WO2016119568A1 - 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法 - Google Patents

一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法 Download PDF

Info

Publication number
WO2016119568A1
WO2016119568A1 PCT/CN2016/000059 CN2016000059W WO2016119568A1 WO 2016119568 A1 WO2016119568 A1 WO 2016119568A1 CN 2016000059 W CN2016000059 W CN 2016000059W WO 2016119568 A1 WO2016119568 A1 WO 2016119568A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
range
hetero atom
nanocarbon material
carbon
Prior art date
Application number
PCT/CN2016/000059
Other languages
English (en)
French (fr)
Inventor
史春风
荣峻峰
于鹏
谢婧新
宗明生
林伟国
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510703329.9A external-priority patent/CN105817242B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to EP16742630.3A priority Critical patent/EP3251746A4/en
Priority to KR1020177023979A priority patent/KR102485735B1/ko
Priority to US15/546,791 priority patent/US10537882B2/en
Priority to JP2017539317A priority patent/JP6867948B2/ja
Publication of WO2016119568A1 publication Critical patent/WO2016119568A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/178Opening; Filling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/166Preparation in liquid phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • C07C15/46Styrene; Ring-alkylated styrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/32Specific surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/24Nitrogen compounds

Definitions

  • the invention relates to a heteroatom-containing nanocarbon material and a preparation method thereof.
  • the invention further relates to the use of the heteroatom-containing nanocarbon material as a catalyst for hydrocarbon dehydrogenation, and a hydrocarbon dehydrogenation reaction process.
  • Dehydrogenation of hydrocarbons is an important type of reaction. For example, most low-carbon alkene is obtained by dehydrogenation of lower-carbon paraffins.
  • the dehydrogenation reaction can be classified into two types according to whether direct oxygen is involved (ie, oxygen does not participate) and oxidative dehydrogenation (ie, oxygen participates).
  • nano-carbon materials have been proved to have catalytic effects on direct dehydrogenation reactions and oxidative dehydrogenation reactions of hydrocarbons.
  • the introduction of oxygen atoms and/or nitrogen atoms in nano-carbon materials can improve their catalytic activity.
  • an oxygen-containing functional group such as a hydroxyl group, a carbonyl group, a carboxyl group, an ester group, and an acid anhydride can be formed on the surface of the nanocarbon material.
  • the oxygen atom can be introduced into the nano carbon material by oxidizing the nano carbon material, thereby increasing the content of the oxygen functional group in the nano carbon material.
  • the nanocarbon material can be refluxed in a strong acid (such as HNO 3 , H 2 SO 4 ) and/or a strong oxidizing solution (such as H 2 O 2 , KMnO 4 ), and can be assisted while refluxing. Microwave heating or ultrasonic vibration to enhance the effect of the oxidation reaction.
  • the reflux reaction in a strong acid and/or strong oxidizing solution may adversely affect the skeleton structure of the nanocarbon material and even destroy the skeleton structure of the nanocarbon material.
  • the nanocarbon material is refluxed in nitric acid.
  • the nanocarbon material Although a large amount of oxygen-containing functional groups can be introduced on the surface of the nanocarbon material, it is easy to cause the nano carbon material to be cut and/or significantly increase the defect position in the graphite network structure, thereby reducing The properties of nanocarbon materials, such as thermal stability. Further, by carrying out a reflux reaction in a strong acid and/or a strong oxidizing solution to introduce an oxygen atom, the amount of introduction of the oxygen atom is highly dependent on the reaction operating conditions, and the fluctuation range is wide.
  • the nitrogen atom When a nitrogen atom is introduced into a nanocarbon material, the nitrogen atom is generally classified into chemical nitrogen and structural nitrogen depending on the chemical environment in which the nitrogen atom is in the nanocarbon material.
  • the chemical nitrogen is mainly present on the surface of the material in the form of a surface functional group such as a surface nitrogen-containing functional group such as an amino group or a nitrosyl group.
  • the structural nitrogen refers to a nitrogen atom that is bonded to a carbon atom in a skeleton structure of the nanocarbon material.
  • Structural nitrogen mainly includes graphite nitrogen (ie, ), pyridine-type nitrogen (ie, And pyrrole type nitrogen (ie, ).
  • Graphite-type nitrogen directly replaces the carbon atoms in the graphite lattice to form a saturated nitrogen atom; the pyridine-type nitrogen and the pyrrole-type nitrogen are unsaturated nitrogen atoms, which often cause the loss of adjacent carbon atoms and form defects when replacing carbon atoms.
  • Nitrogen can be simultaneously introduced into the nanocarbon during the synthesis of the nanocarbon material by introducing a nitrogen-containing functional atmosphere (such as ammonia, nitrogen, urea, melamine) into the nanocarbon material synthesis process using high temperature and/or high pressure.
  • a nitrogen-containing functional atmosphere such as ammonia, nitrogen, urea, melamine
  • nitrogen can also be introduced into the nanometer by high temperature and/or high pressure by placing the nanocarbon material in a functional atmosphere containing nitrogen (such as ammonia, nitrogen, urea, melamine).
  • a functional atmosphere containing nitrogen such as ammonia, nitrogen, urea, melamine
  • the performance of the nitrogen-containing nanocarbon material is unstable. It is also possible to introduce a nitrogen atom on the surface of the nanocarbon material by subjecting the nanocarbon material to oxidation treatment and then reacting with an amine, and the nitrogen atom thus introduced is substantially chemical nitrogen.
  • An object of the present invention is to provide a method for preparing a heteroatom-containing nanocarbon material, which can not only introduce heteroatoms on the surface of the nanocarbon material, but also has little effect on the structure of the nanocarbon material itself.
  • Another object of the present invention is to provide a heteroatom-containing nanocarbon material which can not only obtain a higher conversion rate of a raw material but also obtain a higher ratio of a hydrocarbon atom dehydrogenation reaction. Product selectivity. It is still another object of the present invention to provide a hydrocarbon dehydrogenation reaction process which achieves higher feedstock conversion and product selectivity.
  • a heteroatom-containing nanocarbon material comprising a C element, an O element, and optionally an N element, Based on the total amount of the hetero atom-containing nanocarbon material and based on the element, the content of the O element is 1 to 6% by weight, the content of the N element is 0 to 2% by weight, and the content of the C element is 92 to 99% by weight. ;
  • the amount of the O element determined by the peak in the range of 531.0-532.5 eV in the X-ray photoelectron spectroscopy is I O c
  • the peak in the range of 532.6-533.5 eV in the X-ray photoelectron spectroscopy The determined amount of O element is I O e
  • I O c /I O e is in the range of 0.2-0.8;
  • the amount of the C element determined by the peak in the range of 288.6-288.8 eV in the X-ray photoelectron spectroscopy is I C c , which is in the range of 286.0-286.2 eV in the X-ray photoelectron spectroscopy.
  • the amount of C element determined by the peak is I C e , and I C c /I C e is in the range of 0.2-1;
  • the total amount of the N element in the hetero atom-containing nanocarbon material is determined by X-ray photoelectron spectroscopy as I N t , by X-ray
  • the amount of N element determined by the peak in the range of 398.5-400.1 eV in the photoelectron spectrum is I N c
  • I N c /I N t is in the range of 0.7-1.
  • the hetero atom-containing nanocarbon material according to the first aspect of the invention is subjected to calcination or has not undergone calcination.
  • a process for the preparation of a hetero atom-containing nanocarbon material which comprises reacting an aqueous dispersion in which a raw material nanocarbon material is dispersed in a closed vessel,
  • the aqueous dispersion contains or does not contain an organic base which is an amine and/or a quaternary ammonium base.
  • the temperature of the aqueous dispersion is maintained in the range of from 80 to 220 °C.
  • a heteroatom-containing nanocarbon material prepared by the method according to the second aspect of the invention.
  • the hetero atom-containing nanocarbon material prepared according to the third aspect of the present invention is subjected to calcination or has not undergone calcination.
  • a heteroatom-containing nanocarbon material according to the first or third aspect of the invention (for example, without undergoing calcination) Made of a heteroatom-containing nanocarbon material for calcination.
  • a heteroatom-containing nanocarbon material according to the first aspect of the invention a hetero atom-containing nanocarbon material according to the third aspect of the invention, or a fourth invention according to the invention.
  • a hydrocarbon dehydrogenation reaction process comprising, in the presence or absence of oxygen, under a hydrocarbon dehydrogenation reaction condition, The hydrocarbon is contacted with the heteroatom-containing nanocarbon material according to the first aspect of the invention, the hetero atom-containing nanocarbon material according to the third aspect of the invention, or the hetero atom-containing nanocarbon material according to the fourth aspect of the invention.
  • the preparation method of the hetero atom-containing nanocarbon material according to the present invention can not only stably regulate and/or increase the content of hetero atoms in the nano carbon material, but also has little influence on the structure of the nano carbon material itself, and the prepared hetero atom-containing nano carbon material is prepared. Has stable performance.
  • the hetero atom-containing nanocarbon material according to the present invention exhibits good catalytic performance in the dehydrogenation reaction of a hydrocarbon substance, and can significantly improve raw material conversion rate and product selectivity.
  • Example 2 is a transmission electron micrograph of the raw material nanocarbon material used in the preparation of Example 1.
  • the endpoint values of the various ranges, the endpoint values of the various ranges and the individual point values, and the individual point values can be combined with one another to obtain one or more new ranges of values. These numerical ranges are to be considered as specifically disclosed herein.
  • the various technical solutions can be combined with one another in principle to obtain new technical solutions, which should also be regarded as specifically disclosed herein.
  • the nanocarbon material refers to a carbon material having a dispersed phase dimension of at least one dimension of less than 100 nm.
  • the present invention provides a heteroatom-containing nanocarbon material comprising a C element, an O element, and optionally an N element.
  • the term “optional” means with or without.
  • the content of the O element is 1-6% by weight
  • the content of the N element is 0-2% by weight
  • the content of the C element is 92-99 by weight. %.
  • the content of each component of the hetero atom-containing nanocarbon material is And is 100% by weight.
  • the content of the N element in the hetero atom-containing nanocarbon material when the content of the N element in the hetero atom-containing nanocarbon material is less than 0.1% by weight, based on the total amount of the hetero atom-containing nanocarbon material and based on the element, the content of O may be It is 2.5-5.8 wt%, preferably 3-5.6 wt%, more preferably 4.5-5.5 wt%; the content of C element may be 94.2-97.5 wt%, preferably 94.4-97 wt%, more preferably 94.5-95.5 weight%.
  • the hetero atom-containing nanocarbon material according to this embodiment when used as a catalyst for the dehydrogenation reaction of an alkane, particularly butane (such as n-butane), can obtain a higher conversion of the raw material and a 1-olefin (such as 1-butene) has a higher selectivity.
  • the hetero atom-containing nanocarbon material preferably contains an N element, which further enhances the catalytic performance as a catalyst for the hydrocarbon dehydrogenation reaction.
  • the content of the O element is from 2 to 6% by weight, preferably from 3.5 to 5.5% by weight, based on the total amount of the hetero atom-containing nanocarbon material, and the content of the N element is from 0.2 to 1.8.
  • the weight % preferably from 0.5 to 1.8% by weight; the content of the C element is from 92.2 to 97.8% by weight, preferably from 92.7 to 96% by weight.
  • the content of the C, N, and O elements in the hetero atom-containing nanocarbon material may be:
  • the sum of the contents of the C, N, and O elements in the hetero atom-containing nanocarbon material is greater than 98% by weight.
  • the sum of the contents of the C, N, and O elements in the hetero atom-containing nanocarbon material is greater than 99% by weight.
  • the sum of the contents of the C, N, and O elements in the hetero atom-containing nanocarbon material is greater than 99.5% by weight.
  • the sum of the contents of the C, N, and O elements in the hetero atom-containing nanocarbon material is greater than 99.9 wt%.
  • the sum of the contents of the C, N, and O elements in the hetero atom-containing nanocarbon material is 100%.
  • the content of each component element of the hetero atom-containing nanocarbon material is determined by X-ray photoelectron spectroscopy (XPS), and the content of the element is determined by the area corresponding to the 1s electron peak;
  • XPS X-ray photoelectron spectroscopy
  • the samples were dried for 3 hours in a helium atmosphere at a temperature of 150 ° C and 1 standard atmosphere before the test.
  • the measured content value is less than 0.1% by weight, the content of the element is referred to as 0.
  • X-ray photoelectron spectroscopy was performed on a Thermo Scientific company's ESCALab 250 X-ray photoelectron spectrometer equipped with Thermo Avantage V5.926 software.
  • the excitation source was monochromatic Al K ⁇ X-ray with an energy of 1486.6 eV.
  • the power is 150W
  • the permeability for narrow scanning is 30eV
  • the basic vacuum for analysis and testing is 6.5 ⁇ 10 -10 mbar
  • the electron binding energy is corrected by the C1s peak of elemental carbon (284.0eV)
  • the data is performed on the Thermo Avantage software. Processing, using the sensitivity factor method for quantitative analysis in the analysis module.
  • the use of XPS to analyze the elemental content of the heteroatom-containing nanocarbon material of the present invention is a conventional practice in the art which is capable of quantitatively giving a surface element composition.
  • the range (depth) of the surface of the nanocarbon material analyzed was related to the XPS analytical instrument.
  • the range of the surface to be analyzed may generally be 0-20 nm (range from surface to depth 20 nm), and the range of the surface to be analyzed may preferably be 0-10 nm (range from surface to depth 10 nm).
  • the amount of the O element (ie, co) determined by the peak in the range of 532.6-533.5 eV is I O e
  • I O c /I O e is in the range of 0.2-0.8, for example, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73, A range of values consisting of 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80 or any of the above values.
  • I O c /I O c is preferably in the range of 0.4 to 0.7, more preferably in the range of 0.55 to 0.65.
  • I O c /I O e is preferably in the range of 0.35 to 0.85, more preferably in the range of 0.45 to 0.8.
  • "in the range of ⁇ - ⁇ " includes two boundary values when representing a numerical range.
  • I O c indicates the relative molar content of CO groups in the carbon-based material
  • I O c and I O c may be respectively X-rays
  • a peak in a certain range in the photoelectron spectrum is determined.
  • I O c can be determined from the integrated area of the peak in the range of 532.6-533.5 eV in the X-ray photoelectron spectroscopy
  • I O c can be obtained from the integral area of the peak in the range of 531.0-532.5 eV in the X-ray photoelectron spectroscopy. determine.
  • I O c can be determined by the integrated area of the peak in the range of 533.1-533.5 eV in the X-ray photoelectron spectroscopy; I O c can be the integrated area of the peak in the range of 531.8-532.2 eV in the X-ray photoelectron spectroscopy. to make sure.
  • I O c can be determined by the integrated area of the peak in the range of 533.13-533.53 eV in the X-ray photoelectron spectroscopy; I O c can be the integrated area of the peak in the range of 531.76-532.16 eV in the X-ray photoelectron spectroscopy. to make sure.
  • I O e can be determined by the integrated area of the peaks in the range of 533.16-533.56 eV in the X-ray photoelectron spectroscopy; I O c can be the integrated area of the peaks in the range of 531.85-532.25 eV in the X-ray photoelectron spectroscopy. to make sure.
  • the ratio of the amount of O element (i.e., co) determined by the peak in the range of 533.16-533.56 eV in the energy spectrum may be 1: (0.2-5) or 1: (1.25-5); for example 1:5, 1:2.3 , a range of values consisting of 1:1.8, 1:1.7, 1:1.6, 1:1.5, 1:1.4, 1:1.25, and any two of these.
  • the total amount of O elements is determined by the area A O 1 of the peak of the O1s in the X-ray photoelectron spectroscopy, and the peak of the O1s in the X-ray photoelectron spectroscopy is divided into two groups of peaks, that is, in the range of 531.0-532.5 eV.
  • the area of the peak in the range of 531.0-532.5 eV is denoted as A O 2
  • the area of the peak in the range of 532.6-533.5 eV is denoted as A O 3
  • I O c /I O e A O 2 /A O 3 .
  • C element ie, graphite determined by a peak in the range of 284.7-284.9 eV in the X-ray photoelectron spectroscopy based on the total amount of C elements determined by X-ray photoelectron spectroscopy
  • the content of the type of carbon may be 20% by weight or more, preferably 40% by weight or more, more preferably 50% by weight or more, still more preferably 70% by weight or more, for example, 20% by weight or more, 21% by weight or more, and 22% by weight.
  • the content of the C element (ie, graphite type carbon) determined by the peak in the range of 284.7-284.9 eV in the X-ray photoelectron spectroscopy may be 95% by weight or less, preferably 90% by weight or less, for example, 20% by weight or less, 21 Weight% or less, 22% by weight or less, 23% by weight or less, 24% by weight or less, 25% by weight or less, 26% by weight or less, 27% by weight or less, 28% by weight or less, 29% by weight or less, 30% by weight or less, 31 Weight% or less, 32% by weight or less, 33% by weight or less, 34% by weight or less, 35% by weight or less, 36% by weight or less, 37% by weight or less, 38% by weight or less, 39% by weight or less, 40% by weight or less, 41 Weight% or less, 42% by weight or less, 43% by weight or less, 44% by weight or less, 45% by weight or less, 46% by weight or less, 47% by weight or less
  • the total content of the C element determined by the peak in the range of 286.0-288.8 eV in the X-ray photoelectron spectroscopy may be 5% by weight or more, preferably 10% by weight or more, for example, 5% by weight or more, 6% by weight or more, and 7 parts by weight.
  • the total content of the C element determined by the peak in the range of 286.0-288.8 eV in the X-ray photoelectron spectroscopy may be 80% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less, further preferably 30% by weight.
  • the total amount of C elements is determined by the area A C 1 of the C1s peak in the X-ray photoelectron spectroscopy, and the C1s peak in the X-ray photoelectron spectroscopy is divided into two groups of peaks, that is, in the range of 284.7-284.9 eV.
  • the peak inside (corresponding to the graphite type carbon species) and the peak in the range of 286.0-288.8 eV (corresponding to the non-graphitic carbon species), the area of the peak in the range of 284.7-284.9 eV is denoted as A C 2 , the area of the peak in the range of 286.0-288.8 eV is denoted as A C 3 , and the content of the C element determined by the peak in the range of 284.7-284.9 eV in the X-ray photoelectron spectroscopy A C 2 /A C 1
  • the total content of the C element determined by the peak in the range of 286.0-288.8 eV in the X-ray photoelectron spectroscopy A C 3 /A C 1 .
  • the amount of the C element determined by the peak in the range of 288.6-288.8 eV in the X-ray photoelectron spectroscopy is I C c , which is in the range of 286.0-286.2 eV in the X-ray photoelectron spectroscopy.
  • the amount of C element determined by the peak is I C e , and I C c /I C e is in the range of 0.2-1.
  • the peaks corresponding to the carbon species in the X-ray photoelectron spectroscopy are divided into two groups: a peak corresponding to the graphite type carbon species and a peak corresponding to the non-graphite type carbon species.
  • the peak corresponding to the graphite type carbon species ranges from 284.7 to 284.9 eV
  • the peak corresponding to the non-graphite type carbon species ranges from 286.0 to 288.8 eV.
  • the peak corresponding to the hydroxyl and ether type carbon species may range from 286.0 to 286.2 eV, and the peak corresponding to the carboxyl, anhydride, and ester type carbon species may range from 288.6 to 288.8 eV.
  • the peak corresponding to the hydroxyl and ether type carbon species may range from 286.2 to 286.6 eV; the peak corresponding to the carboxyl, anhydride, and ester type carbon species may range from 288.6 to 289.0 eV.
  • the peak corresponding to the hydroxyl and ether type carbon species may range from 286.21 to 286.61 eV; the peak corresponding to the carboxyl, anhydride, and ester type carbon species may range from 288.59 to 288.99 eV.
  • the ratio of the signal value of carbon at 288.59-288.99 eV to the signal value of carbon at 286.21-286.61 eV is 1: (0.5-2).
  • I C c /I C e is preferably in the range of 0.3 to 0.9, more preferably in the range of 0.35 to 0.8, further preferably In the range of 0.5-0.7.
  • I C c /I C e is preferably in the range of 0.3 to 0.98, more preferably in the range of 0.45 to 0.95.
  • the total amount of the N element in the hetero atom-containing nanocarbon material is determined by X-ray photoelectron spectroscopy as I N t , which is 398.5 by X-ray photoelectron spectroscopy.
  • the amount of N element determined by the peak in the range of 400.1 eV is I N c
  • I N c /I N t is in the range of 0.7-1, preferably in the range of 0.8-0.95.
  • the N element (i.e., graphite type nitrogen) determined by the peak in the range of 400.6-401.5 eV in the X-ray photoelectron spectroscopy is low or even absent.
  • the amount of the N element determined by the peak in the range of 400.6-401.5 eV in the X-ray photoelectron spectroscopy is I N g , and I N g /I N t is not Above 0.3, generally in the range of 0.05-0.2.
  • the total amount of N elements A N 1 is determined from the area of the N1s peak in the X-ray photoelectron spectroscopy, and the N1s peak in the X-ray photoelectron spectroscopy is divided into two sets of peaks, that is, in the range of 400.6-401.5 eV.
  • the area of the peak is denoted by A N 2
  • the area of the peak in the range of 398.5-400.1 eV is denoted as A N 3
  • I N c /I N t A N 3 /A N 1
  • the position of each peak is determined by the binding energy corresponding to the peak top of the peak
  • the peak determined by the above range refers to a peak in which the binding energy corresponding to the peak is within the range, within the range. It may include one peak or more than two peaks.
  • a peak in the range of 398.5-400.1 eV refers to a peak in which the binding energy corresponding to the peak is in the range of 398.5-400.1 eV.
  • the content of the O element is from 2 to 6% by weight, preferably from 4 to 5.8% by weight, more preferably 4.5, based on the total amount of the hetero atom-containing nanocarbon material. -5.5% by weight; the content of the N element is 0.2 to 1.8% by weight, preferably 0.8 to 1.6% by weight, more preferably 1 to 1.5% by weight; and the content of the C element is 92.2 to 97.8% by weight, preferably 92.6 to 95.2% by weight % is more preferably 93 to 94.5% by weight.
  • I O c /I O e is preferably in the range of 0.3 to 0.8, more preferably in the range of 0.35 to 0.8, still more preferably in the range of 0.55 to 0.78.
  • the content of the C element determined by the peak in the range of 284.7-284.9 eV in the X-ray photoelectron spectroscopy is preferably from 70 to 90% by weight, more preferably from 75 to 85% by weight.
  • I C c /I C e is preferably in the range of from 0.3 to 0.9, more preferably in the range of from 0.4 to 0.7, still more preferably in the range of from 0.45 to 0.6.
  • I N c /I N t is preferably in the range of 0.7 to 0.98, more preferably in the range of 0.75 to 0.96, still more preferably in the range of 0.8 to 0.95.
  • the heteroatom-containing nanocarbon material according to this preferred embodiment is particularly suitable as a catalyst for dehydrogenation of butane (e.g., n-butane), particularly for olefins, particularly butadiene.
  • the content of the O element is from 2 to 6% by weight, preferably from 3 to 5.5% by weight, more preferably based on the total amount of the hetero atom-containing nanocarbon material. 3.5 to 5% by weight; the content of the N element is 0.3 to 2% by weight, preferably 0.4 to 1.8% by weight, more preferably 0.5 to 1.5% by weight; the content of the C element is 92 to 97.7% by weight, preferably 92.7 to 96.6.
  • the weight % is more preferably from 93.5 to 96% by weight.
  • I O c /I O e is preferably in the range of 0.3 to 0.8, more preferably in the range of 0.4 to 0.78, still more preferably in the range of 0.45 to 0.75.
  • the content of the C element determined by the peak in the range of 284.7-284.9 eV in the X-ray photoelectron spectroscopy is preferably from 70 to 90% by weight, more preferably from 70 to 85% by weight.
  • I C c /I C e is preferably in the range of from 0.3 to 0.9, more preferably in the range of from 0.4 to 0.8, still more preferably in the range of from 0.45 to 0.6.
  • I N c /I N t is preferably in the range of 0.7 to 0.95, more preferably in the range of 0.7 to 0.9, still more preferably in the range of 0.8 to 0.9.
  • the heteroatom-containing nano-carbon material is particularly suitable embodiment as propane (e.g., n-propane) dehydrogenation catalyst, in particular a high selectivity to C 3 olefins.
  • the content of the O element is from 3 to 6% by weight, preferably from 4 to 5.8% by weight, more preferably 4.5, based on the total amount of the hetero atom-containing nanocarbon material. - 5.5% by weight;
  • the content of the N element is from 0.5 to 2% by weight, preferably from 1 to 2% by weight, more preferably from 1.2 to 1.8% by weight;
  • the content of the C element is from 92 to 96.5 % by weight, preferably from 92.2 to 95% by weight % is more preferably 92.7-94.3% by weight.
  • I O c /I O e is preferably in the range of 0.3 to 0.8, more preferably in the range of 0.4 to 0.75, still more preferably in the range of 0.6 to 0.7.
  • the content of the C element determined by the peak in the range of 284.7-284.9 eV in the X-ray photoelectron spectroscopy is preferably from 70 to 80% by weight, more preferably from 75 to 80% by weight.
  • I C c /I C e is preferably in the range of 0.4 to 0.98, more preferably in the range of 0.7 to 0.98, still more preferably in the range of 0.85 to 0.95.
  • I N c /I N t is preferably in the range of 0.7 to 0.95, more preferably in the range of 0.75 to 0.9, still more preferably in the range of 0.8 to 0.85.
  • the hetero atom-containing nanocarbon material according to this preferred embodiment is particularly suitable as a catalyst for the dehydrogenation reaction of ethylbenzene, particularly for styrene.
  • the hetero atom-containing nanocarbon material may exist in various common forms, and may be, but not limited to, hetero atom-containing carbon nanotubes, hetero atom-containing graphene, hetero atom-containing thin layer graphite, hetero atom-containing nano carbon particles, One or a combination of two or more of hetero atom-containing nano carbon fibers, hetero atom-containing nanodiamonds, and hetero atom-containing fullerenes.
  • the hetero atom-containing carbon nanotube may be a hetero atom-containing single-walled carbon nanotube, a hetero atom-containing double-walled carbon nanotube, and a hetero atom-containing One or a combination of two or more of the multi-walled carbon nanotubes.
  • the hetero atom-containing nanocarbon material according to the present invention is preferably a hetero atom-containing multi-walled carbon nanotube.
  • the specific surface area of the hetero atom-containing multi-walled carbon nanotube is preferably from 50 to 500 m 2 /g, more preferably from 80 to 300 m 2 /g, further preferably 100, from the viewpoint of further improving the conversion of the raw material and the selectivity of the product. -200m 2 /g.
  • the specific surface area is determined by a nitrogen adsorption BET method.
  • the weight loss ratio of the hetero atom-containing multi-walled carbon nanotubes in the temperature range of 400-800 ° C is w 800
  • the weight loss rate in the temperature range of 400-500 ° C is w 500
  • w 500 /w 800 is preferably 0.01. In the range of -0.5, this can obtain a better catalytic effect.
  • the weight loss rate of the hetero atom-containing multi-walled carbon nanotubes in the temperature range of 400-800 ° C is w 800
  • the weight loss rate in the temperature range of 400-500 ° C is w 500 , w 500 /w
  • 800 is in the range of 0.02 to 0.2.
  • w 800 W 800 - W 400
  • w 500 W 500 - W 400
  • W 400 is a mass loss rate measured at a temperature of 400 ° C
  • W 800 is a mass loss measured at a temperature of 800 ° C.
  • Rate W 500 is the mass loss rate measured at a temperature of 500 ° C
  • the weight loss rate is measured by a thermogravimetric analyzer in an air atmosphere, the test starting temperature is 25 ° C, and the heating rate is 10 ° C / min; It was dried in a helium atmosphere at a temperature of 150 ° C and 1 standard atmosphere for 3 hours before the test.
  • the hetero atom-containing nanocarbon material is preferably a hetero atom-containing multi-wall carbon nanotube
  • the hetero atom-containing multi-wall carbon nanotube preferably has a specific surface area of 50-500 m 2 / g, more preferably 80-300m 2 / g, more preferably 100-200m 2 / g; and w 500 / w 800 is preferably in the range of 0.01 to 0.5, more preferably in the range of 0.02-0.2.
  • the content of the non-metal hetero atom other than the oxygen atom and the nitrogen atom may be a conventional content.
  • the total amount of other nonmetal hetero atoms (such as sulfur atoms and phosphorus atoms) other than the oxygen atom and the nitrogen atom may be 0.5% by weight or less, preferably 0.2% by weight. Below %, for example less than 0.1% by weight, less than 0.01% by weight, or less than 0.001% by weight.
  • the hetero atom-containing nanocarbon material according to the present invention may contain other metal atoms in addition to the aforementioned metal elements, and the other metal atoms may be, for example, a catalyst derived from the use of a nanocarbon material.
  • the content of the other metal atom is generally 0.5% by weight or less, preferably 0.2% by weight or less, further preferably 0.1% by weight or less, such as less than 0.05% by weight, less than 0.01% by weight, or less than 0.001% by weight.
  • the present invention provides a heteroatom-containing nanocarbon material Method for preparing a material: an aqueous dispersion in which a raw material nanocarbon material is dispersed is reacted in a closed vessel, the aqueous dispersion containing or not containing an organic base.
  • the dispersion medium in the aqueous dispersion may be water or an aqueous solution containing at least one organic base.
  • the aqueous dispersion contains substantially no organic solvent.
  • “Substantially free of organic solvent” means that the organic solvent is not contained or the content of the organic solvent in the aqueous dispersion is less than 10% by weight, less than 9% by weight, less than 8% by weight, less than 7% by weight, less than 6% by weight, less than 5% by weight, less than 4% by weight, less than 3% by weight, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, less than 0.1% by weight, less than 0.05% by weight, or less than 0.01% by weight.
  • the organic solvent includes: aromatic hydrocarbons such as benzene, toluene, xylene, etc.; aliphatic hydrocarbons such as pentane, hexane, octane, etc.; alicyclic hydrocarbons such as cyclohexane, cyclohexanone, toluene cyclohexanone, etc.; halogenation Hydrocarbons such as chlorobenzene, dichlorobenzene, dichloromethane, etc.; alcohols such as methanol, ethanol, isopropanol, etc.; ethers such as diethyl ether, propylene oxide, etc.; esters such as methyl acetate, ethyl acetate, acetic acid Esters, etc.; ketones such as acetone, methyl butanone, methyl isobutyl ketone, etc.; diol derivatives; ethylene glycol monomethyl ether, ethylene glycol monoethyl
  • the oxygen atom content in the raw material nanocarbon material can be effectively controlled and/or improved, and the finally prepared hetero atom-containing nanocarbon material is dehydrogenated as a hydrocarbon such as butane.
  • the catalyst can effectively improve the catalytic performance.
  • the weight ratio of the raw material nanocarbon material:H 2 O is preferably in the range of 1:2-200, It is preferably in the range of 1:5 to 100, further preferably in the range of 1:10 to 50.
  • the amount of water can be adjusted according to the kind of the organic base so that the organic base can be uniformly dispersed in water.
  • the weight ratio of the raw material nanocarbon material:organic base is preferably in the range of 1:0.05-20, more preferably It is preferably in the range of from 0.5 to 5, more preferably in the range of from 0.5 to 5.
  • the organic base is selected from amines and quaternary ammonium bases.
  • the quaternary ammonium base may specifically be a compound of formula I:
  • each of R 1 , R 2 , R 3 and R 4 may be a C 1 - C 20 alkyl group (including a C 1 - C 20 linear alkyl group and a C 3 - C 20 branched alkyl group) Or a C 6 -C 12 aryl group.
  • C 1 -C 20 alkyl group may include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, t-butyl, and Pentyl, neopentyl, isopentyl, tert-amyl, n-hexyl, n-octyl, n-decyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-ten One or more of tetraalkyl, n-pentadecyl, n-hexadecyl, n-octadecyl and n-icosyl.
  • each of R 1 , R 2 , R 3 and R 4 is a C 1 -C 10 alkyl group (including a C 1 -C 10 linear alkyl group and a C 3 -C 10 branched alkyl group).
  • each of R 1 , R 2 , R 3 and R 4 is a C 1 -C 6 alkyl group (including a C 1 -C 6 linear alkyl group and a C 3 -C 6 branched alkyl group).
  • the amine refers to a substance formed by substituting one, two or three hydrogens in an ammonia molecule with an organic group, and the organic group may be bonded to a nitrogen atom to form a cyclic structure.
  • the organic group may be a substituted (e.g., hydroxy-substituted) or unsubstituted aliphatic hydrocarbon group and/or a substituted (e.g., hydroxy-substituted) or unsubstituted aromatic hydrocarbon group, and the aliphatic hydrocarbon group may be substituted (e.g., hydroxy-substituted).
  • an unsubstituted saturated aliphatic chain hydrocarbon group a substituted (such as a hydroxy-substituted) or an unsubstituted unsaturated aliphatic chain hydrocarbon group, a substituted (such as a hydroxy-substituted) or an unsubstituted saturated alicyclic hydrocarbon group, and a substituted (such as a hydroxy group) or One or more of the unsubstituted unsaturated alicyclic hydrocarbon groups.
  • the amine may be a substituted (e.g., hydroxy substituted) or unsubstituted saturated aliphatic amine, a substituted (e.g., hydroxy substituted) or unsubstituted unsaturated aliphatic amine, a substituted (e.g., hydroxy substituted) or unsubstituted saturated.
  • the number of the unsaturated group and the amino group may each be one or two or more, and is not particularly limited.
  • organic base may include, but are not limited to, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-propylamine, Isopropylamine, diisopropylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, Sec-butylamine, diisobutylamine, triisobutylamine, tert-butylamine, n-pentylamine, di-n-pentylamine, tri-n-pentylamine, neopentylamine, isoamylamine, diisoamylamine, three Isopentanamine, tert-amylamine, n-hexylamine, n-octylamine, n-decylamine, n
  • the amine is preferably one or more of a compound represented by the formula II, a compound represented by the formula III, and a substance represented by the formula R 12 (NH 2 ) 2 ,
  • each of R 5 , R 6 and R 7 is H, a C 1 -C 6 alkyl group or a C 6 -C 12 aryl group, and R 5 , R 6 and R 7 are not simultaneously H.
  • specific examples of the C 1 -C 6 alkyl group may include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl. , n-pentyl, isopentyl, tert-amyl, neopentyl and n-hexyl.
  • specific examples of the C 6 -C 12 aryl group include, but are not limited to, phenyl, naphthyl, methylphenyl and ethylphenyl.
  • R 8 , R 9 and R 10 are each -R 11 OH or hydrogen, and at least one of R 8 , R 9 and R 10 is -R 11 OH, and R 11 is a C 1 -C 4 sub alkyl.
  • the C 1 -C 4 alkylene group includes a C 1 -C 4 linear alkylene group and a C 3 -C 4 branched alkylene group, and specific examples thereof may include, but are not limited to, a methylene group. , ethylene, n-propylene, isopropylidene, n-butylene, isobutylene and tert-butyl.
  • R 12 may be a C 1 -C 6 alkylene group or a C 6 -C 12 arylene group.
  • the C 1 -C 6 alkylene group includes a C 1 -C 6 linear alkylene group and a C 3 -C 6 branched alkylene group, and specific examples thereof may include, but are not limited to, a methylene group. Ethylene, n-propylene, isopropylidene, n-butylene, isobutylene, tert-butyl, n-n-pentyl and n-hexylene.
  • specific examples of the C 6 -C 12 arylene group include, but are not limited to, a phenylene group and a naphthylene group.
  • the conditions of the reaction are based on a content sufficient to increase the oxygen and nitrogen atoms in the raw carbon nanomaterial.
  • the temperature of the aqueous dispersion during the reaction is in the range of from 80 to 220 °C.
  • the temperature of the aqueous dispersion is within the above range, not only the content of oxygen atoms and/or nitrogen atoms in the raw material nanocarbon material can be effectively increased, but also the structure morphology of the raw material nanocarbon material is not significantly affected. More preferably, the temperature of the aqueous dispersion is in the range of from 120 to 180 ° C during the reaction.
  • the duration of the reaction can be selected depending on the temperature of the reaction to enable the introduction of a sufficient amount of oxygen atoms and/or nitrogen atoms in the raw material nanocarbon material. Generally, the duration of the reaction can be in the range of from 0.5 to 96 hours, preferably in the range of from 2 to 72 hours, more preferably in the range of from 20 to 50 hours.
  • the organic base is a quaternary ammonium base of formula I, preferably tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide.
  • the hetero atom-containing nanocarbon material thus prepared is particularly suitable as a catalyst for dehydrogenation of butane, and can obtain higher butadiene selectivity.
  • the weight ratio of the raw material nanocarbon material:organic base is preferably in the range of 1:0.1 to 10, more preferably in the range of 0.5 to 5.
  • the temperature of the aqueous dispersion during the reaction is preferably in the range of from 90 to 210 ° C, more preferably in the range of from 140 to 180 ° C.
  • the organic base is an ethanolamine represented by Formula III, preferably one or more of monoethanolamine, diethanolamine, and triethanolamine, and the hetero atom-containing nanocarbon material prepared thereby is particularly It is suitable as a catalyst for the dehydrogenation of propane, thereby enabling higher propylene selectivity.
  • the raw nanocarbon material The weight ratio of the organic base is preferably in the range of 1:0.2 to 10, more preferably in the range of 1:1 to 5.
  • the temperature of the aqueous dispersion during the reaction is preferably in the range of from 90 to 160 ° C, more preferably in the range of from 120 to 150 ° C.
  • the organic base is a substance represented by the formula R 12 (NH 2 ) 2 , preferably in the group consisting of ethylene diamine, propylene diamine, butanediamine, pentane diamine and hexamethylene diamine.
  • the hetero atom-containing nanocarbon material thus prepared is particularly suitable as a catalyst for the dehydrogenation reaction of ethylbenzene, whereby higher styrene selectivity can be obtained.
  • the weight ratio of the raw material nanocarbon material:organic base is preferably in the range of 1:0.2 to 10, more preferably in the range of 1:1 to 5.
  • the temperature of the aqueous dispersion during the reaction is preferably in the range of from 100 to 200 ° C, more preferably in the range of from 120 to 150 ° C.
  • the aqueous dispersion may be formed by various conventional methods, for example, the raw material nanocarbon material may be dispersed in water (preferably deionized water), and then the organic base may be optionally added to obtain the aqueous dispersion. .
  • the raw material nano carbon material may be dispersed in water by ultrasonic vibration.
  • the condition of the ultrasonic oscillation may be a conventional selection.
  • the frequency of the ultrasonic oscillation may be 10-100 kHz, preferably 40-80 kHz, and the duration of the ultrasonic oscillation may be 0.1-6 hours, preferably 0.5- 2 hours.
  • the organic base is preferably provided in the form of a solution, preferably an aqueous solution.
  • the content of the O element and the N element in the raw material nanocarbon material is not particularly limited and may be a conventional selection.
  • the content of the O element in the raw material nanocarbon material is not more than 1.2% by weight, preferably not more than 0.5% by weight; the content of the N element is less than 0.1% by weight, preferably not more than 0.08% by weight. More preferably, it is not more than 0.05% by weight.
  • the total amount (in terms of elements) of the remaining non-metal hetero atoms (such as phosphorus atoms and sulfur atoms) other than oxygen atoms and nitrogen atoms in the raw material nanocarbon material may be a conventional content.
  • the total amount of the remaining non-metal heteroatoms other than the oxygen atom and the nitrogen atom in the raw material nanocarbon material is not more than 0.5% by weight, preferably not more than 0.2% by weight, more preferably not more than 0.1%.
  • the weight % is further preferably not more than 0.05% by weight.
  • the raw material nanocarbon material may further contain some metal elements depending on the source, for example, a metal element derived from a catalyst used in preparing the raw material nanocarbon material.
  • the content of the metal element (in terms of the element) in the raw material nanocarbon material is generally 2.5% by weight or less, preferably 2% by weight or less, more preferably 1% by weight or less, and still more preferably 0.5% by weight or less.
  • the raw material nanocarbon material can be pretreated (e.g., washed) by a method commonly used in the art before use to remove some impurities on the surface of the raw material nanocarbon material.
  • the raw material nano carbon material is not pretreated before use in the embodiment disclosed in the present invention.
  • the nano carbon materials in various existing forms can be treated to increase the content of oxygen atoms and/or nitrogen atoms in the nano carbon material.
  • the raw material nanocarbon material may be, but not limited to, one or a combination of two or more of carbon nanotubes, graphene, nanodiamond, thin layer graphite, nano carbon particles, nano carbon fibers, and fullerenes.
  • the carbon nanotube may be one or a combination of two or more of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes.
  • the raw material nanocarbon material is a carbon nanotube, more preferably a multi-wall carbon nanotube.
  • the raw material nano carbon material is a multi-wall carbon nanotube
  • the multi-wall carbon nanotube has a specific surface area of 20-500 m. 2 / g, preferably 50-400 m 2 /g, more preferably 90-300 m 2 /g, further preferably 100-200 m 2 /g.
  • the specific surface area of the multi-walled carbon nanomaterial is within the above range, the finally obtained hetero atom-containing nanocarbon material has better catalytic activity.
  • the weight loss rate of the multi-wall carbon nanotube in a temperature range of 400-800 ° C is w 800
  • the weight loss rate in the temperature range of 400-500 ° C is w 500
  • w 500 /w 800 is preferably in the range of 0.01-0.5, more preferably in the range of 0.02-0.2.
  • the raw material nanocarbon material is a multi-walled carbon nanotube
  • the multi-walled carbon nanotube has a specific surface area of 20-500 m 2 /g, preferably 50-400 m. 2 / g, more preferably 90-300m 2 / g, more preferably 100-200m 2 / g; weight loss of the MWNTs in the temperature range of 400-800 deg.] C was w 800, in the 400- The weight loss rate in the temperature range of 500 ° C is w 500 , and w 500 /w 800 is preferably in the range of 0.01 to 0.5, more preferably in the range of 0.02 to 0.2.
  • the reaction is carried out in a closed vessel.
  • the reaction can be carried out under autogenous pressure (i.e., without additional pressure applied) or under pressurized conditions. Preferably, the reaction is carried out under autogenous pressure.
  • the closed vessel can be a conventional reactor capable of sealing and heating, such as a high pressure reactor.
  • the preparation method of the hetero atom-containing nanocarbon material according to the present invention may further comprise separating the solid matter from the mixture obtained by the reaction, and drying the separated solid matter and optionally calcining to obtain the hetero atom-containing compound.
  • Nano carbon material may further comprise separating the solid matter from the mixture obtained by the reaction, and drying the separated solid matter and optionally calcining to obtain the hetero atom-containing compound.
  • the solid matter may be separated from the mixture obtained by the reaction by a usual solid-liquid separation method, such as one or a combination of two or more of centrifugation, filtration, and decantation.
  • the drying conditions can be conventionally selected to remove volatile materials from the separated solid material.
  • the drying can be carried out at a temperature of from 50 to 200 ° C, preferably at a temperature of from 80 to 180 ° C, more preferably at a temperature of from 100 to 150 ° C.
  • the duration of the drying can be selected depending on the temperature and manner of drying. Generally, the duration of the drying may range from 0.5 to 48 hours, preferably from 3 to 24 hours, more preferably from 5 to 12 hours.
  • the drying may be carried out under normal pressure (1 standard atmospheric pressure) or under reduced pressure. From the viewpoint of further improving the efficiency of drying, the drying is preferably carried out under reduced pressure.
  • the preparation method of the hetero atom-containing nanocarbon material according to the present invention can effectively increase the content of oxygen atoms and/or nitrogen atoms in the raw material nano carbon material without significantly affecting the structural morphology of the raw material nano carbon material.
  • a heteroatom-containing nanocarbon material prepared by the process of the invention.
  • the present invention provides a hetero atom-containing nanocarbon material which is a hetero atom-containing nanocarbon material according to the first aspect of the present invention or according to the present invention.
  • Three aspects (for example, not subjected to calcination) of the hetero atom-containing nanocarbon material are calcined.
  • the calcination can be carried out under ordinary conditions. In general, the calcination can be carried out at a temperature of from 250 to 500 ° C, preferably at a temperature of from 300 to 480 ° C, more preferably at a temperature of from 350 to 450 ° C.
  • the duration of the calcination can be selected depending on the temperature of the calcination. Generally, the duration of the calcination can be from 1 to 24 hours, preferably from 2 to 12 hours, more preferably from 2 to 8 hours.
  • the calcination may be carried out in an oxygen-containing atmosphere or in an inert atmosphere.
  • the oxygen-containing atmosphere may be an air atmosphere; or may be a mixed atmosphere formed by mixing oxygen and an inert gas, and the content of oxygen may be 0.1-22% by volume in the mixed atmosphere.
  • the inert atmosphere is an atmosphere formed by a rare gas such as argon gas and/or helium gas. From the standpoint of convenience and cost, etc., preferably, the baking is carried out in an oxygen-containing atmosphere such as an air atmosphere.
  • the heteroatom-containing nanocarbon material according to the present invention or the hetero atom-containing nanocarbon material prepared by the method of the present invention has good catalytic performance, and particularly exhibits high catalytic activity in the dehydrogenation reaction of a hydrocarbon substance.
  • a heteroatom-containing nanocarbon material according to the invention or prepared by the method of the invention can be used directly as a catalyst or in the form of a shaped catalyst.
  • the shaped catalyst may comprise a heteroatom-containing nanocarbon material according to the invention or a heteroatom-containing nanocarbon material prepared by the process of the invention and a binder.
  • the binder may be selected according to the specific use of the molding catalyst to meet the requirements for use, and may be, for example, an organic binder and/or an inorganic binder.
  • the organic binder may be a common various polymeric binders, which may be various common heat resistant inorganic oxides such as alumina and/or silica.
  • the binder is preferably an inorganic binder.
  • the content of the hetero atom-containing nanocarbon material may be selected according to specific use requirements, and is not particularly limited. Generally, the content of the hetero atom-containing nanocarbon material is based on the total amount of the molding catalyst. It can be from 5 to 95% by weight.
  • a heteroatom-containing nanocarbon material according to the first aspect of the invention a hetero atom-containing nanocarbon material according to the third aspect of the invention, or a fourth invention according to the invention.
  • the hetero atom-containing nanocarbon material can be directly used for hydrocarbon dehydrogenation reaction, or can be used for hydrocarbon dehydrogenation reaction after molding.
  • the dehydrogenation reaction may be carried out in the presence of oxygen or may be carried out in the absence of oxygen.
  • the dehydrogenation reaction is carried out in the presence of oxygen, which results in a better catalytic effect.
  • a hydrocarbon dehydrogenation reaction process comprising, in the presence or absence of oxygen, a hydrocarbon according to the present invention under a hydrocarbon dehydrogenation reaction condition
  • the hetero atom-containing nanocarbon material may be used as a catalyst as it is, or may be used in the form of a shaped catalyst.
  • the shaped catalyst may comprise a heteroatom-containing nanocarbon material according to the invention or a heteroatom-containing nanocarbon material prepared by the process of the invention and a binder.
  • the binder may be selected according to the specific use of the molding catalyst to meet the requirements for use, and may be, for example, an organic binder and/or an inorganic binder.
  • the organic binder may be a common various polymeric binders, which may be various common heat resistant inorganic oxides such as alumina and/or silica.
  • the binder is preferably an inorganic binder.
  • the content of the hetero atom-containing nanocarbon material may be selected according to specific use requirements, and is not particularly limited. Generally, the content of the hetero atom-containing nanocarbon material is based on the total amount of the molding catalyst. It can be from 5 to 95% by weight.
  • the hydrocarbon dehydrogenation reaction process according to the present invention can dehydrogenate various types of hydrocarbons to obtain unsaturated hydrocarbons such as olefins.
  • the process according to the invention is particularly suitable for the dehydrogenation of alkanes to give olefins.
  • the hydrocarbon is preferably an alkane such as a C 2 -C 12 alkane.
  • the hydrocarbon may be, but not limited to, ethane, propane, n-butane, isobutane, n-pentane, isopentane, neopentane, cyclopentane, n-hexane, 2-methylpentane, 3-methylpentane, 2,3-dimethylbutane, cyclohexane, methylcyclopentane, n-heptane, 2-methylhexane, 3-methylhexane, 2-ethylpentyl Alkane, 3-ethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, n-octane, 2-methylheptane, 3-methylheptane, 4-methyl Heptane, 2,3-dimethylhexane, 2,4-dimethylhexane, 2,5-dimethylhexane, 3-ethylhexane, 2,2,3-
  • the reaction can be carried out in the presence of oxygen (i.e., the hydrocarbon-containing raw material further contains oxygen), or in the absence of oxygen (i.e., the hydrocarbon-containing raw material is not Containing oxygen).
  • oxygen i.e., the hydrocarbon-containing raw material further contains oxygen
  • the hydrocarbon dehydrogenation reaction process according to the present invention is carried out in the presence of oxygen.
  • the amount of oxygen used can be conventionally selected.
  • the molar ratio of hydrocarbon to oxygen may range from 0.01 to 100:1, preferably from 0.1 to 10:1, more preferably from 0.2 to 5:1, and most preferably from 0.3 to 2:1.
  • hydrocarbons and optional oxygen can be fed into the reactor by a carrier gas to be contacted with the hetero atom-containing nanocarbon material, and the hydrocarbon-containing raw material can also contain a carrier gas.
  • the carrier gas may be one or two kinds of commonly used gases which do not chemically interact with the reactants and the reaction product under the reaction conditions and do not decompose, such as nitrogen, carbon dioxide, rare gas and water vapor. The combination above.
  • the amount of the carrier gas used can be conventionally selected.
  • the content of the carrier gas may be from 30 to 99.5% by volume, based on the total amount of the raw materials, preferably from 50 to 99% by volume, more preferably from 70 to 98% by volume.
  • the contact of the raw material containing hydrocarbons and optionally oxygen with the heteroatom-containing nanocarbon material can be carried out in a fixed bed reactor or in a fluidized bed reactor, without special limited.
  • the contacting is carried out in a fixed bed reactor.
  • the contacting of the feedstock containing hydrocarbons and optionally oxygen with the heteroatom-containing nanocarbon material can be carried out at conventional temperatures sufficient to effect dehydrogenation of the hydrocarbon.
  • the contacting can be carried out at a temperature of from 200 to 650 ° C, preferably at a temperature of from 300 to 600 ° C, more preferably at a temperature of from 350 to 500 ° C.
  • the contacting can be carried out at a pressure of from 0 to 10 MPa, preferably at a pressure of from 0.01 to 6 MPa, more preferably at a pressure of from 0.02 to 3 MPa, still more preferably at a pressure of from 0.05 to 1.5 MPa.
  • the pressure is gauge pressure.
  • the duration of the contact can be selected based on the temperature of the contact. Specifically, when the dehydrogenation reaction is carried out in a fixed bed reactor, the duration of the contact can be expressed by the gas hour volume space velocity of the raw material.
  • the gas hour volume space velocity of the feedstock may be from 0.1 to 10000 h -1 , preferably from 1 to 6,000 h -1 , more preferably from 5 to 4000 h -1 , further preferably from 10 to 1000 h -1 , such as from 100 to 500 h -1 .
  • the reaction conditions can be optimized according to the kind of the hydrocarbon to be dehydrogenated, thereby obtaining a better reaction effect.
  • X-ray photoelectron spectroscopy was performed on a Thermo Scientific company's ESCALab 250 X-ray photoelectron spectrometer equipped with Thermo Avantage V5.926 software.
  • the excitation source was monochromatic Al K ⁇ X-rays.
  • the energy is 1486.6eV
  • the power is 150W
  • the permeability for narrow scanning is 30eV
  • the base vacuum for analysis and testing is 6.5 ⁇ 10 -10 mbar
  • the electron binding energy is corrected by the C1s peak of elemental carbon (284.0eV), in Thermo Avantage.
  • Data processing is performed on the software, and the sensitivity factor method is used for quantitative analysis in the analysis module.
  • the samples were dried for 3 hours in a helium atmosphere at a temperature of 150 ° C and 1 standard atmosphere before the test.
  • thermogravimetric analysis was carried out on a TA5000 thermal analyzer under the test conditions of an air atmosphere at a heating rate of 10 ° C/min and a temperature ranging from room temperature (25 ° C) to 1000 ° C.
  • the samples were dried for 3 hours in a helium atmosphere at a temperature of 150 ° C and 1 standard atmosphere before the test.
  • the specific surface area was measured using an ASAP 2000 type N 2 physical adsorber from Micromertrics, USA.
  • High-resolution transmission electron microscopy produced by American FEI Company was used to analyze the microstructure of raw nano-carbon materials and heteroatom-containing nano-carbon materials.
  • a multi-walled carbon nanotube as a raw material nanocarbon material (having a specific surface area of 136 m 2 /g, an oxygen atom content of 0.3% by weight, a nitrogen atom content of 0.02% by weight, and the like except for a nitrogen atom and an oxygen atom)
  • the total content of non-metal hetero atoms is 0.01% by weight
  • the total content of metal atoms is 0.2% by weight
  • the weight loss rate in the temperature range of 400-800 ° C is w 800 , in the temperature range of 400-500 ° C
  • the internal weight loss rate is w 500 , w 500 /w 800 is 0.12, purchased from Chengdu Organic Chemistry Co., Ltd.
  • the oscillation conditions included a frequency of 40 kHz and a time of 2 hours.
  • FIG. 1 is a transmission electron micrograph of a prepared hetero atom-containing nanocarbon material
  • FIG. 2 is a transmission electron micrograph of a multi-walled carbon nanotube as a raw material. It can be seen from Fig. 1 and Fig. 2 that the microscopic morphology of the heteroatom-containing nanocarbon material is good, indicating that the reaction process has little effect on the structure of the nanocarbon material.
  • the hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 1, except that in the step (1), the multi-walled carbon nanotube (purchased from Shandong Dazhan Nano Material Co., Ltd.) as a raw material nano carbon material was used.
  • the multi-walled carbon nanotube purchased from Shandong Dazhan Nano Material Co., Ltd.
  • the specific surface area is 251 m 2 /g
  • the weight loss rate in the temperature range of 400-800 ° C is w 800
  • the weight loss rate in the temperature range of 400-500 ° C is w 500
  • w 500 /w 800 is 0.33
  • oxygen atom The content is 0.62% by weight
  • the nitrogen atom content is 0.01% by weight
  • the total content of the remaining non-metal hetero atoms (phosphorus atom and sulfur atom) other than the nitrogen atom and the oxygen atom is 0.01% by weight
  • the total metal atom content is 0.08% by weight.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 1.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 1, except that in the step (2), the obtained aqueous dispersion was placed in a high pressure reaction vessel lined with a polytetrafluoroethylene liner. The reaction was carried out under autogenous pressure for 48 hours at a temperature of 90 °C.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 1.
  • a multi-walled carbon nanotube as a raw material nanocarbon material (having a specific surface area of 183 m 2 /g, an oxygen atom content of 0.2% by weight, a nitrogen atom content of 0.01% by weight, and the like except for a nitrogen atom and an oxygen atom)
  • the total content of non-metal hetero atoms is 0.04% by weight
  • the total content of metal atoms is 0.03% by weight
  • the weight loss rate in the temperature range of 400-800 ° C is w 800 at 400-500 ° C.
  • the weight loss rate in the temperature range is w 500 , w 500 /w 800 is 0.07, purchased from Chengdu Organic Chemistry Co., Ltd.
  • Ultrasonic oscillation conditions include a frequency of 80 kHz and a time of 0.5 hours.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 4, except that in the step (1), the multi-walled carbon nanotube (available from Shandong Dazhan Nano Material Co., Ltd.) as a raw material nanocarbon material was used.
  • the specific surface area is 103 m 2 /g
  • w 500 /w 800 is 0.23
  • the oxygen atom content is 1.1% by weight
  • the nitrogen atom content is 0.03% by weight
  • the total of the remaining non-metal heteroatoms (phosphorus and sulfur) other than nitrogen and oxygen The content was 0.01% by weight and the total metal atom content was 1.6% by weight.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 1.
  • the hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 4, except that in the step (2), the obtained aqueous dispersion was placed in a high pressure reaction vessel with a polytetrafluoroethylene liner. The reaction was carried out under autogenous pressure for 24 hours at a temperature of 210 °C.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 1.
  • the hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 1, except that in the step (1), after dispersing the raw material nanocarbon material in deionized water, tetrapropylammonium hydroxide (25 weight) was added. Provided in the form of a % aqueous solution, wherein the weight ratio of the raw material nanocarbon material: tetrapropylammonium hydroxide is 1:0.75.
  • Table 2 shows the prepared hetero atom Transmission electron micrograph of nanocarbon material. It can be seen from Fig. 3 that the microscopic morphology of the heteroatom-containing nanocarbon material is good, indicating that the reaction process has little effect on the structure of the nanocarbon material.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), tetrapropylammonium hydroxide was replaced with an equimolar amount of HCl.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), tetrapropylammonium hydroxide was replaced with an equimolar amount of NH 4 Cl.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), tetrapropylammonium hydroxide was replaced with an equimolar amount of tetrapropylammonium chloride.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), tetrapropylammonium hydroxide was replaced with an equimolar amount of n-propylamine.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), tetrapropylammonium hydroxide was replaced with an equimolar amount of pyridine.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), tetrapropylammonium hydroxide was replaced with an equimolar amount of cyclohexylamine.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), tetrapropylammonium hydroxide was replaced with ethylenediamine, and the molar amount of ethylenediamine was tetrapropylhydrogen. 0.5 times the number of moles of ammonium oxide.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), tetrapropylammonium hydroxide was replaced with an equimolar amount of diethanolamine.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), tetrapropylammonium hydroxide was replaced with hexamethylenetetramine, and the mole of hexamethylenetetramine was used. The amount is 0.25 times the number of moles of tetrapropylammonium hydroxide.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), tetrapropylammonium hydroxide was replaced with diethylenetriamine, and the number of moles of diethylenetriamine was four. The number of moles of ammonium hydroxide is 0.3 times.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • the hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), the raw material nanocarbon material was the same as the raw material nanocarbon material in Preparation Example 2.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (2), the obtained aqueous dispersion was placed in a high pressure reactor with a polytetrafluoroethylene liner. The reaction was carried out under autogenous pressure for 48 hours at a temperature of 80 °C.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 7, except that in the step (1), the weight ratio of the raw material nanocarbon material: tetrapropylammonium hydroxide was 1:0.4.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 4, except that in the step (1), after the raw material nanocarbon material was dispersed in deionized water, tetraethylammonium hydroxide was added (to 20 weight). Provided in the form of a % aqueous dispersion) to obtain an aqueous dispersion in which the weight ratio of the raw material nanocarbon material: tetraethylammonium hydroxide is 1:5.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • the hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 18 except that in the step (1), the raw material nanocarbon material was the same as the raw material nanocarbon material in Preparation Example 5.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 18 except that in the step (2), the obtained aqueous dispersion was placed in a high pressure reaction vessel lined with a polytetrafluoroethylene liner. The reaction was carried out under autogenous pressure for 48 hours at a temperature of 200 °C.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 18 except that in the step (1), the weight ratio of the raw material nanocarbon material: tetraethylammonium hydroxide was 1:8.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 2.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 22 except that in the step (2), the obtained aqueous dispersion was placed in a high pressure reaction vessel lined with a polytetrafluoroethylene liner. The reaction was carried out under autogenous pressure for 24 hours at a temperature of 90 °C.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 3.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 22, except that in the step (1), the multi-walled carbon nanotube as a raw material nanocarbon material was prepared and prepared.
  • the raw material nanocarbon material in Example 2 was the same.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 3.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 22 except that the step (1) was carried out at a weight ratio of the raw material nanocarbon material:organic base of 1:0.2.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 3.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Production Example 22. The difference is that in the step (1), diethanolamine is replaced with an equimolar amount of n-butylamine.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 3.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 23, except that in the step (1), triethanolamine was replaced with an equimolar amount of aniline.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 3.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 29 except that in the step (1), the multiwalled carbon nanotube as the raw material nanocarbon material was the same as in Production Example 2.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 3.
  • the hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 29 except that in the step (2), the obtained aqueous dispersion was placed in a high pressure reaction vessel lined with a polytetrafluoroethylene liner. The reaction was carried out under autogenous pressure for 24 hours at a temperature of 200 °C.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 3.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 29 except that in the step (1), the weight ratio of the raw material nanocarbon material:organic base was 1:0.25.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 3.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 29 except that in the step (1), ethylenediamine was replaced with ethylamine, and the number of moles of ethylamine was twice that of ethylenediamine.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 3.
  • a hetero atom-containing nanocarbon material was prepared in the same manner as in Preparation Example 30 except that in the step (1), hexamethylenediamine was replaced with triethanolamine, and the molar amount of triethanolamine was twice the molar amount of hexamethylenediamine. .
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are Table 3 is listed.
  • the hetero atom-containing nanocarbon material obtained in Preparation Example 1 was baked in an air atmosphere at a temperature of 350 ° C for 4 hours.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained by preparing Comparative Example 1 was baked in an air atmosphere at a temperature of 350 ° C for 4 hours.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material prepared in Preparation Example 7 was baked at 350 ° C for 4 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained by the preparation of Comparative Example 3 was baked at 350 ° C for 4 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained by the preparation of Comparative Example 4 was baked at 350 ° C for 4 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained by the preparation of Comparative Example 5 was baked at 350 ° C for 4 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained by the preparation of Comparative Example 6 was baked at 350 ° C for 4 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained in Preparation Example 18 was baked at 450 ° C for 2 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained in Preparation Example 19 was baked at 450 ° C for 2 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained in Preparation Example 22 was baked at 400 ° C for 4 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained by the preparation of Comparative Example 8 was baked at 400 ° C for 4 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained in Preparation Example 23 was baked at 380 ° C for 6 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained in Preparation Example 26 was baked at 400 ° C for 5 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained in Preparation Example 28 was baked at 380 ° C for 6 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained in Preparation Example 29 was baked at 410 ° C for 5 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material prepared in the preparation of Comparative Example 9 was baked at 410 in an air atmosphere for 5 hours.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained in Preparation Example 30 was air-conditioned at 370 ° C. Roast for 8 hours in the atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained in Preparation Example 33 was baked at 410 ° C for 5 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • the hetero atom-containing nanocarbon material obtained in Preparation Example 35 was baked at 370 ° C for 8 hours in an air atmosphere.
  • the composition and properties of the prepared heteroatom-containing nanocarbon materials are listed in Table 4.
  • 0.2 g (1.5 ml packed volume) of heteroatom-containing nano-carbon material was loaded into the universal fixed-bed micro quartz reactor as a catalyst.
  • the quartz quartz reactor was sealed with quartz sand at both ends to contain hydrocarbons and oxygen.
  • the raw material gas is introduced into the reactor to carry out the reaction.
  • the concentration of n-butane in the raw material gas was 1% by volume, n-butane and The molar ratio of oxygen is 0.5:1, the balance is nitrogen as carrier gas, the reaction is carried out under conditions of 0.1 MPa and 450 ° C, and the total volumetric space velocity of the raw material gas is 500 h -1 ;
  • the concentration of n-butane in the raw material gas is 1-5 vol%, and the molar ratio of n-butane to oxygen is 2:3.
  • the balance is nitrogen as a carrier gas, and the reaction is carried out at 0 MPa and 420 ° C, and the total volume space velocity of the material gas is 100 h -1 .
  • n-butane was oxidized in the same manner as in Example 1, except that the reaction was carried out at 0.5 MPa and 400 °C.
  • the experimental results are listed in Table 5.
  • n-butane was oxidized in the same manner as in Example 4 except that the reaction was carried out at 0 MPa and 450 °C.
  • the experimental results are listed in Table 5.
  • n-butane was oxidized in the same manner as in Example 1, except that the hetero atom-containing nanocarbon material prepared in Preparation Example 1 was used as a catalyst.
  • the experimental results are listed in Table 5.
  • n-butane was oxidized in the same manner as in Example 4 except that the hetero atom-containing nanocarbon material prepared in Preparation Example 2 was used as a catalyst.
  • the experimental results are listed in Table 5.
  • Example 5 The n-butane was oxidized in the same manner as in Example 1, except that the preparation was carried out.
  • the raw material carbon material in Example 1 was used as a catalyst.
  • the experimental results are listed in Table 5.
  • n-butane was oxidized in the same manner as in Example 4 except that the raw material carbon material in Preparation Example 4 was used as a catalyst.
  • the experimental results are listed in Table 5.
  • n-butane was oxidized in the same manner as in Example 1, except that the hetero atom-containing nanocarbon material prepared in Preparation Example 10 was used as a catalyst.
  • the experimental results are listed in Table 5.
  • 0.2 g (1.5 ml in volume) of heteroatom-containing nano-carbon material was used as a catalyst in a general-purpose fixed-bed micro-quartz reactor.
  • the micro-quartz reactor was sealed with quartz sand at both ends to contain hydrocarbon and oxygen. The gas is passed to the reactor for reaction.
  • the concentration of n-butane in the material gas was 2% by volume, n-butane and oxygen.
  • the molar ratio is 1:3, the balance is nitrogen as carrier gas, the reaction is carried out under conditions of 0.1 MPa and 400 ° C, and the total volumetric space velocity of the raw material gas is 200 h -1 ;
  • the concentration of n-butane in the material gas was 1% by volume, and the molar ratio of n-butane to oxygen was 1: 1.5, the balance is nitrogen as a carrier gas, the reaction is carried out under the conditions of 0.5 MPa and 420 ° C, and the total volume space velocity of the raw material gas is 500 h -1 .
  • n-butane was oxidized in the same manner as in Example 11 except that the hetero atom-containing nanocarbon material prepared in Comparative Example 3-6 was used as a catalyst, respectively.
  • the experimental results are listed in Table 6.
  • n-butane was oxidized in the same manner as in Example 23 except that the hetero atom-containing nanocarbon material prepared in Preparation Example 7 was used as a catalyst.
  • the experimental results are listed in Table 6.
  • n-butane was oxidized in the same manner as in Example 12 except that the raw material carbon material in Preparation Example 7 was used as a catalyst.
  • the experimental results are listed in Table 6.
  • n-butane was oxidized in the same manner as in Example 23, except that the raw material carbon material in Preparation Example 18 was used as a catalyst.
  • the experimental results are listed in Table 6.
  • n-Butane was oxidized in the same manner as in Example 28 except that the hetero atom-containing nanocarbon material prepared by the preparation of Comparative Examples 11-14 was used as a catalyst, respectively.
  • the experimental results are listed in Table 6.
  • n-butane was oxidized in the same manner as in Example 11 except that the hetero atom-containing nanocarbon material prepared in Preparation Examples 1, 7, and 8, respectively, was used as a catalyst, and the reaction was carried out at 0.1 MPa and 450 °C.
  • the experimental results are listed in Table 6.
  • n-butane was oxidized in the same manner as in Example 23, except that the heteroatom-containing nanocarbon material prepared in Preparation Examples 18-21 was used as a catalyst, respectively, and the reaction was carried out at 0.1 MPa and 400 °C. .
  • the experimental results are listed in Table 6.
  • 0.2 g (1.5 ml in volume) of heteroatom-containing nano-carbon material was used as a catalyst in a general-purpose fixed-bed micro-quartz reactor.
  • the micro-quartz reactor was sealed with quartz sand at both ends to contain hydrocarbon and oxygen. The gas is passed to the reactor for reaction.
  • the concentration of propane in the material gas is 1% by volume, and the molar ratio of propane to oxygen is 1 : 3, the balance is nitrogen as a carrier gas, the reaction is carried out under conditions of 0.2 MPa and 480 ° C, and the total volumetric space velocity of the raw material gas is 150 h -1 ;
  • the concentration of propane in the material gas was 4% by volume, and the molar ratio of propane to oxygen was 0.5:1, and the balance was taken as The nitrogen gas was reacted at 0.1 MPa and 420 ° C, and the total volumetric space velocity of the raw material gas was 20 h -1 .
  • 0.2g (filling volume: 1.5mL) containing heteroatom nano-carbon material was used as a catalyst in a universal fixed-bed micro-quartz reactor.
  • the micro-quartz reactor was sealed with quartz sand at both ends, which will contain ethylbenzene and The raw material gas of oxygen is introduced into the reactor for reaction.
  • the concentration of ethylbenzene in the material gas was 2% by volume, and the molar ratio of ethylbenzene and oxygen. The ratio is 1:1, the balance is nitrogen as a carrier gas, the reaction is carried out under the conditions of 0.1 MPa and 400 ° C, and the total volumetric space velocity of the raw material gas is 250 h -1 ;
  • the concentration of ethylbenzene in the material gas was 3% by volume, and the molar ratio of ethylbenzene to oxygen was 2:1.5.
  • the balance is nitrogen as a carrier gas, and the reaction is carried out at 0.5 MPa and 380 ° C, and the total volume space velocity of the material gas is 100 h -1 .
  • Ethylbenzene was oxidized in the same manner as in Example 53 except that the hetero atom-containing nanocarbon material prepared in Preparation Example 9 was used as a catalyst.
  • the experimental results are listed in Table 8.
  • Example 8 Ethylbenzene was oxidized in the same manner as in Example 54 except that the system was used.
  • the raw material nanocarbon material in Example 30 was used as a catalyst.
  • the experimental results are listed in Table 8.
  • Ethylbenzene was oxidized in the same manner as in Example 60 except that the hetero atom-containing nanocarbon material prepared in Comparative Example 16 was used as a catalyst.
  • the experimental results are listed in Table 8.
  • Ethylbenzene was oxidized in the same manner as in Example 53 except that the atom-containing nanocarbon material prepared in Preparation Examples 29, 33 and 34 was used as a catalyst, respectively, and the reaction was carried out at 1 MPa and 450 °C.
  • the experimental results are listed in Table 8.
  • the present invention also provides the following technical solution: A1, a carbon-based material, characterized in that the carbon-based material contains 70-99.9 wt% of carbon, 0.05-10 wt% based on the total weight of the carbon-based material. % nitrogen and 0.05-20% by weight of oxygen; wherein, in the XPS spectrum of the carbon-based material, the ratio of the peak signal value of oxygen at 533.13-533.53 eV to the peak signal value of oxygen at 531.76-532.16 eV is 0.2. -5.
  • the carbon-based material according to claim A1 characterized in that the carbon-based material contains 80 to 97% by weight of carbon, 0.2 to 8% by weight of nitrogen and 0.5 based on the total weight of the carbon-based material. -15% by weight of oxygen.
  • the carbon-based material according to the invention A2 characterized in that the carbon-based material contains 85 to 95% by weight of carbon, 0.5 to 5% by weight of nitrogen and 2 to 10% by weight of oxygen.
  • the carbon-based material according to the technical scheme A4 characterized in that in the XPS spectrum of the carbon-based material, the area under the signal curve of the carbon in the range of 286.21-286.61 eV and the area under the curve of the carbon in the interval of 288.59-288.99 eV.
  • the sum of the area under the signal curve of the carbon in the range of 280-294 eV is 2-20%.
  • the carbon-based material according to any one of the aspects of the present invention, characterized in that the carbon-based material comprises carbon nanotubes, graphene, fullerenes, nano carbon particles, activated carbon, carbon nanometers.
  • a method for preparing a carbon-based material characterized in that the method comprises the following steps:
  • A8 The method according to claim A7, characterized in that the molar ratio of the solid carbon source to the nitrogen element in the organic base is 1: (0.002-50); the solid carbon source and the The molar ratio of hydrogen peroxide in the aqueous hydrogen peroxide solution is 1: (0.01-10).
  • A9 The method according to claim A7 or A8, characterized in that the molar ratio of the solid carbon source to the nitrogen element in all organic bases is 1: (0.01-10); the solid carbon source and the The molar ratio of hydrogen peroxide in the aqueous hydrogen peroxide solution is 1: (0.1-2).
  • the method according to claim A9 characterized in that the concentration of the aqueous hydrogen peroxide solution is from 0.5 to 80% by weight.
  • the method according to claim A10 characterized in that the concentration of the aqueous hydrogen peroxide solution is from 1 to 30% by weight.
  • the method according to claim A7 characterized in that the temperature at which the hydrothermal treatment is carried out is 100-200 ° C; and the time is 0.5-96 hours.
  • A13 The method according to claim A7, characterized in that the calcination is carried out in a gas containing oxygen, and the content of oxygen in the oxygen-containing gas is from 2 to 25% by volume based on the total volume of the oxygen-containing gas.
  • the carbon source is at least one selected from the group consisting of carbon nanotubes, graphene, fullerenes, nanocarbon particles, activated carbon, carbon nanofibers, and nanodiamonds.
  • the organic amine comprises at least one of an aliphatic amine, an alcohol amine, an amide, an alicyclic amine, and an aromatic amine;
  • the aliphatic amine is at least one selected from the group consisting of ethylamine, n-propylamine, n-butylamine, di-n-propylamine, butanediamine and hexamethylenediamine;
  • the alcoholamine is at least one selected from the group consisting of monoethanolamine, diethanolamine and triethanolamine.
  • the quaternary ammonium base is at least one selected from the group consisting of tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
  • A17 The method according to claim A7, characterized in that the content of hydrogen peroxide in the aqueous hydrogen peroxide solution is from 0.5 to 50% by weight.
  • hydrocarbon has 2 to 12 carbon atoms, and the hydrocarbon comprises at least one of an alkane, an olefin, and an alkyl group-containing aromatic hydrocarbon.
  • hydrocarbon comprises at least one of butane, 1-butene, ethylbenzene, propane, ethane and pentane.
  • a carbon-based material characterized in that the carbon-based material contains 70-99.75% by weight of carbon, 0.05-10% by weight of nitrogen and 0.2-20 by weight based on the total weight of the carbon-based material. % of oxygen; wherein, in the X-ray photoelectron spectroscopy of the carbon-based material, the ratio of the amount of oxygen element determined by the peak in the range of 533.1-533.5 eV to the amount of oxygen element determined by the peak in the range of 531.8-532.2 eV In the range of 0.2-5.
  • the carbon-based material according to claim B1 wherein the carbon-based material contains 80 to 97% by weight of carbon, 0.2 to 8% by weight of nitrogen, and 0.5 based on the total weight of the carbon-based material. -15% by weight of oxygen element, the X-ray photoelectron spectroscopy of the carbon-based material, the peak in the range of 533.1-533.5 eV determines the amount of oxygen element and the peak in the range of 531.8-532.2 eV determines the amount of oxygen element The ratio is in the range of 0.5-2.
  • the carbon-based material according to claim B2 wherein the carbon-based material contains 85 to 95% by weight of carbon, 0.5 to 5% by weight of nitrogen, and 2 based on the total weight of the carbon-based material. - 10% by weight of oxygen element, the amount of oxygen element determined by the peak in the range of 533.1-533.5 eV and the amount of oxygen element determined by the peak in the range of 531.8-532.2 eV in the X-ray photoelectron spectroscopy in the carbon-based material The ratio is in the range of 0.6-1.8.
  • the carbon-based material according to any one of the aspects of the present invention, wherein the carbon-based material has a peak in the range of 398.0-400.5 eV in the X-ray photoelectron spectroscopy.
  • the ratio of the amount of nitrogen element to the amount of nitrogen element determined by the peak in the range of 395.0-405.0 eV is in the range of 0.5-1;
  • the ratio of the amount of nitrogen element determined by the peak in the range of 400.6-401.5 eV to the amount of nitrogen element determined by the peak in the range of 395.0-405.0 eV is in the range of 0-0.5.
  • the carbon-based material according to any one of the aspects of the present invention, wherein, in the X-ray photoelectron spectroscopy of the carbon-based material, the amount of the carbon element determined by the peak in the range of 283.8-284.2 eV is 280.0- The ratio of the amount of carbon element determined by the peak in the range of 294.0 eV is in the range of 0.6-1;
  • the ratio of the amount of carbon element determined by the peak in the range of 286.2-286.6eV to the amount of carbon element determined by the peak in the range of 288.6-289.0 eV and the amount of carbon element determined by the peak in the range of 280.0-294.0 eV is 0.02. Within the range of -0.2;
  • the ratio of the amount of carbon element determined by the peak in the range of 286.2-286.6 eV to the amount of carbon element determined by the peak in the range of 288.6-289.0 eV is in the range of 0.3-2.
  • the carbon-based material according to any one of the aspects of the present invention, wherein the carbon-based material has a structural form including carbon nanotubes, graphene, fullerenes, nano carbon particles, activated carbon, thin layer graphite, At least one of the structural forms of carbon nanofibers and nanodiamonds.
  • a method for preparing a carbon-based material characterized in that the method comprises the following steps:
  • the carbon source is at least one selected from the group consisting of carbon nanotubes, graphene, fullerenes, nanocarbon particles, thin layer graphite, activated carbon, carbon nanofibers, and nanodiamonds.
  • the carbon source is at least one selected from the group consisting of carbon nanotubes, graphene, fullerenes, nanocarbon particles, thin layer graphite, activated carbon, carbon nanofibers, and nanodiamonds.
  • the organic amine comprises at least one of an aliphatic amine, an alcohol amine, an amide, an alicyclic amine, and an aromatic amine;
  • the aliphatic amine is selected from the group consisting of ethylamine At least one of propylamine, n-butylamine, di-n-propylamine, butanediamine and hexamethylenediamine;
  • the alcoholamine is at least one selected from the group consisting of monoethanolamine, diethanolamine and triethanolamine;
  • the quaternary ammonium base is selected from the group consisting of four At least one of methyl ammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide;
  • the amide is selected from the group consisting of formamide, acetamide, propionamide, butanamide, isobutyramide At least one of acrylamide, polyacrylamide
  • hydrocarbon has 2 to 15 carbon atoms, and the hydrocarbon comprises at least one of an alkane, an olefin, and an aromatic hydrocarbon containing an alkyl group; At least two carbons are in.
  • hydrocarbon comprises at least one of butane, 1-butene, ethylbenzene, propane, ethane and pentane.
  • a carbon-based material characterized in that the carbon-based material contains 80 to 96% by weight of carbon, 0.5 to 5% by weight of nitrogen and 2 to 15% by weight based on the total weight of the carbon-based material.
  • Oxygen wherein, in the XPS spectrum of the carbon-based material, the ratio of the peak signal value of oxygen at 533.16-533.56 eV to the signal value of oxygen at 531.85-532.25 eV is 0.2-5.
  • the carbon-based material according to claim C1 characterized in that the carbon-based material contains 90-95% by weight of carbon, 0.8-2% by weight of nitrogen and 4 based on the total weight of the carbon-based material. - 10% by weight of oxygen.
  • a method for preparing a carbon-based material characterized in that the method comprises the steps of: (1) mixing a solid carbon source, a precursor and water to obtain a mixed material; wherein the precursor contains an organic base
  • the organic base comprises an organic amine and/or a quaternary ammonium base; (2) hydrothermalizing the mixed material obtained in the step (1) to obtain a hydrothermally treated material; and separating the solid in the hydrothermally treated material (3)
  • the solid in the hydrothermally treated material obtained in the step (2) is calcined.
  • the carbon source is selected from the group consisting of carbon nanotubes, activated carbon, graphene, fullerenes, carbon nanofibers, carbon nanoparticles, and nanodiamonds. At least one of them.
  • the organic amine comprises at least one of an aliphatic amine, an alcohol amine, an amide, an alicyclic amine and an aromatic amine;
  • the amine is at least one selected from the group consisting of ethylamine, n-propylamine, n-butylamine, di-n-propylamine, butanediamine and hexamethylenediamine;
  • the organic alcohol amine is at least one selected from the group consisting of monoethanolamine, diethanolamine and triethanolamine.
  • the quaternary ammonium base is at least one selected from the group consisting of tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
  • the carbon-based material prepared by the method of any one of C13 and C5 to C12.
  • a method for oxidizing a hydrocarbon comprising: contacting a gas containing hydrocarbons and oxygen with a catalyst under catalytic oxidative dehydrogenation conditions of a hydrocarbon; wherein the catalyst comprises any of the technical schemes C1-C4 and C13.
  • hydrocarbon has 2 to 12 carbon atoms, and the hydrocarbon comprises at least one of an alkane, an olefin, and an alkyl group-containing aromatic hydrocarbon.
  • hydrocarbon comprises at least one of butane, 1-butene, ethylbenzene, propane, ethane, and pentane.
  • gas containing hydrocarbons and oxygen further contains a carrier gas containing at least one of nitrogen, CO 2 and water vapor.
  • the catalytic oxidative dehydrogenation condition of the hydrocarbon comprises: a contact temperature of 300-600 ° C and a pressure of 0.1-60 MPa; and a gas calculated by a total volume of a gas containing hydrocarbons and oxygen;
  • the volumetric space velocity through the catalyst is 1-600 h -1 .
  • a carbon-based material characterized in that the carbon-based material contains 80-98.9 wt% of carbon, 0.1-7 wt% of nitrogen, and 1-15 wt% based on the total weight of the carbon-based material. % of oxygen; wherein, in the X-ray photoelectron spectroscopy of the carbon-based material, the ratio of the amount of oxygen element determined by the peak in the range of 533.1-533.5 eV to the amount of oxygen element determined by the peak in the range of 531.8-532.2 eV In the range of 0.2-5.
  • the carbon-based material according to claim D1 wherein the carbon-based material contains 85 to 97% by weight of carbon, 0.2 to 5% by weight of nitrogen, and 2 based on the total weight of the carbon-based material.
  • - 10% by weight of oxygen element the X-ray photoelectron spectroscopy of the carbon-based material, the peak in the range of 533.1-533.5 eV determines the amount of oxygen element and the peak in the range of 531.8-532.2 eV determines the amount of oxygen element
  • the ratio is in the range of 0.5-2.
  • the carbon-based material according to any one of the aspects of the present invention, wherein, in the X-ray photoelectron spectroscopy of the carbon-based material, the amount of the nitrogen element determined by the peak in the range of 398.0-400.5 eV is 395.0 a ratio of the amount of nitrogen element determined by the peak in the range of -405.0 eV is in the range of 0.5-1;
  • the ratio of the amount of nitrogen element determined by the peak in the range of 400.6-401.5 eV to the amount of nitrogen element determined by the peak in the range of 395.0-405.0 eV is in the range of 0-0.5.
  • the carbon-based material according to any one of the aspects of the present invention, wherein the carbon-based material has a peak in the range of 283.8-284.2 eV in the X-ray photoelectron spectroscopy.
  • the ratio of the amount of carbon element to the amount of carbon element determined by the peak in the range of 280.0-294.0 eV is in the range of 0.6-1;
  • the ratio of the amount of carbon element determined by the peak in the range of 286.2-286.6eV to the amount of carbon element determined by the peak in the range of 288.6-289.0 eV and the amount of carbon element determined by the peak in the range of 280.0-294.0 eV is 0.01 Within the range of -0.2;
  • the ratio of the amount of carbon element determined by the peak in the range of 286.2-286.6 eV to the amount of carbon element determined by the peak in the range of 288.6-289.0 eV is in the range of 0.2-2.
  • the carbon-based material according to any one of the aspects of the present invention, wherein the carbon-based material has a w 500 /w 800 in the range of 0.02-0.5; wherein w 800 means an air atmosphere and 25 The initial temperature of °C and the temperature rise of 10 ° C / min, the weight loss of the carbon-based material at 800 ° C relative to the weight at 400 ° C, w 500 refers to the air atmosphere and the initial temperature of 25 ° C and 10 The rate of decrease of the weight of the carbon-based material at 500 ° C relative to the weight at 400 ° C under elevated temperature conditions of ° C / min.
  • carbon-based material according to any one of the aspects of the present invention, wherein the carbon-based material comprises carbon nanotubes, graphene, fullerenes, nano carbon particles, activated carbon, thin layer graphite, At least one of the structural forms of carbon nanofibers and nanodiamonds.
  • a method for preparing a carbon-based material comprising the steps of: (1) mixing a solid carbon source, a precursor, and water to obtain a mixed material; wherein the precursor contains an organic base.
  • the organic base comprises an organic amine and/or a quaternary ammonium base; (2) hydrothermalizing the mixed material obtained in the step (1) to obtain a hydrothermally treated material; and separating the solid in the hydrothermally treated material (3)
  • the solid in the hydrothermally treated material obtained in the step (2) is calcined.
  • the carbon source is at least one selected from the group consisting of carbon nanotubes, graphene, fullerenes, nano carbon particles, thin layer graphite, activated carbon, carbon nanofibers, and nanodiamonds.
  • the carbon source is at least one selected from the group consisting of carbon nanotubes, graphene, fullerenes, nano carbon particles, thin layer graphite, activated carbon, carbon nanofibers, and nanodiamonds.
  • the organic amine comprises at least one of an aliphatic amine, an alcohol amine, an amide, an alicyclic amine, and an aromatic amine;
  • the aliphatic amine is selected from the group consisting of ethylamine, At least one of propylamine, n-butylamine, di-n-propylamine, butanediamine and hexamethylenediamine;
  • the alcoholamine is at least one selected from the group consisting of monoethanolamine, diethanolamine and triethanolamine;
  • the quaternary ammonium base is selected from the group consisting of four At least one of methyl ammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide;
  • the amide is selected from the group consisting of formamide, acetamide, propionamide, butanamide, isobutyramide At least one of acrylamide, polyacryl
  • the carbon-based material prepared by the method of any one of D17 to D16.
  • a method for oxidizing a hydrocarbon comprising: contacting a gas containing hydrocarbons and oxygen with a catalyst under catalytic conditions of hydrocarbon oxidation; wherein the catalyst comprises any one of technical solutions D1-D8 and D17.
  • the carbon-based material comprising: contacting a gas containing hydrocarbons and oxygen with a catalyst under catalytic conditions of hydrocarbon oxidation; wherein the catalyst comprises any one of technical solutions D1-D8 and D17.
  • the hydrocarbon has 2 to 15 carbon atoms, and the hydrocarbon includes at least one of an alkane, an olefin, and an aromatic hydrocarbon containing an alkyl group; At least two carbon atoms.
  • hydrocarbon comprises butane, At least one of 1-butene, ethylbenzene, propane, ethane, and pentane.
  • hydrocarbon catalytic oxidation conditions comprise: a contact temperature of 300-600 ° C, a contact pressure of 0.1-40 MPa; and a gas passing through the catalyst in a total volume of a gas containing hydrocarbons and oxygen
  • the volumetric space velocity is 1-6000h -1 .
  • a method for catalytically dehydrogenating a hydrocarbon comprising: contacting a hydrocarbon-containing gas with a catalyst under catalytic dehydrogenation conditions of a hydrocarbon; wherein the catalyst comprises a carbon-based material; and the carbon-based material Based on the total weight, the carbon-based material contains 70-99.9 wt% of carbon, 0.05-10 wt% of nitrogen, and 0.05-20 wt% of oxygen; wherein, in the XPS spectrum of the carbon-based material, oxygen is The ratio of the peak signal value at 533.13-533.53eV to the peak signal value of oxygen at 531.76-532.16 eV is 0.2-5.
  • the method according to claim E1 characterized in that the carbon-based material contains 80-97 wt% of carbon, 0.2-8 wt% of nitrogen and 0.5- based on the total weight of the carbon-based material. 15% by weight of oxygen.
  • the method according to claim E2 characterized in that the carbon-based material contains 85 to 95% by weight of carbon, 0.5 to 5% by weight of nitrogen and 2 to 10% by weight of oxygen.
  • the method according to any one of the aspects of the present invention characterized in that, in the XPS spectrum of the carbon-based material, the peak signal value of carbon at 286.21-286.61 eV and the carbon at 288.59-288.99 eV The ratio of the peak signal values is 0.5-2.
  • E5. The method according to claim E4, characterized in that in the XPS spectrum of the carbon-based material, the area under the signal curve of the carbon in the range of 286.21-286.61 eV and the area under the curve of the carbon in the interval of 288.59-288.99 eV.
  • the percentage of the area under the signal curve of the carbon in the range of 280-294 eV is 2-20%.
  • the carbon-based material comprises carbon nanotubes, graphene, fullerenes, nano carbon particles, activated carbon, carbon nanofibers. And a structure of at least one of nanodiamonds.
  • hydrocarbon comprises at least one of butane, 1-butene, ethylbenzene, propane, ethane and pentane.
  • hydrocarbon-containing gas further contains a carrier gas
  • the carrier gas contains at least one of nitrogen, CO 2 and water vapor.
  • the catalytic dehydrogenation condition of the hydrocarbon comprises: a contact temperature of 300-600 ° C, a pressure of 0.1-60 MPa; and a gas passing through the catalyst in a total volume of the gas containing the hydrocarbon
  • the volumetric space velocity is 1-6000h -1 .
  • the hydrocarbon comprises butane
  • the carbon-based material contains 85-95% by weight of carbon, 0.5-based on the total weight of the carbon-based material. 5 wt% of nitrogen and 2-10 wt% of oxygen
  • the structure of the carbon-based material contains carbon nanotubes
  • the hydrocarbon-containing gas further contains oxygen, and the molar ratio of the hydrocarbon to oxygen is (0.1- 10): 1
  • the hydrocarbon catalytic dehydrogenation conditions include: contact temperature is 400-500 ° C, pressure is 0.1-60 MPa;
  • the volumetric space velocity of the gas passing through the catalyst is calculated as the total volume of the hydrocarbon-containing gas, which is 10-4000 h -1 .
  • the hydrocarbon comprises propane; the carbon-based material contains 85-95% by weight of carbon, 0.5-2.5 based on the total weight of the carbon-based material. % by weight of nitrogen and 2-10% by weight of oxygen; the structure of the carbon-based material contains carbon nanotubes; the hydrocarbon-containing gas further contains oxygen, and the molar ratio of the hydrocarbon to oxygen is (0.05-2)
  • the hydrocarbon-containing gas has a total concentration of the hydrocarbon and oxygen of 10 to 30% by volume; and the hydrocarbon catalytic dehydrogenation conditions include: a contact temperature of 300 to 400 ° C and a pressure of 0.1 to 60 MPa; The total volume of the hydrocarbon gas is calculated as the volumetric space velocity of the gas passing through the catalyst is 100-2000 h -1 .
  • the hydrocarbon comprises ethylbenzene
  • the carbon-based material contains 85-95% by weight of carbon, 2.5-based on the total weight of the carbon-based material. 5 wt% of nitrogen and 2-10 wt% of oxygen
  • the structure of the carbon-based material contains carbon nanotubes
  • the catalytic dehydrogenation conditions of the hydrocarbon include: contact temperature of 400-500 ° C, pressure of 0.1-60 MPa; The volumetric space velocity of the gas passing through the catalyst is calculated as the total volume of the hydrocarbon-containing gas, which is 10-4000 h -1 .
  • a method for catalytically dehydrogenating a hydrocarbon comprising: contacting a hydrocarbon-containing gas with a catalyst under catalytic dehydrogenation conditions of a hydrocarbon; wherein the catalyst comprises a carbon-based material; and the carbon-based material Based on the total weight, the carbon-based material contains 70-99.75 wt% of carbon, 0.05-10 wt% of nitrogen, and 0.2-20 wt% of oxygen; wherein X-ray photoelectron energy of the carbon-based material
  • the ratio of the amount of oxygen element determined by the peak in the range of 533.1-533.5 eV to the amount of oxygen element determined by the peak in the range of 531.8-532.2 eV is in the range of 0.2-5.
  • the method according to claim F1 wherein the carbon-based material contains 80-97 wt% of carbon, 0.2-8 wt% of nitrogen, and 0.5-, based on the total weight of the carbon-based material. 15% by weight of oxygen element, the ratio of the amount of oxygen element determined by the peak in the range of 533.1-533.5 eV to the amount of oxygen element determined by the peak in the range of 531.8-532.2 eV in the X-ray photoelectron spectroscopy of the carbon-based material In the range of 0.5-2.
  • the carbon-based material contains 85 to 95% by weight of carbon, 0.5 to 5% by weight of nitrogen and 2-based on the total weight of the carbon-based material.
  • the ratio is in the range of 0.6-1.8.
  • the peak of the range of 398.0-400.5 eV determines the amount of nitrogen element and 395.0-405.0
  • the ratio of the amount of nitrogen element determined by the peak in the eV range is in the range of 0.5-1;
  • the ratio of the amount of nitrogen element determined by the peak in the range of 400.6-401.5 eV to the amount of nitrogen element determined by the peak in the range of 395.0-405.0 eV is in the range of 0-0.5.
  • the carbon-based material has an X-ray photoelectron spectroscopy
  • the peak of the range of 283.8-284.2 eV determines the amount of carbon element and 280.0-294.0 eV.
  • the ratio of the amount of carbon elements determined by the peaks in the range is in the range of 0.6-1;
  • the sum of the carbon element determined by the peak in the range of 286.2-286.6eV and the sum of the carbon element determined by the peak in the range of 288.6-289.0 eV in the X-ray photoelectron spectroscopy and the carbon determined by the peak in the range of 280.0-294.0 eV The ratio of the amount of elements is in the range of 0.02-0.2;
  • the ratio of the amount of carbon element determined by the peak in the range of 286.2-286.6 eV to the amount of carbon element determined by the peak in the range of 288.6-289.0 eV is in the range of 0.3-2.
  • the carbon-based material has a w 500 /w 800 in the range of 0.02-0.5; wherein w 800 means an air atmosphere and 25 ° C
  • w 800 means an air atmosphere and 25 ° C
  • w 500 refers to the air atmosphere and the initial temperature of 25 ° C and 10 ° C /
  • the carbon-based material comprises carbon nanotubes, graphene, fullerenes, nano carbon particles, activated carbon, thin layer graphite, carbon. At least one of the structural forms of the nanofibers and the nanodiamonds.
  • the hydrocarbon has 2 to 15 carbon atoms, and the hydrocarbon includes at least one of an alkane, an olefin, and an alkyl group-containing aromatic hydrocarbon; At least two carbon atoms.
  • hydrocarbon comprises at least one of butane, 1-butene, ethylbenzene, propane, ethane, and pentane.
  • the hydrocarbon catalytic dehydrogenation condition comprises: a contact temperature of 300-600 ° C, a pressure of 0.1-60 MPa; and a volume of the gas passing through the catalyst in a total volume of the gas containing the hydrocarbon The speed is 1-6000h -1 .
  • the hydrocarbon comprises butane
  • the carbon-based material contains 85-95% by weight of carbon, 0.5-5 based on the total weight of the carbon-based material. % by weight of nitrogen and 2-10% by weight of oxygen
  • the structure of the carbon-based material contains carbon nanotubes
  • the hydrocarbon-containing gas further contains oxygen, and the molar ratio of the hydrocarbon to oxygen is (0.1) -10): 1
  • the hydrocarbon-containing gas the total concentration of the hydrocarbon and oxygen is 1-50% by volume
  • hydrocarbon catalytic dehydrogenation conditions include: contact temperature of 350-500 ° C, pressure of 0.1-5MPa
  • the volumetric space velocity of the gas passing through the catalyst is from 10 to 2000 h -1 in terms of the total volume of the hydrocarbon-containing gas.
  • the hydrocarbon comprises propane; the carbon-based material contains 85 to 95% by weight of carbon, 0.5 to 5 by weight based on the total weight of the carbon-based material. % nitrogen element and 2-10% by weight of oxygen element; the structure of the carbon-based material contains carbon nanotubes; the hydrocarbon-containing gas further contains oxygen, and the molar ratio of the hydrocarbon to oxygen is (0.05- 2): 1; in the hydrocarbon-containing gas, the total concentration of the hydrocarbon and oxygen is 10-30% by volume; the hydrocarbon catalytic dehydrogenation conditions include: contact temperature is 400-550 ° C, pressure is 0.1-5 MPa; The volumetric space velocity of the gas passing through the catalyst is calculated to be 5-1000 h -1 , based on the total volume of the hydrocarbon-containing gas.
  • the hydrocarbon comprises ethylbenzene
  • the carbon-based material contains 85-95 wt% of carbon, 0.5-5 based on the total weight of the carbon-based material.
  • the structure of the carbon-based material contains carbon nanotubes
  • hydrocarbon catalytic dehydrogenation conditions include: contact temperature of 300-500 ° C, pressure of 0.1-5 MPa;
  • the volumetric space velocity of the gas passing through the catalyst is from 10 to 4000 h -1 in terms of the total volume of the hydrocarbon-containing gas.
  • a heteroatom-containing nanocarbon material comprising a C element, an O element, and an N element, wherein the content of the O element is 1-6 wt%, and the content of the N element is 0.5-5 wt%, The content of the C element is 80 to 96% by weight, and the element content of the hetero atom-containing nanocarbon material is determined by the XPS method as described herein;
  • the amount of the O element determined by the peak in the range of 531.85-532.25 eV in the X-ray photoelectron spectroscopy is I O c
  • the peak in the range of 533.16-533.56 eV in the X-ray photoelectron spectroscopy The amount of the determined O element is I O c
  • I O c /I O e is in the range of 1:(0.2-5) and/or C determined by the peak in the range of 288.59-288.99 eV in the X-ray photoelectron spectroscopy
  • the amount of the element is I C c
  • the amount of C element determined by the peak in the range of 286.21-286.61 eV in the X-ray photoelectron spectroscopy is I C c
  • I C c /I C e is 1:(0.5-2)
  • the carbon-based material according to claim G1 characterized in that the content of the O element is 2 to 6% by weight, the content of the N element is 0.5 to 2% by weight, and the content of the C element is 92 to 96% by weight.
  • the carbon-based material according to the technical scheme G1 characterized by the O element
  • the content is 4 to 10% by weight
  • the content of the N element is 0.8 to 2% by weight
  • the content of the C element is 90 to 95% by weight.
  • carbon-based material according to any one of the aspects of the invention, wherein the carbon-based material comprises carbon nanotubes, graphene, fullerenes, nano carbon particles, activated carbon, carbon nanometers.
  • a method for preparing a carbon-based material characterized in that the method comprises the following steps: (1) mixing a solid carbon source, a precursor and water to obtain a mixed material; wherein the precursor contains an organic base The organic base comprises an organic amine and/or a quaternary ammonium base; (2) hydrothermalizing the mixed material obtained in the step (1) to obtain a hydrothermally treated material; and separating the solid in the hydrothermally treated material (3) drying and calcining the solid in the hydrothermally treated material obtained in the step (2).
  • weight ratio of the carbon element to the water in the solid carbon source is 1: (1-100), 1: (5-20) ), 1:1, 1:5, 1:10, 1:20, or 1:100.
  • the carbon source is selected from the group consisting of carbon nanotubes, activated carbon, graphene, fullerenes, and carbon nanometers. At least one of fibers, carbon nanoparticles, and nanodiamonds.
  • the organic amine comprises at least one of an aliphatic amine, an alcohol amine, an amide, an alicyclic amine and an aromatic amine;
  • the amine is at least one selected from the group consisting of ethylamine, n-propylamine, n-butylamine, di-n-propylamine, butanediamine and hexamethylenediamine;
  • the organic alcohol amine is at least one selected from the group consisting of monoethanolamine, diethanolamine and triethanolamine.
  • the quaternary ammonium base is at least one selected from the group consisting of tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
  • H1 a heteroatom-containing nanocarbon material containing C element, O element and optionally N element, the content of O element is 1-6 wt%, and the content of N element is 0-2
  • the weight %, the content of the C element is 92 to 99% by weight, and the element content of the hetero atom-containing nanocarbon material is determined by the XPS method as described herein.
  • the hetero atom-containing nanocarbon material according to the technical scheme H1, wherein the content of the N element in the hetero atom-containing nanocarbon material is 0.1% by weight or more, and the hetero atom-containing nanocarbon is determined by X-ray photoelectron spectroscopy
  • the total amount of N elements in the material is I N t
  • the amount of N element determined by the peak in the range of 398.5-400.1 eV in the X-ray photoelectron spectroscopy is I N c
  • I N c /I N t is at 0.7-1 In the range.
  • hetero atom-containing nanocarbon material according to the technical scheme H1 or H2, wherein the hetero atom nanocarbon material has an amount of O element determined by a peak in the range of 531.0-532.5 eV in the X-ray photoelectron spectroscopy Is I O c , the amount of O element determined by the peak in the range of 532.6-533.5 eV in the X-ray photoelectron spectroscopy is I O c , I O c /I O c is in the range of 0.2-0.8; and/or
  • the amount of C element determined by the peak in the range of 288.6-288.8 eV in the X-ray photoelectron spectroscopy is I C c
  • the amount of C element determined by the peak in the range of 286.0-286.2 eV in the X-ray photoelectron spectroscopy is I C e
  • I C c /I C e is in the range of 0.2-1.
  • the hetero atom-containing nanocarbon material according to any one of the aspects of the present invention, wherein the content of the N element in the hetero atom-containing nanocarbon material is less than 0.1% by weight, and the hetero atom-containing nanometer
  • the total amount of the carbon material is based on the element and the content of O is from 2.5 to 5.8% by weight, preferably from 3 to 5.6% by weight, more preferably from 4.5 to 5.5% by weight; and the content of the C element is from 94.2 to 97.5% by weight. It is preferably from 94.4 to 97% by weight, more preferably from 94.5 to 95.5% by weight.
  • I O c / I O e is in the range of 0.4 to 0.7, preferably in the range of 0.55 to 0.65; I C c /I C e is preferably in the range of 0.3 to 0.9, more preferably in the range of 0.35 to 0.8, further preferably 0.5. Within the range of -0.7.
  • the hetero atom-containing nanocarbon material according to any one of the aspects of the present invention, wherein the content of the O element is 2 based on the total amount of the hetero atom-containing nanocarbon material and based on the element. 6 wt%, preferably 3.5-5.5 wt%; the content of N element is 0.2-1.8 wt%, preferably 0.5-1.8 wt%; the content of C element is 92.2-97.8 wt%, preferably 92.7-96 wt%.
  • the hetero atom-containing nanocarbon material according to any one of the aspects of the invention, wherein the content of the N element in the hetero atom-containing nanocarbon material is 0.1% by weight or more, I O c /I O e In the range of 0.35 to 0.85, preferably in the range of 0.45 to 0.8; I C c /I C e is in the range of 0.3 to 0.98, preferably in the range of 0.45 to 0.95.
  • hetero atom-containing nanocarbon material according to any one of the aspects of the invention, wherein the I n c /I N t is in the range of 0.8 to 0.95.
  • the hetero atom-containing nanocarbon material according to any one of the above aspects, wherein the hetero atom-containing nanocarbon material is based on the total amount of C elements determined by X-ray photoelectron spectroscopy.
  • the content of the C element determined by the peak in the range of 284.7-284.9 eV in the X-ray photoelectron spectroscopy is 20% by weight or more, preferably 40% by weight or more, more preferably 50% by weight or more, and still more preferably 70% by weight or more.
  • the content of the C element determined by the peak in the range of 284.7-284.9 eV in the X-ray photoelectron spectroscopy is 95% by weight or less, preferably 90% by weight or less.
  • hetero atom-containing nanocarbon material according to any one of the aspects of the invention, wherein the hetero atom-containing nanocarbon material is a hetero atom-containing carbon nanotube, preferably a hetero atom-containing multi-wall carbon nanotube.
  • hetero atom-containing nanocarbon material according to any one of the aspects of the invention, wherein the hetero atom-containing multi-walled carbon nanotube has a specific surface area of 50 to 500 m 2 /g, preferably 80 to 300 m. 2 / g, more preferably 100-200 m 2 /g.
  • the hetero atom-containing nanocarbon material according to any one of the aspects of the invention, wherein the hetero atom-containing multi-wall carbon nanotube has a weight loss rate of w 800 in a temperature range of 400-800 ° C.
  • the weight loss rate in the temperature range of 400-500 ° C is w 500
  • w 500 /w 800 is in the range of 0.01-0.5, preferably in the range of 0.02-0.2, and the weight loss rate is measured in an air atmosphere.
  • the hetero atom-containing nanoparticle according to any one of the technical schemes H1-H12 a carbon material, wherein the content of the O element is from 2 to 6% by weight, preferably from 4 to 5.8% by weight, more preferably from 4.5 to 5.5% by weight, based on the total amount of the hetero atom-containing nanocarbon material;
  • the content is 0.2-1.8% by weight, preferably 0.8-1.6% by weight, more preferably 1-1.5% by weight;
  • the content of the C element is 92.2-97.8% by weight, preferably 92.6-95.2% by weight, more preferably 93- 94.5% by weight;
  • I O c /I O c is preferably in the range of 0.3-0.8, more preferably in the range of 0.35-0.8, further preferably in the range of 0.55-0.78;
  • the content of the C element determined by the peak in the range of 284.7-284.9 eV in the X-ray photoelectron spectroscopy is preferably 70-90% by weight, more preferably 75-85% by weight;
  • I C c /I C e is preferably in the range of from 0.3 to 0.9, more preferably in the range of from 0.4 to 0.7, still more preferably in the range of from 0.45 to 0.6;
  • I N c /I N t is preferably in the range of 0.7 to 0.98, more preferably in the range of 0.75 to 0.96, still more preferably in the range of 0.8 to 0.95.
  • the hetero atom-containing nanocarbon material according to any one of the aspects of the present invention, wherein the content of the O element is 2 to 6% by weight based on the total amount of the hetero atom-containing nanocarbon material. It is preferably from 3 to 5.5% by weight, more preferably from 3.5 to 5% by weight; the content of the N element is from 0.3 to 2% by weight, preferably from 0.4 to 1.8% by weight, more preferably from 0.5 to 1.5% by weight; the content of the C element is 92-97.7 wt%, preferably 92.7-96.6 wt%, more preferably 93.5-96 wt%;
  • I O c /I O e is preferably in the range of 0.3-0.8, more preferably in the range of 0.4-0.78, further preferably in the range of 0.45-0.75;
  • the content of the C element determined by the peak in the range of 284.7-284.9 eV in the X-ray photoelectron spectroscopy is preferably 70-90% by weight, more preferably 70-85% by weight;
  • I C c /I C c is preferably in the range of from 0.3 to 0.9, more preferably in the range of from 0.4 to 0.8, still more preferably in the range of from 0.45 to 0.6;
  • I N c /I N t is preferably in the range of 0.7 to 0.95, more preferably in the range of 0.7 to 0.9, still more preferably in the range of 0.8 to 0.9.
  • the hetero atom-containing nanocarbon material according to any one of the above aspects of the present invention, wherein the content of the O element is from 3 to 6% by weight based on the total amount of the hetero atom-containing nanocarbon material. It is preferably 4-5.8% by weight, more preferably 4.5-5.5% by weight; the content of the N element is 0.5-2% by weight, preferably 1-2% by weight, more preferably 1.2-1.8% by weight; the content of the C element is 92. -96.5 wt%, preferably 92.2-95 wt%, more preferably 92.7-94.3 wt%;
  • I O c /I O c is preferably in the range of 0.3-0.8, more preferably in the range of 0.4-0.75, further preferably in the range of 0.6-0.7;
  • the content of the C element determined by the peak in the range of 284.7-284.9 eV in the X-ray photoelectron spectroscopy is preferably 70-80% by weight, more preferably 75-80% by weight;
  • I C c /I C c is preferably in the range of 0.4 to 0.98, more preferably in the range of 0.7 to 0.98, further preferably in the range of 0.85 to 0.95;
  • I N c /I N t is preferably in the range of 0.7 to 0.95, more preferably in the range of 0.75 to 0.9, still more preferably in the range of 0.8 to 0.85.
  • a method for preparing a heteroatom-containing nanocarbon material comprising: reacting an aqueous dispersion of a raw material nanocarbon material in a closed vessel, the aqueous dispersion containing or not containing an organic alkali;
  • the organic base is an amine and/or a quaternary ammonium base, and the temperature of the aqueous dispersion is maintained in the range of 80-220 ° C during the reaction.
  • H17 The method according to claim H16, wherein the weight ratio of the raw material nanocarbon material: H 2 O is in the range of 1:2-200, preferably in the range of 1:5-100, more preferably 1: Within the range of 10-50.
  • the aqueous dispersion contains at least one organic base
  • the weight ratio of the raw nanocarbon material:organic base is in the range of 1:0.05-20
  • it is in the range of 1:0.1-10, more preferably in the range of 0.5-5.
  • the organic base is selected from the group consisting of a compound of the formula I, a compound of the formula II, a compound of the formula III and a formula R 12 a substance represented by (NH 2 ) 2 , R 12 is a C 1 -C 6 alkylene group or a C 6 -C 12 arylene group,
  • R 1 , R 2 , R 3 and R 4 are each a C 1 -C 20 alkyl group or a C 6 -C 12 aryl group;
  • R 5 , R 6 and R 7 are each H, a C 1 -C 6 alkyl group or a C 6 -C 12 aryl group, and R 5 , R 6 and R 7 are not simultaneously H;
  • R 8 , R 9 and R 10 are each -R 11 OH, hydrogen or a C 1 -C 6 alkyl group, and at least one of R 8 , R 9 and R 10 is -R 11 OH, R 11 is a C 1 -C 4 alkylene group.
  • duration of the reaction is in the range of from 0.5 to 96 hours, preferably in the range of from 2 to 72 hours, more preferably from 20 to 50. Within the range of hours.
  • the raw material nanocarbon material has a content of O element of not more than 1.2% by weight, preferably not more than 0.5% by weight;
  • the content is less than 0.1% by weight, preferably not more than 0.08% by weight, more preferably not more than 0.05% by weight.
  • the raw material nanocarbon material is carbon nanotubes, preferably multi-walled carbon nanotubes.
  • the multi-walled carbon nanotube has a specific surface area of 20 to 500 m 2 /g, preferably 50 to 400 m 2 /g, more preferably 90 -300m 2 / g, more preferably 100-200m 2 / g.
  • the multi-walled carbon nanotubes have a weight loss rate of w 800 in a temperature range of 400-800 ° C, and a temperature range of 400-500 ° C.
  • the internal weight loss rate is w 500 , w 500 /w 800 is in the range of 0.01 to 0.5, preferably in the range of 0.02 to 0.2, and the weight loss rate is measured in an air atmosphere.
  • drying is carried out at a temperature of from 50 to 200 ° C, preferably at a temperature of from 80 to 180 ° C, more preferably from 100 to 150 ° C.
  • the temperature is carried out at a temperature of from 0.5 to 48 hours, preferably from 3 to 24 hours, more preferably from 5 to 12 hours.
  • the organic base is a compound of the formula I, preferably tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropyl
  • ammonium hydroxide, tetrabutylammonium hydroxide, and tetrapentylammonium hydroxide preferably tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropyl
  • ammonium hydroxide, tetrabutylammonium hydroxide, and tetrapentylammonium hydroxide preferably tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropyl
  • ammonium hydroxide, tetrabutylammonium hydroxide, and tetrapentylammonium hydroxide preferably tetramethylammonium hydroxide, tetraethylam
  • R 1 , R 2 , R 3 and R 4 are each a C 1 -C 20 alkyl group or a C 6 -C 12 aryl group;
  • the weight ratio of the raw material nanocarbon material:organic base is in the range of 1:0.1-10, preferably in the range of 0.5-5, and the temperature of the aqueous dispersion is in the range of 90-210 °C during the reaction. It is preferably in the range of from 140 to 180 °C.
  • organic base is a compound of the formula III, preferably one or more of monoethanolamine, diethanolamine and triethanolamine.
  • R 8 , R 9 and R 10 are each -R 11 OH, hydrogen or a C 1 -C 6 alkyl group, and at least one of R 8 , R 9 and R 10 is -R 11 OH, R 11 is a C 1 -C 4 alkylene group;
  • the weight ratio of the raw material nanocarbon material:organic base is in the range of 1:0.2-10, preferably in the range of 1:11-5; during the reaction, the temperature of the aqueous dispersion is in the range of 90-160 °C Internally, it is preferably in the range of 120 to 150 °C.
  • the organic base is a substance represented by the formula: R 12 (NH 2 ) 2
  • R 12 is a C 1 -C 6 alkylene group or An arylene group of C 6 -C 12 , preferably one or more of ethylene diamine, propylene diamine, butanediamine, pentane diamine and hexamethylene diamine;
  • the weight ratio of the raw material nanocarbon material:organic base is in the range of 1:0.2-10, preferably in the range of 1:11-5; during the reaction, the temperature of the aqueous dispersion is in the range of 100-200 °C Internally, it is preferably in the range of 120 to 150 °C.
  • the separated solid substance is dried and calcined; wherein the calcination temperature is 250-500 ° C, 300-480 ° C, 350-450 °C; calcination time is 1-24 hours, 2-12 hours, 2-8 hours.
  • a heteroatom-containing nanocarbon material prepared by the method of any one of the aspects of the invention.
  • heteroatom-containing nanocarbon material which will be a hetero atom nanocarbon material
  • the hetero atom-containing nanocarbon material according to any one of claims H1 to H15 or the hetero atom-containing carbon nanomaterial described in claim H30 is calcined.
  • the temperature is carried out; the duration of the calcination is from 1 to 24 hours, preferably from 2 to 12 hours, more preferably from 2 to 8 hours.
  • H37 The use according to the technical proposal H35 or H36, wherein the hydrocarbon is an alkane, preferably a C 2 -C 12 alkane, more preferably one of propane, n-butane, isobutane and ethylbenzene. kind or more than two.
  • H38 a method for dehydrogenation of hydrocarbons, comprising the treatment of a hydrocarbon with any one of the technical schemes H1-H15 and H32 under the condition of hydrocarbon dehydrogenation in the presence or absence of oxygen.
  • the atomic nanocarbon material, or the hetero atom-containing nanocarbon material described in any one of the claims H33-H34, is contacted.
  • hydrocarbon is an alkane, preferably a C 2 -C 12 alkane, more preferably one of propane, n-butane, isobutane and ethylbenzene or Two or more.
  • the molar ratio of hydrocarbon to oxygen is from 0.01 to 100:1, preferably from 0.1 to 10:1, further preferably from 0.2 to 5:1, most It is preferably from 0.3 to 2:1.
  • the contacting is carried out at a temperature of from 200 to 650 ° C, preferably at a temperature of from 300 to 600 ° C, more preferably from 350 to 500 ° C.
  • the temperature is carried out at a temperature of 0 to 10 MPa, preferably at a pressure of 0.01 to 6 MPa, more preferably at a pressure of 0.0 to 2 MPa, still more preferably 0.05 to 1.5 MPa. performed under pressure; when the feed gas hourly space velocity of 0.1-10000h -1, preferably 1-6000h -1, more preferably 5-4000h -1, more preferably 10-1000h -1, as 100-500h -1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种含杂原子纳米碳材料及其制备方法和应用,以该含杂原子纳米碳材料的总量为基准并以元素计,O的含量为1-6重量%,N的含量为0-2重量%,C的含量为92-99重量%;XPS谱图中,由531.0-532.5eV范围内的峰确定的O与由532.6-533.5eV范围内的峰确定的O的比值为0.2-0.8;由288.6-288.8eV范围内的峰确定的C与由286.0-286.2eV范围内的峰确定的C的比值为0.2-1;由398.5-400.1eV范围内的峰确定的N与N的总量的比值为0.7-1。该含杂原子纳米碳材料在烃类物质的脱氢反应中具有良好的催化性能,能明显提高原料转化率和目标产物选择性。

Description

一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法 技术领域
本发明涉及一种含杂原子纳米碳材料及其制备方法。本发明还涉及所述含杂原子纳米碳材料作为烃脱氢反应的催化剂的应用、以及一种烃脱氢反应方法。
背景技术
烃类物质的脱氢反应是一类重要的反应类型,例如大部分低碳链烯烃是通过低碳链烷烃的脱氢反应而获得的。脱氢反应根据氧气是否参与可以划分为直接脱氢反应(即,氧气不参与)和氧化脱氢反应(即,氧气参与)两类。
多种类型的纳米碳材料已被证明对烃类物质的直接脱氢反应和氧化脱氢反应均具有催化效果,在纳米碳材料中引入氧原子和/或氮原子则可以改善其催化活性。
在纳米碳材料中引入氧原子,可以在纳米碳材料表面形成羟基、羰基、羧基、酯基和酸酐等含氧官能团。
可以通过对纳米碳材料进行氧化处理实现在纳米碳材料中引入氧原子,从而增加纳米碳材料中含氧官能团的含量。例如,可以将纳米碳材料在强酸(如HNO3、H2SO4)和/或强氧化性溶液(如H2O2、KMnO4)中进行回流反应,在回流反应的同时还可以辅助进行微波加热或超声振荡,以增强氧化反应的效果。但是,在强酸和/或强氧化性溶液中进行回流反应可能会对纳米碳材料的骨架结构产生不利影响,甚至破坏纳米碳材料的骨架结构。例如:将纳米碳材料在硝酸中进行回流反应,虽然可以在纳米碳材料表面引入大量含氧官能团,但是极易造成纳米碳材料被切断和/或明显增加石墨网络结构中的缺陷位,从而降低纳米碳材料的性能,如热稳定性。另外,通过在强酸和/或强氧化性溶液中进行回流反应,以引入氧原子时,氧原子的引入量对反应操作条件的依赖性高,波动范围较宽。
在纳米碳材料中引入氮原子时,根据氮原子在纳米碳材料中所处化学环境的不同,通常将氮原子划分为化学氮和结构氮。化学氮主要是以表面官能团的形式出现在材料的表面,如氨基或亚硝酰基等表面 含氮官能团。结构氮是指进入纳米碳材料的骨架结构与碳原子键合的氮原子。结构氮主要包括石墨型氮(即,
Figure PCTCN2016000059-appb-000001
)、吡啶型氮(即,
Figure PCTCN2016000059-appb-000002
)和吡咯型氮(即,
Figure PCTCN2016000059-appb-000003
)。石墨型氮直接取代石墨晶格中的碳原子,形成饱和氮原子;吡啶型氮和吡咯型氮为不饱和氮原子,在取代碳原子的同时,常会造成临近碳原子的缺失,形成缺陷位。
可以通过在纳米碳材料合成过程中引入含氮的功能性气氛(如氨气、氮气、尿素、三聚氰胺),利用高温和/或高压在纳米碳材料的合成过程中将氮元素同时引入到纳米碳材料的骨架结构和/或表面中;也可以通过将纳米碳材料置于含氮的功能性气氛(如氨气、氮气、尿素、三聚氰胺)中,利用高温和/或高压将氮元素引入到纳米碳材料的表面。高温和/或高压尽管可以在纳米碳材料中形成结构氮,但是含氮物种的类型依赖于反应条件,不易控制;并且,如此产生的不同类型的含氮物种在纳米碳材料的表面分布不均匀,导致含氮纳米碳材料的性能不稳定。还可以通过将纳米碳材料进行氧化处理,然后与胺反应,从而在纳米碳材料表面引入氮原子,如此引入的氮原子基本为化学氮。
尽管有关纳米碳材料的掺杂改性及其催化性能的研究取得了诸多进展,但是对于其中的一些基本问题仍未形成共识,依然需要对掺杂改性纳米碳材料及其制备方法和催化性能进行深入研究。
发明内容
本发明的一个目的在于提供一种含杂原子纳米碳材料的制备方法,采用该方法不仅能在纳米碳材料表面引入杂原子,而且对纳米碳材料本身的结构影响不大。本发明的另一个目的在于提供一种含杂原子纳米碳材料,该含杂原子纳米碳材料用于烃类物质的脱氢反应时,不仅能获得较高的原料转化率,而且能获得较高的产物选择性。本发明的又一目的在于提供一种烃脱氢反应方法,该方法能获得较高的原料转化率和产物选择性。
根据本发明的第一个方面,本发明提供了一种含杂原子纳米碳材料,该含杂原子纳米碳材料含有C元素、O元素以及可选的N元素, 以该含杂原子纳米碳材料的总量为基准并以元素计,O元素的含量为1-6重量%,N元素的含量为0-2重量%,C元素的含量为92-99重量%;
该含杂原子纳米碳材料中,由X射线光电子能谱中531.0-532.5eV范围内的峰确定的O元素的量为IO c,由X射线光电子能谱中532.6-533.5eV范围内的峰确定的O元素的量为IO e,IO c/IO e在0.2-0.8的范围内;
所述含杂原子纳米碳材料中,由X射线光电子能谱中288.6-288.8eV范围内的峰确定的C元素的量为IC c,由X射线光电子能谱中286.0-286.2eV范围内的峰确定的C元素的量为IC e,IC c/IC e在0.2-1的范围内;
当所述含杂原子纳米碳材料中N元素的含量为0.1重量%以上时,由X射线光电子能谱确定该含杂原子纳米碳材料中的N元素的总量为IN t,由X射线光电子能谱中398.5-400.1eV范围内的峰确定的N元素的量为IN c,IN c/IN t在0.7-1的范围内。
根据本发明的第一个方面的含杂原子纳米碳材料是经历过焙烧的,或者是未经历过焙烧的。
根据本发明的第二个方面,本发明提供了一种含杂原子纳米碳材料的制备方法,该方法包括将一种分散有原料纳米碳材料的水分散液于密闭容器中进行反应,所述水分散液含或不含有机碱,所述有机碱为胺和/或季铵碱,反应过程中,所述水分散液的温度保持在80-220℃的范围内。
根据本发明的第三个方面,本发明提供了一种由根据本发明第二个方面的方法制备的含杂原子纳米碳材料。根据本发明的第三个方面制备的含杂原子纳米碳材料是经历过焙烧的,或者是未经历过焙烧的。
根据本发明的第四个方面,本发明提供了一种含杂原子纳米碳材料,该含杂原子纳米碳材料是将根据本发明第一个方面或者第三个方面的(例如未经历过焙烧的)含杂原子纳米碳材料进行焙烧而制得的。
根据本发明的第五个方面,本发明提供了根据本发明第一个方面的含杂原子纳米碳材料、根据本发明第三个方面的含杂原子纳米碳材料、或者根据本发明第四个方面的含杂原子纳米碳材料作为烃脱氢反应的催化剂的应用。
根据本发明的第六个方面,本发明提供了一种烃脱氢反应方法,该方法包括在存在或不存在氧气的条件下,在烃脱氢反应条件下,将 烃与根据本发明第一个方面的含杂原子纳米碳材料、根据本发明第三个方面的含杂原子纳米碳材料、或者根据本发明第四个方面的含杂原子纳米碳材料接触。
根据本发明的含杂原子纳米碳材料的制备方法,不仅能稳定地调控和/或提高纳米碳材料中杂原子含量,同时对纳米碳材料本身的结构影响小,制备的含杂原子纳米碳材料具有稳定的性能。
根据本发明的含杂原子纳米碳材料在烃类物质的脱氢反应中显示出良好的催化性能,能明显提高原料转化率和产物选择性。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。
图1为制备实施例1制备的含杂原子纳米碳材料的透射电子显微镜照片。
图2为制备实施例1使用的原料纳米碳材料的透射电子显微镜照片。
图3为制备实施例7制备的含杂原子纳米碳材料的透射电子显微镜照片。
具体实施方式
在下文中,对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。在下文中,各个技术方案之间原则上可以相互组合而得到新的技术方案,这也应被视为在本文中具体公开。
本发明中,纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。
根据本发明的第一个方面,本发明提供了一种含杂原子纳米碳材料,所述含杂原子纳米碳材料含有C元素、O元素以及可选的N元素。本发明中,术语“可选的”表示含或不含。以所述含杂原子纳米碳材料的总量为基准并以元素计,O元素的含量为1-6重量%,N元素的含量为0-2重量%,C元素的含量为92-99重量%。
在一种实施方式中,所述含杂原子纳米碳材料的各组分的含量之 和为100重量%。
在一种实施方式中,所述含杂原子纳米碳材料中N元素的含量为低于0.1重量%时,以该含杂原子纳米碳材料的总量为基准并以元素计,O的含量可以为2.5-5.8重量%,优选为3-5.6重量%,更优选为4.5-5.5重量%;C元素的含量可以为94.2-97.5重量%,优选为94.4-97重量%,更优选为94.5-95.5重量%。根据该实施方式的含杂原子纳米碳材料在作为烷烃、特别是丁烷(如正丁烷)的脱氢反应的催化剂时,在能获得较高的原料转化率的同时,对1-烯烃(如1-丁烯)具有较高的选择性。
在一种更为优选的实施方式中,所述含杂原子纳米碳材料优选含有N元素,这样能进一步提高作为烃脱氢反应的催化剂时的催化性能。更优选地,以所述含杂原子纳米碳材料的总量为基准并以元素计,O元素的含量为2-6重量%,优选为3.5-5.5重量%;N元素的含量为0.2-1.8重量%,优选为0.5-1.8重量%;C元素的含量为92.2-97.8重量%,优选为92.7-96重量%。
在一种实施方式中,所述含杂原子纳米碳材料中,C、N、O元素的含量可以为:
Figure PCTCN2016000059-appb-000004
并且所述含杂原子纳米碳材料的各组分的含量之和为100重量%。
在一种实施方式中,所述含杂原子纳米碳材料中,C、N、O元素的含量之和为大于98wt%。
在一种实施方式中,所述含杂原子纳米碳材料中,C、N、O元素的含量之和为大于99wt%。
在一种实施方式中,所述含杂原子纳米碳材料中,C、N、O元素的含量之和为大于99.5wt%。
在一种实施方式中,所述含杂原子纳米碳材料中,C、N、O元素的含量之和为大于99.9wt%。
在一种实施方式中,所述含杂原子纳米碳材料中,C、N、O元素的含量之和为100%。
本发明中,含杂原子纳米碳材料的各组分元素的含量采用X射线光电子能谱(XPS)法测定,由1s电子谱峰对应的面积确定元素的含量; 样品在测试前在150℃的温度和1标准大气压下于氦气气氛中干燥3小时。其中,测定的含量值为低于0.1重量%时,将该元素的含量记为0。
本发明中,X射线光电子能谱分析在Thermo Scientific公司的配备有Thermo Avantage V5.926软件的ESCALab250型X射线光电子能谱仪上进行测试,激发源为单色化Al KαX射线,能量为1486.6eV,功率为150W,窄扫描所用通透能为30eV,分析测试时的基础真空为6.5×10-10mbar,电子结合能用单质碳的C1s峰(284.0eV)校正,在Thermo Avantage软件上进行数据处理,在分析模块中采用灵敏度因子法进行定量分析。
采用XPS分析本发明的含杂原子纳米碳材料的元素含量是本领域中的一种惯用做法,其能够定量给出表面元素组成。所分析的纳米碳材料表面的范围(深度)与XPS分析仪器有关。在本发明中,所分析的表面的范围一般可以是0-20nm(自表面至深20nm的范围),所分析的表面的范围优选可以是0-10nm(自表面至深10nm的范围)。
所述含杂原子纳米碳材料中,由X射线光电子能谱中531.0-532.5eV范围内的峰确定的O元素(即,c=o)的量为IO c,由X射线光电子能谱中532.6-533.5eV范围内的峰确定的O元素(即,c-o)的量为IO e,IO c/IO e在0.2-0.8的范围内,例如可以为0.20、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.30、0.31、0.32、0.33、0.34、0.35、0.36、0.37、0.38、0.39、0.40、0.41、0.42、0.43、0.44、0.45、0.46、0.47、0.48、0.49、0.50、0.51、0.52、0.53、0.54、0.55、0.56、0.57、0.58、0.59、0.60、0.61、0.62、0.63、0.64、0.65、0.66、0.67、0.68、0.69、0.70、0.71、0.72、0.73、0.74、0.75、0.76、0.77、0.78、0.79、0.80或者上述值中任两个所组成的数值范围。在所述含杂原子纳米碳材料中N元素的含量为低于0.1重量%时,IO c/IO c优选在0.4-0.7的范围内,更优选在0.55-0.65的范围内。在所述含杂原子纳米碳材料中N元素的含量为0.1重量%以上时,IO c/IO e优选在0.35-0.85的范围内,更优选在0.45-0.8的范围内。本发明中,在表示数值范围时,“在×-×的范围内”包括两个边界数值。
根据本发明,IO c指示碳基材料中C-O基团的相对摩尔含量;IO c指示碳基材料中C=O基团的相对摩尔含量;IO c和IO c可以分别由X射线光电子能谱中一定范围内的峰来确定。例如,IO c可以由X射线 光电子能谱中532.6-533.5eV范围内的峰的积分面积来确定;IO c可以由X射线光电子能谱中531.0-532.5eV范围内的峰的积分面积来确定。又如,IO c可以由X射线光电子能谱中533.1-533.5eV范围内的峰的积分面积来确定;IO c可以由X射线光电子能谱中531.8-532.2eV范围内的峰的积分面积来确定。再如,IO c可以由X射线光电子能谱中533.13-533.53eV范围内的峰的积分面积来确定;IO c可以由X射线光电子能谱中531.76-532.16eV范围内的峰的积分面积来确定。再如,IO e可以由X射线光电子能谱中533.16-533.56eV范围内的峰的积分面积来确定;IO c可以由X射线光电子能谱中531.85-532.25eV范围内的峰的积分面积来确定。
在本发明的含杂原子纳米碳材料的一种实施方案中,由X射线光电子能谱中531.85-532.25eV范围内的峰确定的O元素(即,c=o)的量与由X射线光电子能谱中533.16-533.56eV范围内的峰确定的O元素(即,c-o)的量的比值可以为1∶(0.2-5)或者1∶(1.25-5);例如1∶5、1∶2.3、1∶1.8、1∶1.7、1∶1.6、1∶1.5、1∶1.4、1∶1.25以及这些中任意两个所组成的一个数值范围。
本发明中,由X射线光电子能谱中的O1s谱峰的面积AO 1确定O元素的总量,将X射线光电子能谱中的O1s谱峰分成两组峰,即在531.0-532.5eV范围内的谱峰(对应于c=o物种)以及在532.6-533.5eV范围内的谱峰(对应于c-o物种),将在531.0-532.5eV范围内的谱峰的面积记为AO 2,将在532.6-533.5eV范围内的谱峰的面积记为AO 3,IO c/IO e=AO 2/AO 3
所述含杂原子纳米碳材料中,以由X射线光电子能谱确定的C元素的总量为基准,由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素(即,石墨型碳)的含量可以为20重量%以上,优选为40重量%以上,更优选为50重量%以上,进一步优选为70重量%以上,例如,20重量%以上、21重量%以上、22重量%以上、23重量%以上、24重量%以上、25重量%以上、26重量%以上、27重量%以上、28重量%以上、29重量%以上、30重量%以上、31重量%以上、32重量%以上、33重量%以上、34重量%以上、35重量%以上、36重量%以上、37重量%以上、38重量%以上、39重量%以上、40重量%以上、41重量%以上、42重量%以上、43重量%以上、44重量%以上、45重量%以上、46重量%以上、47重量%以上、48重量% 以上、49重量%以上、50重量%以上、51重量%以上、52重量%以上、53重量%以上、54重量%以上、55重量%以上、56重量%以上、57重量%以上、58重量%以上、59重量%以上、60重量%以上、61重量%以上、62重量%以上、63重量%以上、64重量%以上、65重量%以上、66重量%以上、67重量%以上、68重量%以上、69重量%以上、70重量%以上、71重量%以上、72重量%以上、73重量%以上、74重量%以上、75重量%以上、76重量%以上、77重量%以上、78重量%以上、79重量%以上、80重量%以上、81重量%以上、82重量%以上、83重量%以上、84重量%以上、85重量%以上、86重量%以上、87重量%以上、88重量%以上、89重量%以上、90重量%以上、91重量%以上、92重量%以上、93重量%以上、94重量%以上、95重量%以上、96重量%以上、97重量%以上、98重量%以上、99重量%以上。由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素(即,石墨型碳)的含量可以为95重量%以下,优选为90重量%以下,例如,20重量%以下、21重量%以下、22重量%以下、23重量%以下、24重量%以下、25重量%以下、26重量%以下、27重量%以下、28重量%以下、29重量%以下、30重量%以下、31重量%以下、32重量%以下、33重量%以下、34重量%以下、35重量%以下、36重量%以下、37重量%以下、38重量%以下、39重量%以下、40重量%以下、41重量%以下、42重量%以下、43重量%以下、44重量%以下、45重量%以下、46重量%以下、47重量%以下、48重量%以下、49重量%以下、50重量%以下、51重量%以下、52重量%以下、53重量%以下、54重量%以下、55重量%以下、56重量%以下、57重量%以下、58重量%以下、59重量%以下、60重量%以下、61重量%以下、62重量%以下、63重量%以下、64重量%以下、65重量%以下、66重量%以下、67重量%以下、68重量%以下、69重量%以下、70重量%以下、71重量%以下、72重量%以下、73重量%以下、74重量%以下、75重量%以下、76重量%以下、77重量%以下、78重量%以下、79重量%以下、80重量%以下、81重量%以下、82重量%以下、83重量%以下、84重量%以下、85重量%以下、86重量%以下、87重量%以下、88重量%以下、89重量%以下、90重量%以下、91重量%以下、92重量%以下、93重量%以下、94重量%以下、95重量%以下。
由X射线光电子能谱中286.0-288.8eV范围内的峰确定的C元素的总含量可以为5重量%以上,优选为10重量%以上,例如,5重量%以上、6重量%以上、7重量%以上、8重量%以上、9重量%以上、10重量%以上、11重量%以上、12重量%以上、13重量%以上、14重量%以上、15重量%以上、16重量%以上、17重量%以上、18重量%以上、19重量%以上、20重量%以上、21重量%以上、22重量%以上、23重量%以上、24重量%以上、25重量%以上、26重量%以上、27重量%以上、28重量%以上、29重量%以上、30重量%以上、31重量%以上、32重量%以上、33重量%以上、34重量%以上、35重量%以上、36重量%以上、37重量%以上、38重量%以上、39重量%以上、40重量%以上、41重量%以上、42重量%以上、43重量%以上、44重量%以上、45重量%以上、46重量%以上、47重量%以上、48重量%以上、49重量%以上、50重量%以上、51重量%以上、52重量%以上、53重量%以上、54重量%以上、55重量%以上、56重量%以上、57重量%以上、58重量%以上、59重量%以上、60重量%以上、61重量%以上、62重量%以上、63重量%以上、64重量%以上、65重量%以上、66重量%以上、67重量%以上、68重量%以上、69重量%以上、70重量%以上、71重量%以上、72重量%以上、73重量%以上、74重量%以上、75重量%以上、76重量%以上、77重量%以上、78重量%以上、79重量%以上、80重量%以上、81重量%以上、82重量%以上、83重量%以上、84重量%以上、85重量%以上、86重量%以上、87重量%以上、88重量%以上、89重量%以上、90重量%以上、91重量%以上、92重量%以上、93重量%以上、94重量%以上、95重量%以上、96重量%以上、97重量%以上、98重量%以上、99重量%以上。由X射线光电子能谱中286.0-288.8eV范围内的峰确定的C元素的总含量可以为80重量%以下,优选为60重量%以下,更优选为50重量%以下,进一步优选为30重量%以下,例如,5重量%以下、6重量%以下、7重量%以下、8重量%以下、9重量%以下、10重量%以下、11重量%以下、12重量%以下、13重量%以下、14重量%以下、15重量%以下、16重量%以下、17重量%以下、18重量%以下、19重量%以下、20重量%以下、21重量%以下、22重量%以下、23重量%以下、24重量%以下、25重量%以下、26重量%以下、27重量%以下、28重量%以下、29重量%以下、30 重量%以下、31重量%以下、32重量%以下、33重量%以下、34重量%以下、35重量%以下、36重量%以下、37重量%以下、38重量%以下、39重量%以下、40重量%以下、41重量%以下、42重量%以下、43重量%以下、44重量%以下、45重量%以下、46重量%以下、47重量%以下、48重量%以下、49重量%以下、50重量%以下、51重量%以下、52重量%以下、53重量%以下、54重量%以下、55重量%以下、56重量%以下、57重量%以下、58重量%以下、59重量%以下、60重量%以下、61重量%以下、62重量%以下、63重量%以下、64重量%以下、65重量%以下、66重量%以下、67重量%以下、68重量%以下、69重量%以下、70重量%以下、71重量%以下、72重量%以下、73重量%以下、74重量%以下、75重量%以下、76重量%以下、77重量%以下、78重量%以下、79重量%以下、80重量%以下。
本发明中,由X射线光电子能谱中的C1s谱峰的面积AC 1确定C元素的总量,将X射线光电子能谱中的C1s谱峰分成两组峰,即在284.7-284.9eV范围内的谱峰(对应于石墨型碳物种)以及在286.0-288.8eV范围内的谱峰(对应于非石墨型碳物种),将在284.7-284.9eV范围内的谱峰的面积记为AC 2,将在286.0-288.8eV范围内的谱峰的面积记为AC 3,由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量=AC 2/AC 1,由X射线光电子能谱中286.0-288.8eV范围内的峰确定的C元素的总含量=AC 3/AC 1
所述含杂原子纳米碳材料中,由X射线光电子能谱中288.6-288.8eV范围内的峰确定的C元素的量为IC c,由X射线光电子能谱中286.0-286.2eV范围内的峰确定的C元素的量为IC e,IC c/IC e在0.2-1的范围内。
根据本发明,将X射线光电子能谱中对应于碳物种的谱峰划分为两组:对应于石墨型碳物种的谱峰和对应于非石墨型碳物种的谱峰。例如,对应于石墨型碳物种的谱峰的范围是284.7-284.9eV,对应于非石墨型碳物种的谱峰的范围是286.0-288.8eV。
根据本发明,将X射线光电子能谱中对应于非石墨碳物种的谱峰进一步划分为两组峰,即对应于羟基和醚型碳物种(即含C-O基团)的谱峰(IC e),和对应于羧基、酐和酯型碳物种(即含C=O基团)的谱峰(IC c)。
例如,对应于羟基和醚型碳物种的谱峰的范围可以是286.0-286.2eV,对应于羧基、酐和酯型碳物种的谱峰的范围可以是288.6-288.8eV。
又如,对应于羟基和醚型碳物种的谱峰的范围可以是286.2-286.6eV;对应于羧基、酐和酯型碳物种的谱峰的范围可以是288.6-289.0eV。
再如,对应于羟基和醚型碳物种的谱峰的范围可以是286.21-286.61eV;对应于羧基、酐和酯型碳物种的谱峰的范围可以是288.59-288.99eV。
在本发明的含杂原子纳米碳材料的一种实施方案中,对应于羧基、酐和酯型碳物种(即含C=O基团)的碳元素的量(摩尔)和所述对应于羟基和醚型碳物种(即含C-O基团)的碳元素的量(摩尔)的比值为1∶(0.5-2),例如1∶0.5、1∶0.6、1∶0.9、1∶1、1∶1.1、1∶1.2、1∶1.3、1∶1.4、1∶1.5、1∶1.9、1∶2以及这些中任意两个所组成的一个数值范围。对应于羧基、酐和酯型碳物种(即含C=O基团)的碳元素的量(摩尔)和所述对应于羟基和醚型碳物种(即含C-O基团)的碳元素的量(摩尔)可以用含杂原子纳米碳材料的X射线光电子能谱中的上述的谱峰的范围来表示。例如,本发明的含杂原子纳米碳材料的X射线光电子能谱中,碳在288.59-288.99eV处的信号值与碳在286.21-286.61eV处的信号值的比例为1∶(0.5-2)或者1∶(1-2),例如1∶0.5、1∶0.6、1∶0.9、1∶1、1∶1.1、1∶1.2、1∶1.3、1∶1.4、1∶1.5、1∶1.9、1∶2以及这些中任意两个所组成的一个数值范围。
在所述含杂原子纳米碳材料中N元素的含量为低于0.1重量%时,IC c/IC e优选在0.3-0.9的范围内,更优选在0.35-0.8的范围内,进一步优选在0.5-0.7的范围内。在所述含杂原子纳米碳材料中N元素的含量为0.1重量%以上时,IC c/IC e优选在0.3-0.98的范围内,更优选在0.45-0.95的范围内。
本发明中,将X射线光电子能谱中在286.0-288.8eV范围内的谱峰(对应于非石墨碳物种)进一步划分为两组峰,即在286.0-286.2eV范围内的谱峰(对应于羟基和醚型碳物种)以及在288.6-288.8eV范围内的谱峰(对应于羧基、酐和酯型碳物种),将在286.0-286.2eV范围内的谱峰的面积记为AC 4,将在288.6-288.8eV范围内的谱峰的面积记为AC 5,IC c/IC e=AC 5/AC 4
在所述含杂原子纳米碳材料还含有N元素时,由X射线光电子能谱确定该含杂原子纳米碳材料中的N元素的总量为IN t,由X射线光电子能谱中398.5-400.1eV范围内的峰确定的N元素的量为IN c,IN c/IN t在0.7-1的范围内,优选在0.8-0.95的范围内。根据本发明的含杂原子纳米碳材料,由X射线光电子能谱中400.6-401.5eV范围内的峰确定的N元素(即,石墨型氮)含量较低甚至不含。一般地,根据本发明的含杂原子纳米碳材料中,由X射线光电子能谱中400.6-401.5eV范围内的峰确定的N元素的量为IN g,IN g/IN t为不高于0.3,一般在0.05-0.2的范围内。
本发明中,由X射线光电子能谱中的N1s谱峰的面积确定N元素的总量AN 1,将X射线光电子能谱中的N1s谱峰分成两组峰,即在400.6-401.5eV范围内的谱峰(对应于石墨型氮物种)以及398.5-400.1eV范围内的谱峰(除石墨型氮外的氮物种),确定这两组峰各自的面积,将在400.6-401.5eV范围内的谱峰的面积记为AN 2,将在398.5-400.1eV范围内的谱峰的面积记为AN3,IN c/IN t=AN 3/AN 1IN g/IN t=AN 2/AN 1,在得到的比值为0.01以下时,认为不含该类物种,并将该类物种的含量记为0。
本发明中,各峰的位置由该峰的峰顶所对应的结合能确定,由上文所述范围确定的峰是指峰顶所对应的结合能处于该范围内的峰,在该范围内可以包括一个峰,也可以包括两个以上的峰。例如:398.5-400.1eV范围内的峰是指峰顶所对应的结合能处于398.5-400.1eV的范围内的全部峰。
在本发明的一种优选的实施方式中,以所述含杂原子纳米碳材料的总量为基准,O元素的含量为2-6重量%,优选为4-5.8重量%,更优选为4.5-5.5重量%;N元素的含量为0.2-1.8重量%,优选为0.8-1.6重量%,更优选为1-1.5重量%;C元素的含量为92.2-97.8重量%,优选为92.6-95.2重量%,更优选为93-94.5重量%。IO c/IO e优选在0.3-0.8的范围内,更优选在0.35-0.8的范围内,进一步优选在0.55-0.78的范围内。由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量优选为70-90重量%,更优选为75-85重量%。IC c/IC e优选在0.3-0.9的范围内,更优选在0.4-0.7的范围内,进一步优选在0.45-0.6的范围内。IN c/IN t优选在0.7-0.98的范围内,更优选在0.75-0.96的范围内,进一步优选在0.8-0.95的范围内。根据该优 选实施方式的含杂原子纳米碳材料特别适于作为丁烷(如正丁烷)脱氢反应的催化剂,特别是对烯烃特别是丁二烯具有较高的选择性。
在本发明的另一种优选的实施方式中,以所述含杂原子纳米碳材料的总量为基准,O元素的含量为2-6重量%,优选为3-5.5重量%,更优选为3.5-5重量%;N元素的含量为0.3-2重量%,优选为0.4-1.8重量%,更优选为0.5-1.5重量%;C元素的含量为92-97.7重量%,优选为92.7-96.6重量%,更优选为93.5-96重量%。IO c/IO e优选在0.3-0.8的范围内,更优选在0.4-0.78的范围内,进一步优选在0.45-0.75的范围内。由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量优选为70-90重量%,更优选为70-85重量%。IC c/IC e优选在0.3-0.9的范围内,更优选在0.4-0.8的范围内,进一步优选在0.45-0.6的范围内。IN c/IN t优选在0.7-0.95的范围内,更优选在0.7-0.9的范围内,进一步优选在0.8-0.9的范围内。根据该优选实施方式的含杂原子纳米碳材料特别适于作为丙烷(如正丙烷)脱氢反应的催化剂,特别是对C3烯烃具有较高的选择性。
在本发明的又一种优选的实施方式中,以所述含杂原子纳米碳材料的总量为基准,O元素的含量为3-6重量%,优选为4-5.8重量%,更优选4.5-5.5重量%;N元素的含量为0.5-2重量%,优选为1-2重量%,更优选为1.2-1.8重量%;C元素的含量为92-96.5重量%,优选为92.2-95重量%,更优选为92.7-94.3重量%。IO c/IO e优选在0.3-0.8的范围内,更优选在0.4-0.75的范围内,进一步优选在0.6-0.7的范围内。由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量优选为70-80重量%,更优选为75-80重量%。IC c/IC e优选在0.4-0.98的范围内,更优选在0.7-0.98的范围内,进一步优选在0.85-0.95的范围内。IN c/IN t优选在0.7-0.95的范围内,更优选在0.75-0.9的范围内,进一步优选在0.8-0.85的范围内。根据该优选实施方式的含杂原子纳米碳材料特别适于作为苯乙烷脱氢反应的催化剂,特别是对苯乙烯具有较高的选择性。
所述含杂原子纳米碳材料可以以常见的各种形态存在,具体可以为但不限于含杂原子碳纳米管、含杂原子石墨烯、含杂原子薄层石墨、含杂原子纳米碳颗粒、含杂原子纳米碳纤维、含杂原子纳米金刚石和含杂原子富勒烯中的一种或两种以上的组合。所述含杂原子的碳纳米管可以为含杂原子单壁碳纳米管、含杂原子双壁碳纳米管和含杂原子 多壁碳纳米管中的一种或两种以上的组合。根据本发明的含杂原子纳米碳材料,优选为含杂原子多壁碳纳米管。
从进一步提高原料转化率和产物选择性的角度出发,所述含杂原子多壁碳纳米管的比表面积优选为50-500m2/g,更优选为80-300m2/g,进一步优选为100-200m2/g。本发明中,比表面积由氮气吸附BET法测定。
所述含杂原子多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800优选在0.01-0.5的范围内,这样能够获得更好的催化效果。更优选地,所述含杂原子多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800更优选在0.02-0.2的范围内。本发明中,w800=W800-W400,w500=W500-W400,W400为在400℃的温度下测定的质量损失率,W800为在800℃的温度下测定的质量损失率,W500为在500℃的温度下测定的质量损失率;所述失重率采用热重分析仪在空气气氛中测定,测试起始温度为25℃,升温速率为10℃/min;样品在测试前在150℃的温度和1标准大气压下于氦气气氛中干燥3小时。
在本发明的一种优选的实施方式中,所述含杂原子纳米碳材料优选为含杂原子多壁碳纳米管,该含杂原子多壁碳纳米管的比表面积优选为50-500m2/g,更优选为80-300m2/g,进一步优选为100-200m2/g;并且w500/w800优选在0.01-0.5的范围内,更优选在0.02-0.2的范围内。
所述含杂原子纳米碳材料中,对除氧原子和氮原子外的其它非金属杂原子,如硫原子和磷原子,其含量可以为常规含量。一般地,根据本发明的含杂原子纳米碳材料中,除氧原子和氮原子外的其它非金属杂原子(如硫原子和磷原子)的总量可以为0.5重量%以下,优选为0.2重量%以下,例如小于0.1重量%,小于0.01重量%,或者小于0.001重量%。根据本发明的含杂原子纳米碳材料,除前述金属元素外,还可以含有其它金属原子,所述其它金属原子例如可以为来源于制备纳米碳材料时使用的催化剂。所述其它金属原子的含量一般为0.5重量%以下,优选为0.2重量%以下,进一步优选为0.1重量%以下,例如小于0.05重量%,小于0.01重量%,或者小于0.001重量%。
根据本发明的第二个方面,本发明提供了一种含杂原子纳米碳材 料的制备方法:将一种分散有原料纳米碳材料的水分散液于密闭容器中进行反应,所述水分散液含或不含有机碱。
所述水分散液中的分散介质可以为水,也可以为含有至少一种有机碱的水溶液。
根据本发明,所述水分散液基本上不包含有机溶剂。“基本上不包含有机溶剂”是指不含有有机溶剂或者有机溶剂在水分散液中的含量小于10重量%,小于9重量%,小于8重量%,小于7重量%,小于6重量%,小于5重量%,小于4重量%,小于3重量%,小于2重量%,小于1重量%,小于0.5重量%,小于0.1重量%,小于0.05重量%,或者小于0.01重量%。有机溶剂包括:芳香烃类如苯、甲苯、二甲苯等;脂肪烃类如戊烷、己烷、辛烷等;脂环烃类如环己烷、环己酮、甲苯环己酮等;卤化烃类如氯苯、二氯苯、二氯甲烷等;醇类如甲醇、乙醇、异丙醇等;醚类如乙醚、环氧丙烷等;酯类如醋酸甲酯、醋酸乙酯、醋酸丙酯等;酮类如丙酮、甲基丁酮、甲基异丁酮等;二醇衍生物;乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等;醛类如甲醛等;腈类如乙腈等。根据本发明,有机溶剂不包括本发明中所述的有机碱。
在所述水分散液的分散介质为水时,可以有效地控制和/或提高原料纳米碳材料中的氧原子含量,以最终制备的含杂原子纳米碳材料作为烃如丁烷脱氢反应的催化剂,能有效地改善催化性能。从进一步提高最终制备的含杂原子纳米碳材料作为烃脱氢反应的催化剂时的催化活性的角度出发,原料纳米碳材料∶H2O的重量比优选在1∶2-200的范围内,更优选在1∶5-100的范围内,进一步优选在1∶10-50的范围内。另外,还可以根据有机碱的种类对水的用量进行调整,以使所述有机碱能均匀分散在水中为准。
在所述水分散液的分散介质含有水以及溶解于水中的有机碱时,以最终制备的含杂原子纳米碳材料作为烃如丁烷脱氢反应的催化剂,能获得进一步提高的催化性能。从进一步提高最终制备的含杂原子纳米碳材料作为烃脱氢反应的催化剂时的催化性能的角度出发,原料纳米碳材料∶有机碱的重量比优选在1∶0.05-20的范围内,更优选在1∶0.1-10的范围内,进一步优选在0.5-5的范围内。
所述有机碱选自胺和季铵碱。
所述季铵碱具体可以为式I所示的化合物:
Figure PCTCN2016000059-appb-000005
         (式I)
式I中,R1、R2、R3和R4各自可以为C1-C20的烷基(包括C1-C20的直链烷基和C3-C20的支链烷基)或者C6-C12的芳基。所述C1-C20的烷基的具体实例可以包括但不限于:甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、新戊基、异戊基、叔戊基、正己基、正辛基、正壬基、正癸基、正十一烷基、正十二烷基、正十三烷基、正十四烷基、正十五烷基、正十六烷基、正十八烷基和正二十烷基中的一种或多种。所述C6-C12的芳基的具体实例可以包括但不限于苯基、萘基、甲基苯基和乙基苯基。优选地,R1、R2,R3和R4各自为C1-C10的烷基(包括C1-C10的直链烷基和C3-C10的支链烷基)。进一步优选地,R1、R2、R3和R4各自为C1-C6的烷基(包括C1-C6的直链烷基和C3-C6的支链烷基)。
所述胺是指氨分子中的一个、两个或三个氢被有机基团取代而形成的物质,所述有机基团可以与氮原子键合形成环状结构。所述有机基团可以为取代(如羟基取代)或未取代的脂肪族烃基和/或取代(如羟基取代)或未取代的芳香族烃基,所述脂肪族烃基可以为取代(如羟基取代)或未取代的饱和脂肪族链烃基、取代(如羟基取代)或未取代的不饱和脂肪族链烃基、取代(如羟基取代)或未取代的饱和脂环烃基、以及取代(如羟基取代)或未取代的不饱和脂环烃基中的一种或两种以上。具体地,所述胺可以为取代(如羟基取代)或未取代的饱和脂肪族胺、取代(如羟基取代)或未取代的不饱和脂肪族胺、取代(如羟基取代)或未取代的饱和脂环胺、取代(如羟基取代)或未取代的不饱和脂环胺、取代(如羟基取代)或未取代的杂环胺以及取代(如羟基取代)或未取代的芳基胺中的一种或两种以上。
所述不饱和脂肪族胺是指分子结构中含有不饱和基团的脂肪族链胺,所述不饱和基团优选为烯基(即,-C=C-)。所述不饱和基团以及氨基的数量各自可以为一个或两个以上,没有特别限定。
根据本发明的方法,所述有机碱的具体实例可以包括但不限于甲胺、二甲胺、三甲胺、乙胺、二乙胺、三乙胺、正丙胺、二正丙胺、三正丙胺、异丙胺、二异丙胺、正丁基胺、二正丁基胺、三正丁基胺、 仲丁基胺、二异丁基胺、三异丁基胺、叔丁基胺、正戊胺、二正戊胺、三正戊胺、新戊胺、异戊胺、二异戊胺、三异戊胺、叔戊胺、正己胺、正辛胺、正壬胺、正癸胺、正十一烷基胺、正十二烷基胺、十二烷基二甲基胺、正十三烷基胺、正十四烷基胺、正十五烷基胺、正十六烷基胺、一乙醇胺、三乙醇胺、三异丙醇胺、二乙醇胺、二正丙醇胺、三正丙醇胺、二正丁醇胺、三正丁醇胺、十二烷基二甲基胺、十四烷基二甲基胺、十六烷基二甲基胺、乙二胺、丙二胺、丁二胺、戊二胺、己二胺、取代或未取代的吡咯、取代或未取代的四氢吡咯、取代或未取代的吡啶、取代或未取代的六氢吡啶、取代或未取代的咪唑、取代或未取代的吡唑、取代或未取代的喹啉、取代或未取代的二氢喹啉、取代或未取代的四氢喹啉、取代或未取代的十氢喹啉、取代或未取代的异喹啉、取代或未取代的嘧啶、苯胺、二苯胺、联苯胺、邻苯二胺、间苯二胺、对苯二胺、邻甲基苯胺、间甲基苯胺、对甲基苯胺、2,3-二甲基苯胺、2,4-二甲基苯胺、2,5-二甲基苯胺、2,6-二甲基苯胺、3,4-二甲基苯胺、3,5-二甲基苯胺、2,4,6-三甲基苯胺、邻乙基苯胺、N-丁基苯胺、2,6-二乙基苯胺、环己胺、环戊胺、六次甲基四胺、二乙烯三胺、三乙烯四胺、四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵(包括其各种异构体,如四正丙基氢氧化铵和四异丙基氢氧化铵)、四丁基氢氧化铵(包括其各种异构体,如四正丁基氢氧化铵、四仲丁基氢氧化铵、四异丁基氢氧化铵和四叔丁基氢氧化铵)和四戊基氢氧化铵(包括其各种异构体)中的一种或两种以上。
根据本发明的方法,所述胺优选为式II所示的化合物、式III所示的化合物、以及通式R12(NH2)2表示的物质中的一种或两种以上,
Figure PCTCN2016000059-appb-000006
Figure PCTCN2016000059-appb-000007
式II中,R5、R6和R7各自为H、C1-C6的烷基或者C6-C12的芳基,且R5、R6和R7不同时为H。本发明中,C1-C6的烷基的具体实例可以包括但不限于:甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、叔戊基、新戊基和正己基。本发明中,C6-C12的芳基的具体实例包括但不限于苯基、萘基、甲基苯基和乙基苯基。
式III中,R8、R9和R10各自为-R11OH或者氢,且R8、R9和R10中的至少一个为-R11OH,R11为C1-C4的亚烷基。本发明中,C1-C4的亚烷基包括C1-C4的直链亚烷基和C3-C4的支链亚烷基,其具体实例可以包括但不限于:亚甲基、亚乙基、亚正丙基、亚异丙基、亚正丁基、亚异丁基和亚叔丁基。
通式R12(NH2)2中,R12可以为C1-C6的亚烷基或者C6-C12的亚芳基。本发明中,C1-C6的亚烷基包括C1-C6的直链亚烷基和C3-C6的支链亚烷基,其具体实例可以包括但不限于:亚甲基、亚乙基、亚正丙基、亚异丙基、亚正丁基、亚异丁基、亚叔丁基、亚正戊基和亚正己基。本发明中,C6-C12的亚芳基的具体实例包括但不限于亚苯基和亚萘基。
所述反应的条件以足以提高原料纳米碳材料中的氧原子和氮原子的含量为准。优选地,反应过程中,所述水分散液的温度在80-220℃的范围内。在所述水分散液的温度处于上述范围之内时,不仅能有效地提高原料纳米碳材料中的氧原子和/或氮原子含量,而且不会对原料纳米碳材料的结构形态产生明显影响。更优选地,反应过程中,所述水分散液的温度在120-180℃的范围内。
所述反应的持续时间可以根据反应的温度进行选择,以能够在原料纳米碳材料中引入足量的氧原子和/或氮原子为准。一般地,所述反应的持续时间可以在0.5-96小时的范围内,优选在2-72小时的范围内,更优选在20-50小时的范围内。
在一种优选的实施方式中,所述有机碱为式I所示的季铵碱,优选为四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵和四戊基氢氧化铵中的一种或两种以上,由此制备的含杂原子纳米碳材料特别适于作为丁烷脱氢反应的催化剂,能获得更高的丁二烯选择性。在该优选的实施方式中,原料纳米碳材料:有机碱的重量比优选在1∶0.1-10的范围之内,更优选在0.5-5的范围内。在该优选的实施方式中,反应过程中,水分散液的温度优选在90-210℃的范围内,更优选在140-180℃的范围内。
在另一种优选的实施方式中,所述有机碱为式III所示的乙醇胺,优选为一乙醇胺、二乙醇胺和三乙醇胺一种或两种以上,由此制备的含杂原子纳米碳材料特别适于作为丙烷脱氢反应的催化剂,由此能够荻得更高的丙烯选择性。在该优选的实施方式中,原料纳米碳材料: 有机碱的重量比优选在1∶0.2-10的范围之内,更优选在1∶1-5的范围内。反应过程中,水分散液的温度优选在90-160℃的范围内,更优选在120-150℃的范围内。
在又一种优选的实施方式中,所述有机碱为通式R12(NH2)2表示的物质,优选为乙二胺、丙二胺、丁二胺、戊二胺和己二胺中的一种或两种以上,由此制备的含杂原子纳米碳材料特别适于作为苯乙烷脱氢反应的催化剂,由此能够获得更高的苯乙烯选择性。在该优选的实施方式中,原料纳米碳材料:有机碱的重量比优选在1∶0.2-10的范围之内,更优选在1∶1-5的范围内。反应过程中,水分散液的温度优选在100-200℃的范围内,更优选在120-150℃的范围内。
可以采用常用的各种方法来形成所述水分散液,例如可以将原料纳米碳材料分散在水(优选去离子水)中,然后可选地加入所述有机碱,从而得到所述水分散液。为了进一步提高原料纳米碳材料的分散效果,同时缩短分散的时间,可以采用超声振荡的方法将原料纳米碳材料分散在水中。所述超声振荡的条件可以为常规选择,一般地,所述超声振荡的频率可以为10-100kHz,优选为40-80kHz,所述超声振荡的持续时间可以为0.1-6小时,优选为0.5-2小时。根据本发明的方法,所述有机碱优选以溶液(优选水溶液)的形式提供。
所述原料纳米碳材料中O元素和N元素的含量没有特别限定,可以为常规选择。一般地,所述原料纳米碳材料中O元素的含量为不高于1.2重量%,优选为不高于0.5重量%;N元素的含量为低于0.1重量%,优选为不高于0.08重量%,更优选为不高于0.05重量%。所述原料纳米碳材料中除氧原子和氮原子外的其余非金属杂原子(如磷原子和硫原子)的总量(以元素计)可以为常规含量。一般地,所述原料纳米碳材料中除氧原子和氮原子外的其余非金属杂原子的总量为不高于0.5重量%,优选为不高于0.2重量%,更优选为不高于0.1重量%,进一步优选为不高于0.05重量%。所述原料纳米碳材料根据来源的不同,还可以含有一些金属元素,例如来源于制备原料纳米碳材料时使用的催化剂中的金属元素。所述原料纳米碳材料中金属元素的含量(以元素计)一般在2.5重量%以下,优选2重量%以下,更优选为1重量%以下,进一步优选为0.5重量%以下。
根据本发明的方法,原料纳米碳材料在使用前可以采用本领域常用的方法进行预处理(如洗涤),以除去原料纳米碳材料表面的一些杂 质;也可以不进行预处理,直接使用,本发明公开的实施例中,原料纳米碳材料在使用前均未进行预处理。
根据本发明的含杂原子纳米碳材料的制备方法,可以对各种存在形态的纳米碳材料进行处理,以提高该纳米碳材料中的氧原子和/或氮原子含量。所述原料纳米碳材料可以为但不限于碳纳米管、石墨烯、纳米金刚石、薄层石墨、纳米碳颗粒、纳米碳纤维和富勒烯中的一种或两种以上的组合。所述碳纳米管可以为单壁碳纳米管、双壁碳纳米管和多壁碳纳米管中的一种或两种以上的组合。优选地,所述原料纳米碳材料为碳纳米管,更优选为多壁碳纳米管。
根据本发明的含杂原子纳米碳材料的制备方法,在一种优选的实施方式中,所述原料纳米碳材料为多壁碳纳米管,所述多壁碳纳米管的比表面积为20-500m2/g,优选为50-400m2/g,更优选为90-300m2/g,进一步优选为100-200m2/g。在所述多壁碳纳米材料的比表面积处于上述范围之内时,最终得到的含杂原子纳米碳材料具有更好的催化活性。
根据本发明的含杂原子纳米碳材料的制备方法,在所述原料纳米碳材料为多壁碳纳米管时,所述多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800优选在0.01-0.5的范围内,更优选在0.02-0.2的范围内。由此制备的含杂原子纳米碳材料显示出更好的催化效果。
在本发明的一种更为优选的实施方式中,所述原料纳米碳材料为多壁碳纳米管,所述多壁碳纳米管的比表面积为20-500m2/g,优选为50-400m2/g,更优选为90-300m2/g,进一步优选为100-200m2/g;所述多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800优选在0.01-0.5的范围内,更优选在0.02-0.2的范围内。
所述反应在密闭容器中进行。所述反应可以在自生压力(即,不额外施加压力)下进行,也可以在加压的条件下进行。优选地,所述反应在自生压力下进行。所述密闭容器可以为常见的能实现密封和加热的反应器,如高压反应釜。
根据本发明的含杂原子纳米碳材料的制备方法,还可以包括从反应得到的混合物中分离出固体物质,并将分离出的固体物质进行干燥以及可选的焙烧,从而得到所述含杂原子纳米碳材料。
可以采用常用的固液分离方法从反应得到的混合物中分离出固体物质,如离心、过滤和倾析中的一种或两种以上的组合。
所述干燥的条件可以为常规选择,以能脱除分离出的固体物质中的挥发性物质为准。一般地,所述干燥可以在50-200℃的温度下进行,优选在80-180℃的温度下进行,更优选在100-150℃的温度下进行。所述干燥的持续时间可以根据干燥的温度和方式进行选择。一般地,所述干燥的持续时间可以为0.5-48小时,优选为3-24小时,更优选为5-12小时。所述干燥可以在常压(1标准大气压)下进行,也可以在减压的条件下进行。从进一步提高干燥的效率的角度出发,所述干燥优选在减压的条件下进行。
根据本发明的含杂原子纳米碳材料的制备方法,能有效地提高原料纳米碳材料中的氧原子和/或氮原子含量,同时不会对原料纳米碳材料的结构形态产生明显影响。
根据本发明的第三个方面,本发明提供了一种由本发明的方法制备的含杂原子纳米碳材料。
根据本发明的第四个方面,本发明提供了一种含杂原子纳米碳材料,该含杂原子纳米碳材料是将根据本发明第一个方面的含杂原子纳米碳材料或者根据本发明第三个方面的(例如未经历过焙烧的)含杂原子纳米碳材料进行焙烧而制得的。
所述焙烧可以在常规条件下进行。一般地,所述焙烧可以在250-500℃的温度下进行,优选在300-480℃的温度下进行,更优选在350-450℃的温度下进行。所述焙烧的持续时间可以根据焙烧的温度进行选择。一般地,所述焙烧的持续时间可以为1-24小时,优选为2-12小时,更优选为2-8小时。所述焙烧可以在含氧气氛中进行,也可以在惰性气氛中进行。所述含氧气氛可以为空气气氛;还可以为氧气与惰性气体混合形成的混合气氛,所述混合气氛中,氧气的含量可以为0.1-22体积%。所述惰性气氛如由稀有气体(如氩气和/或氦气)形成的气氛。从便利性和成本等角度考虑,优选地,所述焙烧在含氧气氛(如空气气氛)中进行。
根据本发明的含杂原子纳米碳材料或者由本发明的方法制备的含杂原子纳米碳材料具有良好的催化性能,特别是在烃类物质脱氢反应中显示出较高的催化活性。
根据本发明的含杂原子纳米碳材料或者由本发明的方法制备的 含杂原子纳米碳材料可以直接用作催化剂,也可以以成型催化剂的形式使用。所述成型催化剂可以含有根据本发明的含杂原子纳米碳材料或者由本发明的方法制备的含杂原子纳米碳材料以及粘结剂。所述粘结剂可以根据该成型催化剂的具体使用场合进行选择,以能够满足使用要求为准,例如可以为有机粘结剂和/或无机粘结剂。所述有机粘结剂可以为常见的各种聚合物型粘结剂,所述无机粘结剂可以为常见的各种耐热无机氧化物,如氧化铝和/或氧化硅。在所述成型催化剂为时烃脱氢反应(如直接脱氢反应和氧化脱氢反应)、特别是对氧化脱氢反应具有催化作用的成型催化剂时,所述粘结剂优选为无机粘结剂。所述成型催化剂中,含杂原子纳米碳材料的含量可以根据具体使用要求进行选择,没有特别限定,一般地,以所述成型催化剂的总量为基准,所述含杂原子纳米碳材料的含量可以为5-95重量%。
根据本发明的第五个方面,本发明提供了根据本发明第一个方面的含杂原子纳米碳材料、根据本发明第三个方面的含杂原子纳米碳材料、或者根据本发明第四个方面的含杂原子纳米碳材料作为烃脱氢反应的催化剂的应用。
根据本发明的应用,所述含杂原子纳米碳材料可以直接用于烃脱氢反应,也可以成型后用于烃脱氢反应。所述脱氢反应可以在氧气存在下进行,也可以不在氧气存在下进行。优选地,所述脱氢反应在氧气存在下进行,这样能获得更好的催化效果。
根据本发明的第六个方面,本发明提供了一种烃脱氢反应方法,该方法包括在存在或不存在氧气的条件下,在烃脱氢反应条件下,将烃与根据本发明第一个方面的含杂原子纳米碳材料、根据本发明第三个方面的含杂原子纳米碳材料、或者根据本发明第四个方面的含杂原子纳米碳材料接触。
根据本发明的烃脱氢反应方法,所述含杂原子纳米碳材料可以直接用作催化剂,也可以以成型催化剂的形式使用。所述成型催化剂可以含有根据本发明的含杂原子纳米碳材料或者由本发明的方法制备的含杂原子纳米碳材料以及粘结剂。所述粘结剂可以根据该成型催化剂的具体使用场合进行选择,以能够满足使用要求为准,例如可以为有机粘结剂和/或无机粘结剂。所述有机粘结剂可以为常见的各种聚合物型粘结剂,所述无机粘结剂可以为常见的各种耐热无机氧化物,如氧化铝和/或氧化硅。在所述成型催化剂为对烃脱氢反应(如直接脱 氢反应和氧化脱氢反应)、特别是对氧化脱氢反应具有催化作用的成型催化剂时,所述粘结剂优选为无机粘结剂。所述成型催化剂中,含杂原子纳米碳材料的含量可以根据具体使用要求进行选择,没有特别限定,一般地,以所述成型催化剂的总量为基准,所述含杂原子纳米碳材料的含量可以为5-95重量%。
根据本发明的烃脱氢反应方法可以对多种类型的烃进行脱氢,从而得到不饱和烃,如烯烃。根据本发明的方法特别适于对烷烃进行脱氢,从而得到烯烃。所述烃优选为烷烃,如C2-C12的烷烃。具体地,所述烃可以为但不限于乙烷、丙烷、正丁烷、异丁烷、正戊烷、异戊烷、新戊烷、环戊烷、正己烷、2-甲基戊烷、3-甲基戊烷、2,3-二甲基丁烷、环己烷、甲基环戊烷、正庚烷、2-甲基己烷、3-甲基己烷、2-乙基戊烷、3-乙基戊烷、2,3-二甲基戊烷、2,4-二甲基戊烷、正辛烷、2-甲基庚烷、3-甲基庚烷、4-甲基庚烷、2,3-二甲基己烷、2,4-二甲基己烷、2,5-二甲基己烷、3-乙基己烷、2,2,3-三甲基戊烷、2,3,3-三甲基戊烷、2,4,4-三甲基戊烷、2-甲基-3-乙基戊烷、正壬烷、2-甲基辛烷、3-甲基辛烷、4-甲基辛烷、2,3-二甲基庚烷、2,4-二甲基庚烷、3-乙基庚烷、4-乙基庚烷、2,3,4-三甲基己烷、2,3,5-三甲基己烷、2,4,5-三甲基己烷、2,2,3-三甲基己烷、2,2,4-三甲基己烷、2,2,5-三甲基己烷、2,3,3-三甲基己烷、2,4,4-三甲基己烷、2-甲基-3-乙基己烷、2-甲基-4-乙基己烷、3-甲基-3-乙基己烷、3-甲基-4-乙基己烷、3,3-二乙基戊烷、1-甲基-2-乙基环己烷、1-甲基-3-乙基环己烷、1-甲基-4-乙基环己烷、正丙基环己烷、异丙基环己烷、三甲基环己烷(包括三甲基环己烷的各种异构体,如1,2,3-三甲基环己烷、1,2,4-三甲基环己烷、1,2,5-三甲基环己烷、1,3,5-三甲基环己烷)、正癸烷、2-甲基壬烷、3-甲基壬烷、4-甲基壬烷、5-甲基壬烷、2,3-二甲基辛烷、2,4-二甲基辛烷、3-乙基辛烷、4-乙基辛烷、2,3,4-三甲基庚烷、2,3,5-三甲基庚烷、2,3,6-三甲基庚烷、2,4,5-三甲基庚烷、2,4,6-三甲基庚烷、2,2,3-三甲基庚烷、2,2,4-三甲基庚烷、2,2,5-三甲基庚烷、2,2,6-三甲基庚烷、2,3,3-三甲基庚烷、2,4,4-三甲基庚烷、2-甲基-3-乙基庚烷、2-甲基-4-乙基庚烷、2-甲基-5-乙基庚烷、3-甲基-3-乙基庚烷、4-甲基-3-乙基庚烷、5-甲基-3-乙基庚烷、4-甲基-4-乙基庚烷、4-丙基庚烷、3,3-二乙基己烷、3,4-二乙基己烷、2-甲基-3,3-二乙基戊烷、苯乙烷、1-苯基丙烷、2-苯基丙烷、1-苯基丁烷、2-苯基丁烷、1-苯基戊烷、2-苯 基戊烷和3-苯基戊烷中的一种或两种以上的组合。所述烃更优选为丙烷、正丁烷、异丁烷和苯乙烷中的一种或两种以上。
根据本发明的烃脱氢反应方法,所述反应可以在存在氧气的条件下进行(即,含有烃的原料还含有氧气),也可以在不存在氧气的条件下(即,含有烃的原料不含有氧气)进行。优选地,根据本发明的烃脱氢反应方法,在存在氧气的条件下进行。在本发明的方法在存在氧气的条件下进行时,氧气的用量可以为常规选择。一般地,烃与氧气的摩尔比可以为0.01-100∶1,优选为0.1-10∶1,更优选为0.2-5∶1,最优选为0.3-2∶1。
根据本发明的烃脱氢反应方法,可以通过载气将烃和可选的氧气送入反应器中与含杂原子纳米碳材料接触反应,此时,含有烃的原料还可以含有载气。所述载气可以为常用的在反应条件下不会与反应物和反应生成物发生化学相互作用并且不会发生分解的气体,如氮气、二氧化碳、稀有气体和水蒸气中的一种或两种以上的组合。所述载气的用量可以为常规选择。一般地,以所述原料的总量为基准,载气的含量可以为30-99.5体积%,优选为50-99体积%,更优选为70-98体积%。
根据本发明的烃脱氢反应方法,含有烃以及可选的氧气的原料与含杂原子纳米碳材料的接触可以在固定床反应器中进行,也可以在流化床反应器中进行,没有特别限定。优选地,所述接触在固定床反应器中进行。
根据本发明的烃脱氢反应方法,含有烃以及可选的氧气的原料与含杂原子纳米碳材料的接触可以在常规温度下进行,以足以使烃发生脱氢反应为准。一般地,所述接触可以在200-650℃的温度下进行,优选在300-600℃的温度下进行,更优选在350-500℃的温度下进行。所述接触可以在0-10MPa的压力下进行,优选在0.01-6MPa的压力下进行,更优选在0.02-3MPa的压力下进行,进一步优选在0.05-1.5MPa的压力下进行。本发明中,压力为表压。
所述接触的持续时间可以根据接触的温度进行选择。具体地,在脱氢反应在固定床反应器中进行时,可以用原料的气时体积空速来表示接触的持续时间。一般地,原料的气时体积空速可以为0.1-10000h-1,优选为1-6000h-1,更优选为5-4000h-1,进一步优选为10-1000h-1,如100-500h-1
根据本发明的脱氢反应方法,可以根据进行脱氢的烃的种类对反应条件进行优化,从而获得更好的反应效果。
以下结合实施例详细说明本发明,但并不因此限制本发明的范围。
以下实施例和对比例中,X射线光电子能谱分析在Thermo Scientific公司的配备有Thermo Avantage V5.926软件的ESCALab250型X射线光电子能谱仪上进行测试,激发源为单色化Al KαX射线,能量为1486.6eV,功率为150W,窄扫描所用通透能为30eV,分析测试时的基础真空为6.5×10-10mbar,电子结合能用单质碳的C1s峰(284.0eV)校正,在Thermo Avantage软件上进行数据处理,在分析模块中采用灵敏度因子法进行定量分析。样品在测试前在150℃的温度和1标准大气压下于氦气气氛中干燥3小时。
以下实施例和对比例中,热重分析在TA5000热分析仪上进行,测试条件为空气气氛,升温速度为10℃/min,温度范围为室温(25℃)至1000℃。样品在测试前在150℃的温度和1标准大气压下于氦气气氛中干燥3小时。采用美国Micromertrics公司的ASAP2000型N2物理吸附仪测定比表面积。采用美国FEI公司生产的高分辨透射电镜分析原料纳米碳材料以及含杂原子纳米碳材料的微观形貌。
制备实施例1-47用于制备含杂原子纳米碳材料。
制备实施例1
(1)将20g作为原料纳米碳材料的多壁碳纳米管(比表面积为136m2/g,氧原子含量为0.3重量%,氮原子含量为0.02重量%,除氮原子和氧原子外的其余非金属杂原子(磷原子和硫原子)的总含量为0.01重量%,金属原子总含量为0.2重量%,在400-800℃温度区间内的失重率为w800,在400-500℃温度区间内的失重率为w500,w500/w800为0.12,购自中国科学院成都有机化学有限公司)分散在300g去离子水中,从而得到水分散液,其中,分散在超声振荡条件下进行,超声振荡条件包括:频率为40kHz,时间为2小时。
(2)将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于140℃的温度下,在自生压力下反应48小时。反应结束后,待高压反应釜内的温度降至室温后,打开反应釜,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压(1标准大气压,下同)、120℃的温度下干燥12小时后,得到含杂原子纳米碳材料,该含杂原子纳米碳材料的组成、比表面积以及w500/w800在表1 中列出。
图1为制备的含杂原子纳米碳材料的透射电子显微镜照片,图2为作为原料的多壁碳纳米管的透射电子显微镜照片。从图1和图2可以看出,含杂原子纳米碳材料的微观形态良好,表明反应过程对纳米碳材料的结构影响不大。
制备对比例1
将与制备实施例1相同的水分散液置于配备冷凝管的三口烧瓶中,将三口烧瓶置于温度为140℃的油浴中,在常压下回流反应48小时。反应结束后,待三口烧瓶内的温度降至室温后,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥6小时后,得到含杂原子纳米碳材料。制备的含杂原子纳米碳材料的组成及性质在表1中列出。
制备实施例2
采用与制备实施例1相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,作为原料纳米碳材料的多壁碳纳米管(购自山东大展纳米材料有限公司)的比表面积为251m2/g,在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800为0.33,氧原子含量为0.62重量%,氮原子含量为0.01重量%,除氮原子和氧原子外的其余非金属杂原子(磷原子和硫原子)的总含量为0.01重量%,金属原子总含量为0.08重量%。制备的含杂原子纳米碳材料的组成及性质在表1中列出。
制备实施例3
采用与制备实施例1相同的方法制备含杂原子纳米碳材料,不同的是,步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于90℃的温度下,在自生压力下反应48小时。制备的含杂原子纳米碳材料的组成及性质在表1中列出。
制备实施例4
(1)将20g作为原料纳米碳材料的多壁碳纳米管(比表面积为183m2/g,氧原子含量为0.2重量%,氮原子含量为0.01重量%,除氮原子和氧原子外的其余非金属杂原子(磷原子和硫原子)的总含量为0.04重量%,金属原子总含量为0.03重量%,在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800为0.07,购自中国科学院成都有机化学有限公司)分散在 500g去离子水中,从而得到水分散液,其中,分散在超声振荡条件下进行,超声振荡条件包括:频率为80kHz,时间为0.5小时。
(2)将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于180℃的温度下,在自生压力下反应24小时。反应结束后,待高压反应釜内的温度降至室温后,打开反应釜,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥12小时后,得到含杂原子纳米碳材料,该含杂原子纳米碳材料的组成及性质在表1中列出。
制备对比例2
将与制备实施例4相同的水分散液置于配备冷凝管的三口烧瓶中,将三口烧瓶置于温度为100℃的油浴中,在常压下回流反应24小时。反应结束后,待三口烧瓶内的温度降至室温后,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥6小时后,得到含杂原子纳米碳材料。制备的含杂原子纳米碳材料的组成及性质在表1中列出。
制备实施例5
采用与制备实施例4相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,作为原料纳米碳材料的多壁碳纳米管(购自山东大展纳米材料有限公司)的比表面积为103m2/g,w500/w800为0.23,氧原子含量为1.1重量%,氮原子含量为0.03重量%,除氮和氧外的其余非金属杂原子(磷和硫)的总含量为0.01重量%,金属原子总含量为1.6重量%。制备的含杂原子纳米碳材料的组成及性质在表1中列出。
制备实施例6
采用与制备实施例4相同的方法制备含杂原子纳米碳材料,不同的是,步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于210℃的温度下,在自生压力下反应24小时。制备的含杂原子纳米碳材料的组成及性质在表1中列出。
制备实施例7
采用与制备实施例1相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,将原料纳米碳材料分散在去离子水中后,加入四丙基氢氧化铵(以25重量%水溶液的形式提供),其中,按原料纳米碳材料∶四丙基氢氧化铵的重量比为1∶0.75的比例投料。制备的含杂原子纳米碳材料的组成及性质在表2中列出。图3为制备的含杂原子 纳米碳材料的透射电子显微镜照片。从图3可以看出,含杂原子纳米碳材料的微观形态良好,表明反应过程对纳米碳材料的结构影响不大。
制备对比例3
将与制备实施例7相同的水分散液置于配备冷凝管的三口烧瓶中,将三口烧瓶中置于温度为140℃的油浴中,在常压下回流反应48小时。反应结束后,待三口烧瓶内的温度降至室温后,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥6小时后,得到含杂原子纳米碳材料。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备对比例4
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,四丙基氢氧化铵用等摩尔量的HCl代替。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备对比例5
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,四丙基氢氧化铵用等摩尔量的NH4Cl代替。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备对比例6
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,四丙基氢氧化铵用等摩尔量的四丙基氯化铵代替。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例8
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,四丙基氢氧化铵用等摩尔量的正丙胺代替。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例9
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,四丙基氢氧化铵用等摩尔量的吡啶代替。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例10
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,四丙基氢氧化铵用等摩尔量的环己胺代替。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例11
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,四丙基氢氧化铵用乙二胺代替,乙二胺的摩尔数为四丙基氢氧化铵的摩尔数的0.5倍。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例12
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,四丙基氢氧化铵用等摩尔量的二乙醇胺代替。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例13
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,四丙基氢氧化铵用六次甲基四胺代替,六次甲基四胺的摩尔量数为四丙基氢氧化铵的摩尔数的0.25倍。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例14
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,四丙基氢氧化铵用二乙烯三胺代替,二乙烯三胺的摩尔数为四丙基氢氧化铵的摩尔数的0.3倍。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例15
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,原料纳米碳材料与制备实施例2中的原料纳米碳材料相同。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例16
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于80℃的温度下,在自生压力下反应48小时。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例17
采用与制备实施例7相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,按原料纳米碳材料∶四丙基氢氧化铵的重量比为1∶0.4的比例投料。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例18
采用与制备实施例4相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,将原料纳米碳材料分散在去离子水中之后,加入四乙基氢氧化铵(以20重量%水分散液)的形式提供,从而得到水分散液,其中,按原料纳米碳材料∶四乙基氢氧化铵的重量比为1∶5的比例投料。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备对比例7
将与制备实施例18相同的水分散液置于配备冷凝管的三口烧瓶中,将三口烧瓶置于温度为180℃的油浴中,在常压下回流反应24小时。反应结束后,待三口烧瓶内的温度降至室温后,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥6小时后,得到含杂原子纳米碳材料。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例19
采用与制备实施例18相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,原料纳米碳材料与制备实施例5中的原料纳米碳材料相同。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例20
采用与制备实施例18相同的方法制备含杂原子纳米碳材料,不同的是,步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于200℃的温度下,在自生压力下反应48小时。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例21
采用与制备实施例18相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,按原料纳米碳材料∶四乙基氢氧化铵的重量比为1∶8的比例投料。制备的含杂原子纳米碳材料的组成及性质在表2中列出。
制备实施例22
(1)将20g作为原料纳米碳材料的多壁碳纳米管(与制备实施例1中的原料纳米碳材料相同)分散在200g去离子水中,其中,分散在超声振荡条件下进行,超声振荡条件包括:频率为40kHz,时间为0.5小时。然后,加入作为有机碱的二乙醇胺,从而得到水分散液,其中,按原料纳米碳材料∶有机碱的重量比为1∶1的比例投料。
(2)将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于120℃的温度下,在自生压力下反应24小时。反应结束后,待高压反应釜内的温度降至室温后,打开反应釜,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥12小时后,得到含杂原子纳米碳材料,该含杂原子纳米碳材料的组成及性质在表3中列出。
制备对比例8
将与制备实施例22相同的水分散液置于配备冷凝管的三口烧瓶中,将三口烧瓶置于温度为120℃的油浴中,在常压下回流反应24小时。反应结束后,待三口烧瓶内的温度降至室温后,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥6小时后,得到含杂原子纳米碳材料。制备的含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例23
(1)将20g作为原料纳米碳材料的多壁碳纳米管(与制备实施例4中的原料纳米碳材料相同)分散在500g去离子水中,其中,分散在超声振荡条件下进行,超声振荡条件包括:频率为40kHz,时间为0.5小时。然后,加入作为有机碱的三乙醇胺,从而得到水分散液,其中,按原料纳米碳材料∶有机碱的重量比为1∶5的比例投料。
(2)将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于150℃的温度下,在自生压力下反应36小时。反应结束后,待高压反应釜内的温度降至室温后,打开反应釜,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、140℃的温度下干燥8小时后,得到含杂原子纳米碳材料,该含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例24
采用与制备实施例22相同的方法制备含杂原子纳米碳材料,不同的是,步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于90℃的温度下,在自生压力下反应24小时。制备的含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例25
采用与制备实施例22相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,作为原料纳米碳材料的多壁碳纳米管与制备实 施例2中的原料纳米碳材料相同。制备的含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例26
采用与制备实施例22相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1),按原料纳米碳材料∶有机碱的重量比为1∶0.2的比例投料。制备的含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例27
采用与制备实施例22相同的方法制备含杂原子纳米碳材料。不同的是,步骤(1)中,二乙醇胺用等摩尔量的正丁胺代替。制备的含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例28
采用与制备实施例23相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,三乙醇胺用等摩尔量的苯胺代替。制备的含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例29
(1)将20g作为原料纳米碳材料的多壁碳纳米管(与制备实施例1中的原料纳米碳材料相同)分散在250g去离子水中,其中,分散在超声振荡条件下进行,超声振荡条件包括:频率为40kHz,时间为0.5小时。然后,加入作为有机碱的乙二胺,从而得到水分散液,其中,按原料纳米碳材料∶有机碱的重量比为1∶1.25。
(2)将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于150℃的温度下,在自生压力下反应48小时。反应结束后,待高压反应釜内的温度降至室温后,打开反应釜,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、150℃的温度下干燥5小时后,得到含杂原子纳米碳材料,该含杂原子纳米碳材料的组成及性质在表3中列出。
制备对比例9
将与制备实施例29相同的水分散液置于配备冷凝管的三口烧瓶中,将三口烧瓶置于温度为150℃的油浴中,在常压下回流反应48小时。反应结束后,待三口烧瓶内的温度降至室温后,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥6小时后,得到含杂原子纳米碳材料。制备的含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例30
(1)将20g作为原料纳米碳材料的多壁碳纳米管(与制备实施例4中的原料纳米碳材料相同)分散在800g去离子水中,其中,分散在超声振荡条件下进行,超声振荡条件包括:频率为60kHz,时间为1.5小时。然后,加入作为有机碱的己二胺,从而得到水分散液,其中,按原料纳米碳材料∶己二胺的重量比为1∶4。
(2)将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于120℃的温度下,在自生压力下反应24小时。反应结束后,待高压反应釜内的温度降至室温后,打开反应釜,将反应混合物进行过滤和洗涤,并收集固体物质。将收集到的固体物质在常压、120℃的温度下干燥12小时后,得到含杂原子纳米碳材料,该含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例31
采用与制备实施例29相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,作为原料纳米碳材料的多壁碳纳米管与制备实施例2相同。制备的含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例32
采用与制备实施例29相同的方法制备含杂原子纳米碳材料,不同的是,步骤(2)中,将得到的水分散液置于带有聚四氟乙烯内衬的高压反应釜中,于200℃的温度下,在自生压力下反应24小时。制备的含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例33
采用与制备实施例29相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,按原料纳米碳材料∶有机碱的重量比为1∶0.25的比例投料。制备的含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例34
采用与制备实施例29相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,乙二胺用乙胺代替,乙胺的摩尔数为乙二胺的2倍。制备的含杂原子纳米碳材料的组成及性质在表3中列出。
制备实施例35
采用与制备实施例30相同的方法制备含杂原子纳米碳材料,不同的是,步骤(1)中,己二胺用三乙醇胺代替,三乙醇胺的摩尔量为己二胺的摩尔量的2倍。制备的含杂原子纳米碳材料的组成及性质在 表3中列出。
制备实施例36
将制备实施例1得到的含杂原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备对比例10
将制备对比例1得到的含杂原子纳米碳材料在350℃的温度下空气气氛中焙烧4小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备实施例37
将制备实施例7制备的含杂原子纳米碳材料在350℃于空气气氛中焙烧4小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备对比例11
将制备对比例3得到的含杂原子纳米碳材料在350℃于空气气氛中焙烧4小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备对比例12
将制备对比例4得到的含杂原子纳米碳材料在350℃于空气气氛中焙烧4小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备对比例13
将制备对比例5得到的含杂原子纳米碳材料在350℃于空气气氛中焙烧4小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备对比例14
将制备对比例6得到的含杂原子纳米碳材料在350℃于空气气氛中焙烧4小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备实施例38
将制备实施例18得到的含杂原子纳米碳材料在450℃于空气气氛中焙烧2小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备实施例39
将制备实施例19得到的含杂原子纳米碳材料在450℃于空气气氛中焙烧2小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备实施例40
将制备实施例22得到的含杂原子纳米碳材料在400℃于空气气氛中焙烧4小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备对比例15
将制备对比例8得到的含杂原子纳米碳材料在400℃于空气气氛中焙烧4小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备实施例41
将制备实施例23得到的含杂原子纳米碳材料在380℃于空气气氛中焙烧6小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备实施例42
将制备实施例26得到的含杂原子纳米碳材料在400℃于空气气氛中焙烧5小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备实施例43
将制备实施例28得到的含杂原子纳米碳材料在380℃于空气气氛中焙烧6小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备实施例44
将制备实施例29得到的含杂原子纳米碳材料在410℃于空气气氛中焙烧5小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备对比例16
将制备对比例9制备的含杂原子纳米碳材料在410于空气气氛中焙烧5小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备实施例45
将制备实施例30得到的含杂原子纳米碳材料在370℃于空气气 氛中焙烧8小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备实施例46
将制备实施例33得到的含杂原子纳米碳材料在410℃于空气气氛中焙烧5小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
制备实施例47
将制备实施例35得到的含杂原子纳米碳材料在370℃于空气气氛中焙烧8小时。制备的含杂原子纳米碳材料的组成及性质在表4中列出。
Figure PCTCN2016000059-appb-000008
Figure PCTCN2016000059-appb-000009
Figure PCTCN2016000059-appb-000010
Figure PCTCN2016000059-appb-000011
实施例1-67用于说明本发明的方法。
实施例1-8
分别将0.2克(装填体积为1.5毫升)含杂原子纳米碳材料作为催化剂装填在通用型固定床微型石英管反应器中,微型石英管反应器两端封有石英砂,将含有烃和氧气的原料气体通入反应器中进行反应。
其中,分别采用制备实施例1-3和7以及制备实施例36制备的含杂原子纳米碳材料作为催化剂的实施例中,原料气体中,正丁烷的浓度为1体积%,正丁烷和氧气摩尔比0.5∶1,余量为作为载气的氮气,反应在0.1MPa和450℃的条件下进行,原料气体的总体积空速为500h-1
分别采用制备实施例4-6制备的含杂原子纳米碳材料作为催化剂的实施例中,原料气体中,正丁烷的浓度为1-5体积%,正丁烷和氧气摩尔比2∶3,余量为作为载气的氮气,反应在0MPa和420℃的条件下进行,原料气体的总体积空速为100h-1
连续监测从反应器中输出的反应混合物的组成,并计算正丁烷转化率、总烯烃选择性和1-丁烯选择性,反应3小时和24小时的结果列于表5中。
实施例9
采用与实施例1相同的方法将正丁烷氧化,不同的是,反应在0.5MPa和400℃条件下进行。实验结果在表5中列出。
实施例10
采用与实施例4相同的方法将正丁烷氧化,不同的是,反应在0MPa和450℃条件下进行。实验结果在表5中列出。
对比例1
采用与实施例1相同的方法将正丁烷氧化,不同的是,采用制备对比例1制备的含杂原子纳米碳材料作为催化剂。实验结果在表5中列出。
对比例2
采用与实施例4相同的方法将正丁烷氧化,不同的是,采用制备对比例2制备的含杂原子纳米碳材料作为催化剂。实验结果在表5中列出。
对比例3
采用与实施例1相同的方法将正丁烷氧化,不同的是,采用制备 实施例1中的原料碳材料作为催化剂。实验结果在表5中列出。
对比例4
采用与实施例4相同的方法将正丁烷氧化,不同的是,采用制备实施例4中的原料碳材料作为催化剂。实验结果在表5中列出。
对比例5
采用与实施例1相同的方法将正丁烷氧化,不同的是,采用制备对比例10制备的含杂原子纳米碳材料作为催化剂。实验结果在表5中列出。
表5
Figure PCTCN2016000059-appb-000012
实施例11-30
分别将0.2克(体积为1.5毫升)含杂原子纳米碳材料作为催化剂装填在通用型固定床微型石英管反应器中,微型石英管反应器两端封有石英砂,将含有烃和氧气的原料气体通入反应器中进行反应。
其中,分别采用制备实施例1、7-17、36和37制备的含杂原子纳米碳材料作为催化剂的实施例中,原料气体中,正丁烷的浓度为2体积%,正丁烷和氧气摩尔比1∶3,余量为作为载气的氮气,反应在0.1MPa和400℃的条件下进行,原料气体的总体积空速为200h-1
分别采用制备实施例18-21、38和39制备的含杂原子纳米碳材料作为催化剂的实施例中,原料气体中,正丁烷的浓度为1体积%,正丁烷和氧气摩尔比1∶1.5,余量为作为载气的氮气,反应在0.5MPa和420℃的条件下进行,原料气体的总体积空速为500h-1
连续监测从反应器中输出的反应混合物的组成,并计算正丁烷转化率、总烯烃选择性和丁二烯选择性,反应3小时和24小时的结果列于表6中。
对比例6-9
采用与实施例11相同的方法将正丁烷氧化,不同的是,分别采用制备对比例3-6制备的含杂原子纳米碳材料作为催化剂。实验结果在表6中列出。
对比例10
采用与实施例23相同的方法将正丁烷氧化,不同的是,采用制备对比例7制备的含杂原子纳米碳材料作为催化剂。实验结果在表6中列出。
对比例11
采用与实施例12相同的方法将正丁烷氧化,不同的是,采用制备实施例7中的原料碳材料作为催化剂。实验结果在表6中列出。
对比例12
采用与实施例23相同的方法将正丁烷氧化,不同的是,采用制备实施例18中的原料碳材料作为催化剂。实验结果在表6中列出。
对比例13-16
采用与实施例28相同的方法氧化正丁烷,不同的是,分别采用制备对比例11-14制备的含杂原子纳米碳材料作为催化剂。实验结果在表6中列出。
实施例31-33
采用与实施例11相同的方法将正丁烷氧化,不同的是,分别采用制备实施例1、7和8制备的含杂原子纳米碳材料作为催化剂,反应在0.1MPa和450℃条件下进行。实验结果在表6中列出。
实施例34-37
采用与实施例23相同的方法将正丁烷氧化,不同的是,分别采用制备实施例18-21制备的含杂原子纳米碳材料作为催化剂的实施例,反应在0.1MPa和400℃条件下进行。实验结果在表6中列出。
表6
Figure PCTCN2016000059-appb-000013
Figure PCTCN2016000059-appb-000014
Figure PCTCN2016000059-appb-000015
实施例38-48
分别将0.2克(体积为1.5毫升)含杂原子纳米碳材料作为催化剂装填在通用型固定床微型石英管反应器中,微型石英管反应器两端封有石英砂,将含有烃和氧气的原料气体通入反应器中进行反应。
其中,分别采用制备实施例22、24-27、40、42和43制备的含杂原子纳米碳材料的实施例中,原料气体中,丙烷的浓度为1体积%,丙烷和氧气的摩尔比1∶3,余量为作为载气的氮气,反应在0.2MPa和480℃的条件下进行,原料气体的总体积空速为150h-1
分别采用制备实施例23、28和41制备的含杂原子纳米碳材料的实施例中,原料气体中,丙烷的浓度为4体积%,丙烷和氧气的摩尔比0.5∶1,余量为作为载气的氮气,反应在0.1MPa和420℃的条件下进行,原料气体的总体积空速为20h-1
连续监测从反应器中输出的反应混合物的组成,并计算丙烷转化率和C3烯烃选择性,反应3小时和24小时的结果列于表7中。
对比例17
采用与实施例38相同的方法将丙烷氧化,不同的是,采用制备对比例8制备的含杂原子纳米碳材料作为催化剂。实验结果在表7中列出。
对比例18
采用与实施例38相同的方法将丙烷氧化,不同的是,采用制备实施例22中的原料碳材料作为催化剂。实验结果在表7中列出。
对比例19
采用与实施例39相同的方法将丙烷氧化,不同的是,采用制备实施例23中的原料碳材料作为催化剂。实验结果在表7中列出。
对比例20
采用与实施例45相同的方法将丙烷氧化,不同的是,采用制备 对比例15制备的含杂原子纳米碳材料作为催化剂。实验结果在表7中列出。
实施例49-51
采用与实施例38相同的方法氧化丙烷,不同的是,分别采用制备实施例22、26和27制备的含杂原子纳米碳材料作为催化剂,反应在0MPa和440℃的条件下进行。实验结果在表7中列出。
实施例52
采用与实施例39相同的方法氧化丙烷,不同的是,反应在1MPa和360℃的条件下进行。实验结果在表7中列出。
表7
Figure PCTCN2016000059-appb-000016
Figure PCTCN2016000059-appb-000017
实施例53-63
分别将0.2g(装填体积为1.5mL)含杂原子纳米碳材料作为催化剂装填在通用型固定床微型石英管反应器中,微型石英管反应器两端封有石英砂,将含有苯乙烷和氧气的原料气体通入反应器中进行反应。
其中,分别采用制备实施例29、31-34、44和46制备的含杂原子纳米碳材料的实施例中,原料气体中,苯乙烷的浓度为2体积%,苯乙烷和氧气的摩尔比1∶1,余量为作为载气的氮气,反应在0.1MPa和400℃的条件下进行,原料气体的总体积空速为250h-1
分别采用制备实施例30、35、45和47制备的含杂原子纳米碳材料的实施例中,原料气体中,苯乙烷的浓度为3体积%,苯乙烷和氧气的摩尔比2∶1.5,余量为作为载气的氮气,反应在0.5MPa和380℃的条件下进行,原料气体的总体积空速为100h-1
连续监测从反应器中输出的反应混合物的组成,并计算苯乙烷转化率和苯乙烯选择性,反应3小时和24小时的结果列于表8中。
对比例21
采用与实施例53相同的方法将苯乙烷氧化,不同的是,采用制备对比例9制备的含杂原子纳米碳材料作为催化剂。实验结果在表8中列出。
对比例22
采用与实施例53相同的方法将苯乙烷氧化,不同的是,采用制备实施例29中的原料纳米碳材料作为催化剂。实验结果在表8中列出。
对比例23
采用与实施例54相同的方法将苯乙烷氧化,不同的是,采用制 备实施例30中的原料纳米碳材料作为催化剂。实验结果在表8中列出。
对比例24
采用与实施例60相同的方法将苯乙烷氧化,不同的是,采用制备对比例16制备的含杂原子纳米碳材料作为催化剂。实验结果在表8中列出。
实施例64-66
采用与实施例53相同的方法将苯乙烷氧化,不同的是,分别采用制备实施例29、33和34制备的含原子纳米碳材料作为催化剂,反应在1MPa和450℃的条件下进行。实验结果在表8中列出。
实施例67
采用与实施例54相同的方法将苯乙烷氧化,不同的是,反应在0MPa和300℃的条件下进行。实验结果在表8中列出。
表8
Figure PCTCN2016000059-appb-000018
Figure PCTCN2016000059-appb-000019
本发明还提供了下述技术方案:A1、一种碳基材料,其特征在于:以该碳基材料的总重量为基准,该碳基材料含有70-99.9重量%的碳、0.05-10重量%的氮和0.05-20重量%的氧;其中,该碳基材料的XPS图谱中,氧在533.13-533.53eV处的峰信号值与氧在531.76-532.16eV处的峰信号值的比例为0.2-5。
A2、根据技术方案A1所述的碳基材料,其特征在于:以该碳基材料的总重量为基准,该碳基材料含有80-97重量%的碳、0.2-8重量%的氮和0.5-15重量%的氧。
A3、根据技术方案A2所述的碳基材料,其特征在于:该碳基材料含有85-95重量%的碳、0.5-5重量%的氮和2-10重量%的氧。
A4、根据技术方案A1-A3中任意一项所述的碳基材料,其特征在于:该碳基材料的XPS图谱中,碳在286-21-286.61eV处的峰信号值与碳在288.59-288.99eV处的峰信号值的比例为0.5-2。
A5、根据技术方案A4所述的碳基材料,其特征在于:该碳基材料的XPS图谱中,碳在286.21-286.61eV区间的信号曲线下面积与碳在288.59-288.99eV区间的曲线下面积之和占碳在280-294eV区间的信号曲线下面积的百分比为2-20%。
A6、根据技术方案A1-A3中任意一项所述的碳基材料,其特征在于:该碳基材料的结构中含有碳纳米管、石墨烯、富勒烯、纳米碳颗粒、活性炭、碳纳米纤维和纳米金刚石中的至少一种的结构。
A7、一种制备碳基材料的方法,其特征在于:该方法包括如下步骤:
(1)将固体碳源、前驱体和过氧化氢水溶液混合,得到混合后的物料;其中,所述前驱体含有有机碱,所述有机碱包括有机胺和/或季铵碱;
(2)将步骤(1)得到的混合后的物料进行水热处理,得到水热处理后的物料;并且分离水热处理后的物料中的固体;
(3)将步骤(2)得到的水热处理后的物料中的固体进行焙烧。
A8、根据技术方案A7所述的方法,其特征在于:所述固体碳源与所述有机碱中的氮元素的摩尔比为1∶(0.002-50);所述固体碳源与所述过氧化氢水溶液中的过氧化氢的摩尔比为1∶(0.01-10)。
A9、根据技术方案A7或A8所述的方法,其特征在于:所述固体碳源与所有机碱中的氮元素的摩尔比为1∶(0.01-10);所述固体碳源与所述过氧化氢水溶液中的过氧化氢的摩尔比为1∶(0.1-2)。
A10、根据技术方案A9所述的方法,其特征在于:所述过氧化氢水溶液的浓度为0.5-80重量%。
A11、根据技术方案A10所述的方法,其特征在于:所述过氧化氢水溶液的浓度为1-30重量%。
A12、根据技术方案A7所述的方法,其特征在于:进行水热处理的温度为100-200℃;时间为0.5-96小时。
A13、根据技术方案A7所述的方法,其特征在于:焙烧在含有氧气的气体中进行,含有氧气的气体的总体积为基准,含有氧气的气体中的氧气的含量为2-25体积%。
A14、根据技术方案A7或A13所述的方法,其特征在于:焙烧的温度为200-500℃,焙烧的时间为2-12小时。
A15、根据技术方案A7所述的方法,其特征在于:所述碳源选自碳纳米管、石墨烯、富勒烯、纳米碳颗粒、活性炭、碳纳米纤维和纳米金刚石中的至少一种。
A16、根据技术方案A7所述的方法,其特征在于:所述有机胺包括脂肪族胺、醇胺、酰胺、脂环胺和芳香胺中的至少一种;所述脂 肪族胺选自乙胺、正丙胺、正丁胺、二正丙胺、丁二胺和己二胺中的至少一种;所述醇胺选自单乙醇胺、二乙醇胺和三乙醇胺中的至少一种;所述季铵碱选自四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵和四丁基氢氧化铵中的至少一种。
A17、根据技术方案A7所述的方法,其特征在于:所述过氧化氢水溶液中过氧化氢的含量为0.5-50重量%。
A18、技术方案A7-A17中任意一项所述的方法制备得到的碳基材料。
A19、技术方案A1-A6和A18中任意一项所述的碳基材料在催化烃氧化反应中的用途。
A20、根据技术方案A19所述的用途,其特征在于:所述烃的碳原子数为2-12,所述烃包括烷烃、烯烃和含有烷基的芳香烃中的至少一种。
A21、根据技术方案A20所述的用途,其特征在于:所述烃包括丁烷、1-丁烯、乙苯、丙烷、乙烷和戊烷中的至少一种。
B1、一种碳基材料,其特征在于:以该碳基材料的总重量为基准,该碳基材料含有70-99.75重量%的碳元素、0.05-10重量%的氮元素和0.2-20重量%的氧元素;其中,该碳基材料的X射线光电子能谱中,533.1-533.5eV范围内的峰确定的氧元素的量与531.8-532.2eV范围内的峰确定的氧元素的量的比值在0.2-5的范围内。
B2、根据技术方案B1所述的碳基材料,其中,以该碳基材料的总重量为基准,该碳基材料含有80-97重量%的碳元素、0.2-8重量%的氮元素和0.5-15重量%的氧元素,该碳基材料的X射线光电子能谱中,533.1-533.5eV范围内的峰确定的氧元素的量与531.8-532.2eV范围内的峰确定的氧元素的量的比值在0.5-2的范围内。
B3、根据技术方案B2所述的碳基材料,其中,以该碳基材料的总重量为基准,该碳基材料含有85-95重量%的碳元素、0.5-5重量%的氮元素和2-10重量%的氧元素,该碳基材料中的X射线光电子能谱中,533.1-533.5eV范围内的峰确定的氧元素的量与531.8-532.2eV范围内的峰确定的氧元素的量的比值在0.6-1.8的范围内。
B4、根据技术方案B1-B3中任意一项所述的碳基材料,其中,所述碳基材料的X射线光电子能谱中,398.0-400.5eV范围内的峰确 定的氮元素的量与395.0-405.0eV范围内的峰确定的氮元素的量的比值在0.5-1的范围内;
400.6-401.5eV范围内的峰确定的氮元素的量与395.0-405.0eV范围内的峰确定的氮元素的量的比值在0-0.5的范围内。
B5、根据技术方案B1-B3中任意一项所述的碳基材料,其中,该碳基材料的X射线光电子能谱中,283.8-284.2eV范围内的峰确定的碳元素的量与280.0-294.0eV范围内的峰确定的碳元素的量的比值在0.6-1的范围内;
286.2-286.6eV范围内的峰确定的碳元素的量与288.6-289.0eV范围内的峰确定的碳元素的量之和与280.0-294.0eV范围内的峰确定的碳元素的量的比值在0.02-0.2的范围内;
286.2-286.6eV范围内的峰确定的碳元素的量与288.6-289.0eV范围内的峰确定的碳元素的量的比值在0.3-2的范围内。
B7、根据技术方案B1-B3中任意一项所述的碳基材料,其中,所述碳基材料的w500/w800在0.02-0.5的范围内;其中,w800是指空气气氛和25℃的初始温度以及10℃/min的升温条件下,所述碳基材料在800℃下的重量相对于400℃下的重量的减少率,w500是指空气气氛和25℃的初始温度以及10℃/min的升温条件下,所述碳基材料在500℃下的重量相对于400℃下的重量的减少率。
B8、根据技术方案B1-B3中任意一项所述的碳基材料,其中,该碳基材料的结构形态包括碳纳米管、石墨烯、富勒烯、纳米碳颗粒、活性炭、薄层石墨、碳纳米纤维和纳米金刚石的结构形态中的至少一种。
B9、一种制备碳基材料的方法,其特征在于:该方法包括如下步骤:
(1)将固体碳源、前驱体和过氧化氢水溶液混合,得到混合后的物料;其中,所述前驱体含有有机碱源,所述有机碱源包括有机胺和/或季铵碱;
(2)将步骤(1)得到的混合后的物料进行水热处理,得到水热处理后的物料;并且分离水热处理后的物料中的固体;
(3)将步骤(2)得到的水热处理后的物料中的固体进行焙烧。
B10、根据技术方案B9所述的方法,其中,所述固体碳源中的碳元素与所述有机碱源中的氮元素的摩尔比为1∶(0.002-50);所述 固体碳源中的碳元素与所述过氧化氢水溶液中的过氧化氢的摩尔比为1∶(0.01-10)。
B11、根据技术方案B9或B10所述的方法,其中,所述固体碳源中的碳元素与所有机碱源中的氮元素的摩尔比为1∶(0.01-10);所述固体碳源中的碳元素与所述过氧化氢水溶液中的过氧化氢的摩尔比为1∶(0.1-2)。
B12、根据技术方案B9所述的方法,其中,所述过氧化氢水溶液的浓度为0.5-80重量%。
B13、根据技术方案B9所述的方法,其中,进行水热处理的温度为105-200℃;进行水热处理的时间为0.5-96h;焙烧的温度为200-500℃,焙烧的时间为0.5-48h。
B14、根据技术方案B13所述的方法,其中,进行水热处理的温度为120-180℃;焙烧的温度为300-450℃。
B15、根据技术方案B9所述的方法,其中,焙烧在含有氧气的气体中进行,以含有氧气的气体的总体积为基准,含有氧气的气体中的氧气的含量为2-25体积%。
B16、根据技术方案B9所述的方法,其中,所述碳源选自碳纳米管、石墨烯、富勒烯、纳米碳颗粒、薄层石墨、活性炭、碳纳米纤维和纳米金刚石中的至少一种。
B17、根据技术方案B9所述的方法,其中,所述有机胺包括脂肪族胺、醇胺、酰胺、脂环胺和芳香胺中的至少一种;所述脂肪族胺选自乙胺、正丙胺、正丁胺、二正丙胺、丁二胺和己二胺中的至少一种;所述醇胺选自单乙醇胺、二乙醇胺和三乙醇胺中的至少一种;所述季铵碱选自四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵和四丁基氢氧化铵中的至少一种;所述酰胺选自甲酰胺、乙酰胺、丙酰胺、丁酰胺、异丁酰胺、丙烯酰胺、聚丙烯酰胺、己内酰胺、二甲基甲酰胺和二甲基乙酰胺中的至少一种;所述脂环胺选自三亚乙基二胺二亚乙基三胺、六亚甲基四胺、六亚甲基亚胺、三亚乙基二胺、环乙烯亚胺、吗啉、哌嗪和环己胺中的至少一种;所述芳香胺选自苯胺、二苯胺、联苯胺、邻苯二胺、间苯二胺、对苯二胺、邻甲基苯胺、间甲基苯胺、对甲基苯胺、2,3-二甲基苯胺、2,4-二甲基苯胺、2,5-二甲基苯胺、2,6-二甲基苯胺、3,4-二甲基苯胺、3,5-二甲基苯胺、2,4,6-三甲基苯胺、邻乙基苯胺、N-丁基苯胺和2,6-二乙基苯胺中的至少一 种。
B18、技术方案B9-B17中任意一项所述的方法制备得到的碳基材料。
B19、技术方案B1-B8和B18中任意一项所述的碳基材料在催化烃氧化反应中的用途。
B20、根据技术方案B19所述的用途,其中,所述烃的碳原子数为2-15,所述烃包括烷烃、烯烃和含有烷基的芳香烃中的至少一种;所述烷基含有至少两个碳原于。
B21、根据技术方案B20所述的用途,其中,所述烃包括丁烷、1-丁烯、乙苯、丙烷、乙烷和戊烷中的至少一种。
C1、一种碳基材料,其特征在于:以该碳基材料的总重量为基准,该碳基材料含有80-96重量%的碳、0.5-5重量%的氮和2-15重量%的氧;其中,该碳基材料的XPS图谱中,氧在533.16-533.56eV处的峰信号值与氧在531.85-532.25eV处的信号值的比例为0.2-5。
C2、根据技术方案C1所述的碳基材料,其特征在于:以该碳基材料的总重量为基准,该碳基材料含有90-95重量%的碳、0.8-2重量%的氮和4-10重量%的氧。
C3、根据技术方案C1或C2所述的碳基材料,其特征在于:该碳基材料的XPS图谱中,碳在286.21-286.61eV处的信号值与碳在288.59-288.99eV处的信号值的比例为0.5-2。
C4、根据技术方案C1或C2所述的碳基材料,其特征在于:该碳基材料的结构中含有碳纳米管、石墨烯、富勒烯、纳米碳颗粒、活性炭、碳纳米纤维和纳米金刚石中的至少一种的结构。
C5、一种制备碳基材料的方法,其特征在于:该方法包括如下步骤:(1)将固体碳源、前驱体和水混合,得到混合后的物料;其中,所述前驱体含有有机碱,所述有机碱包括有机胺和/或季铵碱;(2)将步骤(1)得到的混合后的物料进行水热处理,得到水热处理后的物料;并且分离水热处理后的物料中的固体;(3)将步骤(2)得到的水热处理后的物料中的固体进行焙烧。
C6、根据技术方案C5所述的方法,其特征在于:所述固体碳源中的碳元素与所述有机碱中的氮元素以及水的重量比为1∶(0.001-0.5)∶(1-100)。
C7、根据技术方案C6所述的方法,其特征在于:所述固体碳源中的碳元素与所述有机碱中的氮元素以及水的重量比为1∶(0.01-0.05)∶(5-20)。
C8、根据技术方案C5-C7中任意一项所述的方法,其特征在于:进行水热处理的温度为100-200℃;时间为0.5-144小时。
C9、根据技术方案C5-C7中任意一项所述的方法,其特征在于:焙烧的温度为200-500℃,焙烧的时间为2-12小时。
C10、根据技术方案C9所述的方法,其特征在于:焙烧在含有氧气的气体中进行,含有氧气的气体的总体积为基准,含有氧气的气体中的氧气的含量为2-25体积%。
C11、根据技术方案C5-C7中任意一项所述的方法,其特征在于:所述碳源选自碳纳米管、活性炭、石墨烯、富勒烯、碳纳米纤维、碳纳米颗粒、纳米金刚石中的至少一种。
C12、根据技术方案C5-C7中任意一项所述的方法,其特征在于:所述有机胺包括脂肪族胺、醇胺、酰胺、脂环胺和芳香胺中的至少一种;所述脂肪族胺选自乙胺、正丙胺、正丁胺、二正丙胺、丁二胺和己二胺中的至少一种;所述有机醇胺选自单乙醇胺、二乙醇胺和三乙醇胺中的至少一种;所述季铵碱选自四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵和四丁基氢氧化铵中的至少一种。
C13、技术方案C5-C12中任意一项所述的方法制备得到的碳基材料。
C14、技术方案C1-C4和C13中任意一项所述的碳基材料在催化烃的氧化脱氢中的用途。
C15、一种烃氧化的方法,该方法包括:在烃催化氧化脱氢条件下,将含有烃和氧气的气体与催化剂接触;其特征在于:所述催化剂包括技术方案C1-C4和C13中任意一项所述的碳基材料。
C16、根据技术方案C15所述的方法,其特征在于:所述烃的碳原子数为2-12,所述烃包括烷烃、烯烃和含有烷基的芳香烃中的至少一种。
C17、根据技术方案C16所述的方法,其特征在于:所述烃包括丁烷、1-丁烯、乙苯、丙烷、乙烷和戊烷中的至少一种。
C18、根据技术方案C15所述的方法,其特征在于:烃与氧气的摩尔比为(0.1-10)∶1。
C19、根据技术方案C15或C18所述的方法,其特征在于:所述含有烃和氧气的气体还含有载气,所述载气含有氮气、CO2和水蒸气中的至少一种。
C20、根据技术方案C19所述的方法,其特征在于:所述含有烃和氧气的气体中,烃和氧气的总浓度为1-50体积%。
C21、根据技术方案C1所述的方法,其特征在于:烃催化氧化脱氢条件包括:接触温度为300-600℃,压力为0.1-60MPa;以含有烃和氧气的气体的总体积计算,气体通过催化剂的体积空速为1-6000h-1
D1、一种碳基材料,其特征在于:以该碳基材料的总重量为基准,该碳基材料含有80-98.9重量%的碳元素、0.1-7重量%的氮元素和1-15重量%的氧元素;其中,该碳基材料的X射线光电子能谱中,533.1-533.5eV范围内的峰确定的氧元素的量与531.8-532.2eV范围内的峰确定的氧元素的量的比值在0.2-5的范围内。
D2、根据技术方案D1所述的碳基材料,其中,以该碳基材料的总重量为基准,该碳基材料含有85-97重量%的碳元素、0.2-5重量%的氮元素和2-10重量%的氧元素,该碳基材料的X射线光电子能谱中,533.1-533.5eV范围内的峰确定的氧元素的量与531.8-532.2eV范围内的峰确定的氧元素的量的比值在0.5-2的范围内。
D3、根据技术方案D2所述的碳基材料,其中,以该碳基材料的总重量为基准,该碳基材料含有90-95重量%的碳元素、0.5-4重量%的氮元素和4-8重量%的氧元素,该碳基材料中的X射线光电子能谱中,533.1-533.5eV范围内的峰确定的氧元素的量与531.8-532.2eV范围内的峰确定的氧元素的量的比值在0.6-1.8的范围内。
D4、根据技术方案D1-D3中任意一项所述的碳基材料,其中,所述碳基材料的X射线光电子能谱中,398.0-400.5eV范围内的峰确定的氮元素的量与395.0-405.0eV范围内的峰确定的氮元素的量的比值在0.5-1的范围内;
400.6-401.5eV范围内的峰确定的氮元素的量与395.0-405.0eV范围内的峰确定的氮元素的量的比值在0-0.5的范围内。
D5、根据技术方案D1-D3中任意一项所述的碳基材料,其中,该碳基材料的X射线光电子能谱中,283.8-284.2eV范围内的峰确定 的碳元素的量与280.0-294.0eV范围内的峰确定的碳元素的量的比值在0.6-1的范围内;
286.2-286.6eV范围内的峰确定的碳元素的量与288.6-289.0eV范围内的峰确定的碳元素的量之和与280.0-294.0eV范围内的峰确定的碳元素的量的比值在0.01-0.2的范围内;
286.2-286.6eV范围内的峰确定的碳元素的量与288.6-289.0eV范围内的峰确定的碳元素的量的比值在0.2-2的范围内。
D7、根据技术方案D1-D3中任意一项所述的碳基材料,其中,所述碳基材料的w500/w800在0.02-0.5的范围内;其中,w800是指空气气氛和25℃的初始温度以及10℃/min的升温条件下,所述碳基材料在800℃下的重量相对于400℃下的重量的减少率,w500是指空气气氛和25℃的初始温度以及10℃/min的升温条件下,所述碳基材料在500℃下的重量相对于400℃下的重量的减少率。
D8、根据技术方案D1-D3中任意一项所述的碳基材料,其中,该碳基材料的结构形态包括碳纳米管、石墨烯、富勒烯、纳米碳颗粒、活性炭、薄层石墨、碳纳米纤维和纳米金刚石的结构形态中的至少一种。
D9、一种制备碳基材料的方法,其特征在于:该方法包括如下步骤:(1)将固体碳源、前驱体和水混合,得到混合后的物料;其中,所述前驱体含有有机碱,所述有机碱包括有机胺和/或季铵碱;(2)将步骤(1)得到的混合后的物料进行水热处理,得到水热处理后的物料;并且分离水热处理后的物料中的固体;(3)将步骤(2)得到的水热处理后的物料中的固体进行焙烧。
D10、根据技术方案D9所述的方法,其中,所述固体碳源中的碳元素与所述有机碱中的氮元素的摩尔比为1∶(0.001-0.5);所述固体碳源中的碳元素与水的重量比为1∶(1-100)。
D11、根据技术方案D10所述的方法,其中,所述固体碳源中的碳元素与所述有机碱中的氮元素的摩尔比为1∶(0.01-0.05);所述固体碳源中的碳元素与水的重量比为1∶(5-20)。
D12、根据技术方案D9所述的方法,其中,进行水热处理的温度为105-200℃;进行水热处理的时间为0.5-96h;焙烧的温度为200-500℃,焙烧的时间为0.5-48h。
D13、根据技术方案D12所述的方法,其中,进行水热处理的温 度为120-180℃;焙烧的温度为300-450℃。
D14、根据技术方案D9所述的方法,其中,焙烧在含有氧气的气体中进行,以含有氧气的气体的总体积为基准,含有氧气的气体中的氧气的含量为2-25体积%。
D15、根据技术方案D9所述的方法,其中,所述碳源选自碳纳米管、石墨烯、富勒烯、纳米碳颗粒、薄层石墨、活性炭、碳纳米纤维和纳米金刚石中的至少一种。
D16、根据技术方案D9所述的方法,其中,所述有机胺包括脂肪族胺、醇胺、酰胺、脂环胺和芳香胺中的至少一种;所述脂肪族胺选自乙胺、正丙胺、正丁胺、二正丙胺、丁二胺和己二胺中的至少一种;所述醇胺选自单乙醇胺、二乙醇胺和三乙醇胺中的至少一种;所述季铵碱选自四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵和四丁基氢氧化铵中的至少一种;所述酰胺选自甲酰胺、乙酰胺、丙酰胺、丁酰胺、异丁酰胺、丙烯酰胺、聚丙烯酰胺、己内酰胺、二甲基甲酰胺和二甲基乙酰胺中的至少一种;所述脂环胺选自三亚乙基二胺、二亚乙基三胺、六亚甲基四胺、六亚甲基亚胺、三亚乙基二胺、环乙烯亚胺、吗啉、哌嗪和环己胺中的至少一种;所述芳香胺选自苯胺、二苯胺、联苯胺、邻苯二胺、间苯二胺、对苯二胺、邻甲基苯胺、间甲基苯胺、对甲基苯胺、2,3-二甲基苯胺、2,4-二甲基苯胺、2,5-二甲基苯胺、2,6-二甲基苯胺、3,4-二甲基苯胺、3,5-二甲基苯胺、2,4,6-三甲基苯胺、邻乙基苯胺、N-丁基苯胺和2,6-二乙基苯胺中的至少一种。
D17、技术方案D9-D16中任意一项所述的方法制备得到的碳基材料。
D18、技术方案D1-D8和D17中任意一项所述的碳基材料在催化烃氧化反应中的用途。
D19、一种烃氧化的方法,该方法包括:在烃催化氧化条件下,将含有烃和氧气的气体与催化剂接触;其特征在于:所述催化剂包括技术方案D1-D8和D17中任意一项所述的碳基材料。
D20、根据技术方案D19所述的方法,其中,所述烃的碳原子数为2-15,所述烃包括烷烃、烯烃和含有烷基的芳香烃中的至少一种;所述烷基含有至少两个碳原子。
D21、根据技术方案D20所述的方法,其中,所述烃包括丁烷、 1-丁烯、乙苯、丙烷、乙烷和戊烷中的至少一种。
D22、根据技术方案D19所述的方法,其中,烃与氧气的摩尔比为(0.1-10)∶1。
D23、根据技术方案D19所述的方法,其中,烃催化氧化条件包括:接触温度为300-600℃,接触压力为0.1-40MPa;以含有烃和氧气的气体的总体积计算,气体通过催化剂的体积空速为1-6000h-1
E1、一种烃催化脱氢的方法,该方法包括:在烃催化脱氢条件下,将含有烃的气体与催化剂接触;其特征在于:所述催化剂含有碳基材料;以所述碳基材料的总重量为基准,所述碳基材料含有70-99.9重量%的碳、0.05-10重量%的氮和0.05-20重量%的氧;其中,所述碳基材料的XPS图谱中,氧在533.13-533.53eV处的峰信号值与氧在531.76-532.16eV处的峰信号值的比例为0.2-5。
E2、根据技术方案E1所述的方法,其特征在于:以所述碳基材料的总重量为基准,该碳基材料含有80-97重量%的碳、0.2-8重量%的氮和0.5-15重量%的氧。
E3、根据技术方案E2所述的方法,其特征在于:所述碳基材料含有85-95重量%的碳、0.5-5重量%的氮和2-10重量%的氧。
E4、根据技术方案E1-E3中任意一项所述的方法,其特征在于:所述碳基材料的XPS图谱中,碳在286.21-286.61eV处的峰信号值与碳在288.59-288.99eV处的峰信号值的比例为0.5-2。
E5、根据技术方案E4所述的方法,其特征在于:所述碳基材料的XPS图谱中,碳在286.21-286.61eV区间的信号曲线下面积与碳在288.59-288.99eV区间的曲线下面积之和占碳在280-294eV区间的信号曲线下面积的百分比为2-20%。
E6、据技术方案E1-E3中任意一项所述的方法,其特征在于:所述碳基材料的XPS图谱中,碳在283.96-284.36eV处具有峰信号。
E7、根据技术方案E1-E3中任意一项所述的方法,其特征在于:所述碳基材料的结构中含有碳纳米管、石墨烯、富勒烯、纳米碳颗粒、活性炭、碳纳米纤维和纳米金刚石中的至少一种的结构。
E8、根据技术方案E1所述的方法,其特征在于:所述烃的碳原子数为2-12,所述烃包括烷烃、烯烃和含有烷基的芳香烃中的至少一种。
E9、根据技术方案E8所述的方法,其特征在于:所述烃包括丁烷、1-丁烯、乙苯、丙烷、乙烷和戊烷中的至少一种。
E10、根据技术方案E1所述的方法,其特征在于:所述含有烃的气体还含有氧气,且烃与氧气的摩尔比为(0.1-10)∶1。
E11、根据技术方案E10所述的方法,其特征在于:所述含有烃的气体还含有载气,所述载气含有氮气、CO2和水蒸气中的至少一种。
E12、根据技术方案E11所述的方法,其特征在于:所述含有烃的气体中,烃和氧气的总浓度为1-50体积%。
E13、根据技术方案E1所述的方法,其特征在于:烃催化脱氢条件包括:接触温度为300-600℃,压力为0.1-60MPa;以含有烃的气体的总体积计算,气体通过催化剂的体积空速为1-6000h-1
E14、根据技术方案E1所述的方法,其特征在于:所述烃包括丁烷;以所述碳基材料的总重量为基准,所述碳基材料含有85-95重量%的碳、0.5-5重量%的氮和2-10重量%的氧;该碳基材料的结构中含有碳纳米管的结构;所述含有烃的气体还含有氧气,所述烃与氧气的摩尔比为(0.1-10)∶1;所述含有烃的气体中,所述烃和氧气的总浓度为1-50体积%;烃催化脱氢条件包括:接触温度为400-500℃,压力为0.1-60MPa;以含有烃的气体的总体积计算,气体通过催化剂的体积空速为10-4000h-1
E15、根据技术方案E1所述的方法,其特征在于:所述烃包括丙烷;以所述碳基材料的总重量为基准,所述碳基材料含有85-95重量%的碳、0.5-2.5重量%的氮和2-10重量%的氧;该碳基材料的结构中含有碳纳米管的结构;所述含有烃的气体还含有氧气,所述烃与氧气的摩尔比为(0.05-2)∶1;所述含有烃的气体中,所述烃和氧气的总浓度为10-30体积%;烃催化脱氢条件包括:接触温度为300-400℃,压力为0.1-60MPa;以含有烃的气体的总体积计算,气体通过催化剂的体积空速为100-2000h-1
E16、根据技术方案E1所述的方法,其特征在于:所述烃包括乙苯;以所述碳基材料的总重量为基准,所述碳基材料含有85-95重量%的碳、2.5-5重量%的氮和2-10重量%的氧;该碳基材料的结构中含有碳纳米管的结构;烃催化脱氢条件包括:接触温度为400-500℃,压力为0.1-60MPa;以含有烃的气体的总体积计算,气体通过催化剂 的体积空速为10-4000h-1
F1、一种烃催化脱氢的方法,该方法包括:在烃催化脱氢条件下,将含有烃的气体与催化剂接触;其特征在于:所述催化剂含有碳基材料;以所述碳基材料的总重量为基准,所述碳基材料含有70-99.75重量%的碳元素、0.05-10重量%的氮元素和0.2-20重量%的氧元素;其中,该碳基材料的X射线光电子能谱中,533.1-533.5eV范围内的峰确定的氧元素的量与531.8-532.2eV范围内的峰确定的氧元素的量的比值在0.2-5的范围内。
F2、根据技术方案F1所述的方法,其中,以所述碳基材料的总重量为基准,该碳基材料含有80-97重量%的碳元素、0.2-8重量%的氮元素和0.5-15重量%的氧元素,该碳基材料的X射线光电子能谱中,533.1-533.5eV范围内的峰确定的氧元素的量与531.8-532.2eV范围内的峰确定的氧元素的量的比值在0.5-2的范围内。
F3、根据技术方案F2所述的方法,其中,以所述碳基材料的总重量为基准,该碳基材料含有85-95重量%的碳元素、0.5-5重量%的氮元素和2-10重量%的氧元素,该碳基材料中的X射线光电子能谱中,533.1-533.5eV范围内的峰确定的氧元素的量与531.8-532.2eV范围内的峰确定的氧元素的量的比值在0.6-1.8的范围内。
F4、根据技术方案F1-F3中任意一项所述的方法,其中,所述碳基材料的X射线光电子能谱中,398.0-400.5eV范围内的峰确定的氮元素的量与395.0-405.0eV范围内的峰确定的氮元素的量的比值在0.5-1的范围内;
400.6-401.5eV范围内的峰确定的氮元素的量与395.0-405.0eV范围内的峰确定的氮元素的量的比值在0-0.5的范围内。
F5、根据技术方案F1-F3中任意一项所述的方法,其中,该碳基材料的X射线光电子能谱中,283.8-284.2eV范围内的峰确定的碳元素的量与280.0-294.0eV范围内的峰确定的碳元素的量的比值在0.6-1的范围内;
286.2-286.6eV范围内的峰确定的碳元素的量与由X射线光电子能谱中288.6-289.0eV范围内的峰确定的碳元素的量之和与280.0-294.0eV范围内的峰确定的碳元素的量的比值在0.02-0.2的范围内;
286.2-286.6eV范围内的峰确定的碳元素的量与在288.6-289.0eV范围内的峰确定的碳元素的量的比值在0.3-2的范围内。
F6、根据技术方案F1-F3中任意一项所述的方法,其中,在该碳基材料的表面的面积相同的不同X光微区中,氮元素和氧元素的含量的变异系数各自在20%以下。
F7、根据技术方案F1-F3中任意一项所述的方法,其中,所述碳基材料的w500/w800在0.02-0.5的范围内;其中,w800是指空气气氛和25℃的初始温度以及10℃/min的升温条件下,所述碳基材料在800℃下的重量相对于400℃下的重量的减少率,w500是指空气气氛和25℃的初始温度以及10℃/min的升温条件下,所述碳基材料在500℃下的重量相对于400℃下的重量的减少率。
F8、根据技术方案F1-3中任意一项所述的方法,其中,所述碳基材料的结构形态包括碳纳米管、石墨烯、富勒烯、纳米碳颗粒、活性炭、薄层石墨、碳纳米纤维和纳米金刚石的结构形态中的至少一种。
F9、根据技术方案F1所述的方法,其中,所述烃的碳原子数为2-15,所述烃包括烷烃、烯烃和含有烷基的芳香烃中的至少一种;所述烷基含有至少两个碳原子。
F10、根据技术方案F8所述的方法,其中,所述烃包括丁烷、1-丁烯、乙苯、丙烷、乙烷和戊烷中的至少一种。
F11、根据技术方案F1所述的方法,其中,所述含有烃的气体还含有氧气,且烃与氧气的摩尔比为(0.1-10)∶1。
F12、根据技术方案F11所述的方法,其中,所述含有烃的气体还含有载气,所述载气含有氮气、CO2和水蒸气中的至少一种。
F13、根据技术方案F12所述的方法,其中,所述含有烃的气体中,烃和氧气的总浓度为1-50体积%。
F14、根据技术方案F1所述的方法,其中,烃催化脱氢条件包括:接触温度为300-600℃,压力为0.1-60MPa;以含有烃的气体的总体积计算,气体通过催化剂的体积空速为1-6000h-1
F15、根据技术方案F1所述的方法,其中,所述烃包括丁烷;以所述碳基材料的总重量为基准,所述碳基材料含有85-95重量%的碳元素、0.5-5重量%的氮元素和2-10重量%的氧元素;该碳基材料的结构中含有碳纳米管的结构;所述含有烃的气体还含有氧气,所述烃与氧气的摩尔比为(0.1-10)∶1;所述含有烃的气体中,所述烃和氧 气的总浓度为1-50体积%;烃催化脱氢条件包括:接触温度为350-500℃,压力为0.1-5MPa;以含有烃的气体的总体积计算,气体通过催化剂的体积空速为10-2000h-1
F16、根据技术方案F1所述的方法,其中,所述烃包括丙烷;以所述碳基材料的总重量为基准,所述碳基材料含有85-95重量%的碳元素、0.5-5重量%的氮元素和2-10重量%的氧元素;该碳基材料的结构中含有碳纳米管的结构;所述含有烃的气体还含有氧气,所述烃与氧气的摩尔比为(0.05-2)∶1;所述含有烃的气体中,所述烃和氧气的总浓度为10-30体积%;烃催化脱氢条件包括:接触温度为400-550℃,压力为0.1-5MPa;以含有烃的气体的总体积计算,气体通过催化剂的体积空速为5-1000h-1
F17、根据技术方案F1所述的方法,其中,所述烃包括乙苯;以所述碳基材料的总重量为基准,所述碳基材料含有85-95重量%的碳元素、0.5-5重量%的氮元素和2-10重量%的氧元素;该碳基材料的结构中含有碳纳米管的结构;烃催化脱氢条件包括:接触温度为300-500℃,压力为0.1-5MPa;以含有烃的气体的总体积计算,气体通过催化剂的体积空速为10-4000h-1
01、一种含杂原子纳米碳材料,该含杂原子纳米碳材料含有C元素、O元素以及N元素,O元素的含量为1-6重量%,N元素的含量为0.5-5重量%,C元素的含量为80-96重量%,该含杂原子纳米碳材料的元素含量采用如本文所述的XPS法测定;
该含杂原子纳米碳材料中,由X射线光电子能谱中531.85-532.25eV范围内的峰确定的O元素的量为IO c,由X射线光电子能谱中533.16-533.56eV范围内的峰确定的O元素的量为IO c,IO c/IO e在1∶(0.2-5)的范围内和/或由X射线光电子能谱中288.59-288.99eV范围内的峰确定的C元素的量为IC c,由X射线光电子能谱中286.21-286.61eV范围内的峰确定的C元素的量为IC c,IC c/IC e在1∶(0.5-2)的范围内。
G2、根据技术方案G1所述的碳基材料,其特征在于O元素的含量为2-6重量%,N元素的含量为0.5-2重量%,C元素的含量为92-96重量%。
G3、根据技术方案G1所述的碳基材料,其特征在于O元素的 含量为4-10重量%,N元素的含量为0.8-2重量%,C元素的含量为90-95重量%。
G4、根据技术方案G1-G3中任一项所述的碳基材料,其特征在于:该碳基材料的结构中含有碳纳米管、石墨烯、富勒烯、纳米碳颗粒、活性炭、碳纳米纤维和纳米金刚石中的至少一种的结构。
G5、一种制备碳基材料的方法,其特征在于:该方法包括如下步骤:(1)将固体碳源、前驱体和水混合,得到混合后的物料;其中,所述前驱体含有有机碱,所述有机碱包括有机胺和/或季铵碱;(2)将步骤(1)得到的混合后的物料进行水热处理,得到水热处理后的物料;并且分离水热处理后的物料中的固体;(3)将步骤(2)得到的水热处理后的物料中的固体进行干燥和焙烧。
G6、根据技术方案G5所述的方法,其特征在于:所述固体碳源中的碳元素与所述有机碱中的氮元素重量比为1∶(0.001-0.5)、1∶(0.01-0.05)、1∶0.03、1∶0.01、1∶0.05、1∶0.001或者1∶0.45。
G7、根据技术方案G5-G6中任一项所述的方法,其特征在于:所述固体碳源中的碳元素与水的重量比为1∶(1-100)、1∶(5-20)、1∶1、1∶5、1∶10、1∶20、或1∶100。
G8、根据技术方案G5-G7中任意一项所述的方法,其特征在于:进行水热处理的温度为100-200℃;更优选为110-180℃;时间为0.5-144小时、0.5-96小时,优选为2-72小时。
G9、根据技术方案G5-G8中任意一项所述的方法,其特征在于:水热处理在自生压力下进行。
G10、根据技术方案G5-G9中任意一项所述的方法,其特征在于:干燥的温度为80-180℃,时间为0.5-24小时,压力为常压或减压。
G11、根据技术方案G5-G10中任意一项所述的方法,其特征在于:焙烧的温度为200-500℃,例如300-450℃;焙烧的时间为2-12小时。
G12、根据技术方案G5-G11中任意一项所述的方法,其特征在于:焙烧在含有氧气的气体中进行,含有氧气的气体的总体积为基准,含有氧气的气体中的氧气的含量为2-25体积%。
G13、根据技术方案G5-G12中任意一项所述的方法,其特征在于:所述碳源选自碳纳米管、活性炭、石墨烯、富勒烯、碳纳米 纤维、碳纳米颗粒、纳米金刚石中的至少一种。
G14、根据技术方案G5-G13中任意一项所述的方法,其特征在于:所述有机胺包括脂肪族胺、醇胺、酰胺、脂环胺和芳香胺中的至少一种;所述脂肪族胺选自乙胺、正丙胺、正丁胺、二正丙胺、丁二胺和己二胺中的至少一种;所述有机醇胺选自单乙醇胺、二乙醇胺和三乙醇胺中的至少一种;所述季铵碱选自四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵和四丁基氢氧化铵中的至少一种。
H1、一种含杂原子纳米碳材料,该含杂原子纳米碳材料含有C元素、O元素以及可选的N元素,O元素的含量为1-6重量%,N元素的含量为0-2重量%,C元素的含量为92-99重量%,该含杂原子纳米碳材料的元素含量采用如本文所述的XPS法测定。
H2、根据技术方案H1所述的含杂原子纳米碳材料,其中,所述含杂原子纳米碳材料中N元素的含量为0.1重量%以上,由X射线光电子能谱确定该含杂原子纳米碳材料中的N元素的总量为IN t,由X射线光电子能谱中398.5-400.1eV范围内的峰确定的N元素的量为IN c,IN c/IN t在0.7-1的范围内。
H3、根据技术方案H1或H2所述的含杂原子纳米碳材料,其中,该含杂原子纳米碳材料中,由X射线光电子能谱中531.0-532.5eV范围内的峰确定的O元素的量为IO c,由X射线光电子能谱中532.6-533.5eV范围内的峰确定的O元素的量为IO c,IO c/IO c在0.2-0.8的范围内;和/或
由X射线光电子能谱中288.6-288.8eV范围内的峰确定的C元素的量为IC c,由X射线光电子能谱中286.0-286.2eV范围内的峰确定的C元素的量为IC e,IC c/IC e在0.2-1的范围内。
H4、根据技术方案H1和H3中任意一项所述的含杂原子纳米碳材料,其中,所述含杂原子纳米碳材料中N元素的含量为低于0.1重量%,以该含杂原子纳米碳材料的总量为基准并以元素计,O的含量为2.5-5.8重量%,优选为3-5.6重量%,更优选为4.5-5.5重量%;C元素的含量为94.2-97.5重量%,优选为94.4-97重量%,更优选为94.5-95.5重量%。
H5、根据技术方案HI和H3-H4中任意一项所述的含杂原子纳米碳材料,其中,所述含杂原子纳米碳材料中N元素的含量为低于 0.1重量%,IO c/IO e在0.4-0.7的范围内,优选在0.55-0.65的范围内;IC c/IC e优选在0.3-0.9的范围内,更优选在0.35-0.8的范围内,进一步优选在0.5-0.7的范围内。
H6、根据技术方案H1-H5中任意一项所述的含杂原子纳米碳材料,其中,以所述含杂原子纳米碳材料的总量为基准并以元素计,O元素的含量为2-6重量%,优选为3.5-5.5重量%;N元素的含量为0.2-1.8重量%,优选为0.5-1.8重量%;C元素的含量为92.2-97.8重量%,优选为92.7-96重量%。
H7、根据技术方案H1-H6中任意一项所述的含杂原子纳米碳材料,其中,所述含杂原子纳米碳材料中N元素的含量为0.1重量%以上,IO c/IO e在0.35-0.85的范围内,优选在0.45-0.8的范围内;IC c/IC e在0.3-0.98的范围内,优选在0.45-0.95的范围内。
H8、根据技术方案H1-H7中任意一项所述的含杂原子纳米碳材料,其中,IN c/IN t在0.8-0.95的范围内。
H9、根据技术方案H1-H8中任意一项所述的含杂原子纳米碳材料,其中,所述含杂原子纳米碳材料中,以由X射线光电子能谱确定的C元素的总量为基准,由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量为20重量%以上,优选为40重量%以上,更优选为50重量%以上,进一步优选为70重量%以上;且由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量为95重量%以下,优选为90重量%以下。
H10、根据技术方案H1-H9中任意一项所述的含杂原子纳米碳材料,其中,该含杂原子纳米碳材料为含杂原子碳纳米管,优选为含杂原子多壁碳纳米管。
H11、根据技术方案H1-H10中任意一项所述的含杂原子纳米碳材料,其中,所述含杂原子多壁碳纳米管的比表面积为50-500m2/g,优选为80-300m2/g,更优选为100-200m2/g。
H12、根据技术方案H1-H11中任意一项所述的含杂原子纳米碳材料,其中,所述含杂原子多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800在0.01-0.5的范围内,优选在0.02-0.2的范围内,所述失重率在空气气氛中测定。
H13、根据技术方案H1-H12中任意一项所述的含杂原子纳米 碳材料,其中,以所述含杂原子纳米碳材料的总量为基准,O元素的含量为2-6重量%,优选为4-5.8重量%,更优选为4.5-5.5重量%;N元素的含量为0.2-1.8重量%,优选为0.8-1.6重量%,更优选为1-1.5重量%;C元素的含量为92.2-97.8重量%,优选为92.6-95.2重量%,更优选为93-94.5重量%;
IO c/IO c优选在0.3-0.8的范围内,更优选在0.35-0.8的范围内,进一步优选在0.55-0.78的范围内;
由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量优选为70-90重量%,更优选为75-85重量%;
IC c/IC e优选在0.3-0.9的范围内,更优选在0.4-0.7的范围内,进一步优选在0.45-0.6的范围内;
IN c/IN t优选在0.7-0.98的范围内,更优选在0.75-0.96的范围内,进一步优选在0.8-0.95的范围内。
H14、根据技术方案H1-H13中任意一项所述的含杂原子纳米碳材料,其中,以所述含杂原子纳米碳材料的总量为基准,O元素的含量为2-6重量%,优选为3-5.5重量%,更优选为3.5-5重量%;N元素的含量为0.3-2重量%,优选为0.4-1.8重量%,更优选为0.5-1.5重量%;C元素的含量为92-97.7重量%,优选为92.7-96.6重量%,更优选为93.5-96重量%;
IO c/IO e优选在0.3-0.8的范围内,更优选在0.4-0.78的范围内,进一步优选在0.45-0.75的范围内;
由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量优选为70-90重量%,更优选为70-85重量%;
IC c/IC c优选在0.3-0.9的范围内,更优选在0.4-0.8的范围内,进一步优选在0.45-0.6的范围内;
IN c/IN t优选在0.7-0.95的范围内,更优选在0.7-0.9的范围内,进一步优选在0.8-0.9的范围内。
H15、根据技术方案H1-H14中任意一项所述的含杂原子纳米碳材料,其中,以所述含杂原子纳米碳材料的总量为基准,O元素的含量为3-6重量%,优选为4-5.8重量%,更优选4.5-5.5重量%;N元素的含量为0.5-2重量%,优选为1-2重量%,更优选为1.2-1.8重量%;C元素的含量为92-96.5重量%,优选为92.2-95重量%,更优选为92.7-94.3重量%;
IO c/IO c优选在0.3-0.8的范围内,更优选在0.4-0.75的范围内,进一步优选在0.6-0.7的范围内;
由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量优选为70-80重量%,更优选为75-80重量%;
IC c/IC c优选在0.4-0.98的范围内,更优选在0.7-0.98的范围内,进一步优选在0.85-0.95的范围内;
IN c/IN t优选在0.7-0.95的范围内,更优选在0.75-0.9的范围内,进一步优选在0.8-0.85的范围内。
H16、一种含杂原子纳米碳材料的制备方法,该方法包括将一种分散有原料纳米碳材料的水分散液于密闭容器中进行反应,所述水分散液含或不含有机碱,所述有机碱为胺和/或季铵碱,反应过程中,所述水分散液的温度保持在80-220℃的范围内。
H17、根据技术方案H16所述的方法,其中,原料纳米碳材料:H2O的重量比在1∶2-200的范围内,优选在1∶5-100的范围内,更优选在1∶10-50的范围内。
H18、根据技术方案H16-17中任意一项所述的方法,其中,所述水分散液含有至少一种有机碱,原料纳米碳材料:有机碱的重量比在1∶0.05-20的范围内,优选在1∶0.1-10的范围内,更优选在0.5-5的范围内。
H19、根据技术方案H16-18中任意一项所述的方法,其中,所述有机碱选自式I所示的化合物、式II所示的化合物、式III所示的化合物以及通式R12(NH2)2表示的物质,R12为C1-C6的亚烷基或者C6-C12的亚芳基,
Figure PCTCN2016000059-appb-000020
式I中,R1、R2、R3和R4各自为C1-C20的烷基或者C6-C12的芳基;
Figure PCTCN2016000059-appb-000021
式II中,R5、R6和R7各自为H、C1-C6的烷基或者C6-C12的芳基,且R5、R6和R7不同时为H;
Figure PCTCN2016000059-appb-000022
式III中,R8、R9和R10各自为-R11OH、氢或者C1-C6的烷基,且R8、R9和R10中的至少一个为-R11OH,R11为C1-C4的亚烷基。
H20、根据技术方案H16-19中任意一项所述的方法,其中,反应过程中,所述水分散液的温度保持在120-180℃的范围内,
H21、根据技术方案H16-20中任意一项所述的方法,其中,所述反应的持续时间在0.5-96小时的范围内,优选在2-72小时的范围内,更优选在20-50小时的范围内。
H22、根据技术方案H16-21中任意一项所述的方法,其中,所述原料纳米碳材料中O元素的含量为不高于1.2重量%,优选为不高于0.5重量%;N元素的含量为低于0.1重量%,优选为不高于0.08重量%,更优选为不高于0.05重量%。
H23、根据技术方案H16-22中任意一项所述的方法,其中,所述原料纳米碳材料为碳纳米管,优选为多壁碳纳米管。
H24、根据技术方案H16-23中任意一项所述的方法,其中,所述多壁碳纳米管的比表面积为20-500m2/g,优选为50-400m2/g,更优选为90-300m2/g,进一步优选为100-200m2/g。
H25、根据技术方案H16-24中任意一项所述的方法,其中,所述多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800在0.01-0.5的范围内,优选在0.02-0.2的范围内,所述失重率在空气气氛中测定。
H26、根据技术方案H16-25中任意一项所述的方法,其中,该方法还包括从反应得到的混合物中分离出固体物质,并将分离出的固体物质进行干燥以及可选的焙烧。
H27、根据技术方案H16-26中任意一项所述的方法,其中,所述干燥在50-200℃的温度下进行,优选在80-180℃的温度下进行,更优选在100-150℃的温度下进行,所述干燥的持续时间为0.5-48小时,优选为3-24小时,更优选为5-12小时。
H28、根据技术方案H16-27中任意一项所述的方法,其中,所述有机碱为式I所示的化合物,优选为四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵和四戊基氢氧化铵中的一种或两种以上,
Figure PCTCN2016000059-appb-000023
式I中,R1、R2、R3和R4各自为C1-C20的烷基或者C6-C12的芳基;
并且,原料纳米碳材料:有机碱的重量比在1∶0.1-10的范围之内,优选在0.5-5的范围内,反应过程中,水分散液的温度在90-210℃的范围内,优选在140-180℃的范围内。
H29、根据技术方案H16-28中任意一项所述的方法,其中,所述有机碱为式III所示的化合物,优选为一乙醇胺、二乙醇胺和三乙醇胺一种或两种以上,
Figure PCTCN2016000059-appb-000024
式III中,R8、R9和R10各自为-R11OH、氢或者C1-C6的烷基,且R8、R9和R10中的至少一个为-R11OH,R11为C1-C4的亚烷基;
并且,原料纳米碳材料:有机碱的重量比在1∶0.2-10的范围之内,优选在1∶1-5的范围内;反应过程中,水分散液的温度在90-160℃的范围内,优选在120-150℃的范围内。
H30、根据技术方案H16-29中任意一项所述的方法,其中,所述有机碱为通式R12(NH2)2表示的物质,R12为C1-C6的亚烷基或者C6-C12的亚芳基,优选为乙二胺、丙二胺、丁二胺、戊二胺和己二胺中的一种或两种以上;
并且,原料纳米碳材料:有机碱的重量比在1∶0.2-10的范围之内,优选在1∶1-5的范围内;反应过程中,水分散液的温度在100-200℃的范围内,优选在120-150℃的范围内。
H31、根据技术方案H16-30中任意一项所述的方法,其特征在于:将分离出的固体物质进行干燥以及焙烧;其中焙烧的温度为250-500℃,300-480℃,350-450℃;焙烧的时间为1-24小时,2-12小时,2-8小时。
H32、一种由技术方案H16-31中任意一项所述的方法制备的含杂原子纳米碳材料。
H33、一种含杂原子纳米碳材料,该含杂原子纳米碳材料是将 技术方案H1-H15中任意一项所述的含杂原子纳米碳材料或者技术方案H30所述的含杂原子纳米碳材料进行焙烧而制得的。
H34、根据技术方案H33所述的含杂原子纳米碳材料,其中,所述焙烧在250-500℃的温度下进行,优选在300-480℃的温度下进行,更优选在350-450℃的温度下进行;所述焙烧的持续时间为1-24小时,优选为2-12小时,更优选为2-8小时。
H35、技术方案H1-H15和H32中任意一项所述的含杂原子纳米碳材料、或者技术方案H33-H34中任意一项所述的含杂原子纳米碳材料作为烃脱氢反应的催化剂的应用。
H36、根据技术方案H35所述的应用,其中,所述脱氢反应在氧气存在下进行。
H37、根据技术方案H35或H36所述的应用,其中,所述烃为烷烃,优选为C2-C12的烷烃,更优选为丙烷、正丁烷、异丁烷和苯乙烷中的一种或两种以上。
H38、一种烃脱氢反应方法,该方法包括在存在或不存在氧气的条件下,在烃脱氢反应条件下,将烃与技术方案H1-H15和H32中任意一项所述的含杂原子纳米碳材料、或者技术方案H33-H34中任意一项所述的含杂原子纳米碳材料接触。
H39、根据技术方案H38所述的方法,其中,所述烃为烷烃,优选为C2-C12的烷烃,更优选为丙烷、正丁烷、异丁烷和苯乙烷中的一种或两种以上。
H40、根据技术方案H38-H39中任意一项所述的方法,其中,烃与氧气的摩尔比为0.01-100∶1,优选为0.1-10∶1,进一步优选为0.2-5∶1,最优选为0.3-2∶1。
H41、根据技术方案H38-H40中任意一项所述的方法,其中,所述接触在200-650℃的温度下进行,优选在300-600℃的温度下进行,更优选在350-500℃的温度下进行;以表压计,所述接触在0-10MPa的压力下进行,优选在0.01-6MPa的压力下进行,更优选在0.02-3MPa的压力下进行,进一步优选在0.05-1.5MPa的压力下进行;,原料的气时体积空速为0.1-10000h-1,优选为1-6000h-1,更优选为5-4000h-1,进一步优选为10-1000h-1,如100-500h-1
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本 发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (39)

  1. 一种含杂原子纳米碳材料,该含杂原子纳米碳材料含有C元素、O元素以及可选的N元素,以该含杂原子纳米碳材料的总量为基准并以元素计,O元素的含量为1-6重量%,N元素的含量为0-2重量%,C元素的含量为92-99重量%;
    该含杂原子纳米碳材料中,由X射线光电子能谱中531.0-532.5eV范围内的峰确定的O元素的量为IO c,由X射线光电子能谱中532.6-533.5eV范围内的峰确定的O元素的量为IO e,IO c/IO e在0.2-0.8的范围内;
    所述含杂原子纳米碳材料中,由X射线光电子能谱中288.6-288.8eV范围内的峰确定的C元素的量为IC c,由X射线光电子能谱中286.0-286.2eV范围内的峰确定的C元素的量为IC c,IC c/IC c在0.2-1的范围内;
    当所述含杂原子纳米碳材料中N元素的含量为0.1重量%以上时,由X射线光电子能谱确定该含杂原子纳米碳材料中的N元素的总量为IN t,由X射线光电子能谱中398.5-400.1eV范围内的峰确定的N元素的量为IN c,IN c/IN t在0.7-1的范围内。
  2. 根据权利要求1所述的含杂原子纳米碳材料,其中,所述合杂原子纳米碳材料中N元素的含量为低于0.1重量%,以该含杂原子纳米碳材料的总量为基准并以元素计,O的含量为2.5-5.8重量%,优选为3-5.6重量%,更优选为4.5-5.5重量%;C元素的含量为94.2-97.5重量%,优选为94.4-97重量%,更优选为94.5-95.5重量%。
  3. 根据权利要求1或2所述的含杂原子纳米碳材料,其中,所述含杂原子纳米碳材料中N元素的含量为低于0.I重量%,IO c/IO e在0.4-0.7的范围内,优选在0.55-0.65的范围内;IC c/IC e优选在0.3-0.9的范围内,更优选在0.35-0.8的范围内,进一步优选在0.5-0.7的范围内。
  4. 根据权利要求1所述的含杂原子纳米碳材料,其中,以所述含杂原子纳米碳材料的总量为基准并以元素计,O元素的含量为2-6重量%,优选为3.5-5.5重量%;N元素的含量为0.2-1.8重量%,优选为0.5-1.8重量%;C元素的含量为92.2-97.8重量%,优选为 92.7-96重量%。
  5. 根据权利要求1或4所述的含杂原子纳米碳材料,其中,所述含杂原子纳米碳材料中N元素的含量为0.1重量%以上,IO c/IO c在0.35-0.85的范围内,优选在0.45-0.8的范围内;IC c/IC c在0.3-0.98的范围内,优选在0.45-0.95的范围内。
  6. 根据权利要求1、4和5中任意一项所述的含杂原子纳米碳材料,其中,IN c/IN t在0.8-0.95的范围内。
  7. 根据权利要求1-6中任意一项所述的含杂原子纳米碳材料,其中,所述含杂原子纳米碳材料中,以由X射线光电子能谱确定的C元素的总量为基准,由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量为20重量%以上,优选为40重量%以上,更优选为50重量%以上,进一步优选为70重量%以上;且由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量为95重量%以下,优选为90重量%以下。
  8. 根据权利要求1-7中任意一项所述的含杂原子纳米碳材料,其中,该含杂原子纳米碳材料为含杂原子碳纳米管,优选为含杂原子多壁碳纳米管。
  9. 根据权利要求8所述的含杂原子纳米碳材料,其中,所述含杂原子多壁碳纳米管的比表面积为50-500m2/g,优选为80-300m2/g,更优选为100-200m2/g。
  10. 根据权利要求8或9所述的含杂原子纳米碳材料,其中,所述含杂原子多壁碳纳米管在400-800℃的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800在0.01-0.5的范围内,优选在0.02-0.2的范围内,所述失重率在空气气氛中测定。
  11. 根据权利要求1-10中任意一项所述的含杂原子纳米碳材料,其中,以所述含杂原子纳米碳材料的总量为基准,O元素的含量为2-6重量%,优选为4-5.8重量%,更优选为4.5-5.5重量%;N元素的含量为0.2-1.8重量%,优选为0.8-1.6重量%,更优选为1-1.5重量%;C元素的含量为92.2-97.8重量%,优选为92.6-95.2重量%,更优选为93-94.5重量%;
    IO c/IO e优选在0.3-0.8的范围内,更优选在0.35-0.8的范围内,进一步优选在0.55-0.78的范围内;
    由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量优选为70-90重量%,更优选为75-85重量%;
    IC c/IC e优选在0.3-0.9的范围内,更优选在0.4-0.7的范围内,进一步优选在0.45-0.6的范围内;
    IN c/IN t优选在0.7-0.98的范围内,更优选在0.75-0.96的范围内,进一步优选在0.8-0.95的范围内。
  12. 根据权利要求1-10中任意一项所述的含杂原子纳米碳材料,其中,以所述含杂原子纳米碳材料的总量为基准,O元素的含量为2-6重量%,优选为3-5.5重量%,更优选为3.5-5重量%;N元素的含量为0.3-2重量%,优选为0.4-1.8重量%,更优选为0.5-1.5重量%;C元素的含量为92-97.7重量%,优选为92.7-96.6重量%,更优选为93.5-96重量%;
    IO c/IO e优选在0.3-0.8的范围内,更优选在0.4-0.78的范围内,进一步优选在0.45-0.75的范围内;
    由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量优选为70-90重量%,更优选为70-85重量%;
    IC c/IC e优选在0.3-0.9的范围内,更优选在0.4-0.8的范围内,进一步优选在0.45-0.6的范围内;
    IN c/IN t优选在0.7-0.95的范围内,更优选在0.7-0.9的范围内,进一步优选在0.8-0.9的范围内。
  13. 根据权利要求1-10中任意一项所述的含杂原子纳米碳材料,其中,以所述含杂原子纳米碳材料的总量为基准,O元素的含量为3-6重量%,优选为4-5.8重量%,更优选4.5-5.5重量%;N元素的含量为0.5-2重量%,优选为1-2重量%,更优选为1.2-1.8重量%;C元素的含量为92-96.5重量%,优选为92.2-95重量%,更优选为92.7-94.3重量%;
    IO c/IO e优选在0.3-0.8的范围内,更优选在0.4-0.75的范围内,进一步优选在0.6-0.7的范围内;
    由X射线光电子能谱中284.7-284.9eV范围内的峰确定的C元素的含量优选为70-80重量%,更优选为75-80重量%;
    IC c/IC e优选在0.4-0.98的范围内,更优选在0.7-0.98的范围内,进一步优选在0.85-0.95的范围内;
    IN c/IN t优选在0.7-0.95的范围内,更优选在0.75-0.9的范围内, 进一步优选在0.8-0.85的范围内。
  14. 一种含杂原子纳米碳材料的制备方法,该方法包括将一种分散有原料纳米碳材料的水分散液于密闭容器中进行反应,所述水分散液含或不含有机碱,所述有机碱为胺和/或季铵碱,反应过程中,所述水分散液的温度保持在80-220℃的范围内。
  15. 根据权利要求14所述的方法,其中,原料纳米碳材料:H2O的重量比在1∶2-200的范围内,优选在1∶5-100的范围内,更优选在1∶10-50的范围内。
  16. 根据权利要求14或15所述的方法,其中,所述水分散液含有至少一种有机碱,原料纳米碳材料:有机碱的重量比在1∶0.05-20的范围内,优选在1∶0.1-10的范围内,更优选在0.5-5的范围内。
  17. 根据权利要求14-16中任意一项所述的方法,其中,所述有机碱选自式I所示的化合物、式II所示的化合物、式III所示的化合物以及通式R12(NH2)2表示的物质,R12为C1-C6的亚烷基或者C6-C12的亚芳基,
    Figure PCTCN2016000059-appb-100001
    式I中,R1、R2、R3和R4各自为C1-C20的烷基或者C6-C12的芳基;
    Figure PCTCN2016000059-appb-100002
    式II中,R5、R6和R7各自为H、C1-C6的烷基或者C6-C12的芳基,且R5、R6和R7不同时为H;
    Figure PCTCN2016000059-appb-100003
    式III中,R8、R9和R10各自为-R11OH、氢或者C1-C6的烷基,且R8、R9和R10中的至少一个为-R11OH,R11为C1-C4的亚烷基。
  18. 根据权利要求14-17中任意一项所述的方法,其中,反应过程中,所述水分散液的温度保持在120-180℃的范围内。
  19. 根据权利要求14-18中任意一项所述的方法,其中,所述 反应的持续时间在0.5-96小时的范围内,优选在2-72小时的范围内,更优选在20-50小时的范围内。
  20. 根据权利要求14-19中任意一项所述的方法,其中,所述原料纳米碳材料中O元素的含量为不高于1.2重量%,优选为不高于0.5重量%;N元素的含量为低于0.1重量%,优选为不高于0.08重量%,更优选为不高于0.05重量%。
  21. 根据权利要求14-20中任意一项所述的方法,其中,所述原料纳米碳材料为碳纳米管,优选为多壁碳纳米管。
  22. 根据权利要求21所述的方法,其中,所述多壁碳纳米管的比表面积为20-500m2/g,优选为50-400m2/g,更优选为90-300m2/g,进一步优选为100-200m2/g。
  23. 根据权利要求21或22所述的方法,其中,所述多壁碳纳米管在400-800C的温度区间内的失重率为w800,在400-500℃的温度区间内的失重率为w500,w500/w800在0.01-0.5的范围内,优选在0.02-0.2的范围内,所述失重率在空气气氛中测定。
  24. 根据权利要求14-23中任意一项所述的方法,其中,该方法还包括从反应得到的混合物中分离出固体物质,并将分离出的固体物质进行干燥以及可选的焙烧。
  25. 根据权利要求24所述的方法,其中,所述干燥在50-200℃的温度下进行,优选在80-180℃的温度下进行,更优选在100-150℃的温度下进行,所述干燥的持续时间为0.5-48小时,优选为3-24小时,更优选为5-12小时。
  26. 根据权利要求14、15和20-25中任意一项所述的方法,其中,所述有机碱为式I所示的化合物,优选为四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵和四戊基氢氧化铵中的一种或两种以上,
    Figure PCTCN2016000059-appb-100004
    式I中,R1、R2、R3和R4各自为C1-C20的烷基或者C6-C12的芳基;
    并且,原料纳米碳材料:有机碱的重量比在1∶0.1-10的范围 之内,优选在0.5-5的范围内,反应过程中,水分散液的温度在90-210℃的范围内,优选在140-180℃的范围内。
  27. 根据权利要求14、15和20-25中任意一项所述的方法,其中,所述有机碱为式III所示的化合物,优选为一乙醇胺、二乙醇胺和三乙醇胺一种或两种以上,
    Figure PCTCN2016000059-appb-100005
    式III中,R8、R9和R10各自为-R11OH、氢或者C1-C6的烷基,且R8、R9和R10中的至少一个为-R11OH,R11为C1-C4的亚烷基;
    并且,原料纳米碳材料:有机碱的重量比在1∶0.2-10的范围之内,优选在1∶1-5的范围内;反应过程中,水分散液的温度在90-160℃的范围内,优选在120-150℃的范围内。
  28. 根据权利要求14、15和20-25中任意一项所述的方法,其中,所述有机碱为通式R12(NH2)2表示的物质,R12为C1-C6的亚烷基或者C6-C12的亚芳基,优选为乙二胺、丙二胺、丁二胺、戊二胺和已二胺中的一种或两种以上;
    并且,原料纳米碳材料:有机碱的重量比在1∶0.2-10的范围之内,优选在1∶1-5的范围内;反应过程中,水分散液的温度在100-200℃的范围内,优选在120-150℃的范围内。
  29. 根据权利要求24或25所述的方法,其特征在于:将分离出的固体物质进行干燥以及焙烧;其中焙烧的温度为250-500℃,300-480℃,350-450℃;焙烧的时间为1-24小时,2-12小时,2-8小时。
  30. 一种由权利要求14-28中任意一项所述的方法制备的含杂原子纳米碳材料。
  31. 一种含杂原子纳米碳材料,该含杂原子纳米碳材料是将权利要求1-13中任意一项所述的含杂原子纳米碳材料或者权利要求30所述的含杂原子纳米碳材料进行焙烧而制得的。
  32. 根据权利要求31所述的含杂原子纳米碳材料,其中,所述焙烧在250-500℃的温度下进行,优选在300-480℃的温度下进行,更优选在350-450℃的温度下进行;所述焙烧的持续时间为1-24小时,优选为2-12小时,更优选为2-8小时。
  33. 权利要求1-13和30中任意一项所述的含杂原子纳米碳材 料、或者权利要求31-32中任意一项所述的含杂原子纳米碳材料作为烃脱氢反应的催化剂的应用。
  34. 根据权利要求33所述的应用,其中,所述脱氢反应在氧气存在下进行。
  35. 根据权利要求33或34所述的应用,其中,所述烃为烷烃,优选为C2-C12的烷烃,更优选为丙烷、正丁烷、异丁烷和苯乙烷中的一种或两种以上。
  36. 一种烃脱氢反应方法,该方法包括在存在或不存在氧气的条件下,在烃脱氢反应条件下,将烃与权利要求1-13和30中任意一项所述的含杂原于纳米碳材料、或者权利要求31-32中任意一项所述的含杂原子纳米碳材料接触。
  37. 根据权利要求36所述的方法,其中,所述烃为烷烃,优选为C2-C12的烷烃,更优选为丙烷、正丁烷、异丁烷和苯乙烷中的一种或两种以上。
  38. 根据权利要求36-37中任意一项所述的方法,其中,烃与氧气的摩尔比为0.01-100∶1,优选为0.1-10∶1,进一步优选为0.2-5∶1,最优选为0.3-2∶1。
  39. 根据权利要求36-38中任意一项所述的方法,其中,所述接触在200-650℃的温度下进行,优选在300-600℃的温度下进行,更优选在350-500℃的温度下进行;以表压计,所述接触在0-10MPa的压力下进行,优选在0.01-6MPa的压力下进行,更优选在0.02-3MPa的压力下进行,进一步优选在0.05-1.5MPa的压力下进行;,原料的气时体积空速为0.1-10000h-1,优选为1-6000h-1,更优选为5-4000h-1,进一步优选为10-1000h-1,如100-500h-1
PCT/CN2016/000059 2015-01-27 2016-01-27 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法 WO2016119568A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16742630.3A EP3251746A4 (en) 2015-01-27 2016-01-27 Heteroatom-containing nanocarbon material, preparation method and use thereof, and method for dehydrogenation reaction of hydrocarbons
KR1020177023979A KR102485735B1 (ko) 2015-01-27 2016-01-27 헤테로원자-함유 나노-탄소 물질과 이의 제조방법 및 용도, 및 탄화수소의 탈수소화 방법
US15/546,791 US10537882B2 (en) 2015-01-27 2016-01-27 Heteroatom-containing nanocarbon material, preparation method and use thereof, and method for dehydrogenation reaction of hydrocarbons
JP2017539317A JP6867948B2 (ja) 2015-01-27 2016-01-27 ヘテロ原子含有ナノカーボン材、その作製方法及び使用、及び炭化水素の脱水素化方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201510040980.2 2015-01-27
CN201510041118 2015-01-27
CN201510040980 2015-01-27
CN201510041118.3 2015-01-27
CN201510703329.9 2015-10-26
CN201510703329.9A CN105817242B (zh) 2015-01-27 2015-10-26 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN201510702816.3 2015-10-26
CN201510702816.3A CN105820022B (zh) 2015-01-27 2015-10-26 一种烃脱氢反应方法

Publications (1)

Publication Number Publication Date
WO2016119568A1 true WO2016119568A1 (zh) 2016-08-04

Family

ID=56542368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000059 WO2016119568A1 (zh) 2015-01-27 2016-01-27 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法

Country Status (5)

Country Link
US (1) US10537882B2 (zh)
EP (1) EP3251746A4 (zh)
JP (2) JP6867948B2 (zh)
KR (1) KR102485735B1 (zh)
WO (1) WO2016119568A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017204322A1 (de) 2017-03-15 2018-09-20 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Verfahren zur chemischen Umsetzung von Zuckern oder Zuckeralkoholen zu Glykolen
WO2019018467A1 (en) * 2017-07-18 2019-01-24 Ph Matter, Llc MULTIFUNCTIONAL ELECTRODE ADDITIVE
CN109304189A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃氧化脱氢反应方法
DE102018215394A1 (de) * 2018-09-11 2020-03-12 Rheinisch-Westfälische Technische Hochschule Aachen Verfahren zur chemischen Umsetzung von Zuckern oder Zuckeralkoholen zu Glykolen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10537882B2 (en) * 2015-01-27 2020-01-21 China Petroleum & Chemical Corporation Heteroatom-containing nanocarbon material, preparation method and use thereof, and method for dehydrogenation reaction of hydrocarbons
CN110538671B (zh) * 2018-05-28 2023-04-07 中国石油化工股份有限公司 具有催化氧化作用的催化剂及其制备方法以及环己烷氧化方法
TWI749373B (zh) * 2019-09-25 2021-12-11 國立清華大學 觸媒及其製備方法以及氫化芳香族環氧化合物的方法
CN113460994B (zh) * 2020-03-31 2022-10-21 中国石油化工股份有限公司 一种纳米材料及其制备方法和环烷烃的催化氧化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1911502A (zh) * 2006-09-05 2007-02-14 大庆石油管理局 一种纳米级低碳烷烃脱氢催化剂
CN101014412A (zh) * 2004-07-16 2007-08-08 那诺克有限公司 用于制备不饱和烃的包含纳米碳结构的催化剂
KR20100046697A (ko) * 2008-10-28 2010-05-07 한국세라믹기술원 탄소나노튜브가 포함된 난연성 수지조성물 및 이를 이용한 프리프레그 제조방법
CN101863463A (zh) * 2010-05-18 2010-10-20 北京化工大学 一种水分散性碳纳米管的制备方法
CN102489283A (zh) * 2011-11-15 2012-06-13 中国科学院广州地球化学研究所 碳纳米管与{001}面TiO2微球复合材料光催化剂
US20130048919A1 (en) * 2011-08-29 2013-02-28 Los Alamos National Security, Llc Preparation of nitrogen-doped carbon tubes
CN103706388A (zh) * 2013-12-30 2014-04-09 中国科学院化学研究所 氮掺杂多孔碳包覆碳纳米管的复合材料及其制备方法和应用
KR101473752B1 (ko) * 2013-09-30 2014-12-18 재단법인대구경북과학기술원 간단한 합성 방법을 통한 질소가 도핑된 탄소 나노구조체의 제조방법 및 이로부터 합성된 질소가 도핑된 탄소 나노구조체

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514897B1 (en) 1999-01-12 2003-02-04 Hyperion Catalysis International, Inc. Carbide and oxycarbide based compositions, rigid porous structures including the same, methods of making and using the same
US20110311430A1 (en) * 2009-03-06 2011-12-22 Yukihiko Abe Process for production of precursor fiber for preparing carbon fiber having high strength and high elastic modulus
CN101718011B (zh) * 2009-11-16 2011-11-23 天津工业大学 一种碳纳米纤维的制备方法
EP2714590B1 (en) * 2011-05-23 2015-03-18 Nanocyl S.A. Installation and method for the functionalization of particulate and powdered products
JPWO2014084042A1 (ja) * 2012-11-28 2017-01-05 東レ株式会社 2層カーボンナノチューブ含有複合体
JP6080056B2 (ja) * 2013-02-07 2017-02-22 株式会社Ihi カーボンナノウォール及びその製造方法、酸素還元触媒、酸素還元電極及び燃料電池
JP2014231453A (ja) * 2013-05-29 2014-12-11 株式会社船井電機新応用技術研究所 多孔質複合カーボン材及びその製造方法
US10537882B2 (en) * 2015-01-27 2020-01-21 China Petroleum & Chemical Corporation Heteroatom-containing nanocarbon material, preparation method and use thereof, and method for dehydrogenation reaction of hydrocarbons

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014412A (zh) * 2004-07-16 2007-08-08 那诺克有限公司 用于制备不饱和烃的包含纳米碳结构的催化剂
CN1911502A (zh) * 2006-09-05 2007-02-14 大庆石油管理局 一种纳米级低碳烷烃脱氢催化剂
KR20100046697A (ko) * 2008-10-28 2010-05-07 한국세라믹기술원 탄소나노튜브가 포함된 난연성 수지조성물 및 이를 이용한 프리프레그 제조방법
CN101863463A (zh) * 2010-05-18 2010-10-20 北京化工大学 一种水分散性碳纳米管的制备方法
US20130048919A1 (en) * 2011-08-29 2013-02-28 Los Alamos National Security, Llc Preparation of nitrogen-doped carbon tubes
CN102489283A (zh) * 2011-11-15 2012-06-13 中国科学院广州地球化学研究所 碳纳米管与{001}面TiO2微球复合材料光催化剂
KR101473752B1 (ko) * 2013-09-30 2014-12-18 재단법인대구경북과학기술원 간단한 합성 방법을 통한 질소가 도핑된 탄소 나노구조체의 제조방법 및 이로부터 합성된 질소가 도핑된 탄소 나노구조체
CN103706388A (zh) * 2013-12-30 2014-04-09 中国科学院化学研究所 氮掺杂多孔碳包覆碳纳米管的复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3251746A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017204322A1 (de) 2017-03-15 2018-09-20 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Verfahren zur chemischen Umsetzung von Zuckern oder Zuckeralkoholen zu Glykolen
WO2018166566A1 (de) 2017-03-15 2018-09-20 Thyssenkrupp Ag Verfahren zur chemischen umsetzung von zuckern oder zuckeralkoholen zu glykolen
CN110431127A (zh) * 2017-03-15 2019-11-08 蒂森克虏伯股份公司 将糖或糖醇化学转化为二元醇的方法
WO2019018467A1 (en) * 2017-07-18 2019-01-24 Ph Matter, Llc MULTIFUNCTIONAL ELECTRODE ADDITIVE
CN109304189A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃氧化脱氢反应方法
DE102018215394A1 (de) * 2018-09-11 2020-03-12 Rheinisch-Westfälische Technische Hochschule Aachen Verfahren zur chemischen Umsetzung von Zuckern oder Zuckeralkoholen zu Glykolen
WO2020053035A1 (de) 2018-09-11 2020-03-19 Thyssenkrupp Industrial Solutions Ag Verfahren zur chemischen umsetzung von zuckern oder zuckeralkoholen zu glykolen

Also Published As

Publication number Publication date
JP2018508448A (ja) 2018-03-29
JP6867948B2 (ja) 2021-05-12
KR20170108117A (ko) 2017-09-26
KR102485735B1 (ko) 2023-01-05
US20180015445A1 (en) 2018-01-18
EP3251746A4 (en) 2018-09-19
JP2021063005A (ja) 2021-04-22
US10537882B2 (en) 2020-01-21
EP3251746A1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
WO2016119568A1 (zh) 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
Zhang et al. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins
CN105817249B (zh) 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
Sharma et al. Silica nanosphere-supported palladium (II) furfural complex as a highly efficient and recyclable catalyst for oxidative amination of aldehydes
Li et al. Ultrafinely dispersed Pd nanoparticles on a CN@ MgO hybrid as a bifunctional catalyst for upgrading bioderived compounds
Elmakssoudi et al. Efficient conversion of aldehydes and ketones into oximes using a nanostructured pyrophosphate catalyst in a solvent-free process
CN107008244B (zh) 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN109305666B (zh) 含杂原子纳米碳材料及其制备方法和环己烷氧化方法和烃氧化脱氢方法
Lama et al. Tandem promotion of iron catalysts by sodium-sulfur and nitrogen-doped carbon layers on carbon nanotube supports for the Fischer-Tropsch to olefins synthesis
Khojasteh et al. Palladium loaded on magnetic nanoparticles as efficient and recyclable catalyst for the Suzuki-Miyaura reaction
Zhu et al. Amine functionalized Graphene oxide stabilized Pickering emulsion for highly efficient Knoevenagel condensation in aqueous medium
CN107661760B (zh) 纳米碳材料成型体及其制备方法和应用以及纳米碳材料的成型方法和烃脱氢反应方法
CN107661759B (zh) 纳米碳材料成型体及其制备方法和应用以及纳米碳材料的成型方法和烃脱氢反应方法
CN107008243B (zh) 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃脱氢反应方法
CN109305665B (zh) 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃氧化脱氢反应方法
CN107661765B (zh) 纳米碳材料成型体及其制备方法和应用以及纳米碳材料的成型方法和烃脱氢反应方法
CN109304198B (zh) 一种含杂原子纳米碳材料及其制备方法和应用以及一种烃氧化脱氢反应方法
CN107661769B (zh) 纳米碳材料成型体及其制备方法和应用以及纳米碳材料的成型方法和烃脱氢反应方法
CN107661763B (zh) 纳米碳材料成型体及其制备方法和应用以及纳米碳材料的成型方法和烃脱氢反应方法
Zheng et al. Diamine-Decorated Graphene Oxide with Immobilized Gold Nanoparticles of Small Size for Alkenes Epoxidation with H 2 O 2
CN113070086B (zh) 一种氮掺杂碳负载碳化钼纳米复合材料及其制备方法和应用
CN107661755B (zh) 具有烃脱氢催化作用的催化剂及其制备方法和应用以及烃脱氢反应方法
CN107661770B (zh) 纳米碳材料成型体及其制备方法和应用以及纳米碳材料的成型方法和烃脱氢反应方法
CN107661771B (zh) 纳米碳材料成型体及其制备方法和应用以及纳米碳材料的成型方法和烃脱氢反应方法
Mirheidari et al. Design, synthesis, and catalytic performance of modified graphene oxide based on a cobalt complex as a heterogenous catalyst for the preparation of aminonaphthoquinone derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539317

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546791

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177023979

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016742630

Country of ref document: EP