WO2016119481A1 - 一种硫化锂粉体的制备方法 - Google Patents

一种硫化锂粉体的制备方法 Download PDF

Info

Publication number
WO2016119481A1
WO2016119481A1 PCT/CN2015/090535 CN2015090535W WO2016119481A1 WO 2016119481 A1 WO2016119481 A1 WO 2016119481A1 CN 2015090535 W CN2015090535 W CN 2015090535W WO 2016119481 A1 WO2016119481 A1 WO 2016119481A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
lithium sulfide
lithium
sulfur
inert atmosphere
Prior art date
Application number
PCT/CN2015/090535
Other languages
English (en)
French (fr)
Inventor
梁初
梁升
夏阳
张文魁
黄辉
陶新永
甘永平
Original Assignee
浙江工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学 filed Critical 浙江工业大学
Publication of WO2016119481A1 publication Critical patent/WO2016119481A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Definitions

  • the present invention relates to a method of preparing lithium sulfide powder.
  • Lithium sulfide is an inorganic compound with a chemical formula of Li 2 S, belonging to a cubic crystal system, an anti-fluorite structure, and a space group. Extremely deliquescent in the air. At present, there are few preparation methods for lithium sulfide. The most common preparation methods mainly include the following two methods: The first method, the sulfur powder is placed in a tetrahydrofuran (THF) solution containing lithium triethylborohydride (LiBEt 3 H).
  • THF tetrahydrofuran
  • LiBEt 3 H lithium triethylborohydride
  • the solid powder is separated from the liquid to obtain lithium sulfide; the second method is to add the sulfur powder and the metal lithium powder to the liquid ammonia, and after fully reacting, separate the solid powder from the liquid to obtain lithium sulfide.
  • Both of the above methods require a solvent, and the solid-liquid separation process has low efficiency, high cost, and the solvent is toxic and harmful, and the price is expensive, and it is difficult to achieve industrial production.
  • lithium sulfate and coke are used as raw materials, and lithium sulfide can also be obtained by high-temperature calcination at 800 to 900 °C.
  • the lithium sulfide obtained by the method has the disadvantages of low purity, poor batching, energy consumption, and the like, and is not easy to industrialize. Therefore, it is of great significance to develop a new, efficient and environmentally friendly method for preparing lithium sulfide.
  • the object of the present invention is to provide a new method for preparing lithium sulfide powder which is efficient, low-cost, environmentally friendly and easy to industrially produce.
  • the preparation method of the lithium sulfide powder according to the present invention is mainly realized by a mechanical ball milling method, and the preparation method thereof Includes the following steps:
  • the dried sulfur powder and the lithium hydride powder are mixed in a molar ratio of 1: (1 to 3), and added to a sealed ball-milling tank at a temperature of 100 to 500 r/min at room temperature. Lower ball milling 1 ⁇ 24h;
  • the purity of the sulfur powder and the lithium hydride powder are not less than 90%.
  • the sulfur powder is dried in a vacuum oven at a drying temperature of 60 to 100 ° C and a drying time of 1 to 24 hours.
  • the total mass ratio of the sulfur powder and the lithium hydride powder to the total mass of the grinding balls is 1: (10 to 80).
  • the ball milling speed is preferably 300 to 500 r/min, and the ball milling time is preferably 4 to 24 hours.
  • the inert atmosphere is a gas which cannot react with sulfur powder or lithium hydride powder, such as argon gas, nitrogen gas, nitrogen/argon gas mixture or the like.
  • the present invention specifically recommends that the preparation method be carried out as follows:
  • the sulfur powder is dried in a vacuum oven, the drying temperature is 60-100 ° C, and the drying time is 1-24 h;
  • the dried sulfur powder is mixed with lithium hydride powder by a molar ratio of 1: (1 to 3), and added to a sealed ball mill tank to make the total mass of the sulfur powder and the lithium hydride powder
  • the total mass ratio of the grinding ball is 1: (10 ⁇ 80), ball milling 4 ⁇ 24h at room temperature under the condition of 300 ⁇ 500r / min;
  • the inert atmosphere is a gas that cannot react with sulfur powder or lithium hydride powder.
  • the "room temperature" is about 0 to 40 °C.
  • lithium sulphide and elemental sulphur are used to produce lithium sulphide under mechanical ball milling, mainly by utilizing the strong reducibility of lithium hydride to convert elemental sulphur into lithium sulphide, and is an environmentally friendly behavior in which resources are rationally utilized.
  • the raw materials used are liquid-free, do not undergo a solid-liquid separation process, are environmentally friendly, and are easy to implement industrially.
  • Example 1 is an XRD diffraction pattern of a lithium sulfide powder prepared in Example 1.
  • the purity of the sulfur powder and the lithium hydride powder used in the examples of the present invention are not lower than chemical purity (>90%).
  • the sulfur powder was dried in a vacuum oven at 100 ° C for 12 h. Under the protection of an argon atmosphere, 0.32 g of sulfur powder and 0.16 g of lithium hydride powder were uniformly mixed and added to a ball mill tank. The ball is then placed in a ball mill jar and sealed. The total mass of the grinding ball and the total mass ratio of the material are 20:1.
  • the ball mill can be continuously ball milled at 400 r/min for 8 h under room temperature conditions, and the obtained powder is lithium sulfide powder.
  • Figure 1 is a corresponding XRD diffraction pattern. According to the standard card, the obtained product is pure phase lithium sulfide, and no other impurities are present.
  • the sulfur powder was dried in a vacuum oven at 60 ° C for 24 h. Under the protection of nitrogen atmosphere, 5.1g sulfur powder and 2.4 g of lithium hydride powder was uniformly mixed and added to a ball mill jar. The ball is then placed in a ball mill jar and sealed. The total mass of the grinding ball and the total mass ratio of the material are 60:1. The ball mill was continuously ball milled at a speed of 350 r/min for 12 h under room temperature conditions, and the obtained powder was a lithium sulfide powder.
  • the sulfur powder was dried in a vacuum oven at 80 ° C for 6 h. Under the protection of an argon atmosphere, 9.6 g of sulfur powder and 3.6 g of lithium hydride powder were uniformly mixed and added to a ball mill tank. The ball is then placed in a ball mill jar and sealed. The total mass of the grinding ball and the total mass ratio of the material are 40:1. The ball mill was continuously ball milled at 480 r/min for 6 h under room temperature conditions, and the obtained powder was lithium sulfide powder.
  • the sulfur powder was dried in a vacuum oven at 90 ° C for 10 h. Under the protection of a nitrogen/argon mixed atmosphere, 2.4 g of sulfur powder was uniformly mixed with 1.3 g of lithium hydride powder, and then added to a ball mill tank. The ball is then placed in a ball mill jar and sealed. The total mass of the grinding ball and the total mass ratio of the material are 32:1.
  • the ball mill can be continuously ball milled at 300 r/min for 20 h under room temperature conditions, and the obtained powder is lithium sulfide powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种硫化锂粉体的制备方法,该制备方法包括如下步骤:(1)将硫粉烘干;(2)在惰性气氛保护下,将干燥后的硫粉与氢化锂粉按摩尔比1:(1~3)混合,加入到密封的球磨罐中,室温下在转速为100~500r/min条件下球磨1~24h;(3)球磨反应结束后,在惰性气氛下,将粉体从球磨罐中取出,即得到硫化锂粉体。本发明所述的硫化锂粉体的制备方法具有工艺简单、成本低、易于工业化生产特点。

Description

一种硫化锂粉体的制备方法 (一)技术领域
本发明涉及一种制备硫化锂粉体的方法。
(二)背景技术
硫化锂是一种无机化合物,其化学式为Li2S,属于立方晶系,反萤石型结构,空间群为
Figure PCTCN2015090535-appb-000001
在空气中极易潮解。目前,有关硫化锂的制备方法较少,最常见的制备方法主要有以下两类:第一种方法,将硫粉放入含有三乙基硼氢化锂(LiBEt3H)的四氢呋喃(THF)溶液中,待充分反应后,将固体粉末与液体分离即得到硫化锂;第二种方法,将硫粉与金属锂粉加入液氨中,经充分反应后,将固体粉末与液体分离即得到硫化锂。上述两类方法都需要溶剂,经过固液分离过程,效率较低,成本较高,且溶剂有毒有害,价格昂贵,难以实现工业化生产。此外,采用硫酸锂和焦炭为原料,通过800~900℃高温煅烧法亦可获得硫化锂。但该方法制得的硫化锂存在纯度不高,批次性差,耗能等缺点,也不易于工业化生产。因而,发展一种新型、高效、环境友好的硫化锂制备方法具有重要意义。
(三)发明内容
本发明目的是为了提供一种高效、低成本、环境友好、易于工业化生产的制备硫化锂粉体的新方法。
下面对本发明的技术方案做具体说明。
本发明所述的硫化锂粉体制备方法主要采用机械球磨法实现,其制备方法 包括以下步骤:
(1)将硫粉烘干;
(2)在惰性气氛保护下,将干燥后的硫粉与氢化锂粉按摩尔比1:(1~3)混合,加入到密封的球磨罐中,室温下在转速为100~500r/min条件下球磨1~24h;
(3)球磨反应结束后,在惰性气氛下,将粉体从球磨罐中取出,即得到硫化锂粉体。
本发明中,所述的硫粉和氢化锂粉的纯度均不低于90%。
所述步骤(1)中,所述的硫粉需经过真空烘箱干燥,干燥温度为60~100℃,干燥时间为1~24h。
所述步骤(2)中,所述的硫粉和氢化锂粉的总质量与磨球的总质量比为1:(10~80)。
所述步骤(2)中,球磨转速优选为300~500r/min,球磨时间优选4~24小时。
所述步骤(2)和(3)中,所述的惰性气氛为不能与硫粉、氢化锂粉反应的气体,如氩气、氮气、氮气/氩气混合气体等。
本发明具体推荐所述制备方法按照如下步骤进行:
(1)将硫粉放入真空烘箱烘干,干燥温度为60~100℃,干燥时间为1~24h;
(2)在惰性气氛保护下,将干燥后的硫粉与氢化锂粉按摩尔比1:(1~3)混合,加入到密封的球磨罐中,使硫粉与氢化锂粉的总质量与磨球的总质量比为1:(10~80),室温下在转速为300~500r/min条件下球磨4~24h;
(3)球磨反应结束后,在惰性气氛下,将粉体从球磨罐中取出,即得到硫化锂粉体;
所述的惰性气氛为不能与硫粉、氢化锂粉反应的气体。
本发明中,所述的“室温”在0~40℃左右。
本发明与现有技术相比,其有益效果主要体现在:
(1)本发明中利用氢化锂和单质硫在机械球磨下生产硫化锂,主要是利用氢化锂强的还原性将单质硫变成硫化锂,并且是一种资源合理利用的环保行为。
(2)所用的原材料无液体,无需经历固液分离过程,环境友好,易于工业化实施。
(四)附图说明
图1是实施例1所制备的硫化锂粉末的XRD衍射图。
(五)具体实施方法
下面以具体实施例对本发明的技术方案做进一步说明,但本发明的保护范围不限于此。
本发明实施例使用的硫粉和氢化锂粉体的纯度均不低于化学纯(>90%)。
实施例1
将硫粉在100℃真空烘箱中干燥12h。在氩气气氛保护下,将0.32g硫粉与0.16g氢化锂粉体均匀混合后加入到球磨罐中。然后将磨球放入球磨罐后密封。其中磨球总质量与物料总质量比为20:1。在室温条件下,使球磨罐于400r/min的转速连续球磨反应8h,所得粉体即为硫化锂粉体。图1为其对应的XRD衍射图,对照标准卡片可知,所得产物为纯相硫化锂,无其他杂质存在。
实施例2
将硫粉在60℃真空烘箱中干燥24h。在氮气气氛保护下,将5.1g硫粉与 2.4g氢化锂粉体均匀混合后加入到球磨罐中。然后将磨球放入球磨罐后密封。其中磨球总质量与物料总质量比为60:1。在室温条件下,使球磨罐于350r/min的转速连续球磨反应12h,所得粉体即为硫化锂粉体。
实施例3
将硫粉在80℃真空烘箱中干燥6h。在氩气气氛保护下,将9.6g硫粉与3.6g氢化锂粉体均匀混合后加入到球磨罐中。然后将磨球放入球磨罐后密封。其中磨球总质量与物料总质量比为40:1。在室温条件下,使球磨罐于480r/min的转速连续球磨反应6h,所得粉体即为硫化锂粉体。
实施例4
将硫粉在90℃真空烘箱中干燥10h。在氮气/氩气混合气氛保护下,将2.4g硫粉与1.3g氢化锂粉体均匀混合后加入到球磨罐中。然后将磨球放入球磨罐后密封。其中磨球总质量与物料总质量比为32:1。在室温条件下,使球磨罐于300r/min的转速连续球磨反应20h,所得粉体即为硫化锂粉体。

Claims (8)

  1. 一种硫化锂粉体的制备方法,包括如下步骤:
    (1)将硫粉烘干;
    (2)在惰性气氛保护下,将干燥后的硫粉与氢化锂粉按摩尔比1:(1~3)混合,加入到密封的球磨罐中,室温下在转速为100~500r/min条件下球磨1~24h;
    (3)球磨反应结束后,在惰性气氛下,将粉体从球磨罐中取出,即得到硫化锂粉体。
  2. 如权利要求1所述的硫化锂粉体的制备方法,其特征在于所述硫粉和氢化锂粉的纯度均不低于90%。
  3. 如权利要求1或2所述的硫化锂粉体的制备方法,特征在于:所述步骤(1)中,所述的硫粉经过真空烘箱干燥,干燥温度为60~100℃,干燥时间为1~24h。
  4. 如权利要求1或2所述的硫化锂粉体的制备方法,特征在于:所述步骤(2)中硫粉与氢化锂粉的总质量与磨球的总质量比为1:(10~80)。
  5. 如权利要求1或2所述的硫化锂粉体的制备方法,特征在于:所述步骤(2)中,球磨转速为300~500r/min,球磨时间为4~24小时。
  6. 如权利要求1或2所述的硫化锂粉体的制备方法,其特征在于所述的惰性气氛为不会与硫粉、氢化锂粉反应的气体。
  7. 如权利要求1或2所述的硫化锂粉体的制备方法,特征在于:所述的惰性气氛为氩气、氮气或氮气/氩气混合气体。
  8. 如权利要求1或2所述的硫化锂粉体的制备方法,特征在于所述制备方法按照如下步骤进行:
    (1)将硫粉放入真空烘箱烘干,干燥温度为60~100℃,干燥时间为1~24h;
    (2)在惰性气氛保护下,将干燥后的硫粉与氢化锂粉按摩尔比1:(1~3) 混合,加入到密封的球磨罐中,使硫粉与氢化锂粉的总质量与磨球的总质量比为1:(10~80),室温下在转速为300~500r/min条件下球磨4~24h;
    (3)球磨反应结束后,在惰性气氛下,将粉体从球磨罐中取出,即得到硫化锂粉体;
    所述的惰性气氛为不会与硫粉、氢化锂粉反应的气体。
PCT/CN2015/090535 2015-01-30 2015-09-24 一种硫化锂粉体的制备方法 WO2016119481A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510050637.6A CN104609376A (zh) 2015-01-30 2015-01-30 一种硫化锂粉体的制备方法
CN2015100506376 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016119481A1 true WO2016119481A1 (zh) 2016-08-04

Family

ID=53144077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090535 WO2016119481A1 (zh) 2015-01-30 2015-09-24 一种硫化锂粉体的制备方法

Country Status (2)

Country Link
CN (1) CN104609376A (zh)
WO (1) WO2016119481A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551491A (zh) * 2020-12-10 2021-03-26 天津大学 一种硫化锂的制备方法、硫化锂及其应用
CN117163922A (zh) * 2023-09-20 2023-12-05 天齐锂业股份有限公司 Ev级硫化锂及其制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104609376A (zh) * 2015-01-30 2015-05-13 浙江工业大学 一种硫化锂粉体的制备方法
CN106531995B (zh) * 2016-11-15 2019-08-09 复旦大学 一种石墨烯负载纳米硫化镁复合材料及其制备方法
CN106684441B (zh) * 2017-01-09 2019-03-12 郑州新世纪材料基因组工程研究院有限公司 一种硫磷化物固体电解质及其制备方法
CN106784754B (zh) * 2017-03-29 2019-06-18 中南大学 一种碳纳米管-硫化锂-碳复合材料的制备方法
CN108190845A (zh) * 2018-01-31 2018-06-22 湖南省正源储能材料与器件研究所 一种制备硫化锂的方法
CN108358175B (zh) * 2018-04-25 2020-02-07 北京卫蓝新能源科技有限公司 一种硫化锂的制备方法
CN108336400A (zh) * 2018-05-15 2018-07-27 北京科技大学 一种硫化物固体电解质的制备方法
CN109301336B (zh) * 2018-09-18 2020-11-24 郑州新世纪材料基因组工程研究院有限公司 非晶态硫化物固体电解质及其制备方法、锂离子电池
CN109019526B (zh) * 2018-10-16 2021-11-12 河南工程学院 一种利用有机溶剂法制备硫化锂的方法
CN110790239B (zh) * 2019-08-26 2022-01-28 浙江工业大学 一种硫化锂粉体的机械球磨合成方法
CN110562940B (zh) * 2019-08-26 2023-02-24 浙江工业大学 一种利用机械球磨法合成磷化汞的方法
CN110526219A (zh) * 2019-08-26 2019-12-03 浙江工业大学 一种硫化锂粉体的合成方法
CN112520763B (zh) * 2020-08-03 2022-04-15 浙江工业大学 一种利用硫酸锂制备硫化锂的方法
CN112607712A (zh) * 2020-12-31 2021-04-06 江西赣锋锂业股份有限公司 一种利用金属锂制备硫化锂的方法
CN113903882A (zh) * 2021-09-30 2022-01-07 中汽创智科技有限公司 一种固态锂硫电池、电池正极及其制备方法
CN114455550B (zh) * 2022-01-20 2023-07-18 湖北索立德新能源科技有限责任公司 硫化锂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871177A (zh) * 2003-10-23 2006-11-29 出光兴产株式会社 硫化锂的精制方法
CN102107904A (zh) * 2011-03-11 2011-06-29 同济大学 一种非模板法制备硫化镉、硫化锌空心纳米方块的方法
CN102177090A (zh) * 2008-10-14 2011-09-07 Iti苏格兰有限公司 硫化锂的制备
CN103813980A (zh) * 2011-05-27 2014-05-21 罗克伍德锂有限责任公司 用于制备硫化锂的方法
CN104609376A (zh) * 2015-01-30 2015-05-13 浙江工业大学 一种硫化锂粉体的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159794C (zh) * 1999-09-24 2004-07-28 松下电器产业株式会社 锂电池
EP2720979A1 (de) * 2011-06-14 2014-04-23 Rockwood Lithium GmbH Verfahren zur herstellung eines kohlenstoffbeschichteten lithiumsulfids und dessen verwendung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871177A (zh) * 2003-10-23 2006-11-29 出光兴产株式会社 硫化锂的精制方法
CN102177090A (zh) * 2008-10-14 2011-09-07 Iti苏格兰有限公司 硫化锂的制备
CN102107904A (zh) * 2011-03-11 2011-06-29 同济大学 一种非模板法制备硫化镉、硫化锌空心纳米方块的方法
CN103813980A (zh) * 2011-05-27 2014-05-21 罗克伍德锂有限责任公司 用于制备硫化锂的方法
CN104609376A (zh) * 2015-01-30 2015-05-13 浙江工业大学 一种硫化锂粉体的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551491A (zh) * 2020-12-10 2021-03-26 天津大学 一种硫化锂的制备方法、硫化锂及其应用
CN112551491B (zh) * 2020-12-10 2022-04-08 天津大学 一种硫化锂的制备方法、硫化锂及其应用
CN117163922A (zh) * 2023-09-20 2023-12-05 天齐锂业股份有限公司 Ev级硫化锂及其制备方法
CN117163922B (zh) * 2023-09-20 2024-03-26 天齐锂业股份有限公司 Ev级硫化锂及其制备方法

Also Published As

Publication number Publication date
CN104609376A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2016119481A1 (zh) 一种硫化锂粉体的制备方法
CN109879301B (zh) 从盐湖卤水高效分离镁锂及同时制备高纯氧化镁和电池级碳酸锂的方法
KR101963297B1 (ko) 황화 리튬 준비 방법
CN108330298B (zh) 一种从多金属云母矿石中提取铷、铯、锂、钾的方法
CN111517288A (zh) 一种合成硫化锂的方法
WO2017215011A1 (zh) 离子筛材料及其制备和使用方法
CN111908431A (zh) 一种制备和提纯硫化锂的方法
CN112520703B (zh) 一种硫化锂的绿色制备方法
WO2016119644A1 (zh) 一种磷化锂粉体的制备方法
CN101817547A (zh) 一种从钕铁硼永磁材料废料中回收混合稀土氯化物的方法
CN113651342A (zh) 一种采用硝酸常压法处理锂云母生产锂产品的方法
CN109809440B (zh) 制备高纯度氯化锂、高纯度甲酸锂及高纯度碳酸锂的方法
CN110180489B (zh) 一种掺硫富锂锰系锂吸附剂及其制备方法和应用
CN101838006A (zh) 碳酸锶废渣酸浸料浆分离新方法
CN103131873B (zh) 利用混酸分离铝质岩中的锂元素并制备碳酸锂的方法
CN101195495B (zh) 高纯纳米氟化锂的制备方法
CN104556175B (zh) 从钾长石分解尾渣中制取氢氧化铝的方法
CN103569967A (zh) 一种氨硼烷的制备方法
CN112125322A (zh) 一种硫化锂的绿色高效制备方法
CN112125283A (zh) 一种利用固液混合加热制备硫化锂的方法
CN104609380A (zh) 一种硒化锂粉体的制备方法
CN108063295B (zh) 从火法回收锂电池产生的炉渣中提取锂的方法
CN110526219A (zh) 一种硫化锂粉体的合成方法
CN115231527A (zh) 通过有机气体裂解还原硫酸锂制备硫化锂方法
CN101962181B (zh) 用流变相反应法制备六氟磷酸锂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.01.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15879679

Country of ref document: EP

Kind code of ref document: A1