindungsgemäßen Motor-Pumpen- Aggregats kann ein Gehäuse des Steuergeräts an das Pumpengehäuses angeflanscht werden.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. In den Zeichnungen bezeichnen gleiche Bezugszeichen Komponenten bzw. Elemente, die gleiche bzw. analoge Funktionen ausführen.
Kurze Beschreibung der Zeichnungen
Fig. 1 zeigt eine schematische Schnittdarstellung eines ersten Ausführungsbeispiels eines erfindungsgemäßen Motor-Pumpen-Aggregats für ein Bremssystem.
Fig. 2 zeigt eine schematische perspektivische Darstellung des freien Endes einer Motorwelle des Motor-Pumpen-Aggregats für ein Bremssystem aus Fig. 1.
Fig. 3 zeigt eine Schnittdarstellung des freien Endes der Motorwelle aus Fig. 2 in einer ersten Stellung.
Fig.4 zeigt eine Schnittdarstellung des freien Endes der Motorwelle aus Fig. 2 in einer zweiten Stellung.
Fig. 5 zeigt eine schematische Schnittdarstellung eines zweiten Ausführungsbeispiels eines erfindungsgemäßen Motor-Pumpen-Aggregats für ein Bremssystem.
Ausführungsformen der Erfindung
Wie aus Fig. 1 bis 5 ersichtlich ist, umfassen die dargestellten Ausführungsbeispiele eines erfindungsgemäßen Motor-Pumpen-Aggregats 1, lA für ein Bremssystem jeweils einen Elektromotor 3, welcher eine Motorwelle 7, 7A aufweist, welche mindestens eine Fluidpumpe 5 antreibt. Die mindestens eine Fluidpumpe 5 ist in einem Pumpengehäuse 4 angeordnet. Erfindungsgemäß ist ein Steuergerät 10, 10A am Pumpengehäuse 4 angeordnet und stellt eine aktuelle Drehzahl und/oder ein aktuelles Drehmoment des Elektromotors 3 ein. Hierbei erfasst das Steuergerät 10, 10A über eine Sensoranordnung 12, 12A, welche einen Mess- wertgeber 9, 9A und einen magnetischen Messwertaufnehmer 14, 14A umfasst, berührungslos einen aktuellen Drehwinkel der Motorwelle 7, 7A und wertet diesen zur Ansteuerung des Elektromotors 3 aus. Der Messwertgeber 9, 9A ist an einem freien Ende 7.2, 7.2A der Motorwelle 7, 7A innerhalb des Pumpengehäuses 4 angeordnet und beeinflusst in Abhängigkeit von der Drehbewegung der Motorwelle 7, 7A mindestens eine magnetische Größe eines von dem magnetischen Messwertaufnehmer 14, 14A erfassten Magnetfelds, welcher ortsfest im Steuergerät 10, 10A angeordnet ist. Somit wird die Information des Drehwinkels anhand von Magnetfeldlinien erfasst, welche sich mit der Position der Motorwelle 7, 7A bzw. des mit der Motorwelle 7, 7A verbundenen Ankers des Elektromotors 3 verändern.
Wie aus Fig. 1 und 5 weiter ersichtlich ist, ist die Motorwelle 7, 7A das bewegte Bauteil des Elektromotors 3, welches dem Steuergerät 10 ,10A am nächsten kommt. Die Beeinflussung des Magnetfelds wird von dem magnetischen Mess- wertaufnehmer 14, 14A erfasst, ausgewertet und in ein Drehwinkelsignal bzw. ein Drehzahlsignal umgerechnet. In den dargestellten Ausführungsbeispielen umfasst der magnetische Messwertaufnehmer 14, 14A jeweils einen Hallsensor 14.1, 14.1A, welcher die Magnetfeldänderungen erfasst. Die Umrechnung kann beispielsweise von einer Auswerte- und Steuereinheit 16, 16A durchgeführt wer- den, welche innerhalb des Steuergeräts 10, 10A auf einer entsprechenden Leiterplatte 18, 18A angeordnet und elektrisch mit dem Messwertaufnehmer 14, 14A verbunden ist. Bei einem alternativen nicht dargestellten Ausführungsbeispiel kann der Hallsensor 14, 14.1 in das Gehäuse eines integrierten Schaltkreises integriert werden, welcher die Auswertung und Umrechnung durchführt.
Wie aus Fig. 1 und 5 weiter ersichtlich ist, umfasst das erfindungsgemäßen Motor-Pumpen-Aggregat 1, 1A in den dargestellten Ausführungsbeispielen jeweils zwei als Kolbenpumpen ausgeführte Fluidpumpen 5, welche jeweils einen axial beweglichen Pumpenkolben 5.1 aufweisen. Zum Antreiben der Pumpenkolben 5.1 ist an der Motorwelle 7, 7A ein Exzenter 7.1, 7.1A angeordnet, an welchem die Pumpenkolben 5.1 anliegen. Die beiden Fluidpumpen 5 des erfindungsge- mäßen Motor-Pumpen-Aggregats 1, 1A sind in entsprechenden einander radial gegenüberliegenden Aufnahmebohrungen im Pumpengehäuse 4 angeordnet. Die beiden Pumpenkolben 5.1 werden in der Darstellung von Fig. 1 bzw. 5 durch die Drehbewegung der Motorwelle 7, 7A über den Exzenter 7.1, 7.1A mit einer
Auf-Ab-Bewegung angetrieben. Zudem sind das Gehäuse des Steuergeräts 10, 10A und der Elektromotor 3 jeweils an das Pumpengehäuses 4 angeflanscht. Das Pumpengehäuse 4 liegt daher als hermetische Trennung zwischen dem Elektromotor 3 und dem Steuergerät 10, 10A. Die Messung des Drehwinkels der Motorwelle 3 erfolgt somit durch die Wandung des Pumpengehäuses 4 hindurch, das vorzugsweise als Aluminiumgehäuse ausgeführt ist.
Bei einem alternativen nicht dargestellten Ausführungsbeispiel der Erfindung sind die Fluidpumpen 5 jeweils als Zahnradpumpe ausgeführt, welche von der Motor- welle 7, 7A angetrieben werden.
Wie aus Fig. 1 bis 4 weiter ersichtlich ist, weist der magnetische Messwertaufnehmer 14 im ersten Ausführungsbeispiel des erfindungsgemäßen Motor- Pumpen-Aggregats 1 für ein Bremssystem einen Permanentmagneten 14.2 auf, welcher das von dem magnetischen Messwertaufnehmer 14 erfasste Magnetfeld erzeugt. Wie aus Fig. 1 weiter ersichtlich ist, ist der Hallsensor 14.1 des Messwertaufnehmers 14 zwischen dem Permanentmagneten 14 und dem Messwertgeber 9 am freien Ende 7.2 der Motorwelle 7 angeordnet. Der Messwertgeber 9 ist als geometrische Form 9.1 ausgeführt, welche das Magnetfeld des Perma- nentmagneten 14.2 beeinflusst. Die Magnetisierungsachse des Permanentmagneten 14.2 verläuft in vorteilhafter Weise parallel zur Achse der Motorwelle 7.
Wie aus Fig. 1 bis 4 weiter ersichtlich ist, ist die geometrische Form 9.1 des Messwertgebers 9 im dargestellten ersten Ausführungsbeispiel als Klinge ausge- führt, welche am freien Ende der Motorwelle 7 senkrecht zur Achse der Motorwelle 7 verläuft. Hierbei zeigt Fig. 3 eine erste Stellung der Motorwelle 7, welche einen Drehwinkel von 0° repräsentiert. Fig. 4 zeigt eine zweite Stellung der Motorwelle 7, welche einen Drehwinkel von 90° repräsentiert. Bei einem alternativen nicht dargestellten Ausführungsbeispiel kann die geometrische Form 9.1 als ex- zentrisch am freien Ende der Motorwelle 7 angeordneter Zapfen ausgeführt werden.
Wie aus Fig. 5 weiter ersichtlich ist, ist der Messwertgeber 9A im dargestellten zweiten Ausführungsbeispiel des erfindungsgemäßen Motor-Pumpen-Aggregats 1A als Permanentmagnet 9.1A ausgeführt, welcher das von dem magnetischen Messwertaufnehmer 14A erfasste Magnetfeld erzeugt. Hierbei liegt die Magnetisierungsachse des Permanentmagneten 9.1A senkrecht zur Achse der Motorwelle 7A. Der Hallsensor 14.1A des Messwertaufnehmers 14A erkennt die Drehstellung der Motorwelle 7A anhand der Ausrichtung des korrespondierenden vom Permanentmagneten 9.1A erzeugten Magnetfelds. Der Permanentmagnet 9.1A wird bei der Motorherstellung an der Motorwelle 7A angebracht und erst kurz vor der Montage des Elektromotors 3 magnetisiert. Dadurch kann in vorteilhafter Weise verhindert werden, dass sich auf dem Transportweg Späne am Magneten 9.1A sammeln.
Ausführungsformen der vorliegenden Erfindung stellen ein Motor-Pumpen- Aggregat für ein Bremssystem zur Verfügung, bei welchem die Drehwinkelinformationen des korrespondierenden Elektromotors in vorteilhafter Weise ohne zusätzliche elektrische Verbindung zum Elektromotor erfasst werden. Die Übertragung der Winkelinformation erfolgt dabei nur durch die von der Motorwellenposition abhängige Veränderung von Magnetfeldlinien. Die magnetische Veränderung wird vorzugsweise über Hallsensoren am freien Ende der Motorwelle erfasst.

Claims

Ansprüche
1. Motor-Pumpen-Aggregat (1, 1A) für ein Bremssystem mit einem Elektromotor (3), welcher eine Motorwelle (7, 7A) aufweist, welche mindestens eine Fluidpumpe (5) antreibt, welche in einem Pumpengehäuse (4) angeordnet ist, dadurch gekennzeichnet, dass ein Steuergerät (10, 10A) am Pumpengehäuse (4) angeordnet ist und eine aktuelle Drehzahl und/oder ein aktuelles Drehmoment des Elektromotors (3) einstellt, wobei das Steuergerät (10, 10A) über eine Sensoranordnung (12, 12A), welche einen Messwertgeber (9, 9A) und einen magnetischen Messwertaufnehmer (14, 14A) umfasst, einen aktuellen Drehwinkel der Motorwelle (7, 7A) berührungslos erfasst und zur Ansteuerung des Elektromotors (3) auswertet, wobei der Messwertgeber (9, 9A) an einem freien Ende (7.2, 7.2A) der Motorwelle (7, 7A) innerhalb des Pumpengehäuses (4) angeordnet ist und in Abhängigkeit von der Drehbewegung der Motorwelle (7, 7A) mindestens eine magnetische Größe eines von dem magnetischen Messwertaufnehmer (14, 14A) erfassten Magnetfelds beein- flusst, welcher ortsfest im Steuergerät (10, 10A) angeordnet ist.
2. Motor-Pumpen-Aggregat nach Anspruch 1, dadurch gekennzeichnet, dass der magnetische Messwertaufnehmer (14) einen Permanentmagneten (14.2) aufweist, welcher das von dem magnetischen Messwertaufnehmer (14) erfasste Magnetfeld erzeugt.
3. Motor-Pumpen-Aggregat nach Anspruch 2, dadurch gekennzeichnet, dass die Magnetisierungsachse des Permanentmagneten (14.2) parallel zur Achse der Motorwelle (7) liegt.
4. Motor-Pumpen-Aggregat nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Messwertgeber (9) als geometrische Form (9.1) aus- geführt, welche das Magnetfeld des Permanentmagneten (14.2) beein- flusst.
Motor-Pumpen-Aggregat nach Anspruch 4, dadurch gekennzeichnet, dass die geometrische Form (9.1) als Klinge ausgeführt ist, welche am freien Ende der Motorwelle (7) senkrecht zur Achse der Motorwelle (7) verläuft.
Motor-Pumpen-Aggregat nach Anspruch 4, dadurch gekennzeichnet, dass die geometrische Form (9.1) als exzentrisch am freien Ende der Motorwelle (7) angeordneter Zapfen ausgeführt ist.
Motor-Pumpen-Aggregat nach Anspruch 1, dadurch gekennzeichnet, dass der Messwertgeber (9A) als Permanentmagnet (9.1A) ausgeführt ist, welcher das von dem magnetischen Messwertaufnehmer (14A) er- fasste Magnetfeld erzeugt.
Motor-Pumpen-Aggregat nach Anspruch 7, dadurch gekennzeichnet, dass die Magnetisierungsachse des Permanentmagneten (9.1A) senkrecht zur Achse der Motorwelle (7A) liegt.
Sensoreinheit nach einem der Ansprüche 1 bis 8, dadurch gekennzeich net, dass der magnetische Messwertaufnehmer (14, 14A) einen Hallsensor umfasst.
Sensoreinheit nach einem der Ansprüche 1 bis 9, dadurch gekennzeich net, dass ein Gehäuse des Steuergeräts (10, 10A) an das Pumpengehäuses (4) angeflanscht ist.
PCT/EP2015/081321 2015-01-28 2015-12-29 Motor-pumpen-aggregat für ein bremssystem WO2016119987A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017557252A JP2018506957A (ja) 2015-01-28 2015-12-29 ブレーキシステム用のモータポンプ装置
EP15823340.3A EP3251200B1 (de) 2015-01-28 2015-12-29 Motor-pumpen-aggregat für ein bremssystem
CN201580073284.XA CN107208614A (zh) 2015-01-28 2015-12-29 用于制动系统的马达‑泵‑机组
US15/542,288 US11201525B2 (en) 2015-01-28 2015-12-29 Motor and pump assembly for a brake system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015201411.8A DE102015201411A1 (de) 2015-01-28 2015-01-28 Motor-Pumpen-Aggregat für ein Bremssystem
DE102015201411.8 2015-01-28

Publications (1)

Publication Number Publication Date
WO2016119987A1 true WO2016119987A1 (de) 2016-08-04

Family

ID=55085636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/081321 WO2016119987A1 (de) 2015-01-28 2015-12-29 Motor-pumpen-aggregat für ein bremssystem

Country Status (6)

Country Link
US (1) US11201525B2 (de)
EP (1) EP3251200B1 (de)
JP (2) JP2018506957A (de)
CN (1) CN107208614A (de)
DE (1) DE102015201411A1 (de)
WO (1) WO2016119987A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017190977A1 (de) * 2016-05-03 2017-11-09 Robert Bosch Gmbh Aktuatoreinrichtung für ein fahrzeug, bremssystem
DE102017210426A1 (de) * 2017-06-21 2018-12-27 Conti Temic Microelectronic Gmbh Pumpe, insbesondere Getriebeölpumpe

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10379082B2 (en) * 2016-12-15 2019-08-13 Caterpillar Inc. System for monitoring machine fluids by measuring fluctuations in a magnetic field
DE102017218648A1 (de) * 2017-10-19 2019-04-25 Robert Bosch Gmbh Antriebsaggregat, insbesondere Hydraulikaggregat einer elektronisch schlupfregelbaren Fahrzeugbremsanlage
CN108407793B (zh) * 2018-05-17 2023-11-03 昆山市兴利车辆科技配套有限公司 汽车制动主缸位置传感器
JP6898888B2 (ja) * 2018-06-29 2021-07-07 日立Astemo株式会社 ブレーキ制御装置
CN112385126A (zh) 2018-07-10 2021-02-19 罗伯特·博世有限公司 用于直流电机的转子位置传感器
JP2020076387A (ja) * 2018-11-09 2020-05-21 日本電産トーソク株式会社 電動オイルポンプ
JP6771604B2 (ja) * 2019-02-06 2020-10-21 三菱電機株式会社 制御装置一体型回転電機
DE102019205193A1 (de) 2019-04-11 2020-10-15 Robert Bosch Gmbh Messwertgeber für eine magnetische Messvorrichtung
DE102019113549A1 (de) * 2019-05-21 2020-11-26 Valeo Systèmes d'Essuyage Verfahren zur Erfassung der Drehwinkelpositionen von drehenden Teilen eines Scheibenwischermotors und Scheibenwischermotor
DE102019210067A1 (de) 2019-07-09 2021-01-14 Robert Bosch Gmbh Messvorrichtung für eine Sensoranordnung zur berührungslosen Erfassung einer Bewegung eines Körpers
DE102019122942B4 (de) * 2019-08-27 2022-12-08 Volkswagen Aktiengesellschaft Kraftstoffversorgungssystem mit mindestens einer Magnetvorrichtung zur Detektion und Rückhaltung magnetischer Partikel zum Schutz des Systems und seiner Komponenten
CN110469502B (zh) * 2019-09-05 2021-04-13 兰州理工大学 一种气隙非浸油式内啮合齿轮电机泵
KR20220159552A (ko) * 2021-05-25 2022-12-05 현대모비스 주식회사 브레이크 시스템의 펌프하우징 레이아웃
CN113565737A (zh) * 2021-05-28 2021-10-29 南京真空泵厂有限公司 一种基于5g通信的机械故障自检式智能真空泵
DE102021119564B4 (de) 2021-07-28 2023-03-16 Nidec Gpm Gmbh Fluidpumpe, insbesondere Flüssigfluidpumpe und Kraftfahrzeug aufweisend die Fluidpumpe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19733147C1 (de) 1997-07-31 1998-11-05 Siemens Ag Motor-Pumpen-Aggregat, insbesondere für eine Kraftfahrzeug-Antiblockiblockier-Bremsvorrichtung
WO2002060734A1 (de) * 2001-02-02 2002-08-08 Continental Teves Ag & Co. Ohg Aggregat für eine elektronisch geregelte bremsanlage
JP2007028811A (ja) * 2005-07-19 2007-02-01 Hitachi Ltd ブレーキ制御装置
US20110181221A1 (en) * 2008-10-03 2011-07-28 Nidec Corporation Motor
DE102011017011A1 (de) * 2010-04-30 2011-11-03 Conti Temic Microelectronic Gmbh Hydraulische Fördereinrichtung und elektrohydraulisches Steuerungsmodul
DE102011079657A1 (de) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Elektromotor mit einem Rotorpositionsmagnet
US20140265169A1 (en) * 2013-03-15 2014-09-18 Levant Power Corporation Integrated active suspension smart valve
US20140294625A1 (en) * 2013-03-15 2014-10-02 Levant Power Corporation Contactless sensing of a fluid-immersed electric motor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735181A (en) * 1980-08-09 1982-02-25 Toyoda Autom Loom Works Ltd Driving force control device for compressor
JPH0192526A (ja) * 1987-09-30 1989-04-11 Isuzu Motors Ltd 回転電機付ターボチャージャ
JPH0755415A (ja) 1993-08-20 1995-03-03 Asmo Co Ltd 駆動モータの回転検出装置
JP4352189B2 (ja) * 1998-08-20 2009-10-28 株式会社安川電機 磁気式エンコーダおよび磁気式エンコーダ付モータ
WO2001059288A2 (en) * 2000-02-09 2001-08-16 Parker Hannifin Corporation Integrated pump unit
DE60124332D1 (de) * 2000-03-07 2006-12-21 Matsushita Electric Ind Co Ltd Flüssigkeitsspender
JP4091247B2 (ja) * 2000-12-07 2008-05-28 カルソニックカンセイ株式会社 ブラシレスモータ
JP2002310609A (ja) 2001-04-16 2002-10-23 Mitsubishi Electric Corp 回転角度検出装置
JP2003070203A (ja) 2001-08-24 2003-03-07 Kokusan Denki Co Ltd ポンプ駆動用直流電動機
DE102005012250A1 (de) * 2005-03-15 2006-09-21 Bosch Rexroth Aktiengesellschaft Vorrichtung für den Schutz von Elektromotoren
DE102005040647A1 (de) * 2005-08-27 2007-03-08 Valeo Systèmes d`Essuyage Elektromotorischer Hilfsantrieb für Fahrzeuge
JP2007292511A (ja) 2006-04-21 2007-11-08 Jtekt Corp 位置検出装置及び電動パワーステアリング用モータ
JP4921854B2 (ja) * 2006-05-30 2012-04-25 東洋電装株式会社 ジョイスティック型スイッチ装置
JP2008175090A (ja) * 2007-01-16 2008-07-31 Mitsuba Corp 電動ポンプ
CN101088799A (zh) * 2007-07-20 2007-12-19 王琨 电动车的小型一体化传感控制装置
EP2476928A1 (de) * 2011-01-18 2012-07-18 Pierburg Pump Technology Italy S.p.A. Fluidikpumpe für Automobil
JP2013090532A (ja) * 2011-10-21 2013-05-13 Mitsuba Corp ブラシレスモータ
CN102645547B (zh) 2012-04-20 2015-07-08 株洲电力机车电机修造有限公司 一种速度传感器和一种牵引电机转子测速系统
JP2013257231A (ja) * 2012-06-13 2013-12-26 Jtekt Corp 回転角センサ
JP5996464B2 (ja) * 2013-03-21 2016-09-21 日立オートモティブシステムズ株式会社 回転角検出装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19733147C1 (de) 1997-07-31 1998-11-05 Siemens Ag Motor-Pumpen-Aggregat, insbesondere für eine Kraftfahrzeug-Antiblockiblockier-Bremsvorrichtung
WO2002060734A1 (de) * 2001-02-02 2002-08-08 Continental Teves Ag & Co. Ohg Aggregat für eine elektronisch geregelte bremsanlage
JP2007028811A (ja) * 2005-07-19 2007-02-01 Hitachi Ltd ブレーキ制御装置
US20110181221A1 (en) * 2008-10-03 2011-07-28 Nidec Corporation Motor
DE102011017011A1 (de) * 2010-04-30 2011-11-03 Conti Temic Microelectronic Gmbh Hydraulische Fördereinrichtung und elektrohydraulisches Steuerungsmodul
DE102011079657A1 (de) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Elektromotor mit einem Rotorpositionsmagnet
US20140265169A1 (en) * 2013-03-15 2014-09-18 Levant Power Corporation Integrated active suspension smart valve
US20140294625A1 (en) * 2013-03-15 2014-10-02 Levant Power Corporation Contactless sensing of a fluid-immersed electric motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017190977A1 (de) * 2016-05-03 2017-11-09 Robert Bosch Gmbh Aktuatoreinrichtung für ein fahrzeug, bremssystem
DE102017210426A1 (de) * 2017-06-21 2018-12-27 Conti Temic Microelectronic Gmbh Pumpe, insbesondere Getriebeölpumpe
DE102017210426B4 (de) 2017-06-21 2024-06-27 Vitesco Technologies Germany Gmbh Pumpe, insbesondere Getriebeölpumpe

Also Published As

Publication number Publication date
US11201525B2 (en) 2021-12-14
CN107208614A (zh) 2017-09-26
JP2018506957A (ja) 2018-03-08
DE102015201411A1 (de) 2016-07-28
JP7101714B2 (ja) 2022-07-15
EP3251200B1 (de) 2019-12-18
JP2020120576A (ja) 2020-08-06
EP3251200A1 (de) 2017-12-06
US20180269751A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
EP3251200B1 (de) Motor-pumpen-aggregat für ein bremssystem
DE102006032780A1 (de) Elektromotorischer Antrieb mit einem rotorseitig angeordneten Drehgeber
EP3515773A1 (de) Elektrohydraulisches kraftfahrzeugsteuergerät
WO2015067497A2 (de) Elektromaschine
WO2016041556A1 (de) Sensorikeinheit zur bestimmung einer rotorlage eines elektromotors und ein elektromotor, vozugsweise für einen kupplungsaktor eines kupplungsbetätigungssystems eines kraftfahrzeuges
DE102012100829A1 (de) Einrichtung zur Erfassung der Winkellage einer Welle eines Elektromotors und Scheibenwischermotor mit einer Einrichtung zur Erfassung der Winkellage
WO2012059248A1 (de) Elektromotorische kfz-flüssigkeits-förderpumpe
EP3452345B1 (de) Aktuatoreinrichtung für ein fahrzeug, bremssystem
DE102006056906A1 (de) Sensoranordnung zur Bestimmung eines Absolutwinkels
EP0998658A1 (de) Magnetischer positionssensor
WO2017182191A1 (de) Bürstenloser gleichstrommotor und verfahren zur bereitstellung eines winkelsignals
DE102014208527A1 (de) Verfahren zum Steuern einer elektronisch kommutierten Elektromotors
EP3645980B1 (de) Verfahren und vorrichtung zur justierung einer position eines magneten zu einem gmr-sensor
WO2014095878A1 (de) Sensorvorrichtung mit einer drehmomentsensoreinrichtung und einer lenkwinkelsensoreinrichtung für eine lenkwelle, welche ein lenkradseitiges eingangswellenteil und ein ausgangswellenteil aufweist, lenkwellenvorrichtung für ein kraftfahrzeug, kraftfahrzeug und verfahren zum herstellen einer lenkwellenvorrichtung
DE10216597B4 (de) Lenkung mit elektrischer Lenkhilfe
WO2021121897A1 (de) Ventilvorrichtung
EP2704299A1 (de) Elektromotorische Kfz-Flüssigkeits-Förderpumpe
DE102012109119A1 (de) Anregungsbasierte Vorrichtung zur Erfassung von Informationen über Lenkvorgänge und das Erfassungsverfahren dafür
DE102013201241A1 (de) Verfahren und Einrichtung zur Bestimmung der Position des Rotors bei einem bürstenlosen Gleichstrommotor
DE102017005420B4 (de) Bestimmung der Rotorlage eines Elektromotors
DE102009009085A1 (de) Positionssensoreinrichtung
WO2017125273A1 (de) Elektromotor mit induktivem winkelsensor
DE102015209385A1 (de) Winkelsensor zur Erfassung von Drehwinkeln eines rotierenden Bauteils
DE102013213053A1 (de) Drehwinkelsensorvorrichtung mit redundanten Sensoreinheiten
DE102018202286A1 (de) Fahrzeugbremsenregelsystem mit einem Gleichstrommotor

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015823340

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015823340

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15823340

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15542288

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017557252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE