WO2016117658A1 - 酸化物超電導バルクマグネット - Google Patents

酸化物超電導バルクマグネット Download PDF

Info

Publication number
WO2016117658A1
WO2016117658A1 PCT/JP2016/051745 JP2016051745W WO2016117658A1 WO 2016117658 A1 WO2016117658 A1 WO 2016117658A1 JP 2016051745 W JP2016051745 W JP 2016051745W WO 2016117658 A1 WO2016117658 A1 WO 2016117658A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting bulk
oxide superconducting
reinforcing member
ring
strength
Prior art date
Application number
PCT/JP2016/051745
Other languages
English (en)
French (fr)
Inventor
森田 充
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/545,170 priority Critical patent/US10643772B2/en
Priority to EP16740265.0A priority patent/EP3249663B1/en
Priority to JP2016570706A priority patent/JP6493419B2/ja
Priority to CN201680003462.6A priority patent/CN107112108B/zh
Publication of WO2016117658A1 publication Critical patent/WO2016117658A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to an oxide superconducting bulk magnet having an oxide superconducting bulk body and a reinforcing material.
  • An oxide superconducting material in which a RE 2 BaCuO 5 phase is dispersed in a single-crystal REBa 2 Cu 3 O 7-x (RE is a rare earth element) phase has a high critical current density (hereinafter, “J c ”). Therefore, it can be used as a superconducting bulk magnet that can be excited by cooling in a magnetic field or pulsed magnetization to generate a strong magnetic field.
  • Superconducting bulk magnets have an excellent feature that a very strong magnetic field can be generated in a compact space, but since a very strong magnetic field is confined in a compact space, large electromagnetic stress acts inside the superconducting bulk body. Will do. This electromagnetic stress is also called hoop stress because it acts so that the confined magnetic field spreads. In the case of a strong magnetic field of 5 to 10 T class, the applied electromagnetic stress may exceed the material mechanical strength of the superconducting bulk body itself, and as a result, the superconducting bulk body may be damaged. When the superconducting bulk body is broken, the superconducting bulk body cannot generate a strong magnetic field.
  • the features of the superconducting bulk magnet which is compact and strong magnetic field, can be utilized, and a drug delivery system that uses a magnetic material for small NMR (Nuclear Magnetic Resonance) and magnetic force.
  • NMR Nuclear Magnetic Resonance
  • Patent Document 1 proposes a superconducting bulk magnet composed of a cylindrical superconducting bulk body and a metal ring surrounding it. By adopting such a configuration, compressive stress due to the metal ring is applied to the superconducting bulk body during cooling, and the compressive stress has an effect of reducing electromagnetic stress, so that cracking of the superconducting bulk body can be suppressed. As described above, Patent Document 1 shows that damage to a cylindrical superconducting bulk body can be prevented.
  • each single crystal oxide is oxidized. It is also effective to make a superconducting material a ring shape and generate a strong magnetic field inside it. At this time, it is more effective to stack the inner and outer peripheral axes together.
  • Patent Document 2 seven hexagonal superconducting bulk bodies are combined, a reinforcing member made of fiber reinforced resin or the like is arranged around the hexagonal superconducting bulk body, and a supporting member made of metal such as stainless steel or aluminum is provided on the outer periphery thereof.
  • An arranged superconducting magnetic field generating element is disclosed.
  • Patent Document 3 discloses an oxide superconducting bulk magnet in which ring-shaped bulk superconductors having a crystal axis thickness in the c-axis direction of 0.3 to 15 mm are stacked.
  • Patent Document 4 discloses a superconducting bulk magnet in which a plurality of ring-shaped superconductors whose outer and inner peripheries are reinforced are laminated.
  • Patent Document 5 discloses a superconducting bulk magnet in which superconductors having a multiple ring structure are laminated in the radial direction.
  • Patent Document 6 discloses a bulk magnet in which the outer periphery and upper and lower surfaces of one bulk body are reinforced.
  • Patent Document 7 discloses a bulk magnet having a conductive member in which a high-temperature superconductor is placed inside a cup-shaped conductive member and sandwiched between a plurality of high-temperature superconductors.
  • FIG. 3 of Patent Document 7 does not show the concept of reinforcing the electromagnetic force of the superconducting bulk body, although the conductive member 17b and the high-temperature superconductor are in contact with each other to transmit heat.
  • JP 11-335120 A Japanese Patent Laid-Open No. 11-284238 Japanese Patent Laid-Open No. 10-310497 JP 2014-75522 A International Publication No. 2011/071071 JP 2014-146760 A JP 2002-006021 A
  • Patent Documents 1 to 7 have a problem that a high magnetic field (for example, 10T class: 6 to 10T) cannot be stably captured.
  • the present invention solves this problem and prevents damage to the superconducting bulk body even under high magnetic field strength conditions for securing the required magnetic field region, and provides a sufficient total magnetic flux on the surface of the superconducting bulk body. It is an object to provide an oxide superconducting bulk magnet that can be obtained.
  • the superconducting bulk material can be used even under high magnetic field strength conditions to secure the required high magnetic field region. It is an object of the present invention to provide an oxide superconducting bulk magnet that can prevent damage to the magnetic field and can obtain a sufficient total amount of magnetic flux inside the ring and that has high magnetic field uniformity.
  • the inventors of the present application have made extensive studies, and as a result, a plurality of oxide superconducting bulk bodies are stacked, and a high-strength reinforcing member is bonded or bonded between the individual oxide superconducting bulk bodies.
  • the superconducting bulk material can be prevented from being damaged even under a strong magnetic field by forming a composite material and reinforcing a relatively low-strength oxide superconductor to increase its strength.
  • oxide superconducting bulk laminate The oxide superconducting bulk body and the high-strength reinforcing member bonded or bonded together are hereinafter referred to as “oxide superconducting bulk laminate”, or the ring-shaped oxide superconducting bulk body and the high-strength reinforcing member bonded or bonded.
  • the formed oxide superconducting bulk magnet is hereinafter also referred to as “a porous oxide superconducting bulk laminate”.
  • quenching is also known for metal-based and oxide superconducting wires, and measures such as composite processing with stabilizing metals have been taken.
  • the quenching phenomenon was hardly known for RE-based bulk magnets.
  • the degree of quenching is approximately Although it was observed in a low temperature region of 10K or less, it was not observed in a high temperature region of about 20K or more, and it was considered that breakage due to quenching such as occurs in a wire coil magnet or the like does not occur.
  • the gist of the present invention is as follows.
  • RE 2 BaCuO 5 in single-crystal RE 1 Ba 2 Cu 3 O y RE is one or more elements selected from Y or rare earth elements, 6.8 ⁇ y ⁇ 7.1
  • a plurality of plate-shaped oxide superconducting bulk bodies in which is dispersed, and an oxide superconducting bulk laminated body formed by one or more high-strength reinforcing members disposed between the laminated oxide superconducting bulk bodies When, One or more outer peripheral reinforcing members provided on the outer periphery of the oxide superconducting bulk laminate; With The oxide superconducting bulk magnet, wherein the oxide superconducting bulk body is bonded or bonded to the high-strength reinforcing member.
  • the high-strength reinforcement in which at least one high-strength reinforcing member thickness disposed on the uppermost surface and / or the lowermost surface of the oxide superconducting bulk laminate is disposed between the oxide superconducting bulk bodies.
  • the high-strength reinforcing member disposed on the uppermost surface and the lowermost surface of the oxide superconducting bulk laminate is bonded or bonded to the outer peripheral reinforcing member (11) or (12) ) Oxide superconducting bulk magnet.
  • the oxide superconducting bulk magnet according to any one of (1) to (13), further comprising a second outer peripheral reinforcing member outside the outer peripheral reinforcing member.
  • the oxide superconducting bulk body and the high-strength reinforcing member are ring-shaped, and the oxide superconducting bulk laminate has a perforated structure. Any oxide superconducting bulk magnet.
  • the high-strength reinforcing member is bonded or bonded to the uppermost surface and / or the lowermost surface of the oxide superconducting bulk laminate, and the high-strength reinforcing member is an inner circumference of the oxide superconducting bulk laminate.
  • the oxide superconducting bulk magnet according to any one of (18) to (22), wherein the oxide superconducting bulk magnet is combined with or bonded to an inner peripheral reinforcing member provided on the inner surface of the oxide superconductive bulk magnet.
  • the c-axis direction of the crystal axis substantially coincides with the inner peripheral axis of the oxide superconducting bulk body, and the a-axis direction of the crystal axis is the oxide superconducting bulk.
  • the ring-shaped oxide superconducting bulk body in the porous oxide superconducting bulk laminate has a multiple ring structure in which inner peripheral axes coincide with each other, Oxide superconducting bulk magnet.
  • a possible superconducting bulk magnet can be provided. Further, when the single crystal oxide superconducting material is formed in a ring shape, a sufficient total magnetic flux can be obtained inside the ring, and an oxide superconducting bulk magnet with high magnetic field uniformity can be provided. .
  • FIG. 1 is a schematic exploded perspective view showing an example of an oxide superconducting bulk magnet according to an embodiment of the present invention. It is a schematic exploded perspective view which shows the other structural example of the oxide superconducting bulk magnet which concerns on the same embodiment, Comprising: The example with which the high intensity
  • 3A Comprising: The example in which the magnitude
  • the outer diameter of the high-strength reinforcing member is larger than the outer diameter of the oxide superconducting bulk body bonded to the high-strength reinforcing member, and the oxide superconducting bulk magnet having a plurality of divided outer ring rings is the center. It is sectional drawing which shows the state cut
  • FIG. It is a schematic exploded perspective view which shows the other structural example of the oxide superconducting bulk magnet which concerns on the same embodiment, Comprising: The example in which a rectangular high intensity
  • FIG. 5 is a schematic exploded perspective view showing another configuration example of the oxide superconducting bulk magnet according to the embodiment, in which hexagonal high-strength reinforcing members and hexagonal oxide superconducting bulk bodies are alternately stacked.
  • Indicates. 1 is a schematic exploded perspective view showing an oxide superconducting bulk magnet according to Example 1.
  • FIG. It is a general
  • FIG. 4 is a schematic exploded perspective view showing an oxide superconducting bulk magnet according to Example 2.
  • FIG. It is a general
  • FIG. 3 is a schematic exploded perspective view showing a configuration of an oxide superconducting bulk magnet corresponding to 2-2.
  • FIG. 7E It is sectional drawing which shows the state which cut
  • Cross section showing a state in which the outer peripheral reinforcing ring has a double structure in the radial direction and the inner peripheral reinforcing ring has an inner diameter smaller than the outer diameter of the high-strength reinforcing member and is cut by a plane parallel to the central axis.
  • FIG. It is sectional drawing which shows the state which cut
  • 6 is a schematic exploded perspective view showing an oxide superconducting bulk magnet according to Example 3.
  • FIG. 1 is a schematic exploded perspective view showing an example of a ring-shaped oxide superconducting bulk magnet according to a first embodiment of the present invention. It is a fragmentary sectional view of the oxide superconducting bulk magnet shown in FIG. 9A. It is a modification of the oxide superconducting bulk magnet according to the embodiment, and shows a partial sectional view when cut along the central axis of the oxide superconducting bulk magnet (the outer diameter of the superconducting bulk body is different, and the outer peripheral reinforcing ring The same external shape).
  • FIG. 1 It is a schematic exploded perspective view which shows an example of the superconducting bulk magnet which concerns on the 2nd Embodiment of this invention, Comprising: The example with which the high intensity
  • FIG. 1 It is a schematic exploded perspective view which shows an example of the porous oxide superconducting bulk laminated body which concerns on the 4th Embodiment of this invention, Comprising:
  • strength reinforcing member is a ring-shaped oxide superconducting bulk body. An example smaller than the inner diameter is shown.
  • strength reinforcing member is a ring-shaped oxide superconducting bulk body. An example is shown in which an inner peripheral reinforcing ring is arranged that is smaller than the inner diameter.
  • An inner peripheral reinforcement ring has a double structure in radial direction An example in which the outer diameter of the outer peripheral reinforcement ring is larger than the inner diameter of the high-strength reinforcing member with which it contacts is shown.
  • FIG. 5 is a partial cross-sectional view showing an example in which the outer peripheral reinforcing ring has a double structure in the radial direction and the inner diameter of the inner peripheral reinforcing ring is smaller than the outer diameter of the high-strength reinforcing member that is in contact with the outer peripheral reinforcing ring.
  • the outer peripheral reinforcing ring and the inner peripheral ring have a double structure in the radial direction, the inner diameter of the inner outer peripheral reinforcing ring is smaller than the outer diameter of the high-strength reinforcing member in contact, and the outer diameter of the outer inner peripheral reinforcing ring is It is a fragmentary sectional view which shows an example larger than the internal diameter of the high-strength reinforcement member which touches. It is explanatory drawing which shows the fluctuation of the crystallographic orientation of a superconducting bulk material.
  • FIG. 1 is a schematic exploded perspective view of a porous oxide superconducting bulk laminate according to Example 1.
  • FIG. 3 is a schematic exploded perspective view of a comparative material with respect to Example 1.
  • FIG. It is sectional drawing when the oxide superconducting bulk laminated body of FIG. 17A is cut along the central axis. It is sectional drawing when the oxide superconducting bulk laminated body of FIG. 17B is cut along the central axis.
  • 3 is a schematic exploded perspective view of a porous oxide superconducting bulk laminate according to Example 2.
  • FIG. 5 is a schematic exploded perspective view of a comparative material for Example 2.
  • FIG. It is sectional drawing when the oxide superconducting bulk laminated body of FIG. 18A is cut along the central axis. It is sectional drawing when the oxide superconducting bulk laminated body of FIG. 18B is cut along the central axis.
  • FIG. 4 is a schematic exploded perspective view of a porous oxide superconducting bulk laminate according to Example 3.
  • FIG. 6 is a schematic exploded perspective view of a comparative material with respect to Example 3.
  • FIG. It is sectional drawing when the oxide superconducting bulk laminated body of FIG. 19A is cut along the central axis. It is sectional drawing when the oxide superconducting bulk laminated body of FIG. 19B is cut along the central axis.
  • 4 is a schematic exploded perspective view of a porous oxide superconducting bulk laminate according to Example 3.
  • FIG. 6 is a schematic exploded perspective view of a comparative material with respect to Example 3.
  • FIG. It is sectional drawing when the oxide superconducting bulk laminated body of FIG. 20A is cut along the central axis.
  • FIG. 20B It is sectional drawing when the oxide superconducting bulk laminated body of FIG. 20B is cut along the central axis.
  • 6 is a schematic exploded perspective view showing a porous oxide superconducting bulk laminate according to Example 5.
  • FIG. 10 is a schematic exploded perspective view of a comparative material for Example 5.
  • FIG. is there It is sectional drawing when the oxide superconductivity laminated body magnet of this invention which concerns on 1 aspect of Example 10 is cut
  • the oxide superconducting bulk body (hereinafter also simply referred to as “superconducting bulk body”) used in the oxide superconducting bulk magnet according to the present embodiment is RE 2 BaCuO 5 in single-crystal REBa 2 Cu 3 O 7-x.
  • a bulk material (so-called QMG (registered trademark) material) having a structure in which a non-superconducting phase typified by a phase (211 phase) or the like is dispersed, and having a finely dispersed structure is particularly desirable.
  • QMG registered trademark
  • single crystal means that it is not a perfect single crystal, but also includes those having defects that may be practically used such as a low-angle grain boundary.
  • the RE in the REBa 2 Cu 3 O 7-x phase (123 phase) and the RE 2 BaCuO 5 phase (211 phase) is Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu.
  • the 123 phase containing La, Nd, Sm, Eu, and Gd is out of the 1: 2: 3 stoichiometric composition, and Ba is partially substituted at the RE site.
  • the 211 phase which is a non-superconducting phase La and Nd are somewhat different from Y, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, and the ratio of metal elements is non-stoichiometric. It is known that it has a theoretical composition or a different crystal structure.
  • substitution of the Ba element described above tends to lower the critical temperature. Further, in an environment with a lower oxygen partial pressure, substitution of Ba element tends to be suppressed.
  • the 123 phase is a peritectic reaction between the 211 phase and a liquid phase composed of a composite oxide of Ba and Cu.
  • the temperature at which the 123 phase is formed by this peritectic reaction (Tf: 123 phase formation temperature) is substantially related to the ionic radius of the RE element, and Tf also decreases as the ionic radius decreases. Further, Tf tends to decrease with the addition of a low oxygen atmosphere and Ag.
  • a material in which the 211 phase is finely dispersed in the single-crystal 123 phase can be formed because 211 unreacted grains are left in the 123 phase when the 123 phase is crystal-grown. That is, the bulk material is 211 phase + liquid phase (complex oxide of Ba and Cu) ⁇ It can be performed by the reaction shown by 123 phase + 211 phase.
  • Finely dispersed in 211 phase in the bulk material is extremely important in view of the critical current density J c improved.
  • a trace amount of at least one of Pt, Rh, or Ce grain growth of the 211 phase in the semi-molten state (a state composed of the 211 phase and the liquid phase) is suppressed, and as a result, the 211 phase in the material is reduced to about The size is reduced to about 1 ⁇ m.
  • the state of fine dispersion of the 211 phase can be confirmed with an optical microscope after the sample is mirror-polished.
  • the addition amount is 0.2 to 2.0% by mass for Pt, 0.01 to 0.5% by mass for Rh, and 0.5 to 2.0% for Ce from the viewpoint of the amount of the effect of miniaturization and the material cost.
  • the mass% is desirable.
  • the added Pt, Rh, and Ce partially dissolve in the 123 phase.
  • elements that could not be dissolved form a composite oxide with Ba and Cu and are scattered in the material.
  • the bulk oxide superconductor constituting the magnet needs to have a high critical current density ( Jc ) even in a magnetic field.
  • Jc critical current density
  • the phase is a single-crystal 123 phase that does not include large-angle grain boundaries that are superconductively weakly coupled.
  • a pinning center for stopping the movement of magnetic flux is required. What functions as the pinning center is a finely dispersed 211 phase, and it is desirable that many finely dispersed.
  • Pt, Rh, and Ce have a function of promoting the refinement of the 211 phase.
  • the non-superconducting phase such as the 211 phase has an important function of mechanically strengthening the superconductor by being finely dispersed in the 123 phase that is easy to cleave, and as a bulk material.
  • the proportion of the 211 phase in the 123 phase is preferably 5 to 35% by volume from the viewpoint of Jc characteristics and mechanical strength.
  • the material generally contains 5 to 20% by volume of voids (bubbles) of about 50 to 500 ⁇ m.
  • voids bubbles
  • the oxygen deficiency (x) of the material after crystal growth is about 0.5, indicating a temperature change in semiconductor resistivity. This is annealed in an oxygen atmosphere at 350 ° C. to 600 ° C. for about 100 hours by each RE system, so that oxygen is taken into the material, and the amount of oxygen deficiency (x) is 0.2 or less, resulting in excellent superconducting characteristics. Show. At this time, a twin structure is formed in the superconducting phase. However, including this point, it is referred to as a single crystal here.
  • FIG. 1 is a schematic exploded perspective view showing an example of an oxide superconducting bulk magnet 100 according to the present embodiment.
  • the oxide superconducting bulk magnet 100 according to this embodiment includes a disk-shaped oxide superconducting bulk body 110, a disk-shaped high-strength reinforcing member 120, and an outer peripheral reinforcing ring 130. .
  • three superconducting bulk bodies 111, 113, and 115 are provided as the oxide superconducting bulk body 110, and two high-strength reinforcing members 121 and 123 are provided as the high-strength reinforcing member 120.
  • the oxide superconducting bulk body 110 and the high-strength reinforcing member 120 are alternately stacked in the central axis direction of the disk.
  • a high-strength reinforcing member 121 is disposed between the superconducting bulk bodies 111 and 113, and a high-strength reinforcing member 123 is disposed between the superconducting bulk bodies 113 and 115.
  • the stacked oxide superconducting bulk body 110 and the high-strength reinforcing member 120 are preferably bonded or bonded.
  • an oxide superconducting bulk laminate (110 + 120) is formed.
  • the outer periphery reinforcement ring 130 which is a hollow outer periphery reinforcement member is provided in the outer periphery, and it has been in the fitted state.
  • the outer peripheral reinforcing ring 130 is preferably bonded or bonded to the high-strength reinforcing member 120. Furthermore, the outer peripheral reinforcing ring 130 may be bonded or bonded to the oxide superconducting bulk body 110. Thus, the oxide superconducting bulk magnet 100 is formed. Since superconducting bulk body 113 is made of ceramics, it has a relatively high yield strength against compressive force, but has a low yield strength against tensile force.
  • the oxide superconducting bulk laminate (110 + 120) has a high resistance to both the compressive force and the tensile force.
  • the oxide superconducting bulk body 110 and the high-strength reinforcing member 120 laminated in the central axis direction are bonded or bonded, for example, resin or grease may be used, and more desirably, a stronger bonding force can be obtained. It is better to solder.
  • soldering it is desirable that an Ag thin film is formed on the surface of the oxide superconducting bulk body 110 by sputtering or the like, and further annealed at 100 ° C. to 500 ° C. Thereby, the Ag thin film and the surface of the bulk material are well adapted. Since the solder itself also has a function of improving the thermal conductivity, the soldering process is desirable from the viewpoint of improving the thermal conductivity of the entire bulk magnet and making the temperature of the entire bulk magnet uniform.
  • the high-strength reinforcing member 120 is preferably a solderable metal such as an aluminum alloy, a Ni-based alloy, nichrome, or stainless steel.
  • the linear expansion coefficient is the same as that of the oxide superconductor. It is relatively close, and it is desirable to use nichrome that slightly applies compressive stress to the oxide superconducting bulk body 110 during cooling from room temperature.
  • the high-strength reinforcing member 120 is desirably a metal such as copper, copper alloy, aluminum, aluminum alloy, silver, or silver alloy having high thermal conductivity and high electrical conductivity. These metals can be soldered. Furthermore, oxygen-free copper, aluminum, and silver are desirable from the viewpoint of thermal conductivity and electrical conductivity.
  • the reinforcement by the high-strength reinforcing member 120 made of such a high-strength metal increases the overall thermal conductivity, thereby increasing the thermal stability as a bulk magnet, making it difficult for quenching to occur, and lower temperature region, that is, high criticality.
  • High magnetic field magnetization in the current density Jc region is possible.
  • Metals such as copper, aluminum, and silver have high electrical conductivity. Therefore, if the superconducting characteristics deteriorate due to local temperature rises due to the movement of magnetic flux, it can be expected to bypass the superconducting current and suppress quenching. It is considered effective.
  • the contact resistance at the interface between the oxide superconducting bulk and the high-strength material having high electrical conductivity is small, and a silver film is formed on the surface of the oxide superconducting bulk. Then, it is desirable to join with solder or the like.
  • a high-strength reinforcing member 120 having fine pores in order to suppress entrainment of bubbles and allow the solder to penetrate uniformly when bonding with solder or the like.
  • the high strength reinforcing member 120 and the outer peripheral reinforcing ring 130 are processed by general metal machining.
  • the proportion of the superconducting material is reduced by inserting the high-strength reinforcing member 120 made of a high-strength metal, so the proportion of the high-strength reinforcing member 120 is set according to the intended use conditions. From the above viewpoint, it is desirable to use a combination of a high strength metal having a high strength and a high strength metal having a high thermal conductivity in a determined ratio.
  • the room temperature tensile strength of the superconducting bulk body 110 is about 60 MPa, and the room temperature tensile strength of the solder for attaching the high strength reinforcing member 120 to the superconducting bulk body 110 is usually less than 80 MPa. Therefore, the high-strength reinforcing member 120 having a normal temperature tensile strength of 80 MPa or more is effective as a reinforcing member. Therefore, the high-strength reinforcing member 120 preferably has a normal temperature tensile strength of 80 MPa or more.
  • the thermal conductivity of a high-strength metal having high thermal conductivity is preferably 20 W / (m ⁇ K) or more in a temperature range of 20 K to 70 K from the viewpoint of transmission and absorption of heat generated in the superconducting material. More preferably, it is preferably 100 W / (m ⁇ K) or more.
  • a plurality of disks are arranged between the oxide superconducting bulk bodies 110 as the high-strength reinforcing member 120, at least one of the disks has a thermal conductivity of 20 W / (m ⁇ K) or more. It only has to have.
  • the outer peripheral reinforcing ring 130 may be formed of a material having a high thermal conductivity in order to enhance the quench suppression effect.
  • a material containing a metal such as copper, aluminum or silver having a high thermal conductivity as a main component can be used for the outer periphery reinforcing ring 130.
  • the thermal conductivity of the outer peripheral reinforcing ring 130 having a high thermal conductivity is a temperature range of 20K to 70K in which a strong magnetic field can be stably generated by cooling the refrigerator from the viewpoint of transmission and absorption of heat generated in the superconducting material. Is preferably 20 W / (m ⁇ K) or more, and more preferably 100 W / (m ⁇ K) or more.
  • the outer peripheral reinforcing ring 130 can be configured by arranging a plurality of rings concentrically. That is, one outer peripheral reinforcing ring is configured as a whole so that the peripheral surfaces of the opposing rings are in contact with each other. In this case, at least one of the rings constituting the outer peripheral reinforcing ring only needs to have a thermal conductivity of 20 W / (m ⁇ K) or more.
  • the gist of the present invention is that the oxide superconducting bulk body having a relatively low strength and a high-strength reinforcing member are used. Therefore, the effect of compounding can be further exhibited by increasing the number of layers.
  • the thickness of the oxide superconductor also depends on the diameter (outer diameter), it is preferably 10 mm or less, more preferably 6 mm or less, and 0.3 mm or more. When the thickness is less than 0.3 mm, the superconducting characteristics are deteriorated due to fluctuations in crystallinity of the oxide superconductor.
  • the oxide superconducting bulk magnet 100 has been described above.
  • the high-strength reinforcing member 120 is disposed between at least the stacked oxide superconducting bulk bodies 110.
  • the oxide superconducting bulk body 110 and the high-strength reinforcing member 120 which have a relatively low strength against tensile stress, are alternately laminated to form a composite material, whereby the strength can be increased.
  • the occurrence of quenching can be suppressed. Thereby, even under high magnetic field strength conditions, the oxide superconducting bulk body 110 can be prevented from being damaged, and a sufficient total amount of magnetic flux can be obtained.
  • oxide superconducting bulk laminate according to this embodiment may have a configuration as shown in FIGS.
  • the high-strength reinforcing member 120 is disposed on the uppermost surface and the lowermost surface of the oxide superconducting bulk magnet 100A in the direction of the center line axis. That is, high-strength reinforcing members 125 and 127 are provided on the uppermost surface and the lowermost surface of the oxide superconducting bulk laminate having the structure shown in FIG. 1, and bonded or bonded to the opposing oxide superconducting bulk members 111 and 115, respectively. Yes.
  • the oxide superconducting bulk laminate having the configuration shown in FIG. 2 such as the oxide superconducting bulk magnet 100B shown in FIG. 3A, at least one of the uppermost and lowermost high-strength reinforcing members 125B and 127B.
  • the thickness may be thicker than the thicknesses of the other high-strength reinforcing members 121 and 123.
  • maximum stress is applied to the upper and lower surfaces of the oxide superconducting bulk laminate. For this reason, it is necessary to sufficiently reinforce this part. Therefore, as shown in FIG.
  • the thickness of the high-strength reinforcing member 125B, 127B on at least one of the uppermost surface or the lowermost surface is made thicker than the other high-strength reinforcing members 121, 123, thereby producing an oxide.
  • the strength of the end of superconducting bulk magnet 100B can be increased.
  • the outer diameters of the high-strength reinforcing members 125B-2 and 127B-2 on the uppermost surface and the lowermost surface are substantially equal to the outer diameter of the outer peripheral reinforcing ring 130.
  • the high-strength reinforcing members 125B-2 and 127B-2 may be joined to the upper and lower surfaces of the outer peripheral reinforcing ring 130. Accordingly, the high-strength reinforcing members 125B-2 and 127B-2 on the uppermost surface and the lowermost surface can be more firmly joined to the outer peripheral reinforcing ring 130.
  • the occurrence of quenching can be suppressed by using materials having high thermal conductivity as the high-strength reinforcing member 120 and the outer peripheral reinforcing rings 125B-2 and 127B-2.
  • the outer peripheral end portion of the high-strength reinforcing member 320 (321 to 325) is larger than the outer diameter of the oxide superconducting bulk body 310 (311 to 314) combined with the high-strength reinforcing member. This is particularly useful when the plurality of outer peripheral rings 330 (331 to 334) are firmly connected and the high-strength reinforcing member is relatively thin.
  • the outer peripheral reinforcing ring has a double structure in the radial direction
  • the inner peripheral reinforcing ring 330 (331 to 335) has an inner diameter smaller than the outer diameter of the high strength reinforcing member.
  • the shapes of the superconducting bulk body 110 and the high-strength reinforcing member 120 constituting the oxide superconducting bulk laminate according to the present embodiment do not necessarily need to be disk-shaped.
  • the shapes of the superconducting bulk body 110 and the high-strength reinforcing member 120 may be rectangular.
  • the outer circumferential reinforcing member 130 ⁇ / b> C is also formed as a hollow member having a rectangular through hole corresponding to the shapes of the superconducting bulk body 110 and the high-strength reinforcing member 120.
  • the shapes of the superconducting bulk body 110 and the high-strength reinforcing member 120 may be hexagonal.
  • the outer peripheral reinforcing member 130 ⁇ / b> D is also formed as a hollow member having hexagonal through holes corresponding to the shapes of the superconducting bulk body 110 and the high-strength reinforcing member 120.
  • FIG. 9A is a schematic exploded perspective view showing an example of the oxide superconducting bulk magnet 900 according to this embodiment.
  • FIG. 9B is a partial cross-sectional view of the oxide superconducting bulk magnet 900 shown in FIG. 9A.
  • 9C to 9E are modification examples of the oxide superconducting bulk magnet 900 according to this embodiment, and are partial cross-sectional views when cut along the central axis of the oxide superconducting bulk magnet 900.
  • FIG. 9A is a schematic exploded perspective view showing an example of the oxide superconducting bulk magnet 900 according to this embodiment.
  • FIG. 9B is a partial cross-sectional view of the oxide superconducting bulk magnet 900 shown in FIG. 9A.
  • 9C to 9E are modification examples of the oxide superconducting bulk magnet 900 according to this embodiment, and are partial cross-sectional views when cut along the central axis of the oxide superconducting bulk magnet 900.
  • the oxide superconducting bulk magnet 900 includes a ring-shaped oxide superconducting bulk body 910 having a through-hole in the center of the disk and a ring-shaped high-strength reinforcement having a through-hole in the center of the disk. It consists of a member 920 and an outer peripheral reinforcing ring 930.
  • three superconducting bulk bodies 912, 914, and 916 are provided as the oxide superconducting bulk body 910, and two high-strength reinforcing members 922 and 924 are provided as the high-strength reinforcing member 920. .
  • the oxide superconducting bulk body 910 and the high-strength reinforcing member 920 are alternately stacked in the central axis direction of the ring.
  • a high-strength reinforcing member 922 is disposed between the superconducting bulk bodies 912 and 914
  • a high-strength reinforcing member 924 is disposed between the superconducting bulk bodies 914 and 916.
  • the stacked oxide superconducting bulk body 910 and the high-strength reinforcing member 920 are bonded or bonded to each other, and a hollow metal outer peripheral reinforcing ring 930 is fitted to the outer periphery thereof.
  • the outer periphery reinforcing ring 930 is preferably bonded or bonded to the high strength reinforcing member 920. Furthermore, the outer peripheral reinforcing ring 930 may be bonded or bonded to the oxide superconducting bulk body 910. Thus, an oxide superconducting bulk magnet 900 is formed. Since the ring-shaped superconducting bulk body 910 is made of ceramics, it has a relatively strong proof strength against compressive force, but has a low proof strength against tensile force.
  • a high-strength reinforcing member 920 having a high yield strength against tensile force to form a composite structure
  • an oxide superconducting bulk laminate (910 + 920) provides high yield strength for both compressive force and tensile force.
  • the outer peripheral reinforcing ring 930 is arranged on the outer periphery of the laminate, so that the yield strength is further increased, and damage to the superconducting bulk body due to electromagnetic stress and quenching can be prevented even under high magnetic field strength conditions. It becomes like this.
  • Bonding or adhesion between the oxide superconducting bulk body 910 and the high-strength reinforcing member 920 stacked in the direction of the central axis may be performed by, for example, resin or grease, and more preferably, solder capable of obtaining stronger bonding force. It is better to do it.
  • soldering it is desirable that an Ag thin film is formed on the surface of the ring-shaped oxide superconducting bulk body 910 by sputtering or the like, and further annealed at 100 ° C. to 500 ° C. Thereby, the Ag thin film and the surface of the bulk material are well adapted. Since the solder itself also has a function of improving the thermal conductivity, the soldering process is desirable from the viewpoint of improving the thermal conductivity and making the temperature of the entire bulk magnet uniform.
  • the high-strength reinforcing member 920 is preferably a solderable metal such as an aluminum alloy, a Ni-based alloy, nichrome, or stainless steel.
  • the linear expansion coefficient is relatively close to that of the oxide superconducting bulk body 910 at room temperature. More preferably, nichrome that slightly applies compressive stress to the oxide superconducting bulk body 910 during cooling from the substrate.
  • the high-strength reinforcing member 920 is preferably a metal such as copper, copper alloy, aluminum, aluminum alloy, silver, or silver alloy having high thermal conductivity and high electrical conductivity. These metals can be soldered. Furthermore, oxygen-free copper, aluminum, and silver are desirable from the viewpoint of thermal conductivity and electrical conductivity. Further, when bonding with solder or the like, it is effective to use the high-strength reinforcing member 920 having pores in order to suppress entrainment of bubbles and allow the solder to penetrate uniformly.
  • the reinforcement by the high-strength reinforcing member 920 made of such a high-strength metal increases the overall thermal conductivity, thereby increasing the thermal stability of the bulk magnet and making it difficult to cause quenching.
  • High magnetic field magnetization in the current density Jc region is possible.
  • Metals such as copper, aluminum, and silver have high electrical conductivity, so when fluctuations that locally degrade the superconducting properties occur, it can be expected to have a detouring effect on the superconducting current, which is thought to have a quench suppression effect. .
  • the contact resistance at the interface between the oxide superconducting bulk and the high-strength material having high electrical conductivity is small, and a silver film is formed on the surface of the oxide superconducting bulk. Then, it is desirable to join with solder or the like.
  • the ratio of the superconducting material is reduced by inserting the high-strength reinforcing member 920 made of a high-strength metal, the ratio of the high-strength reinforcing member 920 is set in accordance with the intended use conditions. Just decide. Further, from the above viewpoint, it is desirable that the high-strength reinforcing member 920 is configured by combining a plurality of high-strength metals having high strength and high-strength metals having high thermal conductivity at respective ratios.
  • the room temperature tensile strength of the superconducting bulk body 910 is about 60 MPa, and the room temperature tensile strength of the solder for attaching the high-strength reinforcing member 920 to the superconducting bulk body 910 is usually less than 80 MPa.
  • the high-strength reinforcing member 920 having a normal temperature tensile strength of 80 MPa or more is effective as a reinforcing member. Therefore, the high-strength reinforcing member 920 preferably has a normal temperature tensile strength of 80 MPa or more.
  • the thermal conductivity of a high-strength metal having a high thermal conductivity is preferably 20 W / (m ⁇ K) or more in a temperature range of 20 K to 70 K from the viewpoint of transmission and absorption of heat generated in the superconducting material. More desirably, 100 W / (m ⁇ K) or more is desirable. Further, when a plurality of ring-shaped plates are arranged as the high-strength reinforcing member 920 between the oxide superconducting bulk bodies 910, at least one of the plates has a thermal conductivity of 20 W / (m ⁇ K) or more. As long as it has.
  • the outer peripheral reinforcing ring 930 may be formed of a material having a high thermal conductivity in order to enhance the quench suppression effect.
  • a material containing as a main component a metal such as copper, aluminum, or silver having high thermal conductivity can be used for the outer peripheral reinforcing ring 930.
  • the thermal conductivity of the outer peripheral reinforcing ring 930 having a high thermal conductivity is a temperature range of 20K to 70K where a strong magnetic field can be stably generated by cooling the refrigerator from the viewpoint of transmission and absorption of heat generated in the superconducting material. Is preferably 20 W / (m ⁇ K) or more, and more preferably 100 W / (m ⁇ K) or more.
  • the outer peripheral reinforcing ring 930 can be configured by arranging a plurality of rings concentrically. That is, one outer peripheral reinforcing ring is configured as a whole so that the peripheral surfaces of the opposing rings are in contact with each other. In this case, at least one of the rings constituting the outer peripheral reinforcing ring only needs to have a thermal conductivity of 20 W / (m ⁇ K) or more.
  • the high-strength reinforcing member 920 and the outer peripheral reinforcing ring 930 are processed by a general machining method.
  • the central axes of the inner and outer circumferences of each ring-shaped oxide superconducting bulk body 910 are necessary for improving the generated magnetic field strength and improving the uniformity (or symmetry). Further, the diameters of the outer circumference and the inner circumference of each ring-shaped oxide superconducting bulk body 910 are design matters and do not necessarily match. For example, in the case of a bulk magnet for NMR or MRI, it may be necessary to arrange a shim coil or the like for increasing the magnetic field uniformity near the center.
  • the diameter of the outer periphery it is effective to adjust the target magnetic field strength and uniformity by changing the diameter of the outer periphery in order to increase the magnetic field strength at the center and improve the uniformity.
  • the outer peripheral surface of the ring-shaped oxide superconducting bulk body 910 may be in close contact with the inner peripheral surface of the outer peripheral reinforcing ring 930.
  • the outer diameter of the oxide superconducting bulk bodies 910 may be all the same, the inner diameter of the outer peripheral reinforcing ring 130 is also the same.
  • the outer diameter of the superconducting bulk body 912 may be larger than the outer diameters of the other superconducting bulk bodies 914 and 916.
  • the outer peripheral reinforcing rings 931, 932, 933 are provided with steps so that the inner peripheral surfaces thereof are in contact with the outer peripheral surfaces of the respective superconducting bulk bodies 912, 914, 916.
  • the shape of the outer peripheral surface of the outer peripheral reinforcing ring 930 is not particularly limited, and for example, as shown in FIG. 9C, the outer diameter may be the same at each position in the central axis direction. Moreover, as shown to FIG. 9D, it is good also as the outer periphery reinforcement ring 931 which has a level
  • the outer diameter of the high-strength reinforcing member 920 does not necessarily need to match the outer diameter of the ring-shaped superconducting bulk body 910 as shown in FIG. 9B.
  • the outer diameters of the superconducting bulk body 912 and the high-strength reinforcing member 920 may be different.
  • the gist of the present invention is that an oxide superconducting bulk body having a relatively low strength, a high-strength reinforcing member, Since the strength is increased by making the composite material, the effect of the composite can be further exhibited by increasing the number of layers.
  • the thickness of the oxide superconductor also depends on the diameter (outer diameter), it is preferably 10 mm or less, more preferably 6 mm or less, and 0.3 mm or more. When the thickness is less than 0.3 mm, the superconducting characteristics are deteriorated due to fluctuations in crystallinity of the oxide superconductor. (The number of layers is preferably 3 or more, and more preferably 5 or more.)
  • the oxide superconducting bulk magnet 900 has been described above.
  • the ring-shaped high-strength reinforcing member 920 is disposed between at least the stacked ring-shaped oxide superconducting bulk bodies 910.
  • the oxide superconducting bulk body 910 and the high-strength reinforcing member 920 which are relatively low in strength against tensile stress, are alternately laminated to form a composite material, whereby the strength can be increased.
  • a material having high thermal conductivity as the high-strength reinforcing member 920 and the outer peripheral reinforcing ring 930, occurrence of quench can be suppressed.
  • the oxide superconducting bulk body 910 can be prevented from being damaged even under high magnetic field strength conditions, a sufficient total magnetic flux can be obtained inside the ring, and the oxide superconductivity with high magnetic field uniformity.
  • a bulk magnet 900 can be provided.
  • FIG. 10A is a schematic exploded perspective view showing an example of the oxide superconducting bulk magnet 1000 according to the present embodiment.
  • FIG. 10B is a partial cross-sectional view of the oxide superconducting bulk magnet 1000 shown in FIG. 10A.
  • FIG. 10C is a modification of the oxide superconducting bulk magnet 1000 according to the present embodiment, and shows a partial cross-sectional view when cut along the central axis of the oxide superconducting bulk magnet 1000.
  • the oxide superconducting bulk magnet 1000 according to the present embodiment is different from the first embodiment in that a high-strength reinforcing member 1020 is provided at the end in the central axis direction.
  • the oxide superconducting bulk magnet 1000 includes a ring-shaped oxide superconducting bulk body 1010, a ring-shaped high-strength reinforcing member 1020, and an outer peripheral reinforcing ring 1030.
  • three superconducting bulk bodies 1012, 1014, and 1016 are provided as the oxide superconducting bulk body 1010, and four high-strength reinforcing members 1021, 1023, 1025, and 1027 are provided as the high-strength reinforcing member 1020.
  • the oxide superconducting bulk body 1010 and the high-strength reinforcing member 1020 are alternately stacked in the central axis direction of the ring. For example, as shown in FIG.
  • the high-strength reinforcing member 1023 is disposed between the superconducting bulk bodies 1012, 1014, and the high-strength reinforcing member 1025 is disposed between the superconducting bulk bodies 1014, 1016.
  • the superconducting bulk body 1012 is provided with a high-strength reinforcing member 1021 on the surface opposite to the side where the high-strength reinforcing member 1023 is disposed.
  • the superconducting bulk body 1016 is provided with a high-strength reinforcing member 1027 on the surface opposite to the side where the high-strength reinforcing member 1025 is disposed.
  • the high-strength reinforcing members 1021 and 1027 are arranged on the outer peripheral reinforcing ring, as shown in FIG. 10B. It may be within 1030.
  • FIG. 10B the high-strength reinforcing members 1021 and 1027 are arranged on the outer peripheral reinforcing ring, as shown in FIG. 10B. It may be within 1030.
  • FIG. 10B the high-strength reinforcing members 1021 and 1027 are arranged on the outer peripheral reinforcing ring, as shown in FIG. 10B. It
  • the outer diameters of the high-strength reinforcing members 1021 and 1027 are made substantially the same as the outer shape of the outer peripheral reinforcing ring 1030, and the end faces of the outer peripheral reinforcing ring 1030 are covered with the high-strength reinforcing members 1021 and 1027. Also good.
  • the laminated oxide superconducting bulk body 1010 and the high-strength reinforcing member 1020 are bonded or bonded, and a hollow metal outer peripheral reinforcing ring 1030 is fitted to the outer periphery thereof. In this way, a porous oxide superconducting bulk laminate having a central penetration is formed.
  • 10A to 10E show examples in which the high-strength reinforcing members 1021 and 1027 are provided at both ends in the central axis direction of the oxide superconducting bulk magnet 1000.
  • the high-strength reinforcing members are not necessarily provided on both the uppermost surface and the lowermost surface. There is no need to arrange 1021, 1027.
  • the high-strength reinforcing member 1021 is disposed only on the uppermost surface of FIG.
  • the “perforated By arranging the “oxide superconducting bulk laminate”, a “porous oxide superconducting bulk laminate” in which high-strength reinforcing members 1021 and 1027 are arranged on both the uppermost surface and the lowermost surface as a whole may be configured.
  • the oxide superconducting bulk magnet 1000 has been described above.
  • the ring-shaped high-strength reinforcing member 1020 is arranged between the stacked ring-shaped oxide superconducting bulk bodies 1010 and at the end in the central axis direction.
  • Such oxide superconducting bulk body 1010 and high-strength reinforcing member 1020 are alternately laminated to form a composite material, whereby the strength can be increased.
  • a material having high thermal conductivity as the high-strength reinforcing member 1020 and the outer peripheral reinforcing ring 1030, occurrence of quench can be suppressed.
  • the oxide superconducting bulk body 1010 can be prevented from being damaged even under high magnetic field strength conditions, a sufficient total magnetic flux amount can be obtained inside the ring, and the oxide superconductivity with high magnetic field uniformity.
  • a bulk magnet 1000 can be provided.
  • FIG. 10D shows a case where the outer peripheral reinforcing ring is divided.
  • FIG. 11 is a schematic exploded perspective view showing an example of the oxide superconducting bulk magnet 1100 according to this embodiment.
  • the oxide superconducting bulk magnet 1100 includes a ring-shaped oxide superconducting bulk body 1110, a ring-shaped high-strength reinforcing member 1120, and an outer peripheral reinforcing ring 1130.
  • three superconducting bulk bodies 1112, 1114, 1116 are provided as the oxide superconducting bulk body 1110, and four high-strength reinforcing members 1121, 1123, 1125, 1127 are provided as the high-strength reinforcing member 1120. Is provided.
  • the oxide superconducting bulk material 1110 and the high-strength reinforcing member 1120 are alternately stacked in the central axis direction of the ring.
  • the high-strength reinforcing member 1123 is disposed between the superconducting bulk bodies 1112 and 1114
  • the high-strength reinforcing member 1125 is disposed between the superconducting bulk bodies 1114 and 1116.
  • the superconducting bulk body 1112 is provided with a high-strength reinforcing member 1121 on the surface opposite to the side where the high-strength reinforcing member 1123 is disposed.
  • the superconducting bulk body 1116 is provided with a high-strength reinforcing member 1127 on the surface opposite to the side where the high-strength reinforcing member 1125 is disposed.
  • the oxide superconducting bulk magnet 1100 has at least one of the thicknesses of the high-strength reinforcing members 1121 and 1127 on the uppermost surface or the lowermost surface and other high strength.
  • the reinforcing members 1123 and 1125 are thicker than the thickness. This is because maximum stress is applied to the surfaces of the upper surface and the lower surface of the oxide superconducting bulk magnet 1100 during the magnetization process, and this portion needs to be sufficiently reinforced.
  • the “porous oxide superconducting bulk laminate” shown in FIG. 11 is used as a simple substance, the necessity thereof increases.
  • the maximum stress can be resisted by increasing the thickness of the high-strength reinforcing members 1121 and 1127 on the uppermost surface or the lowermost surface of the oxide superconducting bulk magnet 1100. Sufficient strength can be ensured.
  • FIG. 12 is a schematic exploded perspective view showing an example of the oxide superconducting bulk magnet 1200 according to this embodiment.
  • the oxide superconducting bulk magnet 1200 includes a ring-shaped oxide superconducting bulk body 1210, a ring-shaped high-strength reinforcing member 1220, and an outer peripheral reinforcing ring 1230.
  • four superconducting bulk bodies 1212, 1214, 1216, and 1218 are provided as the oxide superconducting bulk body 1210, and five high-strength reinforcing members 1221, 1223, and 1225 are provided as the high-strength reinforcing member 1220. 1227 and 1229 are provided.
  • the inner diameter of the high-strength reinforcing member 1220 is smaller than the inner diameter of the oxide superconducting bulk body 1210 as compared with the first to third embodiments.
  • the inner peripheral surface of the ring-shaped oxide superconducting bulk body 1210 is a portion where stress is concentrated in the magnetization process. When a crack occurs in the oxide superconducting bulk magnet 1200, it often occurs from this portion.
  • the inner diameter of the high-strength reinforcing member 1220 needs to be smaller than the smaller inner diameter.
  • the starting point of the crack in the ring-shaped oxide superconducting bulk body 1210 is on the inner peripheral surface, and it is particularly desirable to reinforce the intersection line portion between the upper surface or the lower surface and the inner peripheral surface.
  • the oxide superconducting bulk body 1210 having the smaller inner diameter can be reinforced. Furthermore, by using a material having high thermal conductivity as the high-strength reinforcing member 1220 and the outer peripheral reinforcing ring 1230, occurrence of quenching can be suppressed.
  • FIG. 13A is a schematic exploded perspective view showing an example of the oxide superconducting bulk magnet 1300 according to the present embodiment.
  • FIGS. 13B to 13E are modifications of the oxide superconducting bulk magnet 1300 according to this embodiment, and are partial cross-sectional views when cut along the central axis of the oxide superconducting bulk magnet 1300.
  • FIG. 13A is a schematic exploded perspective view showing an example of the oxide superconducting bulk magnet 1300 according to the present embodiment.
  • FIGS. 13B to 13E are modifications of the oxide superconducting bulk magnet 1300 according to this embodiment, and are partial cross-sectional views when cut along the central axis of the oxide superconducting bulk magnet 1300.
  • FIG. 13A is a schematic exploded perspective view showing an example of the oxide superconducting bulk magnet 1300 according to the present embodiment.
  • FIGS. 13B to 13E are modifications of the oxide superconducting bulk magnet 1300 according to this embodiment, and are partial cross-sectional views when cut along the central
  • the oxide superconducting bulk magnet 1300 includes a ring-shaped oxide superconducting bulk body 1310, a ring-shaped high-strength reinforcing member 1320, an outer peripheral reinforcing ring 1330, and an inner peripheral reinforcing ring 1340.
  • a ring-shaped oxide superconducting bulk body 1310 a ring-shaped high-strength reinforcing member 1320, an outer peripheral reinforcing ring 1330, and an inner peripheral reinforcing ring 1340.
  • two superconducting bulk bodies 1312 and 1314 are provided as the oxide superconducting bulk body 1310
  • three high-strength reinforcing members 1321, 1323, and 1325 are provided as the high-strength reinforcing member 1320.
  • two inner peripheral reinforcement ring 1340 two inner peripheral reinforcement rings 1342 and 1344 are provided.
  • the oxide superconducting bulk magnet 1300 includes an inner peripheral reinforcing ring 1340 for reinforcing the inner peripheral surface of the oxide superconducting bulk body 1310.
  • the difference is that the superconducting bulk body 1310 is bonded or adhered to the inner peripheral surface.
  • the inner peripheral reinforcing ring 1340 is also bonded or bonded to the high-strength reinforcing member 1320, the oxide superconducting bulk body 1310 and the high-strength reinforcing member can be used even when the linear expansion coefficient is larger than that of the oxide superconducting bulk body 1310.
  • the member 1320 can be firmly bonded to the inner peripheral surface. Therefore, these inner peripheral surfaces can be reinforced and have an effect of suppressing cracking.
  • the occurrence of quenching can be suppressed by using a material having high thermal conductivity as the high-strength reinforcing member 1320, the inner peripheral reinforcing ring 1340, and the outer peripheral reinforcing ring 1330.
  • the high-strength reinforcing member 1320 and the outer peripheral reinforcing ring 1330 can be configured in the same manner as in the first embodiment.
  • a material containing a metal such as copper, aluminum, silver, etc. having high thermal conductivity as a main component can be used for example.
  • the thermal conductivity of the inner peripheral reinforcing ring 1340 having a high thermal conductivity is a temperature of 20K to 70K that can generate a strong magnetic field stably by cooling the refrigerator, etc. from the viewpoint of transmission and absorption of heat generated in the superconducting material.
  • 20 W / (m ⁇ K) or more is desirable in the region, and more desirably 100 W / (m ⁇ K) or more.
  • the inner peripheral reinforcing ring 1340 can be configured by arranging a plurality of rings concentrically. That is, one inner peripheral reinforcement ring is configured as a whole so that the peripheral surfaces of the opposing rings are in contact with each other. In this case, at least one of the rings constituting the inner peripheral reinforcing ring only needs to have a thermal conductivity of 20 W / (m ⁇ K) or more.
  • the inner peripheral surface of the ring-shaped oxide superconducting bulk body 1310 and the outer peripheral surface of the inner peripheral reinforcing ring 1340 are in close contact with each other.
  • the oxide superconducting bulk body 1310 and the high-strength reinforcing member 1320 have the same inner diameter,
  • One inner peripheral reinforcing ring 1341 may be provided.
  • the inner diameter of the high-strength reinforcing member 1320 is slightly smaller than the inner diameter of the oxide superconducting bulk body 1310, and the inner surface of each oxide superconducting bulk body 1312, 1314, 1316 is respectively Peripheral reinforcing rings 1341, 1343, and 1345 may be provided so that the inner diameters of the high-strength reinforcing members 1321, 1323, 1325, and 1327 and the inner peripheral reinforcing rings 1341, 1343, and 1345 are the same.
  • the thickness of the inner peripheral reinforcing ring 1340 is larger than the thickness of the high-strength reinforcing member 1320, FIG.
  • FIG. 13C is desirable from the viewpoint of strength. Thereby, the contact area of the inner periphery reinforcing ring 1340 and the high strength reinforcing member 1320 can be increased, and the strength of the connecting portion between the inner periphery reinforcing ring 1340 and the high strength reinforcing member 1320 can be increased. Further, when the inner peripheral diameters of the ring-shaped oxide superconducting bulk bodies 1310 are different, from the viewpoint of workability, as shown in FIG. 13D, the inner peripheral reinforcing ring 1340 is like the inner peripheral reinforcing rings 1341, 1343, 1345. It is desirable to be divided into FIG. 13E shows a case where the outer peripheral reinforcing ring is divided.
  • FIGS. 14A to 14C are partial cross-sectional views taken along the central axis showing an example of the oxide superconducting bulk magnet 1400 according to this embodiment.
  • the oxide superconducting bulk magnet 1400 includes a ring-shaped oxide superconducting bulk body 1410, a ring-shaped high-strength reinforcing member 1420, an outer peripheral reinforcing ring 1430, an inner outer peripheral reinforcing ring 1440, and an inner inner peripheral reinforcing ring 1450. And an outer peripheral reinforcing ring 1460.
  • a ring-shaped oxide superconducting bulk body 1410 a ring-shaped high-strength reinforcing member 1420, an outer peripheral reinforcing ring 1430, an inner outer peripheral reinforcing ring 1440, and an inner inner peripheral reinforcing ring 1450.
  • an outer peripheral reinforcing ring 1460 In the example shown in FIG. 14A, five superconducting bulk bodies 1411 to 1415 are provided as the oxide superconducting bulk body 1410, and six high-strength reinforcing members 1421 to 1426 are provided as the high-strength reinfor
  • the inner five outer peripheral reinforcing rings 1440 (1441 to 1445) and the outer five inner peripheral reinforcing rings 1460 (1461 to 1465) are included.
  • Five superconducting bulk bodies 1411 to 1415 are provided as the oxide superconducting bulk body 1410, and six high-strength reinforcing members 1421 to 1426 are provided as the high-strength reinforcing member 1420.
  • the oxide superconducting bulk magnet 1400 has an outer peripheral end of the high-strength reinforcing member 1420 on the inner peripheral reinforcing ring 1440 and an outer peripheral reinforcing ring 1430. Furthermore, it is different in that the inner peripheral end portion of the high-strength reinforcing member 1420 is connected by the inner inner peripheral reinforcing ring 1450 and the outer inner peripheral reinforcing ring 1460.
  • each outer peripheral and inner peripheral reinforcing ring can use metal, it can be firmly connected to a metal high-strength reinforcing member with solder or the like. It can be firmly bonded from the direction. By this effect, the oxide superconducting bulk body 1410 can be firmly bonded to the surrounding reinforcing member, and has a remarkable effect of suppressing cracking.
  • the high-strength reinforcing member 1420 the double inner peripheral reinforcing rings (1450, 1460) and the double outer peripheral reinforcing rings (1430, 1440)
  • the high-strength reinforcing member 1420 and the outer peripheral reinforcing rings (1430, 1440) can be configured in the same manner as in the first embodiment.
  • a material containing a metal such as copper, aluminum, silver or the like having a high thermal conductivity as a main component can be used for example.
  • the thermal conductivity of the inner peripheral reinforcing rings (1450, 1460) having high thermal conductivity is 20K, which can generate a strong magnetic field stably by cooling the refrigerator, etc. from the viewpoint of transmission and absorption of heat generated in the superconducting material. It is preferably 20 W / (m ⁇ K) or more, more preferably 100 W / (m ⁇ K) or more in a temperature range of ⁇ 70 K.
  • the inner peripheral reinforcing rings (1450, 1460) can be configured by arranging a plurality of rings concentrically. That is, one inner peripheral reinforcement ring is configured as a whole so that the peripheral surfaces of the opposing rings are in contact with each other. In this case, at least one of the rings constituting the inner peripheral reinforcing ring only needs to have a thermal conductivity of 20 W / (m ⁇ K) or more.
  • FIG. 14B shows an example in which only the outer periphery is coupled from the side surface and the upper and lower surfaces of the outer peripheral end portion of the high-strength reinforcing plate having a double ring structure.
  • the inner peripheral end of the inner peripheral reinforcing high-strength reinforcing plate may be connected only from the upper and lower surfaces by the inner peripheral ring.
  • FIG. 14C shows an example in which only the inner periphery is coupled from the side and top and bottom surfaces of the outer peripheral end of the high strength reinforcing plate having a double ring structure.
  • the outer peripheral end of the reinforced high-strength reinforcing plate is only joined from the upper and lower surfaces by the outer peripheral ring, such as when the outer diameter is restricted by design.
  • FIG. 15 is an explanatory view showing the fluctuation of the crystallographic orientation of the superconducting bulk body 1510.
  • the oxide superconducting bulk body 1510 is a single crystal material, the crystal orientation anisotropy appears as disturbance of the trapped magnetic flux density distribution (deviation from axial symmetry).
  • the oxide superconducting bulk body 1510 may be stacked while shifting the crystal orientation of the oxide superconducting bulk body 1510.
  • the c-axis direction can be arranged so as to substantially coincide with the inner peripheral axis of each ring, and at the same time, the a-axis orientation can be shifted.
  • Oxide superconducting bulk body 1510 of the single crystalline RE 1 Ba 2 Cu 3 O y ring-shaped RE 2 BaCuO 5 is finely dispersed in the crystal orientation of the general single crystalline RE 1 Ba 2 Cu 3 O y Have fluctuations.
  • the magnitude of the fluctuation in the c-axis direction is about ⁇ 15 °, and that the c-axis direction here substantially coincides with the inner peripheral axis of each ring means that the deviation of the single direction is about ⁇ 15 °. .
  • the angle at which the a-axis is shifted depends on the number of stacked layers, but is preferably an angle that is not four-fold symmetrical, such as 180 ° or 90 °.
  • the anisotropy of the crystal orientation can be averaged.
  • FIG. 16A is a schematic exploded perspective view showing an example of the oxide superconducting bulk magnet 1600 according to the present embodiment.
  • FIG. 16B to FIG. 16D are configuration examples of the oxide superconducting bulk body 1610 according to this embodiment, and show plan views of the oxide superconducting bulk body 1610.
  • FIG. 16A is a schematic exploded perspective view showing an example of the oxide superconducting bulk magnet 1600 according to the present embodiment.
  • FIG. 16B to FIG. 16D are configuration examples of the oxide superconducting bulk body 1610 according to this embodiment, and show plan views of the oxide superconducting bulk body 1610.
  • FIG. 16A is a schematic exploded perspective view showing an example of the oxide superconducting bulk magnet 1600 according to the present embodiment.
  • FIG. 16B to FIG. 16D are configuration examples of the oxide superconducting bulk body 1610 according to this embodiment, and show plan views of the oxide superconducting bulk body 1610.
  • FIG. 16A is a schematic exploded perspective view showing an example of the oxide supercon
  • the oxide superconducting bulk magnet 1600 is different from the first to sixth embodiments in that the oxide superconducting bulk body 1610 has a multiple ring structure in the radial direction.
  • the multiple ring structure refers to a structure in which a plurality of rings are concentrically arranged instead of a single ring in the radial direction.
  • an oxide superconducting bulk body 1610 is formed by concentrically forming rings 1610a to 1610e having different inner diameters and outer diameters and having substantially the same radial width, by providing a predetermined gap 1613 in the radial direction. It is good also as a quintuple ring structure arranged in the.
  • the oxide superconducting bulk body 1610 has a quadruple ring structure in which rings 1610a to 1610c having different inner and outer diameters are arranged concentrically with a predetermined gap 1613 in the radial direction. Also good.
  • the radial width of the ring 1610c may be larger than the radial widths of the other rings 1610a and 1610b. The width of each ring is a matter of design.
  • the oxide superconducting bulk body 1610 By stacking the ring-shaped oxide superconducting bulk body 1610 having such a multi-ring structure, the oxide superconducting bulk body 1610 has a four-fold symmetry in the superconducting current distribution due to the crystal growth accompanied by the four-fold symmetry. However, by using a concentric multiple ring shape, the flow of the superconducting current induced by magnetization is brought close to axial symmetry. This effect improves the uniformity of the captured magnetic field.
  • the oxide superconducting bulk magnet 1600 having such characteristics is particularly suitable for NMR and MRI applications that require high magnetic field uniformity.
  • the oxide superconducting bulk body 1610 forms concentric arc-shaped gaps 1613 in one ring, and a plurality of seams 1615 in the circumferential direction of the gaps 1613 on the same circumference. May be provided. Thereby, the assembly work of the oxide superconducting bulk magnet 1600 can be simplified.
  • FIG. 6A shows the oxide superconducting bulk magnet of Example 1.
  • FIG. 6A shows the oxide superconducting bulk magnet of Example 1.
  • Gd gadolinium
  • Ba barium
  • Cu copper
  • the calcined powder was formed into a disk shape using a mold.
  • This molded body was heated to 1423K to be in a molten state, held for 30 minutes, and then seeded in the middle of lowering the temperature, and the temperature range from 1278K to 1252K was gradually cooled over 180 hours to grow a crystal.
  • An oxide superconducting bulk was obtained.
  • This single crystal oxide superconducting bulk was processed to an outer diameter of 65.0 mm and a height of 8.0 mm.
  • the milled end material was mirror-polished and the microstructure was confirmed with an optical microscope. As a result, 211 phases of about 1 ⁇ m were dispersed.
  • a surface of the superconducting bulk body was coated with about 2 ⁇ m of silver by sputtering. This was heat-treated at 703 K for 100 hours in an oxygen stream. The same treatment was performed to produce five superconducting bulk bodies 610 (611 to 615).
  • nichrome plate was processed to an outer diameter of 65.0 mm, and four high-strength reinforcing members 620 (621 to 624) were similarly produced. Solder was applied in advance to the surface of nichrome.
  • a ring made of SUS316L having an outer diameter of 73.0 mm, an inner diameter of 65.05 mm, and a height of 44.5 mm was used for the outer peripheral reinforcing ring 630, and the inner peripheral surface thereof was also thinly soldered.
  • superconducting bulk bodies 610 and nichrome (high-strength reinforcing member 620) are alternately inserted into the peripheral reinforcing ring 630 heated to a temperature at which the solder melts, and after the solder is acclimated to each, the whole is cooled to room temperature.
  • the oxide superconducting bulk magnet 600 was manufactured by combining them with each other by cooling.
  • FIG. 6A shows a laminated state of the porous oxide superconducting bulk magnet obtained.
  • 6C shows a cross-sectional view of FIG. 6A.
  • the obtained oxide superconducting bulk magnet 600 was placed in a 9T magnetic field at room temperature and then cooled to 45K using a refrigerator, the external magnetic field was demagnetized to a zero magnetic field at a rate of 0.1 T / min. As a result, a trapped magnetic flux density of 7.92 T was confirmed on the surface on the axis of the oxide superconducting bulk magnet 600, and it was confirmed that the superconducting bulk body 610 could be magnetized without being broken by this magnetization.
  • FIG. 6B shows an oxide superconducting bulk magnet manufactured as a comparative material.
  • a comparative material two superconducting bulk bodies 651 (651a, 651b) having an outer diameter of 65.0 mm and a height of 22.2 mm were produced in the same manner as described above from a single-crystal oxide superconducting bulk body produced in the same manner as described above. Produced. These are placed in a peripheral reinforcing ring 653 made of SUS316L and having an outer diameter of 73.0 mm, an inner diameter of 65.05 mm, and a height of 44.5 mm, which are manufactured in the same manner as described above.
  • a bulk magnet 650 was produced. That is, the comparative material is not provided with a high-strength reinforcing member.
  • FIG. 6B shows the state of the comparative material obtained. 6D shows a cross-sectional view of FIG. 6B.
  • the comparative material was placed in a 9T magnetic field at room temperature in the same manner as described above, and after cooling to 45K using a refrigerator, the external magnetic field was demagnetized to a zero magnetic field at a rate of 0.1 T / min.
  • a rapid decrease in magnetic flux density was confirmed at the axial center of the oxide superconducting bulk magnet 650.
  • the trapped magnetic flux density at the axial surface when demagnetized to zero magnetic field was 2.65T.
  • Table 1 shows the magnetization test results for Example 1 described above.
  • an oxide superconducting bulk body, a high-strength reinforcing member, and an outer peripheral reinforcing ring used as the present invention or comparative example of each test described in Table 1 were prepared.
  • the outer diameters with different thicknesses were determined based on the manufacturing conditions of each test shown in Table 1, using a single-crystal oxide superconducting bulk material having a diameter of 70 mm produced in the same manner as in Example 1.
  • a cylindrical oxide superconducting bulk body was fabricated by processing into a 65.0 mm cylindrical shape.
  • each high-strength member was also processed from a material and thickness shown in Table 1 into a disk-like plate having an outer diameter of 65.0 mm. Further, the outer peripheral reinforcing ring was processed into a ring having the material and size shown in Table 1.
  • the test No. in Table 1 1-5 “Inner circumference: oxygen-free copper, outer circumference: SUS316L bonding material” is an outer diameter of 76.3 mm, an inner diameter of a SUS316L ring having an outer diameter of 87.6 mm, an inner diameter of 76.35 mm, and a height of 53.6 mm. It means a bonding material in which an oxygen-free copper ring having a height of 65.05 mm and a height of 53.6 mm is bonded with Sn—Zn solder. Further, as a material of the high-strength reinforcing member, test No. 1 in Table 1 was used.
  • Nickel oxygen-free copper clad material is a material obtained by laminating both surfaces of a 0.5 mm-thick nichrome plate with a 0.5-mm-thick oxygen-free copper plate with Sn—Zn solder. Means.
  • the magnetization test for performance evaluation was performed under each magnetization condition shown in Table 1.
  • Table 1 the results of the magnetization test show that the superconducting bulk magnet in which the high-strength reinforcing members are alternately laminated has no cracks, whereas the comparative material in which the high-strength reinforcing members are not alternately laminated. Then, it became a result that a crack generate
  • FIG. 7A shows an oxide superconducting bulk magnet of Example 2.
  • FIG. 7A shows an oxide superconducting bulk magnet of Example 2.
  • FIG. 7A shows an oxide superconducting bulk magnet of Example 2.
  • FIG. 7A shows an oxide superconducting bulk magnet of Example 2.
  • a Gd—Dy—Ba—Cu—O-based oxide superconducting bulk body was used.
  • Gd gadolinium
  • Ba barium
  • Cu copper
  • the weighed powder was sufficiently kneaded for 1 hour and then calcined at 1173K for 8 hours in the air.
  • the calcined powder was formed into a disk shape using a mold.
  • This molded body was heated to 1423K to be in a molten state, held for 30 minutes, and then seeded in the middle of lowering the temperature, and a temperature region of 1275K to 1248K was gradually cooled over 180 hours to grow crystals, and a single crystal shape having a diameter of 70 mm An oxide superconducting bulk was obtained.
  • the single-crystal oxide superconducting bulk body thus obtained was processed to obtain a disc-shaped superconducting bulk body 710 (711, 715) having an outer diameter of 65.0 mm and a height of 4.0 mm.
  • Two disk-shaped superconducting bulk bodies 710 (712, 714) having a height of 6.0 mm and two disk-shaped superconducting bulk bodies 710 (713) having a height of 10.0 mm were obtained. Further, the surface of the superconductor was coated with about 2.5 ⁇ m of silver by sputtering. This was heat-treated at 703 K for 100 hours in an oxygen stream to produce oxide superconducting bulk bodies 710 (total of 5).
  • two high-strength reinforcing members 720 (725, 726) in the form of a disc having an outer diameter of 65.0 mm are formed from a nichrome plate having a thickness of 1.5 mm, and an outer diameter of 65.
  • Two sheets were prepared. Solder was applied in advance to the surface of nichrome.
  • a ring made of SUS316L having an outer diameter of 73.0 mm, an inner diameter of 65.05 mm, and a height of 36.5 mm was used for the outer peripheral reinforcing ring 730, and the inner peripheral surface thereof was also thinly soldered.
  • nichrome (high-strength reinforcing member 720) and superconducting bulk body 710 are alternately inserted into the outer peripheral reinforcing ring 730 heated to a temperature at which the solder melts, and after the solder is acclimated to each, the whole is cooled to room temperature.
  • the oxide superconducting bulk magnet 700 was manufactured by combining them by cooling them.
  • a thicker member is disposed at the center of the oxide superconducting bulk magnet 700 in the center axis direction, and the high strength reinforcing member 720 is disposed in the center axis direction. The thinner the member placed in the center.
  • FIG. 7C shows a cross-sectional view of FIG. 7A.
  • the obtained oxide superconducting bulk magnet was placed in a 9.5 T magnetic field at room temperature, cooled to 40 K using a refrigerator, and then the external magnetic field was demagnetized to a zero magnetic field at a rate of 0.1 T / min.
  • the trapped magnetic flux density of 8.85 T was confirmed on the surface on the axis of the oxide superconducting bulk magnet 700, and it was confirmed that the superconducting bulk body 710 could be magnetized without being broken by this magnetization.
  • FIG. 7B shows an oxide superconducting bulk magnet manufactured as a comparative material.
  • a comparative material two superconducting bulk bodies 751 having an outer diameter of 65.0 mm and a height of 18.0 mm were produced in the same manner as described above from a single crystal oxide superconducting bulk body produced in the same manner as described above. These were placed in an outer peripheral reinforcing ring 753 made of SUS316L and having an outer diameter of 73.0 mm, an inner diameter of 65.05 mm, and a height of 36.5 mm, which were similarly manufactured as described above, and were similarly joined by soldering, thereby comparing the oxide superconductivity of the comparative material.
  • a bulk magnet 750 was produced. That is, the comparative material is not provided with a high-strength reinforcing member.
  • FIG. 7B shows the state of the comparative material obtained.
  • FIG. 7D shows a cross-sectional view of FIG. 7B.
  • Table 2 shows the magnetization test results for Example 2 above.
  • an oxide superconducting bulk body, a high-strength reinforcing member, and an outer peripheral reinforcing ring used as the present invention or comparative example of each test described in Table 2 were prepared.
  • a single crystal oxide superconducting bulk body having a diameter of 70 mm produced in the same manner as in Example 2 above, and having an outer diameter of 65.0 mm with various thicknesses described in Table 2 is different.
  • An oxide superconducting bulk body was fabricated by processing into a cylindrical shape.
  • Each high-strength reinforcing member was also processed from a plate having the material and thickness shown in Table 2 into a disc-like plate having an outer diameter of 65.0 mm. Further, the outer peripheral reinforcing ring was processed into a ring having the material and size shown in Table 2.
  • test No. in Table 2 2-5 “Nichrome oxygen-free copper clad material” is a material obtained by laminating both surfaces of a 0.5 mm thick nichrome plate with 0.5 mm thick oxygen-free copper plate with Sn—Zn solder. Means.
  • the test No. 2-6 “Inner circumference: oxygen-free copper, outer circumference: SUS316L bonding material” is an outer diameter of 76.3 mm, an inner diameter of 65 in an SUS316L ring having an outer diameter of 87.6 mm, an inner diameter of 76.35 mm, and a height of 53.6 mm. It means a bonding material in which an oxygen-free copper ring having a height of 0.05 mm and a height of 53.6 mm is bonded with Sn—Zn solder.
  • the magnetization test for performance evaluation was performed under each magnetization condition shown in Table 2. As shown in Table 2, the results of the magnetization test show that cracks do not occur in a superconducting bulk magnet in which high strength reinforcing members are alternately laminated as in the present invention and high strength members are joined to the upper and lower surfaces. It was. In contrast, the comparative material in which the high-strength reinforcing members were not alternately laminated resulted in cracks. From this, it became clear that the reinforcement by the high-strength reinforcing member functions effectively and can generate a strong magnetic field.
  • FIG. 8A shows an oxide superconducting bulk magnet of Example 3.
  • an Eu—Ba—Cu—O-based oxide superconducting bulk body was used.
  • Eu europium
  • Ba barium
  • Cu copper
  • the calcined powder was formed into a disk shape using a mold.
  • This molded body was heated to 1423K to be melted and held for 30 minutes, and then seeded in the middle of temperature reduction, and the temperature range of 1288K to 1258K was gradually cooled over 200 hours to grow crystals.
  • An oxide superconducting bulk was obtained.
  • This single-crystal oxide superconducting bulk was processed into a square shape having a side of 50.0 mm and a height of 1.8 mm. Furthermore, about 1.5 ⁇ m of silver was coated on the surface of the superconducting bulk body by sputtering. This was heat-treated at 713 K for 100 hours in an oxygen stream. The same process was performed to produce 20 superconducting bulk bodies 810.
  • two high-strength reinforcing members 820 (820a, 820b) each having a side of 50.0 mm from a nichrome plate having a thickness of 1.0 mm and a side having a side of 50.0 mm from a nichrome plate having a thickness of 0.3 mm are provided.
  • 19 rectangular high-strength reinforcing members 820 were produced. Solder was applied in advance to the surface of nichrome.
  • a ring made of aluminum alloy having an outer peripheral side of 70.0 mm, an inner peripheral side of 50.05 mm, and a height of 44.2 mm was used, and the inner peripheral surface was also thinly soldered.
  • nichrome (high-strength reinforcing member 820) and superconducting bulk body 810 are alternately inserted into a rectangular outer peripheral reinforcing ring 830 heated to a temperature at which the solder melts, and after the solder is acclimated, Each was combined by cooling to room temperature.
  • nichrome high-strength reinforcing members 820 a and 820 b having a thickness of 1.0 mm were disposed on the uppermost surface and the lowermost surface of the oxide superconducting bulk magnet 800.
  • the laminated state of this oxide superconducting bulk magnet 800 is shown in FIG. 8A.
  • the obtained oxide superconducting bulk magnet 800 was placed in a 9.5 T magnetic field at room temperature, then cooled to 45 K using a refrigerator, and then the external magnetic field was demagnetized to a zero magnetic field at a rate of 0.1 T / min. .
  • the trapped magnetic flux density of 7.34 T was confirmed on the surface on the axis of the oxide superconducting bulk magnet 800, and it was confirmed that the superconducting bulk body 810 could be magnetized without being broken by this magnetization.
  • FIG. 8B shows an oxide superconducting bulk magnet manufactured as a comparative material.
  • a comparative material 24 rectangular superconducting bulk bodies 851 each having a side of 50.0 mm and a height of 1.8 mm were produced in the same manner as described above from a single-crystal oxide superconducting bulk body produced in the same manner as described above.
  • the oxide superconductivity of the comparative material was bonded by soldering using an outer peripheral reinforcing ring 853 having an aluminum outer circumference of 70.0 mm, an inner circumference of 50.05 mm and a height of 44.2 mm.
  • a bulk magnet 850 was produced.
  • the comparative material was placed in a 9.5 T magnetic field at room temperature in the same manner as described above, then cooled to 45 K using a refrigerator, and then the external magnetic field was demagnetized to a zero magnetic field at a rate of 0.1 T / min.
  • this magnetization process at the stage of demagnetization to 5.1 T, a rapid decrease in magnetic flux density was confirmed on the axial surface of the oxide superconducting bulk magnet 850.
  • the trapped magnetic flux density on the surface on the axis when demagnetized to zero magnetic field was 2.41T.
  • Example 4 The single-crystal platinum-added Gd-based oxide superconducting bulk body having a diameter of 70 mm prepared in Example 1 was processed to obtain six disc-shaped superconducting bulk bodies having an outer diameter of 65.0 mm and a height of 4.0 mm. Produced. Further, the surface of the superconductor was coated with about 2.5 ⁇ m of silver by sputtering. This was heat-treated at 703 K for 100 hours in an oxygen stream to produce six oxide superconducting bulk bodies.
  • two high-strength reinforcing members in the form of a disc having an outer diameter of 69.0 mm are formed from a nichrome plate having a thickness of 1.0 mm, and a disc-shaped member having an outer diameter of 69.0 mm is formed from a nichrome plate having a thickness of 0.3 mm.
  • Five high-strength reinforcing members were produced. Solder was applied in advance to the surface of nichrome. A ring made of SUS314 having an outer diameter of 69.0 mm, an inner diameter of 65.05 mm, and a height of 4.0 mm was used as the inner peripheral reinforcing ring, and the surface thereof was also thinly soldered.
  • a ring made of SUS316L having an outer diameter of 79.0 mm, an inner diameter of 69.05 mm, and a height of 28.5 mm was used for the outer peripheral reinforcing ring, and the inner peripheral surface thereof was also thinly soldered.
  • Inner outer peripheral reinforcing ring 7310 (7311 to 7316) divided into outer peripheries of laminated oxide superconducting bulk body 710 (711 to 716) and high strength reinforcing member 720 (721 to 727), and outer outer peripheral ring to the outside 7300 is provided.
  • the Nichrome high-strength reinforcing member and the superconducting bulk material are alternately inserted into the outer peripheral reinforcing ring heated to a temperature at which the solder melts, and after the solder is acclimated to each, the whole is cooled to room temperature. These were combined to produce an oxide superconducting bulk magnet (present invention (2)).
  • a cross-sectional view of this oxide superconducting bulk magnet is shown in FIG. 7H.
  • An outer peripheral reinforcing ring 730 is provided on the outer periphery of the stacked oxide superconducting bulk body 710 (711 to 716) and the high strength reinforcing member 720 (721 to 727).
  • two superconducting bulk bodies having an outer diameter of 65.0 mm and a height of 14.2 mm were produced in the same manner as described above from a single crystal oxide superconducting bulk body produced in the same manner as described above. These are placed in a peripheral reinforcing ring made of SUS314 having an outer diameter of 86.0 mm, an inner diameter of 65.05 mm, and a height of 28.8 mm, and bonded together by soldering in the same manner as described above. A magnet was produced. That is, the comparative material is not provided with a high-strength reinforcing member.
  • the present invention (2) After placing the obtained oxide superconducting bulk magnet [the present invention (1), the present invention (2), comparative example] in a 8.5 T magnetic field at room temperature, it was cooled to 40 K using a refrigerator and the external magnetic field was applied. Demagnetized to zero magnetic field at a rate of 0.05 T / min. As a result, the trapped magnetic flux density of 7.2 T was confirmed without cracking the present invention (1) and the present invention (2) on the axial surface of the oxide superconducting bulk magnet. However, in the comparative material, a rapid decrease in magnetic flux density was confirmed during the magnetization process. After the magnetization experiment, when the superconducting bulk body was examined at room temperature, cracks were confirmed in the superconducting bulk body.
  • the present invention (1) and the present invention (2) are placed in a 12.0 T magnetic field at room temperature, and then cooled to 40 K using a refrigerator, and the external magnetic field is reduced to zero magnetic field at a rate of 0.05 T / min. Demagnetized.
  • the trapped magnetic flux density of 9.5 T was confirmed without cracking the present invention (1) on the axial surface of the oxide superconducting bulk magnet.
  • the present invention (2) it was confirmed that the magnetic flux density rapidly decreased in the magnetization process. After the magnetization experiment, when the superconducting bulk body was examined at room temperature, cracks were confirmed in the superconducting bulk body.
  • a high-strength reinforcing member is placed between the oxide superconducting bulk bodies and bonded to or bonded to the upper and lower oxide superconducting bulk bodies to have a crack-suppressing effect on the superconducting bulk bodies.
  • the oxide superconducting bulk has a higher trapped magnetic flux density by further reducing the generation of cracks by making the outer peripheral reinforcing ring into a double structure and firmly joining the high strength reinforcing member at the upper and lower surfaces and side surfaces at the outer peripheral end. It became clear that a laminate was obtained.
  • Table 3 shows the magnetization test results for Example 4 described above.
  • an oxide superconducting bulk body, a high-strength reinforcing member, and an outer peripheral reinforcing ring used as the present invention or comparative example of each test described in Table 3 were prepared.
  • the oxide superconducting bulk body using the single-crystal oxide superconducting bulk body having a diameter of 70 mm produced in the same manner as in Example 4 above, the oxide superconducting bulk body was processed into various cylindrical shapes having various thicknesses described in Table 3, An oxide superconducting bulk was prepared.
  • Each high-strength reinforcing member was also processed from a plate having the material and thickness shown in Table 3 into a disc-like plate. Further, the outer peripheral reinforcing ring was processed into a ring having the material and size shown in Table 3.
  • the magnetization test for performance evaluation was performed under each magnetization condition shown in Table 3.
  • Table 3 the result of the magnetization test is that a high-strength reinforcing member is placed between the oxide superconducting bulk bodies and bonded or bonded to the upper and lower oxide superconducting bulk bodies to suppress cracking of the superconducting bulk bodies. It became clear that it had an effect. Further, the oxide superconducting bulk has a higher trapped magnetic flux density by further reducing the occurrence of cracks by making the outer peripheral reinforcing ring into a double structure and firmly joining the high strength reinforcing member at the upper and lower surfaces and the side surfaces at the outer peripheral end. It became clear that a laminate was obtained.
  • Example 5 In the superconducting bulk magnet 1700 of Example 5, the Gd—Ba—Cu—O-based oxide superconducting bulk body 1710 was used.
  • Gd gadolinium
  • Ba barium
  • Cu copper
  • the calcined powder was formed into a disk shape using a mold.
  • This molded body is heated to 1423K to be melted and held for 30 minutes, and then seeded in the middle of temperature reduction, and the temperature range of 1278K to 1252K is gradually cooled over 180 hours to grow crystals.
  • a disk-shaped single crystal oxide superconducting bulk body with a diameter of 70 mm was obtained in which the c-axis of the orientation was parallel to the normal line of the substantially disk plane.
  • This single-crystal oxide superconducting bulk was processed into a ring shape having an outer diameter of 65.0 mm, an inner diameter of 35.0 mm, and a height of 8.0 mm.
  • a nichrome plate having a thickness of 1.0 mm was processed into an outer diameter of 65.0 mm and an inner diameter of 35.0 mm, and five high-strength reinforcing members 1720 (1721 to 1725) were similarly produced. Solder was applied in advance to the surface of nichrome.
  • a ring made of SUS316L having an outer diameter of 73.0 mm, an inner diameter of 65.05 mm, and a height of 53.6 mm was used for the outer peripheral reinforcing ring 1730, and the inner peripheral surface thereof was also thinly soldered.
  • FIG. 17A shows the stacking state of the porous oxide superconducting bulk stack obtained.
  • FIG. 17C shows a cross-sectional view of FIG. 17A.
  • the obtained oxide superconducting bulk magnet 1700 was placed in a 7T magnetic field at room temperature, then cooled to 40K using a refrigerator, and then the external magnetic field was demagnetized to a zero magnetic field at a rate of 0.1 T / min. As a result, a trapped magnetic flux density of 6.85 T was confirmed at the axial central portion of the oxide superconducting bulk magnet 1700, and it was confirmed that the oxide superconducting bulk body 1710 could be magnetized without being broken by this magnetization.
  • FIG. 17B shows the state of the comparative material obtained.
  • FIG. 17D shows a cross-sectional view of FIG. 17B.
  • outer peripheral reinforcing ring 13 made of SUS316L and having an outer diameter of 73.0 mm, an inner diameter of 65.05 mm, and a height of 53.6 mm, which were manufactured in the same manner as described above, and bonded by soldering in the same manner as described above.
  • An oxide superconducting bulk magnet 1750 was produced. That is, the comparative material is not provided with a high-strength reinforcing member.
  • the comparative material was placed in a 7T magnetic field at room temperature in the same manner as described above, then cooled to 40K using a refrigerator, and the external magnetic field was demagnetized to a zero magnetic field at a rate of 0.1 T / min.
  • a rapid decrease in magnetic flux density was confirmed at the axial center of the oxide superconducting bulk magnet 1750.
  • the trapped magnetic flux density at the central portion on the axis when demagnetized to zero magnetic field was 0.23T.
  • a high-strength reinforcing member is disposed between ring-shaped oxide superconducting bulk bodies and bonded or bonded to the upper and lower ring-shaped oxide superconducting bulk bodies, so that the superconductor is high without cracking. It has been clarified that an oxide superconducting bulk magnet having a trapped magnetic flux density can be obtained.
  • Table 4 shows the magnetization test results for Example 5 described above.
  • a ring-shaped oxide superconducting bulk body, a high-strength reinforcing member, and an outer peripheral reinforcing ring used as the present invention or comparative example of each test described in Table 4 were prepared.
  • the thickness of the single-crystal oxide superconducting bulk body having a diameter of 70 mm produced in the same manner as in Example 5 was determined based on the manufacturing conditions of each test in Table 4.
  • a ring-shaped oxide superconducting bulk body was fabricated by processing into a ring shape having a different outer diameter of 65.0 mm and inner diameter of 35.0 mm.
  • Each high-strength reinforcing member was also processed into a ring having an outer diameter of 65.0 mm and an inner diameter of 35.0 mm to 35.2 mm from a plate having the material and thickness shown in Table 4. Further, the outer peripheral reinforcing ring was processed into a ring having the material and size shown in Table 4.
  • oxide superconducting bulk bodies used in each test.
  • Solder was used to assemble the oxide superconducting bulk magnets of the present invention and comparative examples.
  • the superconducting bulk body and each high-strength reinforcing member are alternately placed in the outer peripheral reinforcing ring 1730 where each member is heated to a temperature at which the solder melts on the hot plate. After inserting and adapting the solder to each, the whole was cooled to room temperature to join each other, and a superconducting bulk magnet 1700 was produced.
  • test No. in Table 4 1-5 “Nichrome oxygen-free copper clad material” was laminated by soldering both sides of a 0.5 mm thick nichrome plate with an oxygen-free copper plate with a thickness of 0.5 mm with Sn—Zn solder. Means material.
  • test No. in Table 1 1-8 “Nichrome Aluminum Cladding Material” means a material made by laminating both sides of a 0.5 mm thick nichrome plate with 0.5 mm thick aluminum plate with Sn—Zn solder. To do.
  • the test No. in Table 4 1-6 “inner circumference: oxygen-free copper, outer circumference: SUS316L bonding material” is an outer diameter of 76.0 mm, an inner diameter of 65 mm in a SUS316L ring having an outer diameter of 87.6 mm, an inner diameter of 76.05 mm, and a height of 53.6 mm. It means a bonding material in which an oxygen-free copper ring having a height of 0.05 mm and a height of 53.6 mm is bonded with Sn—Zn solder. Test No.
  • joining material of inner circumference: Cu alloy, outer circumference: SUS304L has an outer diameter of 76.3 mm and an inner diameter of 65.30 in a SUS304L ring having an outer diameter of 87.6 mm, an inner diameter of 76.35 mm, and a height of 53.6 mm. It means a bonding material in which a Cu alloy ring of 05 mm and a height of 53.6 mm is bonded with Sn—Zn solder.
  • the magnetization test for performance evaluation was performed under each magnetization condition shown in Table 4. As shown in Table 4, the results of the magnetization test show that superconducting bulk magnets in which high-strength reinforcing members are alternately laminated as in the present invention are not cracked, whereas high-strength reinforcing members are alternately laminated. The comparative material that was not finished resulted in cracks. From this, it became clear that the reinforcement by the high-strength reinforcing member functions effectively and can generate a strong magnetic field.
  • Example 6 In the superconducting bulk magnet 1800 of Example 6, the Eu—Ba—Cu—O-based oxide superconducting bulk body 1810 was used.
  • Eu europium
  • Ba barium
  • Cu copper
  • the calcined powder was formed into a disk shape using a mold.
  • This molded body is heated to 1423K to be melted and held for 30 minutes, and then seeded in the middle of temperature reduction, and the temperature range from 1288K to 1262K is gradually cooled over 180 hours to grow crystals.
  • a disk-shaped single crystal superconducting bulk body with a diameter of 70 mm was obtained in which the c-axis of the azimuth was parallel to the normal line of the substantially disk plane.
  • These single-crystal oxide superconducting bulk materials were processed, one ring having an outer diameter of 65.0 mm, an inner diameter of 32.0 mm, and a height of 8.0 mm, an outer diameter of 65.0 mm, an inner diameter of 32.0 mm, and a height of 10
  • a ring of 0.0 mm, an outer diameter of 65.0 mm, an inner diameter of 36.0 mm, and a height of 10.0 mm were obtained.
  • about 2 ⁇ m of silver was coated on the surface of the superconductor by sputtering. This was heat-treated at 723 K for 100 hours in an oxygen stream. The same treatment was performed to prepare four ring-shaped oxide superconducting bulk bodies 1810 (1811-1814).
  • one ring-shaped high-strength reinforcing member having an outer diameter of 65.0 mm, an inner diameter of 31.8 mm and a thickness of 1.5 mm, an outer diameter of 65.0 mm, an inner diameter of 31.8 mm and a thickness of 0.8 mm
  • Four high-strength reinforcing members 1820 (1821 to 1824) of two high-strength reinforcing members in the form of one ring-shaped high-strength reinforcing member having an outer diameter of 65.0 mm, an inner diameter of 35.8 mm, and a thickness of 0.8 mm. did. Solder was applied in advance to the surface of nichrome.
  • a ring made of SUS316L having an outer diameter of 73.0 mm, an inner diameter of 65.05 mm, and a height of 42.2 mm was used for the outer peripheral reinforcing ring 1830, and the inner peripheral surface thereof was also thinly soldered.
  • an oxide superconducting bulk material and a high-strength reinforcing member are arranged as follows in the outer peripheral reinforcing ring 1830 heated to a temperature at which the solder melts, and after the solder is adjusted to each, the whole is cooled to room temperature. Thus, each of them was bonded to produce a porous oxide superconducting bulk laminate.
  • the lamination state of this porous oxide superconducting bulk laminate is shown in FIG. 18A.
  • 18C shows a cross-sectional view of FIG. 18A.
  • Nichrome ring (high-strength reinforcing member 1821, top surface) : Outer diameter 65.0mm, inner diameter 31.8mm, thickness 1.5mm 2)
  • Oxide superconducting bulk material 1811 Outer diameter 65.0mm, inner diameter 32.0mm, height 8.0mm 3)
  • Nichrome ring (high-strength reinforcing member 1822) : Outer diameter 65.0mm, inner diameter 31.8mm, thickness 0.8mm 4)
  • Oxide superconducting bulk material 1812 Outer diameter 65.0mm, inner diameter 32.0mm, height 10.0mm 5)
  • Nichrome ring (high-strength reinforcing member 1823) : Outer diameter 65.0mm, inner diameter 31.8mm, thickness 0.8mm 6)
  • Oxide superconducting bulk material 1813 Outer diameter 65.0 mm, inner diameter 36.0 mm, height 10.0 mm 7)
  • Nichrome ring (high-strength reinforcing member 1824) : Outer diameter 65.0mm
  • porous oxide superconducting bulk laminates was produced in the same manner. Then, the side having the high-strength reinforcing member made of nichrome was laminated so as to be an upper surface and a lower surface, and resin-bonded to obtain a single porous oxide superconducting bulk laminate.
  • One ring having a height of 36.0 mm and a height of 21.0 mm was produced in the same manner as above (reference numerals 1851a and 1851b).
  • FIG. 18B A cross-sectional view of FIG. 18B is shown in FIG. 18D.
  • a porous oxide superconducting bulk laminate produced in the same manner is placed so that the smaller inner diameter of the superconducting bulk body becomes the upper surface and the lower surface, respectively, and bonded with a resin, so that one comparative material A superconducting bulk magnet was fabricated.
  • a rapid decrease in magnetic flux density was confirmed at the axial central portion of the superconducting bulk magnet.
  • the trapped magnetic flux density at the central portion on the axis when demagnetized to zero magnetic field was 0.23 T. After the magnetization experiment, when the superconducting bulk body 1851 was examined at room temperature, cracks were confirmed in the superconducting bulk body 1851.
  • a high-strength reinforcing member is disposed between the ring-shaped oxide superconducting bulk bodies and bonded or bonded to the upper and lower ring-shaped oxide superconducting bulk bodies.
  • the thickness of the high-strength reinforcing member disposed on the upper surface and the lowermost surface is thicker than the thickness of the high-strength reinforcing member disposed between the oxide superconducting bulk bodies, and the inner diameter of the high-strength reinforcing member is oxide superconducting.
  • Table 5 (Table 5-1 and Table 5-2 are collectively referred to as Table 5) shows the magnetization test results for Example 6 above.
  • a ring-shaped oxide superconducting bulk body, a high-strength reinforcing member, and an outer peripheral reinforcing ring used as the present invention or the comparative example of each test shown in Table 5 were prepared.
  • the thickness of the oxide superconducting bulk body having a diameter of 70 mm produced in the same manner as in Example 6 was determined based on the manufacturing conditions of each test in Table 5.
  • a ring-shaped oxide superconducting bulk body was fabricated by processing into a ring shape having a different outer diameter of 65.0 mm and inner diameter of 35.0 mm.
  • Each high-strength reinforcing member was also processed into a ring having an outer diameter of 65.0 mm and an inner diameter of 35.0 mm to 35.4 mm from a plate having the material and thickness shown in Table 5. Further, the outer peripheral reinforcing ring was processed into a ring having the material and size shown in Table 5.
  • oxide superconducting bulk magnets used in each test.
  • solder or a resin as described in Table 5 was used for assembling the oxide superconducting bulk magnets of the present invention and comparative examples.
  • the superconducting bulk body and each high-strength reinforcing member are alternately placed in the outer peripheral reinforcing ring 1830 in which each member is heated to a temperature at which the solder melts on the hot plate, as in the sixth embodiment. After inserting and adapting the solder to each, the whole was cooled to room temperature to join each other, and a superconducting bulk magnet 1800 was produced.
  • test No. in Table 5 2-5 “Nichrome oxygen-free copper clad material” is a material obtained by laminating both surfaces of a 0.5 mm thick nichrome plate with 0.5 mm thick oxygen-free copper plate with Sn—Zn solder. Means.
  • test Nos. “Nichrome aluminum clad material” of 2-7 means a material obtained by laminating both surfaces of a 0.5 mm thick nichrome plate with a 0.5 mm thick aluminum plate with Sn—Zn solder. .
  • the test No. in Table 5 2-6 “Inner circumference: oxygen-free copper, outer circumference: SUS316L bonding material” is an outer diameter of 76.0 mm and an inner diameter of 65 in an SUS316L ring having an outer diameter of 87.6 mm, an inner diameter of 76.05 mm, and a height of 53.6 mm. It means a bonding material in which an oxygen-free copper ring having a height of 0.05 mm and a height of 53.6 mm is bonded with Sn—Zn solder. Test No.
  • inner circumference: copper alloy, outer circumference: SUS304L bonding material is an outer diameter of 76.0 mm, inner diameter of 65.05 mm in a SUS304L ring having an outer diameter of 87.6 mm, an inner diameter of 76.05 mm, and a height of 53.6 mm.
  • the magnetization test for performance evaluation was performed under each magnetization condition shown in Table 5. As shown in Table 5, the results of the magnetization test show that superconducting bulk magnets in which high strength reinforcing members are alternately laminated as shown in the present invention and high strength reinforcing members are joined to the upper and lower surfaces are cracked. On the other hand, the comparative material in which the high-strength reinforcing members were not alternately laminated resulted in cracks. From this, it became clear that the reinforcement by the high-strength reinforcing member functions effectively and can generate a strong magnetic field.
  • Gd gadolinium
  • Ba barium
  • Cu copper
  • the calcined powder was formed into a disk shape using a mold.
  • This molded body is heated to 1423K to be melted and held for 30 minutes, and then seeded in the middle of temperature reduction, and the temperature range of 1278K to 1245K is gradually cooled over 200 hours to grow crystals.
  • a disk-shaped single crystal oxide superconducting bulk body with a diameter of 70 mm was obtained in which the c-axis of the orientation was parallel to the normal line of the substantially disk plane. From the single-crystal oxide superconducting bulk body thus obtained, two rings having an outer diameter of 65.0 mm, an inner diameter of 35.0 mm, a height of 6.0 mm, and two rings of 7.5 mm in height was made.
  • nichrome two pieces of nichrome each having a thickness of 1.5 mm and a thickness of 0.5 mm are processed, and a ring-shaped high-strength reinforcing member 1920 (1921 to 1924) having an outer diameter of 65.0 mm and an inner diameter of 31.0 mm is formed from each plate.
  • Solder was applied in advance to the surface of nichrome.
  • a ring having an outer diameter of 77.0 mm, an inner diameter of 65.05 mm, and a height of 30.2 mm was used for the outer peripheral reinforcing ring 1930, and the inner peripheral surface thereof was thinly soldered.
  • an inner circumferential reinforcing ring made of Fe-36Ni alloy (two rings having an outer diameter of 34.95 mm, an inner diameter of 31.0 mm, a height of 6.0 mm, and an outer diameter of 34.95 mm, an inner diameter of 31.0 mm, and a height of 15.0 mm 1940 (1941 to 1943), and a thin solder was also attached to the outer peripheral surface thereof.
  • FIG. 19A shows the lamination state of the obtained porous oxide superconducting bulk laminate.
  • FIG. 19C shows a cross-sectional view of FIG. 19A.
  • the obtained superconducting bulk magnet 1000 was placed in a 9.5 T magnetic field at room temperature, it was cooled to 45 K using a refrigerator, and then the external magnetic field was demagnetized to a zero magnetic field at a rate of 0.1 T / min. As a result, a trapped magnetic flux density of 8.9 T was confirmed at the axial central portion of the superconducting bulk magnet, and it was confirmed that this magnetization could magnetize the superconducting bulk body 1910 without cracking.
  • one ring having an outer diameter of 65.0 mm, an inner diameter of 35.0 mm, and a height of 30.2 mm was produced in the same manner as described above from a single crystal oxide superconducting bulk material produced in the same manner as described above. did.
  • an inner peripheral reinforcing ring 1954 made of Fe-36Ni alloy having an outer diameter of 34.95 mm, an inner diameter of 31.0 mm, and a height of 30.2 mm is disposed inside the superconducting bulk body 1951 and bonded by soldering in the same manner as described above.
  • a perforated oxide superconducting bulk laminate was produced as a comparative material. This stacked state is shown in FIG. 19B.
  • FIG. 19D shows a cross-sectional view of FIG. 19B.
  • a high-strength reinforcing member is arranged between the ring-shaped oxide superconducting bulk bodies, and further, inner peripheral reinforcing rings are arranged and bonded or bonded to the upper and lower oxide superconducting bulk bodies, and the inner diameter of the strength reinforcing member Are the same or smaller than the inner diameter of the oxide superconducting bulk body, and a porous oxide superconducting bulk laminate having the same inner peripheral axis is formed.
  • Oxide superconductivity having a high trapped magnetic flux density without cracking in the superconducting bulk body by arranging an inner circumferential reinforcing ring bonded or bonded to the inner circumferential surface of a porous oxide superconducting bulk laminate It became clear that a bulk magnet was obtained.
  • Table 6 (Table 6-1 and Table 6-2 are collectively referred to as Table 6) shows the magnetization test results for Example 7 above.
  • a ring-shaped oxide superconducting bulk body, a high-strength reinforcing member, and an outer peripheral reinforcing ring used as the present invention or comparative example of each test described in Table 6 were prepared.
  • the outer diameter 65 having various thicknesses shown in Table 6 with different thicknesses described in Table 6 was obtained by using a single-crystal oxide superconducting bulk body having a diameter of 70 mm manufactured in the same manner as in Example 7.
  • each high-strength reinforcing member was also processed into a ring having an outer diameter of 65.0 mm and an inner diameter of 31.0 mm from a plate having the material and thickness shown in Table 6. Further, the outer peripheral reinforcing ring was processed into a ring having the material and size shown in Table 6.
  • the magnetization test for performance evaluation was performed under each magnetization condition shown in Table 6. As shown in Table 6, the results of the magnetization test show that in the bulk magnet having the inner peripheral reinforcement ring, the superconducting bulk magnet in which the high-strength reinforcing members are alternately laminated and joined is not cracked. The comparative material in which the strength reinforcing members were not alternately laminated resulted in cracks. From this, it became clear that the reinforcement by the high-strength reinforcing member functions effectively and can generate a strong magnetic field.
  • Gd gadolinium
  • Ba barium
  • Cu copper
  • the calcined powder was formed into a disk shape using a mold.
  • This molded body was heated to 1423K to a molten state, held for 30 minutes, and then seeded in the middle of temperature reduction, and a temperature range of 1278K to 1245K was gradually cooled over 200 hours to grow a crystal.
  • An oxide superconducting bulk was obtained.
  • This single-crystal oxide superconducting bulk was processed into a ring shape having an outer diameter of 65.0 mm, an inner diameter of 35.0 mm, and a height of 10.0 mm. Further, the surface of the superconducting bulk body was coated with about 2 ⁇ m of silver by sputtering. This was heat-treated at 723 K for 100 hours in an oxygen stream. The same treatment was performed to produce four ring-shaped oxide superconducting bulk bodies 2010 (2011 to 2014).
  • a ring-shaped high-strength reinforcing member 2020 having an outer diameter of 65.0 mm and an inner diameter of 31.0 mm ( 2021 to 2025). Solder was applied in advance to the surface of nichrome. A ring having an outer diameter of 77.0 mm, an inner diameter of 65.05 mm, and a height of 46.5 mm was used for the outer peripheral reinforcing ring 2030, and the inner peripheral surface thereof was thinly soldered.
  • an inner peripheral reinforcing ring 2040 (2041 to 2044) made of Fe-36Ni alloy having an outer diameter of 34.95 mm, an inner diameter of 31.0 mm, and a height of 10.0 mm was manufactured, and the outer peripheral surface thereof was thinly soldered.
  • FIG. 20A shows a laminated state of the porous oxide superconducting bulk laminate obtained.
  • 20C shows a cross-sectional view of FIG. 20A.
  • the external magnetic field was demagnetized to a zero magnetic field at a rate of 0.1 T / min.
  • a trapped magnetic flux density of 8.85 T was confirmed at the axial center of the superconducting bulk magnet, and it was confirmed that the superconducting bulk body 2010 could be magnetized without being broken by this magnetization.
  • two rings having an outer diameter of 65.0 mm, an inner diameter of 35.0 mm, and a height of 23.1 mm were prepared in the same manner as described above from a single-crystal oxide superconducting bulk material prepared in the same manner as described above.
  • Reference numeral 2051 (2051a, 2051b) were arranged in an outer peripheral reinforcing ring 2053 having an outer diameter of 77.0 mm, an inner diameter of 65.05 mm, and a height of 46.5 mm made in the same manner as described above, and further an outer diameter of 34.95 mm made of Fe-36Ni alloy.
  • the inner peripheral reinforcing ring 2054 having an inner diameter of 31.0 mm and a height of 46.5 mm was bonded by solder in the same manner as described above to produce a porous oxide superconducting bulk laminate as a comparative material. This stacked state is shown in FIG. 20B. 20D shows a cross-sectional view of FIG. 20B.
  • a high-strength reinforcing member is disposed between the ring-shaped oxide superconducting bulk bodies, and further, an inner peripheral reinforcing ring is disposed and bonded or bonded to the upper and lower oxide superconducting bulk bodies.
  • a perforated oxide superconducting bulk laminate in which the inner diameter is smaller than the inner diameter of the oxide superconducting bulk body and the respective inner peripheral axes coincide with each other is formed.
  • Eu eurobium
  • Ba barium
  • Cu copper
  • the calcined powder was formed into a disk shape using a mold.
  • This molded body was heated to 1423K to be melted and held for 30 minutes, and then seeded in the middle of temperature reduction, and the temperature range of 1288K to 1258K was gradually cooled over 200 hours to grow crystals.
  • An oxide superconducting bulk was obtained.
  • This single-crystal oxide superconducting bulk was processed into a double ring shape having an outer diameter of 65.0 mm, an inner diameter of 35.0 mm, and a height of 1.8 mm.
  • the groove of the double ring-shaped superconducting bulk body 2110 was formed by processing by sandblasting at a position of 23.5 mm from the center and a width of about 1.0 mm.
  • a ring-shaped high-strength reinforcing member 2120 having an outer diameter of 65.0 mm and an inner diameter of 31.0 mm is obtained. Each was produced. Solder was applied in advance to the surface of nichrome. A ring having an outer diameter of 77.0 mm, an inner diameter of 65.05 mm, and a height of 44.0 mm made of an aluminum alloy was used as the outer peripheral reinforcing ring 2130, and the inner peripheral surface thereof was also thinly soldered. Further, an inner peripheral reinforcing ring 2140 made of nichrome having an outer diameter of 34.95 mm, an inner diameter of 31.0 mm, and a height of 1.8 mm was produced, and the surface thereof was also thinly soldered.
  • FIG. 21A shows the stacking state of the porous oxide superconducting bulk stack obtained.
  • the obtained superconducting bulk magnet 2140 After placing the obtained superconducting bulk magnet 2140 in a 7T magnetic field at room temperature, it was cooled to 40K using a refrigerator, and then the external magnetic field was demagnetized to a zero magnetic field at a rate of 0.1 T / min. As a result, a trapped magnetic flux density of 6.85 T was confirmed at the axial central portion of the superconducting bulk magnet, and it was confirmed that the superconducting bulk body could be magnetized without being broken by this magnetization.
  • 22 single-crystal superconducting bulk bodies having a 65.0 mm outer diameter, 35.0 mm inner diameter, and 1.8 mm height from a single crystal oxide superconducting bulk body produced in the same manner as described above. was prepared in the same manner (reference numeral 2151). These are arranged in an outer peripheral reinforcing ring 2153 made of an aluminum alloy and having an outer diameter of 77.0 mm, an inner diameter of 65.05 mm, and a height of 44.0 mm, and are made of GFRP (Glass ⁇ ⁇ ⁇ Fiber Reinforced Plastics).
  • GFRP Glass ⁇ ⁇ ⁇ Fiber Reinforced Plastics
  • An inner peripheral reinforcing ring 2154 having a diameter of 34.95 mm, an inner diameter of 31.0 mm, and a height of 44.0 mm was similarly arranged and bonded with solder to produce a porous oxide superconducting bulk laminate of a comparative material. This stacked state is shown in FIG. 21B.
  • a superconducting bulk material is formed by arranging a high-strength reinforcing member between ring-shaped oxide superconducting bulk bodies, and further arranging inner peripheral reinforcing rings and bonding or adhering to the upper and lower oxide superconducting bulk bodies. It was revealed that an oxide superconducting bulk magnet having a high trapped magnetic flux density can be obtained without cracking in the body.
  • Example 10 Using the platinum-added Gd-based oxide superconductor manufactured in Example 5 and having an outer diameter of 62.0 mm, an inner diameter of 32.0 mm, and a height of 3.0 mm, eight rings were prepared. Furthermore, about 2 ⁇ m of silver was coated on the surface of these oxide superconducting bulk bodies by sputtering. This was heat-treated at 723 K for 100 hours in an oxygen stream. In the same manner, eight ring-shaped oxide superconducting bulk bodies 2210 (2211 to 2218) were produced.
  • the inner peripheral reinforcing ring 22310 (22311 to 22318) uses eight rings made of SUS314 having an outer diameter of 66.0 mm, an inner diameter of 62.05 mm, and a height of 3.0 mm, and the outer peripheral reinforcing ring 22300 is made of SUS314.
  • a ring having an outer diameter of 86.0 mm, an inner diameter of 66.05 mm, and a height of 28.8 mm was used, and the inner peripheral surface thereof was also thinly soldered. Further, 8 outer nichrome inner peripheral rings (outer diameter 31.95 mm, inner diameter 29.0 mm, height 3.0 mm) were produced.
  • the inner SUS314 inner peripheral ring had an outer diameter of 28.95 mm and an inner diameter of 27.
  • One ring having a height of 0.08 mm and a height of 28.8 mm was produced, and the outer peripheral surface thereof was thinly soldered.
  • FIG. 22A shows a cross-sectional view of the obtained porous oxide superconducting bulk laminate [present invention (1)].
  • two sheets of 1.0 mm thickness and seven SUS316 sheets of 0.3 mm thickness were processed to produce a ring-shaped high-strength reinforcing member having an outer diameter of 62.0 mm and an inner diameter of 32.0 mm from each plate.
  • the surface was previously thinly soldered.
  • a ring made of SUS314 having an outer diameter of 86.0 mm, an inner diameter of 62.05 mm, and a height of 28.8 mm was used as the outer peripheral reinforcing ring, and the inner peripheral surface thereof was thinly soldered.
  • one ring with an outer diameter of 31.95 mm, an inner diameter of 27.0 mm, and a height of 28.8 mm was produced on the inner ring made of SUS314, and the outer peripheral surface was thinly soldered.
  • FIG. 22B shows a cross-sectional view of the obtained porous oxide superconducting bulk laminate [present invention (2)].
  • two rings having an outer diameter of 62.0 mm, an inner diameter of 32.0 mm, and a height of 14.3 mm were prepared in the same manner as described above from a single-crystal oxide superconducting bulk material prepared in the same manner as above. did. These were arranged in a peripheral reinforcing ring made of SUS314 having an outer diameter of 86.0 mm, an inner diameter of 62.05 mm, and a height of 28.8 mm, which was produced in the same manner as described above.
  • an inner peripheral reinforcing ring made of SUS314 having an outer diameter of 31.95 mm, an inner diameter of 27.0 mm, and a height of 28.8 mm is disposed inside the superconducting bulk body, and is bonded with solder in the same manner as described above, so that the perforated material of the comparative material
  • An oxide superconducting bulk laminate [comparative material] was prepared. This cross-sectional view is shown in FIG. 22C.
  • the present invention (2) After placing the obtained superconducting bulk magnet [the present invention (1), the present invention (2), comparative material] in a magnetic field of 8.0 T at room temperature, after cooling to 40 K using a refrigerator, the external magnetic field was reduced to 0. Demagnetized to zero magnetic field at a rate of 0.05 T / min. As a result, the present invention (1) and the present invention (2) captured 7.95 T without cracking at the axial center of the superconducting bulk magnet. When the superconducting bulk body was examined at room temperature, cracks were confirmed in the superconducting bulk body.
  • the present invention (1) captured 10.9T without cracking at the axial center of the superconducting bulk magnet, but the present invention (2) was superconducting at room temperature after the magnetization experiment. When the bulk body was examined, cracks were confirmed in the superconducting bulk body.
  • a high-strength reinforcing member is disposed between the ring-shaped oxide superconducting bulk bodies, and further, double inner and outer peripheral reinforcing rings are disposed and bonded or bonded to the upper and lower oxide superconducting bulk bodies.
  • Table 7 shows the magnetization test results for Example 10 above.
  • a ring-shaped oxide superconducting bulk body, a high-strength reinforcing member, and a peripheral reinforcing ring used in the present invention (1), the present invention (2), or a comparative example of each test shown in Table 7 were prepared.
  • the ring-shaped oxide superconducting bulk body a single crystal-shaped oxide superconducting bulk body having a diameter of 70 mm manufactured in the same manner as in Example 10 above was used to form ring shapes with various thicknesses described in Table 4 and having different thicknesses.
  • Each high-strength reinforcing member was also processed from a plate having the material and thickness shown in Table 7. Further, the outer peripheral reinforcing ring was processed into a ring having the material and size shown in Table 7.
  • the magnetization test for performance evaluation was performed under each magnetization condition shown in Table 7. As shown in Table 7, the results of the magnetization test show that a superconducting bulk magnet in which high-strength reinforcing members are alternately laminated and bonded is generated in a bulk magnet having an inner periphery reinforcing ring under magnetization conditions of 10T or less. In contrast, the comparative material in which the high-strength reinforcing members were not alternately laminated resulted in cracks.
  • a superconducting bulk magnet having a double outer peripheral and inner peripheral ring structure and a high-strength reinforcing member bonded more firmly does not generate a crack and can generate a stronger magnetic field. It was revealed.
  • Example 22A 2250 Oxide superconducting bulk magnet (Example 10 FIG. 22B) 2290 oxide superconducting bulk magnet (Example 10 Fig. 22C) 2210 Ring-shaped oxide superconducting bulk body 2220 High-strength reinforcing member 22300 Outer outer peripheral reinforcing ring 22310 Inner outer peripheral reinforcing ring 22400 Inner inner peripheral reinforcing ring 22410 Outer inner peripheral reinforcing ring 2230 Outer peripheral reinforcing ring 2240 Inner peripheral reinforcing ring O Central axis of each oxide superconducting bulk body and outer peripheral reinforcing ring

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 高い磁場強度条件下でも、超電導バルク体の破損を防止し、かつ超電導バルク体表面において十分な総磁束量を得ることができる酸化物超電導バルクマグネットであって、板状の酸化物超電導バルク体と積層された酸化物超電導バルク体の間に配置された高強度補強部材により形成された酸化物超電導バルク積層体を有し、酸化物超電導バルク積層体の外周に外周補強部材が設けられたことを特徴とする。

Description

酸化物超電導バルクマグネット
 本発明は、酸化物超電導バルク体と補強材とを有する酸化物超電導バルクマグネットに関する。
 単結晶状のREBaCu7-x(REは、希土類元素)相中にREBaCuO相が分散した酸化物超電導材料は、高い臨界電流密度(以下、「J」と示すこともある。)を有するために、磁場中の冷却やパルス着磁により励磁され、強力な磁場を発生できる超電導バルクマグネットとして使用可能である。
 超電導バルクマグネットは非常に強力な磁場をコンパクトな空間に発生できるという優れた特長を有するが、コンパクトな空間に非常に強力な磁場を閉じ込めることになるので、超電導バルク体内部に大きな電磁応力が作用することになる。この電磁応力は、閉じ込められた磁場が広がるように作用するのでフープ応力とも呼ばれる。5~10T級の強磁場の場合には、作用する電磁応力が超電導バルク体自身の材料機械強度を超えることもあり、その結果、超電導バルク体が破損するおそれがある。超電導バルク体が破損すると、超電導バルク体は強磁場を発生することができなくなる。
 電磁応力による超電導バルク体の破損を防止することができれば、コンパクトで強磁場という超電導バルクマグネットの特長を活かすことができ、小型NMR(Nuclear Magnetic Resonance)用磁石部材や磁気力を利用した薬物輸送システムなどマグネットを利用する応用において、機器の高性能化や機器の小型軽量化に役立つことが期待されている。
 電磁力による超電導バルク体の破損を防止するために、例えば特許文献1では、円柱状の超電導バルク体とこれを囲む金属リングとにより構成された超電導バルクマグネットが提案されている。このような構成にすることにより、冷却時に金属リングによる圧縮応力が超電導バルク体に加わり、その圧縮応力が電磁応力を軽減する効果を有するため、超電導バルク体の割れを抑制することができる。このように、特許文献1には、円柱状の超電導バルク体の破損が防止できることが示されている。
 ところで、一般的な大きさ(例えば、直径40~100mm程度)の単結晶状の酸化物超電導材料を用いて、高強度の磁場を着磁により発生させるためには、それぞれの単結晶状の酸化物超電導材料をリング形状とし、その内部に強磁場を発生させることも有効である。この際、これらの内周および外周軸を合わせて積層することがさらに有効である。
 一般的に、円盤状上のバルク材をリング形状に加工することにより、リング内の内側で比較的高強度で均一な磁場を利用することが可能となる。これにより、特に高い均一度が求められるNMRやMRI(Magnetic Resonance Imaging)等への応用が可能となる。
 また、特許文献2には、六角形の超電導バルク体を7個組み合わせて、その周囲に繊維強化樹脂等からなる補強部材配置し、さらにその外周にはステンレスやアルミ等の金属からなる支持部材が配置された超電導磁場発生素子が開示されている。
 特許文献3には、結晶軸のc軸方向の厚さが0.3~15mmのリング状バルク超電導体を積層した酸化物超電導バルクマグネットが開示されている。
 また、特許文献4には、外周および内周が補強された複数のリング状超電導体を積層した超電導バルク磁石が開示されている。
 さらに、特許文献5には、半径方向に多重リング構造を有する超電導体を積層した超電導バルク磁石が開示されている。
 また、特許文献6には、一つのバルク体の外周および上下面が補強されたバルク磁石が開示されている。
 特許文献7には、カップ状の伝導部材の内部に高温超伝導体が置かれ、複数の高温超伝導体の間に挟まれる伝導部材を有するバルク磁石が開示されている。しかしながら、特許文献7の図3には、伝導部材17bと高温超伝導体とが接触して熱を伝えてはいるものの、超電導バルク体の電磁気力に対する補強の概念は示されていない。
特開平11-335120号公報 特開平11-284238号公報 特開平10-310497号公報 特開2014-75522号公報 国際公開第2011/071071号 特開2014-146760号公報 特開2002-006021号公報
 しかしながら、特許文献1~7に示した従来技術においては、高磁場(例えば10T級:6~10T)を安定に捕捉することはできないという問題があった。
 本発明は、この問題を解決し、必要とされる磁場領域を確保するための高い磁場強度条件下でも、超電導バルク体の破損を防止し、かつ、超電導バルク体表面において十分な総磁束量を得ることができる酸化物超電導バルクマグネットを提供することを目的とする。
 また、それぞれの単結晶状の酸化物超電導材料をリング形状とし、その内部に強磁場を発生させた場合、必要とされる高い磁場領域を確保するための高い磁場強度条件下でも、超電導バルク体の破損を防止し、かつ、リング内部において十分な総磁束量を得ることができ、さらに、磁場の均一性が高い酸化物超電導バルクマグネットを提供することを目的とする。
 上記課題の解決のため、本願発明者らは、鋭意検討した結果、複数の酸化物超電導バルク体を積層し、個々の酸化物超電導バルク体の間に高強度補強部材を結合又は接着して配置することで、複合材料化し、比較的低強度の酸化物超電導体を補強し高強度化することで、強磁場下でも超電導バルク体の破損を防止できることを見出して発明を為すに至った。なお、酸化物超電導バルク体と高強度補強部材とが結合又は接着されたものを、以下「酸化物超電導バルク積層体」、リング状の酸化物超電導バルク体と高強度補強部材とが結合又は接着された酸化物超電導バルクマグネットを、以下「有孔の酸化物超電導バルク積層体」とも呼ぶ。
 また、本願発明者らは検討の過程で、従来は電磁気的な応力により破壊する現象のみ報告されていたが、クエンチと呼ばれる現象によっても破壊が起こることを突き止めるに至った。
 超電導線材をコイルに巻いて作製した超電導マグネットでは、金属系および酸化物超電導線材においてもクエンチは知られており、安定化金属との複合加工等の対策が取られている、しかし、このようなクエンチ現象は、RE系のバルクマグネットでは、ほとんど知られていなかった。その理由は、単結晶状のREBaCu7-x相中にREBaCuO相が分散した酸化物超電導材料の場合、超電導電流パスの自由度が大きいこと等から、クエンチは、約10K以下の低温領域では観測されていたが、約20K以上の高温領域では観測されておらず、また、線材コイルマグネット等で起こるようなクエンチによる破損は、起きないものと考えられていた。
 しかしながら、本願発明者らの検討によって、バルクマグネットにおいても着磁過程や昇温過程等の局所的な発熱(磁束の移動)が引き金となって、局所的な臨界電流密度Jcの低下が発生し、さらに、この臨界電流密度Jcの低下が発熱(磁束の移動)をもたらすサイクルが極めて短時間に発生し、捕捉していた磁場のエネルギーが熱となって瞬時に解放され、この時の熱衝撃等で破損することが起こり得ることが新たに分かった。このため、上記のように電磁気的な応力に対する補強を行った上で、さらに、クエンチによるバルクマグネットの破損を抑制できることが必要となる。
 本発明の要旨は、以下のとおりである。
 (1)単結晶状のREBaCu(REはY又は希土類元素から選ばれる1種又は2種以上の元素。6.8≦y≦7.1)中にREBaCuOが分散された複数の板状の酸化物超電導バルク体、及び、積層された前記酸化物超電導バルク体の間に配置された1つ以上の高強度補強部材により形成された酸化物超電導バルク積層体と、
 前記酸化物超電導バルク積層体の外周に設けられた1つ以上の外周補強部材と、
を備え、
 前記酸化物超電導バルク体が、前記高強度補強部材と結合または接着されていることを特徴とする酸化物超電導バルクマグネット。
 (2)前記高強度補強部材が前記外周補強部材と結合または接着されていることを特徴とする前記(1)の酸化物超電導バルクマグネット。
 (3)前記酸化物超電導バルク体が、前記外周補強部材と結合または接着されていることを特徴とする前記(1)又は(2)の酸化物超電導バルクマグネット。
 (4)前記高強度補強部材の室温での引っ張り強度が80MPa以上であることを特徴とする前記(1)~(3)のいずれかの酸化物超電導バルクマグネット。
 (5)前記高強度補強部材の熱伝導率が20W/(m・K)以上であることを特徴とする前記(1)~(4)のいずれかの酸化物超電導バルクマグネット。
 (6)前記外周補強部材は、酸化物超電導バルク積層体の外周に一体に設けられたことを特徴とする前記(1)~(5)のいずれかの酸化物超電導バルクマグネット。
 (7)前記外周補強部材は前記酸化物超電導バルク積層体の積層方向に複数に分割されたことを特徴とする前記(1)~(5)のいずれかの酸化物超電導バルクマグネット。
 (8)隣り合う前記外周補強部材は、前記高強度補強部材を介して配置されたことを特徴とする前記(7)の酸化物超電導バルクマグネット。
 (9)前記外周補強部材の室温での引っ張り強度が80MPa以上であることを特徴とする前記(1)~(8)のいずれかの酸化物超電導バルクマグネット。
 (10)前記外周補強部材の熱伝導率が20W/(m・K)以上であることを特徴とする前記(1)~(8)のいずれかの酸化物超電導バルクマグネット。
 (11)前記酸化物超電導バルク積層体の最上面及び/又は最下面に、前記高強度補強部材が配置されていることを特徴とする前記(1)~(10)のいずれかの酸化物超電導バルクマグネット。
 (12)前記酸化物超電導バルク積層体の最上面及び/又は最下面に配置された少なくとも1つの前記高強度補強部材厚さが、前記酸化物超電導バルク体の間に配置された前記高強度補強部材の厚さよりも厚いことを特徴とする前記(11)の酸化物超電導バルクマグネット。
 (13)前記酸化物超電導バルク積層体の最上面及び最下面に配置された前記高強度補強部材は、前記外周補強部材と結合または接着されていることを特徴とする前記(11)又は(12)の酸化物超電導バルクマグネット。
 (14)前記外周補強部材の外側に、さらに第2の外周補強部材を備えることを特徴とする前記(1)~(13)のいずれかの酸化物超電導バルクマグネット。
 (15)前記第2の外周補強部材の室温での引っ張り強度が80MPa以上であることを特徴とする前記(14)の酸化物超電導バルクマグネット。
 (16)前記第2の外周補強部材の熱伝導率が20W/(m・K)以上であることを特徴とする前記(14)又は(15)の酸化物超電導バルクマグネット。
 (17)前記酸化物超電導バルク体、及び前記高強度補強部材がリング状であり、前記酸化物超電導バルク積層体が有孔の構造であることを特徴とする前記(1)~(16)のいずれかの酸化物超電導バルクマグネット。
 (18)前記酸化物超電導バルク積層体の内周に、内周補強部材が一体に設けられたことを特徴とする前記(17)の酸化物超電導バルクマグネット。
 (19)前記酸化物超電導バルク積層体の内周に、前記酸化物超電導バルク積層体の積層方向に複数に分割された内周補強部材が設けられたことを特徴とする前記(17)の酸化物超電導バルクマグネット。
 (20)隣り合う前記内周補強部材は、前記高強度補強部材を介して配置されたことを特徴とする前記(19)の酸化物超電導バルクマグネット。
 (21)前記内周補強部材の室温での引っ張り強度が80MPa以上であることを特徴とする前記(18)~(20)のいずれかの酸化物超電導バルクマグネット。
 (22)前記内周補強部材の熱伝導率が20W/(m・K)以上であることを特徴とする前記(18)~(21)のいずれかの酸化物超電導バルクマグネット。
 (23)前記酸化物超電導バルク積層体の最上面及び/又は最下面に、前記高強度補強部材が結合または接着されており、前記高強度補強部材は、前記酸化物超電導バルク積層体の内周に設けられた内周補強部材とも結合または接着されていることを特徴とする前記(18)~(22)のいずれかの酸化物超電導バルクマグネット。
 (24)前記内周補強部材の内側に第2の内周補強部材をさらに備えることを特徴とする前記(18)~(23)のいずれかの酸化物超電導バルクマグネット。
 (25)前記第2の内周補強部材の室温での引っ張り強度が80MPa以上であることを特徴とする前記(24)の酸化物超電導バルクマグネット。
 (26)前記第2の内周補強部材の熱伝導率が20W/(m・K)以上であることを特徴とする前記(24)又は(25)の酸化物超電導バルクマグネット。
 (27)前記酸化物超電導バルク体は、それぞれ、結晶軸のc軸方向が前記酸化物超電導バルク体の内周軸に略一致し、かつ、結晶軸のa軸方向が前記各酸化物超電導バルク体同士で所定の角度範囲内でずらして積層されていることを特徴とする前記(17)~(26)のいずれかの酸化物超電導バルクマグネット。
 (28)前記有孔の酸化物超電導バルク積層体における前記リング形状の酸化物超電導バルク体は、内周軸が一致する多重リング構造を有している、前記(17)~(27)のいずれかの酸化物超電導バルクマグネット。
 以上説明したように、本発明によれば、高い磁場領域を確保するための高い磁場強度条件下でも、電磁気的な応力およびクエンチによる超電導バルク体の破損を防止し、強磁場を発生することが可能な超電導バルクマグネットを提供することができる。また、単結晶状の酸化物超電導材料をリング形状とした場合、リング内部において十分な総磁束量を得ることができ、さらに、磁場の均一性の高い酸化物超電導バルクマグネットを提供することができる。
本発明の一実施形態に係る酸化物超電導バルクマグネットの一例を示す概略分解斜視図である。 同実施形態に係る酸化物超電導バルクマグネットの他の構成例を示す概略分解斜視図であって、酸化物超電導バルク積層体の最上面および最下面に高強度補強部材が結合されている例を示す。 同実施形態に係る酸化物超電導バルクマグネットの他の構成例を示す概略分解斜視図であって、最上部および最下部の高強度補強部材の厚さが他の高強度補強部材の厚さに比べ厚なっている例を示す。 図3Aの変形例であって、最上部および最下部の高強度補強部材の大きさが他の高強度補強部材よりも大きくなっている例を示す。 高強度補強部材の外径が、高強度補強部材と結合する酸化物超電導バルク体の外径よりも大きく、分割された複数の外周リングを有する酸化物超電導バルクマグネットの酸化物超電導バルクマグネットを中心軸に平行な面で切断した状態を示す断面図である。 外周補強リングが径方向に二重構造を有し、内側の外周補強リングの内径が高強度補強部材の外径より小さい酸化物超電導バルクマグネットを中心軸に平行な面で切断した状態を示す断面図である。 同実施形態に係る酸化物超電導バルクマグネットの他の構成例を示す概略分解斜視図であって、矩形の高強度補強部材と矩形の酸化物超電導バルク体とが交互に積層されている例を示す。 同実施形態に係る酸化物超電導バルクマグネットの他の構成例を示す概略分解斜視図であって、六角形の高強度補強部材と六角形の酸化物超電導バルク体とが交互に積層されている例を示す。 実施例1に係る酸化物超電導バルクマグネットを示す概略分解斜視図である。 比較材である酸化物超電導バルクマグネットを示す概略分解斜視図である。 図6Aに示した酸化物超電導バルクマグネットを中心軸に平行な面で切断した状態を示す断面図である。 図6Bに示した比較材の酸化物超電導バルクマグネットを中心軸に平行な面で切断した状態を示す断面図である。 実施例2に係る酸化物超電導バルクマグネットを示す概略分解斜視図である。 比較材である酸化物超電導バルクマグネットを示す概略分解斜視図である。 図7Aに示した酸化物超電導バルクマグネットを中心軸に平行な面で切断した状態を示す断面図である。 図7Bに示した比較材の酸化物超電導バルクマグネットを中心軸に平行な面で切断した状態を示す断面図である。 試験No.2-2に対応する酸化物超電導バルクマグネットの構成を示す概略分解斜視図である。 図7Eに示した酸化物超電導バルクマグネットを中心軸に平行な面で切断した状態を示す断面図である。 外周補強リングが径方向に二重構造を有し、内側の外周補強リングの内径が高強度補強部材の外径より小さい酸化物超電導バルクマグネットを中心軸に平行な面で切断した状態を示す断面図である。 外周補強リングが一重構造であるの酸化物超電導バルクマグネットを中心軸に平行な面で切断した状態を示す断面図である。 実施例3に係る酸化物超電導バルクマグネットを示す概略分解斜視図である。 比較材である酸化物超電導バルクマグネットを示す概略分解斜視図である。 本発明の第1の実施形態に係るリング形状の酸化物超電導バルクマグネットの一例を示す概略分解斜視図である。 図9Aに示す酸化物超電導バルクマグネットの部分断面図である。 同実施形態に係る酸化物超電導バルクマグネットの変形例であって、酸化物超電導バルクマグネットの中心軸線に沿って切断したときの部分断面図を示す(超電導バルク体の外径が相違、外周補強リングの外形同一)。 同実施形態に係る酸化物超電導バルクマグネットの変形例であって、酸化物超電導バルクマグネットの中心軸線に沿って切断したときの部分断面図を示す(超電導バルク体の外径が相違、外周補強リングの外周面に段差あり)。 同実施形態に係る酸化物超電導バルクマグネットの変形例であって、酸化物超電導バルクマグネットの中心軸線に沿って切断したときの部分断面図を示す(超電導バルク体の外径が相違、外周補強リングの外周面がテーパ形状)。 本発明の第2の実施形態に係る超電導バルクマグネットの一例を示す概略分解斜視図であって、有孔の酸化物超電導バルク積層体の上下面に高強度補強部材が結合されている例を示す。 同実施形態に係る外周補強リングと高強度補強部材と有孔の酸化物超電導バルク積層体との位置関係の例を示す部分断面図である。 同実施形態に係る外周補強リングと高強度補強部材と有孔の酸化物超電導バルク積層体との位置関係の例を示す図である。 同実施形態に係る(複数の)外周補強リングと高強度補強部材と有孔の酸化物超電導バルク積層体の位置関係の例を示す図である。 本発明の第3の実施形態に係る有孔の酸化物超電導バルク積層体の一例を示す概略分解斜視図であって、上下面の高強度補強部材の厚さが他の高強度補強部材の厚さに比べ厚くなっている例を示す。 本発明の第4の実施形態に係る有孔の酸化物超電導バルク積層体の一例を示す概略分解斜視図であって、リング形状の高強度補強部材の内径がリング形状の酸化物超電導バルク体の内径に比べ小さい例を示す。 本発明の第5の実施形態に係る有孔の酸化物超電導バルク積層体の一例を示す概略分解斜視図であって、リング形状の高強度補強部材の内径がリング形状の酸化物超電導バルク体の内径に比べ小さく、かつ内周補強リングが配置されている例を示す。 同実施形態に係る内周補強リング、高強度補強部材とリング形状の酸化物超電導バルク体の位置関係の例を示す部分断面図である。 同実施形態に係る内周補強リング、高強度補強部材とリング形状の酸化物超電導バルク体の位置関係の例を示す部分断面図である。 同実施形態に係る内周補強リング、高強度補強部材とリング形状の酸化物超電導バルク体の位置関係の例を示す部分断面図である。 同実施形態に係る内周補強リング、高強度補強部材とリング形状の酸化物超電導バルク体の位置関係の例を示す部分断面図である。 本発明の第6の実施形態に係る有孔の酸化物超電導バルク積層体の一例を示す位置関係の例を示す部分断面図であって、内周補強リングが径方向に二重構造を有し、外側の内周補強リングの外径が接する高強度補強部材の内径より大きい例を示す。また、高強度補強部材の外径が、当該高強度補強部材と結合又は接着する少なくともいずれか一方の前記酸化物超電導バルク体の外径よりも大きい例も示す。 外周補強リングが径方向に二重構造を有し、内側の外周補強リングの内径が接する高強度補強部材の外径より小さい例を示す部分断面図である。 外周補強リングおよび内周リングが径方向に二重構造を有し、内側の外周補強リングの内径が接する高強度補強部材の外径より小さいく、かつ、外側の内周補強リングの外径が接する高強度補強部材の内径より大きい例を示す部分断面図である。 超電導バルク材料の結晶学的方位の揺らぎを示す説明図である。 本発明の第7の実施形態に係る有孔の酸化物超電導バルク積層体の一例を示す概略分解斜視図であって、リング形状の酸化物超電導バルク体が多重リング構造になっている例を示す。 同実施形態に係る多重リング形状超電導バルク体の一例を示す平面図である。 同実施形態に係る多重リング形状超電導バルク体の他の一例を示す平面図である。 同実施形態に係る多重リング形状超電導バルク体の他の一例を示す平面図である。 実施例1に係る有孔の酸化物超電導バルク積層体の概略分解斜視図である。 実施例1に対する比較材の概略分解斜視図である。 図17Aの酸化物超電導バルク積層体を中心軸線に沿って切断したときの断面図である。 図17Bの酸化物超電導バルク積層体を中心軸線に沿って切断したときの断面図である。 実施例2に係る有孔の酸化物超電導バルク積層体の概略分解斜視図である。 実施例2に対する比較材の概略分解斜視図である。 図18Aの酸化物超電導バルク積層体を中心軸線に沿って切断したときの断面図である。 図18Bの酸化物超電導バルク積層体を中心軸線に沿って切断したときの断面図である。 実施例3に係る有孔の酸化物超電導バルク積層体の概略分解斜視図である。 実施例3に対する比較材の概略分解斜視図である。 図19Aの酸化物超電導バルク積層体を中心軸線に沿って切断したときの断面図である。 図19Bの酸化物超電導バルク積層体を中心軸線に沿って切断したときの断面図である。 実施例3に係る有孔の酸化物超電導バルク積層体の概略分解斜視図である。 実施例3に対する比較材の概略分解斜視図である。 図20Aの酸化物超電導バルク積層体を中心軸線に沿って切断したときの断面図である。 図20Bの酸化物超電導バルク積層体を中心軸線に沿って切断したときの断面図である。 実施例5に係る有孔の酸化物超電導バルク積層体を示す概略分解斜視図である。 実施例5に対する比較材の概略分解斜視図である。ある 実施例10の一態様に係る本発明の酸化物超電導積層体マグネットを中心軸線に沿って切断したときの断面図である。 実施例10の別の態様に係る本発明の酸化物超電導積層体マグネットを中心軸線に沿って切断したときの断面図である。 実施例10に係る比較例の酸化物超電導積層体マグネットを中心軸線に沿って切断したときの断面図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。
 本実施形態に係る酸化物超電導バルクマグネットで用いる酸化物超電導バルク体(以下、単に「超電導バルク体」ともいう。)は、単結晶状のREBaCu7-x中にREBaCuO相(211相)等に代表される非超電導相が分散した組織を有するもので、特に微細分散した組織を有するバルク材(所謂QMG(登録商標)材料)が望ましい。ここで、単結晶状というのは、完璧な単結晶でなく、小傾角粒界等の実用に差支えない欠陥を有するものも包含するという意味である。REBaCu7-x相(123相)及びREBaCuO相(211相)におけるREは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luからなる希土類元素及びそれらの組み合わせで、La、Nd、Sm、Eu、Gdを含む123相は1:2:3の化学量論組成から外れ、REのサイトにBaが一部置換した状態になることもある。また、非超電導相である211相においても、La、Ndは、Y、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luとは幾分異なり、金属元素の比が非化学量論的組成であったり、結晶構造が異なっていることが知られている。
 前述のBa元素の置換は、臨界温度を低下させる傾向がある。また、より酸素分圧の小さい環境においては、Ba元素の置換が抑制される傾向にある。
 123相は、211相とBaとCuとの複合酸化物からなる液相との包晶反応、
   211相+液相(BaとCuの複合酸化物) → 123相
によりできる。そして、この包晶反応により、123相ができる温度(Tf:123相生成温度)は、ほぼRE元素のイオン半径に関連し、イオン半径の減少に伴いTfも低くなる。また、低酸素雰囲気及びAg添加に伴い、Tfは低下する傾向にある。
 単結晶状の123相中に211相が微細分散した材料は、123相が結晶成長する際、未反応の211粒が123相中に取り残されるためにできる。即ち、上記バルク材は、
   211相+液相(BaとCuの複合酸化物) → 123相+211相
で示される反応によりできる。
 バルク材中の211相の微細分散は、臨界電流密度J向上の観点から極めて重要である。Pt、Rh又はCeの少なくとも一つを微量添加することで、半溶融状態(211相と液相からなる状態)での211相の粒成長が抑制され、結果的に材料中の211相が約1μm程度に微細化される。211相の微細分散状況は、試料を鏡面研磨した後、光学顕微鏡で確認できる。
 添加量は、微細化効果が現れる量及び材料コストの観点から、Ptで0.2~2.0質量%、Rhで0.01~0.5質量%、Ceで0.5~2.0質量%が望ましい。添加されたPt、Rh、Ceは123相中に一部固溶する。また、固溶できなかった元素は、BaやCuとの複合酸化物を形成し、材料中に点在することになる。
 また、マグネットを構成するバルク酸化物超電導体は、磁場中においても高い臨界電流密度(J)を有する必要がある。この条件を満たすには、超電導的に弱結合となる大傾角粒界を含まない単結晶状の123相である必要がある。さらに高いJc特性を有するためには、磁束の動きを止めるためのピンニングセンターが必要となる。このピンニングセンターとして機能するものが微細分散した211相であり、より細かく多数分散していることが望ましい。先に述べたように、Pt、RhやCeは、この211相の微細化を促進する働きがある。また、ピンニングサイトとして、BaCeO、BaSiO、BaGeO、BaSnO等の可能性が知られている。また、211相等の非超電導相は、劈開し易い123相中に微細分散することによって、超電導体を機械的に強化し、バルク材料として成り立たす重要な働きをも担っている。
 123相中の211相の割合は、J特性及び機械強度の観点から、5~35体積%が望ましい。また、材料中には、50~500μm程度のボイド(気泡)を5~20体積%含むことが一般的であり、さらにAg添加した場合、添加量によって1~500μm程度のAg又はAg化合物を0体積%超25体積%以下含む。
 また、結晶成長後の材料の酸素欠損量(x)は、0.5程度で半導体的な抵抗率の温度変化を示す。これを各RE系により350℃~600℃で100時間程度、酸素雰囲気中においてアニールすることにより酸素が材料中に取り込まれ、酸素欠損量(x)は0.2以下となり、良好な超電導特性を示す。この時、超電導相中には双晶構造ができる。しかしながら、この点を含めここでは単結晶状と呼ぶことにする。
 以下に、本発明の実施形態について、図に沿って説明する。
 図1は、本実施形態に係る酸化物超電導バルクマグネット100の一例を示す概略分解斜視図である。本実施形態に係る酸化物超電導バルクマグネット100は、図1に示すように、円板状の酸化物超電導バルク体110と、円板状の高強度補強部材120と、外周補強リング130とからなる。
 本実施形態では、酸化物超電導バルク体110として、3つの超電導バルク体111、113、115が設けられており、高強度補強部材120として、2つの高強度補強部材121、123が設けられている。酸化物超電導バルク体110と高強度補強部材120とは、円板の中心軸線方向に、交互に積層される。
 例えば図1に示すように、超電導バルク体111、113の間に高強度補強部材121が配置され、超電導バルク体113、115の間に高強度補強部材123が配置されている。積層された酸化物超電導バルク体110と高強度補強部材120とは結合または接着されていることが好ましい。こうして酸化物超電導バルク積層体(110+120)が形成される。また、その外周に中空の外周補強部材である外周補強リング130が設けられ、嵌合された状態となっている。外周補強リング130は高強度補強部材120と結合または接着されていることが好ましい。さらに外周補強リング130は酸化物超電導バルク体110と結合または接着されていてもよい。こうして酸化物超電導バルクマグネット100が形成される。
 超電導バルク体113は、セラミックスであるため、圧縮力に対しては比較的耐力が強いが、引張力に対する耐力が弱い。このため、引張力に対する耐力が強い高強度補強部材120と結合又は接着させて複合構造化し、酸化物超電導バルク積層体(110+120)とすることで、圧縮力と引張力の両方に高耐力となる。そして、この積層体の更に外周に、外周補強リング130が配置されることで、より一層、高耐力となり、高い磁場強度条件下でも、電磁気的な応力およびクエンチによる超電導バルク体の破損を防止できるようになる。
 中心軸線方向に積層された酸化物超電導バルク体110と高強度補強部材120とを結合または接着させるとき、例えば樹脂またはグリース等で行ってもよく、より望ましくは、より強固な結合力が得られる半田付けで行うのがよい。半田付けの場合、酸化物超電導バルク体110の表面にAg薄膜をスパッタ処理等により製膜し、さらに100℃~500℃でアニール処理することが望ましい。これにより、Ag薄膜とバルク材料表面とがよくなじむ。半田自身にも熱伝導性を向上さる働きがあるため、半田付け処理は、バルクマグネット全体熱伝導性を向上させバルクマグネット全体の温度を均一化させる観点からも望ましい。
 また、このとき、電磁気的な応力に対しての補強方法として、高強度補強部材120としては、半田付けが可能なアルミ合金、Ni基合金、ニクロム、ステンレス等の金属が望ましい。熱膨張率差による酸化物超電導バルク体と高強度補強部材との界面近傍での剥離・へき開割れ抑制の観点からは、さらには、高強度補強部材120として、線膨脹係数が酸化物超電導体と比較的近く、室温からの冷却の際に僅かに酸化物超電導バルク体110に圧縮応力を作用させるニクロムを用いることが望ましい。一方、クエンチによる破壊防止の観点からは、高強度補強部材120として、高熱伝導度および高電気伝導度を有する銅、銅合金、アルミニウム、アルミ合金、銀、銀合金等の金属が望ましい。なおこれらの金属は半田付けが可能である。さらには、無酸素銅、アルミニウム、銀が熱伝導度および電気伝導度の観点から望ましい。
 このような高強度金属からなる高強度補強部材120による補強により、全体としての熱伝導率化により、バルクマグネットとしての熱的安定性が増し、クエンチが発生しにくくなり、より低温領域すなわち高臨界電流密度Jc領域での高磁場着磁が可能となる。銅、アルミニウム、銀等の金属は、電気伝導度も高いことから、磁束の移動に伴い局所的な温度上昇により超電導特性の劣化が発生した場合、超電導電流を迂回させる作用が期待でき、クエンチ抑制効果があると考えられる。また、このとき、クエンチ抑制効果を高めるためには、酸化物超電導バルクと高電気伝導の高強度材料との界面の接触抵抗が小さいことが望ましく、酸化物超電導バルクの表面に銀皮膜を形成した後、半田等で接合することが望ましい。
 半田等で結合する際、気泡の巻き込み等を抑制し半田を均一に浸透させるため、細孔を有する高強度補強部材120を用いることは有効である。高強度補強部材120および外周補強リング130の加工は、一般的な金属の機械加工で加工される。バルクマグネットの実際上の設計では、高強度金属からなる高強度補強部材120を挿入する分、超電導材料の割合が減少するため、目的とする使用条件に合わせて、高強度補強部材120の割合を決めればよく、また、上記の観点から、強度が高い高強度金属と熱伝導率が高い高強度金属とを複数それぞれの割合を決め組み合わせて用いることが望ましい。
 また、超電導バルク体110の常温引っ張り強度は60MPa程度であり、また、高強度補強部材120を超電導バルク体110に貼り付けるための半田の常温引っ張り強度は、通常80MPa未満である。このことから、常温引っ張り強度が80MPa以上の高強度補強部材120は、補強部材として有効である。そのため、高強度補強部材120の強度は、常温引っ張り強度が80MPa以上であることが好ましい。さらにまた、熱伝導度が高い高強度金属の熱伝導率としては、超電導材料内で発生した熱の伝達・吸収の観点から、20K~70Kの温度領域で20W/(m・K)以上が望ましく、さらに望ましくは、100W/(m・K)以上が望ましい。また、高強度補強部材120として、複数の円板が酸化物超電導バルク体110の間に配置されている場合、当該円板のうち少なくとも1つが20W/(m・K)以上の熱伝導率を有していればよい。
 また、外周補強リング130についても、クエンチ抑制効果を高めるために、高い熱伝導率を有する材質から形成してもよい。この場合、外周補強リング130には、例えば、高い熱伝導率を有する銅、アルミニウム、銀等の金属を主成分として含む材質を用いることができる。高い熱伝導率を有する外周補強リング130の熱伝導率は、超電導材料内で発生した熱の伝達・吸収の観点から、冷凍機冷却等により安定して強磁場を発生できる20K~70Kの温度領域で20W/(m・K)以上が望ましく、さらに望ましくは、100W/(m・K)以上が望ましい。
 また、外周補強リング130は、同心円状に複数のリングを配置して構成することも可能である。すなわち、対向するリングの周面同士を接するようにして全体として1つの外周補強リングを構成する。この場合、外周補強リングを構成するリングのうち少なくとも1つが20W/(m・K)以上の熱伝導率を有していればよい。
 また、図1~図3Dには3枚の酸化物超電導バルク体からなるバルクマグネットの例を示したが、本発明の要旨は、比較的強度が低い酸化物超電導バルク体と高強度の補強部材との複合材料化による高強度化であるため、より多く多層化することで複合化の効果がより発揮される。酸化物超電導体の厚さは、直径(外径)にも依存するが、10mm以下が望ましく、さらに望ましくは6mm以下であり、0.3mm以上である。0.3mm未満の場合、酸化物超電導体の結晶性の揺らぎによる超電導特性の劣化が起こる。
 以上、本実施形態に係る酸化物超電導バルクマグネット100について説明した。本実施形態によれば、少なくとも積層された酸化物超電導バルク体110の間に、高強度補強部材120が配置される。特に引っ張り応力に対し、比較的低強度である酸化物超電導バルク体110と高強度補強部材120とを交互に積層させて複合材料化することで、その強度を高めることができる。さらに、高強度補強部材120および外周補強リング130として熱伝導率の高い材料を用いることで、クエンチの発生も抑制できる。これにより、高い磁場強度条件下でも、酸化物超電導バルク体110の破損を防止することができ、十分な総磁束量を得ることができる。
 また、本実施形態に係る酸化物超電導バルク積層体は、図2~図4に示すような構成であってもよい。
 例えば、図2に示す酸化物超電導バルクマグネット100Aは、酸化物超電導バルクマグネット100Aの中心線軸方向の最上面及び最下面に高強度補強部材120が配置されている。すなわち、図1に示す構成の酸化物超電導バルク積層体の最上面及び最下面に、高強度補強部材125、127が設けられ、それぞれ対向する酸化物超電導バルク体111、115と結合または接着されている。
 また、例えば図3Aに示す酸化物超電導バルクマグネット100Bのように、図2に示す構成の酸化物超電導バルク積層体において、最上面または最下面のうち少なくともいずれか一方の高強度補強部材125B、127Bの厚さを、他の高強度補強部材121、123の厚さに比べ厚くしてもよい。着磁過程においては酸化物超電導バルク積層体の上面および下面の表面に最大応力がかかる。このため、この部分を十分に補強する必要がある。そこで、図3Aに示すように、最上面または最下面のうち少なくともいずれか一方の高強度補強部材125B、127Bの厚さを他の高強度補強部材121、123よりも厚くすることで、酸化物超電導バルクマグネット100Bの端部の強度を高めることができる。
 また、図3Bに示す酸化物超電導バルクマグネット100B-2のように、最上面および最下面の高強度補強部材125B-2、127B-2の外径を外周補強リング130の外径と概ね等くし、各高強度補強部材125B-2、127B-2を外周補強リング130の上面および下面と接合させてもよい。これにより、より強固に最上面および最下面の高強度補強部材125B-2、127B-2を外周補強リング130に接合することもできる。さらに、高強度補強部材120および外周補強リング125B-2、127B-2として熱伝導率の高い材料を用いることでクエンチの発生も抑制できる。
 また、図3Cに示すように高強度補強部材320(321~325)の外周端部が、高強度補強部材と結合する酸化物超電導バルク体310(311~314)の外径よりも大きく、分割された複数の外周リング330(331~334)と強固に結合しており、高強度補強部材が比較的薄い場合は特に有用である。
 また、さらに図3Dに示すように外周補強リングが径方向に二重構造を有し、内側の外周補強リング330(331~335)の内径が高強度補強部材の外径より小さく、高強度補強部材の外周端が外側の外周補強リング(340)と結合されている場合は、高強度補強部材の外周端は外周補強リングにより強固に接合されており、より大きな補強効果を発揮する。
 さらに、本実施形態に係る酸化物超電導バルク積層体を構成する超電導バルク体110および高強度補強部材120の形状は、必ずしも円板状である必要はない。例えば図4に示す酸化物超電導バルクマグネット100Cのように、超電導バルク体110および高強度補強部材120の形状を矩形にしてもよい。このとき、外周補強部材130Cも、超電導バルク体110および高強度補強部材120の形状に対応して、矩形の貫通孔の形成された中空部材として形成される。
 あるいは図5に示す酸化物超電導バルクマグネット100Dのように、超電導バルク体110および高強度補強部材120の形状を六角形にしてもよい。このとき、外周補強部材130Dも、超電導バルク体110および高強度補強部材120の形状に対応して、六角形の貫通孔の形成された中空部材として形成される。
 次に、単結晶状の酸化物超電導材料をリング形状とした場合についての第1~8の実施形態について、図面を参照して説明する。
 <第1の実施形態>
 まず、第1の実施形態について、図9A~図9Eを用いて説明する。図9Aは、本実施形態に係る酸化物超電導バルクマグネット900の一例を示す概略分解斜視図である。図9Bは、図9Aに示す酸化物超電導バルクマグネット900の部分断面図である。図9C~図9Eは、本実施形態に係る酸化物超電導バルクマグネット900の変形例であって、酸化物超電導バルクマグネット900の中心軸線に沿って切断したときの部分断面図を示す。
 本実施形態に係る酸化物超電導バルクマグネット900は、円板の中央部に貫通孔を有するリング形状の酸化物超電導バルク体910と、円板の中央部に貫通孔を有するリング形状の高強度補強部材920と、外周補強リング930とからなる。本実施形態では、酸化物超電導バルク体910として、3つの超電導バルク体912、914、916が設けられており、高強度補強部材920として、2つの高強度補強部材922、924が設けられている。酸化物超電導バルク体910と高強度補強部材920とは、リングの中心軸線方向に、交互に積層される。例えば図9Aに示すように、超電導バルク体912、914の間に高強度補強部材922が配置され、超電導バルク体914、916の間に高強度補強部材924が配置されている。積層された酸化物超電導バルク体910と高強度補強部材920とは結合または接着され、その外周に中空の金属製の外周補強リング930が嵌合される。こうして中央が貫通した、有孔の酸化物超電導バルク積層体が形成される。外周補強リング930は高強度補強部材920と結合または接着されていることが好ましい。さらに外周補強リング930は酸化物超電導バルク体910と結合または接着されていてもよい。こうして酸化物超電導バルクマグネット900が形成される。
 リング形状の超電導バルク体910は、セラミックスであるため、圧縮力に対しては比較的耐力が強いが、引張力に対する耐力が弱い。このため、引張力に対する耐力が強い高強度補強部材920と結合又は接着させて複合構造化し、酸化物超電導バルク積層体(910+920)とすることで、圧縮力と引張力の両方に高耐力となる。そして、この積層体の更に外周に、外周補強リング930が配置されることで、より一層、高耐力となり、高い磁場強度条件下でも、電磁気的な応力およびクエンチによる超電導バルク体の破損を防止できるようになる。
 中心軸線方向に積層された酸化物超電導バルク体910と高強度補強部材920との結合または接着は、例えば樹脂またはグリース等で行ってもよく、より望ましくは、より強固な結合力が得られる半田付けで行うのがよい。半田付けの場合、リング形状の酸化物超電導バルク体910の表面にAg薄膜をスパッタ処理等により製膜し、さらに100℃~500℃でアニール処理することが望ましい。これにより、Ag薄膜とバルク材料表面とがよくなじむ。半田自身にも熱伝導性を向上さる働きがあるため、半田付け処理は、熱伝導性を向上させバルクマグネット全体の温度を均一化させる観点からも望ましい。
 また、このとき、電磁気的な応力に対しての補強方法として、高強度補強部材920としては、半田付けが可能なアルミ合金、Ni基合金、ニクロム、ステンレス等の金属が望ましい。熱膨張率差による酸化物超電導バルク体と高強度補強部材との界面近傍での剥離・へき開割れ抑制の観点からは、さらには、線膨脹係数が酸化物超電導バルク体910と比較的近く、室温からの冷却の際に僅かに酸化物超電導バルク体910に圧縮応力を作用させるニクロムがさらに望ましい。一方、クエンチによる破壊防止の観点からは、高強度補強部材920として、高熱伝導度および高電気伝導度を有する銅、銅合金、アルミニウム、アルミ合金、銀、銀合金等の金属が望ましい。なおこれらの金属は半田付けが可能である。さらには、無酸素銅、アルミニウム、銀が熱伝導度および電気伝導度の観点から望ましい。また、半田等で結合する際、気泡の巻き込み等を抑制し半田を均一に浸透させるため、細孔を有する高強度補強部材920を用いることは有効である。
 このような高強度金属からなる高強度補強部材920による補強により、全体としての熱伝導率化により、バルクマグネットとしての熱的安定性が増し、クエンチが発生しにくくなり、より低温領域すなわち高臨界電流密度Jc領域での高磁場着磁が可能となる。銅、アルミニウム、銀等の金属は、電気伝導度も高いことから、局所的に超電導特性を劣化させる揺籃が発生した場合、超電導電流を迂回させる作用が期待でき、クエンチ抑制効果があると考えられる。また、このとき、クエンチ抑制効果を高めるためには、酸化物超電導バルクと高電気伝導の高強度材料との界面の接触抵抗が小さいことが望ましく、酸化物超電導バルクの表面に銀皮膜を形成した後、半田等で接合することが望ましい。
 バルクマグネットの実際上の設計では、高強度金属からなる高強度補強部材920を挿入する分、超電導材料の割合が減少するため、目的とする使用条件に合わせて、高強度補強部材920の割合を決定すればよい。また、上記の観点から、高強度補強部材920を、強度が高い高強度金属と熱伝導率が高い高強度金属とを複数それぞれの割合を決めて、組み合わせて構成することが望ましい。
 また、超電導バルク体910の常温引っ張り強度は60MPa程度であり、また、高強度補強部材920を超電導バルク体910に貼り付けるための半田の常温引っ張り強度は、通常80MPa未満である。このことから、常温引っ張り強度が80MPa以上の高強度補強部材920は、補強部材として有効である。そのため、高強度補強部材920の強度は、常温引っ張り強度が80MPa以上であることが好ましい。さらに、熱伝導度が高い高強度金属の熱伝導率としては、超電導材料内で発生した熱の伝達、吸収の観点から、20K~70Kの温度領域で20W/(m・K)以上が望ましく、さらに望ましくは、100W/(m・K)以上が望ましい。また、高強度補強部材920として、複数のリング状の板が酸化物超電導バルク体910の間に配置されている場合、当該板のうち少なくとも1つが20W/(m・K)以上の熱伝導率を有していればよい。
 また、外周補強リング930についても、クエンチ抑制効果を高めるために、高い熱伝導率を有する材質から形成してもよい。この場合、外周補強リング930には、例えば、高い熱伝導率を有する銅、アルミニウム、銀等の金属を主成分として含む材質を用いることができる。高い熱伝導率を有する外周補強リング930の熱伝導率は、超電導材料内で発生した熱の伝達・吸収の観点から、冷凍機冷却等により安定して強磁場を発生できる20K~70Kの温度領域で20W/(m・K)以上が望ましく、さらに望ましくは、100W/(m・K)以上が望ましい。
 また、外周補強リング930は、同心円状に複数のリングを配置して構成することも可能である。すなわち、対向するリングの周面同士を接するようにして全体として1つの外周補強リングを構成する。この場合、外周補強リングを構成するリングのうち少なくとも1つが20W/(m・K)以上の熱伝導率を有していればよい。
 高強度補強部材920および外周補強リング930の加工は、一般的な機械加工法で加工される。各リング形状の酸化物超電導バルク体910の内外周の中心軸は、発生磁場強度向上および均一度(または対称性)向上のため必要である。また、各リング形状の酸化物超電導バルク体910の外周の直径および内周の直径は、設計事項であり、必ずしも一致させる必要はない。例えば、NMRまたはMRI用のバルクマグネットの場合、中心付近に磁場均一度を高めるためのシムコイル等を配置する必要が生じる場合がある。その際には、中心付近の内径を大きくし、シムコイル等を配置し易くすることが望ましい。また、外周の直径に関しても、中心部の磁場強度を増したり、均一度を向上させるため、外周部の直径を変化させ目的とする磁場強度や均一度を調整することは、有効である。
 外周補強リング930の形状(外周および内周)は、リング形状の酸化物超電導バルク体910の外周面が外周補強リング930の内周面に密着していればよい。例えば、図9Bに示すように、酸化物超電導バルク体910の外径がすべて同一であれば、外周補強リング130の内径も同一となる。あるいは、図9C、図9D、図9Eに示すように、超電導バルク体912の外径が他の超電導バルク体914、916の外径より大きい場合もある。このとき、外周補強リング931、932、933は、内周面が各超電導バルク体912、914、916の外周面に接するように段差が設けられる。
 外周補強リング930の外周面の形状については、特に限定されず、例えば図9Cに示すように、中心軸線方向の各位置で同一の外径となるようにしてもよい。また、図9Dに示すように、径方向の厚みが同一となるように、外周面に段差を有する外周補強リング931としてもよい。あるいは、図9Eに示すように、径方向の厚みが略同一となるように、外周面がテーパ形状の外周補強リング932としてもよい。
 また、高強度補強部材920の外径は、図9Bに示すように、リング形状の超電導バルク体910の外径に必ずしも一致させる必要はない。例えば、図9C~図9Eに示すように、超電導バルク体912と高強度補強部材920との外径が相違していてもよい。さらに、複数の外周補強リング930を積層する場合などは、ネジ穴を有する各外周補強リング930にネジを挿入し中心軸を合わせることは有効である。
 また、図9A~9Eには3枚の酸化物超電導バルク体からなるバルクマグネットの例を示したが、本発明の要旨は、比較的強度が低い酸化物超電導バルク体と高強度の補強部材との複合材料化による高強度化であるため、より多く多層化することで複合化の効果がより発揮される。酸化物超電導体の厚さは、直径(外径)にも依存するが、10mm以下が望ましく、さらに望ましくは6mm以下であり、0.3mm以上である。0.3mm未満の場合、酸化物超電導体の結晶性の揺らぎによる超電導特性の劣化が起こる。(層数は、3枚以上が望ましく、さらに望ましくは、5枚以上である。)
 以上、本実施形態に係る酸化物超電導バルクマグネット900について説明した。本実施形態によれば、少なくとも積層されたリング形状の酸化物超電導バルク体910の間に、リング状の高強度補強部材920が配置される。特に引っ張り応力に対し、比較的低強度である酸化物超電導バルク体910と高強度補強部材920とを交互に積層させて複合材料化することで、その強度を高めることができる。さらに、高強度補強部材920および外周補強リング930として熱伝導率の高い材料を用いることで、クエンチの発生も抑制できる。これにより、高い磁場強度条件下でも、酸化物超電導バルク体910の破損を防止することができ、リング内部において十分な総磁束量を得ることができ、さらに、磁場の均一性が高い酸化物超電導バルクマグネット900を提供することができる。
 <第2の実施形態>
 次に、第2の実施形態について、図10A~図10Cを用いて説明する。図10Aは、本実施形態に係る酸化物超電導バルクマグネット1000の一例を示す概略分解斜視図である。図10Bは、図10Aに示す酸化物超電導バルクマグネット1000の部分断面図である。図10Cは、本実施形態に係る酸化物超電導バルクマグネット1000の変形例であって、酸化物超電導バルクマグネット1000の中心軸線に沿って切断したときの部分断面図を示す。
 本実施形態に係る酸化物超電導バルクマグネット1000は、第1の実施形態と比較して、中心軸線方向の端部に、高強度補強部材1020が設けられる点で相違する。図10Aに示すように、酸化物超電導バルクマグネット1000は、リング形状の酸化物超電導バルク体1010と、リング形状の高強度補強部材1020と、外周補強リング1030とからなる。本実施形態では、酸化物超電導バルク体1010として、3つの超電導バルク体1012、1014、1016が設けられており、高強度補強部材1020として、4つの高強度補強部材1021、1023、1025、1027が設けられている。酸化物超電導バルク体1010と高強度補強部材1020とは、リングの中心軸線方向に、交互に積層される。例えば図10Aに示すように、超電導バルク体1012、1014の間に高強度補強部材1023が配置され、超電導バルク体1014、1016の間に高強度補強部材1025が配置されている。
 また、超電導バルク体1012には、高強度補強部材1023が配置された側と反対側の面に高強度補強部材1021が設けられる。同様に、超電導バルク体1016には、高強度補強部材1025が配置された側と反対側の面に高強度補強部材1027が設けられる。このとき、最上面の高強度補強部材1021および最下面の高強度補強部材1027と、外周補強リング1030との位置関係は、図10Bに示すように、高強度補強部材1021、1027が外周補強リング1030内に収まるようにしてもよい。あるいは、図10Cに示すように、高強度補強部材1021、1027の外径を外周補強リング1030の外形と略同一として、外周補強リング1030の端面を高強度補強部材1021、1027で覆うようにしてもよい。
 積層された酸化物超電導バルク体1010と高強度補強部材1020とは結合または接着され、その外周に中空の金属製の外周補強リング1030が嵌合される。こうして中央が貫通した、有孔の酸化物超電導バルク積層体が形成される。なお、中心軸線方向に積層された酸化物超電導バルク体1010と高強度補強部材1020との結合または接着は、第1の実施形態と同様に行ってもよい。
 図10A~図10Eでは、酸化物超電導バルクマグネット1000の中心軸線方向の両端部に、高強度補強部材1021、1027を設ける例を示したが、必ずしも最上面および最下面の両方に高強度補強部材1021、1027を配置する必要はない。例えば図10Aの最上面にのみ高強度補強部材1021を配置した「有孔の酸化物超電導バルク積層体」の下に、図10Aの最下面にのみ高強度補強部材1027を配置した「有孔の酸化物超電導バルク積層体」を配置することによって、全体として最上面および最下面の両方に高強度補強部材1021、1027を配置した「有孔の酸化物超電導バルク積層体」を構成してもよい。
 以上、本実施形態に係る酸化物超電導バルクマグネット1000について説明した。本実施形態によれば、積層されたリング形状の酸化物超電導バルク体1010の間および中心軸線方向の端部に、リング状の高強度補強部材1020が配置される。このような酸化物超電導バルク体1010と高強度補強部材1020とを交互に積層させて複合材料化することで、その強度を高めることができる。さらに、高強度補強部材1020および外周補強リング1030として熱伝導度の高い材料を用いることで、クエンチの発生も抑制できる。これにより、高い磁場強度条件下でも、酸化物超電導バルク体1010の破損を防止することができ、リング内部において十分な総磁束量を得ることができ、さらに、磁場の均一性が高い酸化物超電導バルクマグネット1000を提供することができる。また、図10Dに外周補強リングが分割されている場合を示す。
 <第3の実施形態>
 次に、第3の実施形態について、図11を用いて説明する。図11は、本実施形態に係る酸化物超電導バルクマグネット1100の一例を示す概略分解斜視図である。酸化物超電導バルクマグネット1100は、リング形状の酸化物超電導バルク体1110と、リング形状の高強度補強部材1120と、外周補強リング1130とからなる。本実施形態では、酸化物超電導バルク体1110として、3つの超電導バルク体1112、1114、1116が設けられており、高強度補強部材1120として、4つの高強度補強部材1121、1123、1125、1127が設けられている。
 酸化物超電導バルク体1110と高強度補強部材1120とは、リングの中心軸線方向に、交互に積層される。例えば図11に示すように、超電導バルク体1112、1114の間に高強度補強部材1123が配置され、超電導バルク体1114、1116の間に高強度補強部材1125が配置されている。また、超電導バルク体1112には、高強度補強部材1123が配置された側と反対側の面に高強度補強部材1121が設けられる。同様に、超電導バルク体1116には、高強度補強部材1125が配置された側と反対側の面に高強度補強部材1127が設けられる。なお、中心軸線方向に積層された酸化物超電導バルク体1110と高強度補強部材1120との結合または接着は、第1の実施形態と同様に行ってもよい。
 本実施形態に係る酸化物超電導バルクマグネット1100は、第2の実施形態と比較して、最上面または最下面の高強度補強部材1121、1127のうち少なくともいずれか一方の厚みが、他の高強度補強部材1123、1125の厚さに比べ厚くなっている。これは、着磁過程において酸化物超電導バルクマグネット1100の上面および下面の表面に最大応力がかかるためであり、この部分を十分に補強する必要がある。特に、図11に示す「有孔の酸化物超電導バルク積層体」を単体として使用する場合は、その必要性が高くなる。そこで、本実施形態に係る酸化物超電導バルクマグネット1100のように、酸化物超電導バルクマグネット1100の最上面または最下面の高強度補強部材1121、1127の厚みを大きくすることで、最大応力に耐え得る十分な強度を確保することができる。
 なお、第2の実施形態と同様、例えば図11の最上面にのみ高強度補強部材1121を配置した「有孔の酸化物超電導バルク積層体」の下に、図11の最下面にのみ高強度補強部材1127を配置した「有孔の酸化物超電導バルク積層体」を配置することによって、全体として最上面および最下面の両方に高強度補強部材1121、1127を配置した「有孔の酸化物超電導バルク積層体」を構成してもよい。
 <第4の実施形態>
 次に、第4の実施形態について、図12を用いて説明する。図12は、本実施形態に係る酸化物超電導バルクマグネット1200の一例を示す概略分解斜視図である。酸化物超電導バルクマグネット1200は、リング形状の酸化物超電導バルク体1210と、リング形状の高強度補強部材1220と、外周補強リング1230とからなる。本実施形態では、酸化物超電導バルク体1210として、4つの超電導バルク体1212、1214、1216、1218が設けられており、高強度補強部材1220として、5つの高強度補強部材1221、1223、1225、1227、1229が設けられている。
 本実施形態に係る酸化物超電導バルクマグネット1200は、第1~第3の実施形態と比較して、高強度補強部材1220の内径が酸化物超電導バルク体1210の内径より小さくなっている。リング形状の酸化物超電導バルク体1210の内周面は、着磁過程において応力が集中する部分である。酸化物超電導バルクマグネット1200に割れが発生する場合、この部分から発生することが多い。高強度補強部材1220の内径を小さくすることにより、酸化物超電導バルク体1210の内周面からの亀裂の発生を抑制する効果を高めることができる。また、高強度補強部材1220の内径は、その上下の各リング形状の酸化物超電導バルク体1210の内径が異なる場合は、より小さい方の内径より小さくする必要がある。亀裂の起点となる部分を補強することによって亀裂に対する補強効果を高めることができる。リング形状の酸化物超電導バルク体1210の亀裂の起点は内周面にあり、特に上面あるいは下面と内周面との交点線部分を補強することが望ましい。したがって、高強度補強部材1220の内径を、内径が小さい方の酸化物超電導バルク体1210より小さくすることで、内径が小さい酸化物超電導バルク体1210を補強することができる。さらに、高強度補強部材1220および外周補強リング1230として熱伝導度の高い材料を用いることで、クエンチの発生も抑制できる。
 <第5の実施形態>
 次に、第5の実施形態について、図13A~図13Eを用いて説明する。図13Aは、本実施形態に係る酸化物超電導バルクマグネット1300の一例を示す概略分解斜視図である。図13B~図13Eは、本実施形態に係る酸化物超電導バルクマグネット1300の変形例であって、酸化物超電導バルクマグネット1300の中心軸線に沿って切断したときの部分断面図を示す。
 酸化物超電導バルクマグネット1300は、リング形状の酸化物超電導バルク体1310と、リング形状の高強度補強部材1320と、外周補強リング1330と、内周補強リング1340とからなる。図13Aに示す例では、酸化物超電導バルク体1310として、2つの超電導バルク体1312、1314が設けられており、高強度補強部材1320として、3つの高強度補強部材1321、1323、1325が設けられている。また、内周補強リング1340として、2つの内周補強リング1342、1344が設けられている。
 本実施形態に係る酸化物超電導バルクマグネット1300は、第1~第4の実施形態と比較して、酸化物超電導バルク体1310の内周面を補強するための内周補強リング1340が、酸化物超電導バルク体1310の内周面に結合または接着されている点で相違する。内周補強リング1340は、高強度補強部材1320とも結合または接着しているため、線膨脹係数が酸化物超電導バルク体1310より大きな素材である場合にも、酸化物超電導バルク体1310および高強度補強部材1320の内周面と強固に結合することができる。したがって、これらの内周面を補強することができ、割れを抑制する効果を有する。
 さらに、高強度補強部材1320、内周補強リング1340および外周補強リング1330として熱伝導度の高い材料を用いることで、クエンチの発生も抑制できる。このとき、高強度補強部材1320および外周補強リング1330は、上記第1の実施形態と同様に構成することができる。また、内周補強リング1340についても、クエンチ抑制効果を高めるために、例えば、高い熱伝導率を有する銅、アルミニウム、銀等の金属を主成分として含む材質を用いることができる。高い熱伝導率を有する内周補強リング1340の熱伝導率は、超電導材料内で発生した熱の伝達・吸収の観点から、冷凍機冷却等により安定して強磁場を発生できる20K~70Kの温度領域で20W/(m・K)以上が望ましく、さらに望ましくは、100W/(m・K)以上が望ましい。また、内周補強リング1340は、同心円状に複数のリングを配置して構成することも可能である。すなわち、対向するリングの周面同士を接するようにして全体として1つの内周補強リングを構成する。この場合、内周補強リングを構成するリングのうち少なくとも1つが20W/(m・K)以上の熱伝導率を有していればよい。
 また、このとき、リング形状の酸化物超電導バルク体1310の内周面と内周補強リング1340の外周面とを密着させることが望ましい。また、内周補強リング1340と高強度補強部材1320との基本的な位置関係としては、例えば図13Bに示すように、酸化物超電導バルク体1310および高強度補強部材1320の内径を同一にして、1つの内周補強リング1341を設けてもよい。
 あるいは、図13Cに示すように、高強度補強部材1320の内径を酸化物超電導バルク体1310の内径よりも僅かに小さくし、各酸化物超電導バルク体1312、1314、1316の内周面にそれぞれ内周補強リング1341、1343、1345を設け、各高強度補強部材1321、1323、1325、1327の内径と内周補強リング1341、1343、1345の内径とを同一とするようにしてもよい。内周補強リング1340の肉厚が高強度補強部材1320の肉厚に対して大きい場合には、強度の観点から図13Cが望ましい。これにより、内周補強リング1340と高強度補強部材1320との接触面積を大きくすることができ、内周補強リング1340と高強度補強部材1320との接続部分の強度を高めることができる。また、リング形状の酸化物超電導バルク体1310の内周径が異なる場合には、作業性の観点から、図13Dに示すように内周補強リング1340が内周補強リング1341、1343、1345のように分割されている方が望ましい。図13Eに外周補強リングが分割されている場合を示す。
 <第6の実施形態>
 次に、第6の実施形態について、図14A~図14Cを用いて説明する。図14A~Cは、本実施形態に係る酸化物超電導バルクマグネット1400の例を示す中心軸線に沿って切断したときの部分断面図である。
 酸化物超電導バルクマグネット1400は、リング形状の酸化物超電導バルク体1410と、リング形状の高強度補強部材1420と、外側の外周補強リング1430と内側の外周補強リング1440、内側の内周補強リング1450と外側の内周補強リング1460からなる。図14Aに示す例では、酸化物超電導バルク体1410として、5つの超電導バルク体1411~1415が設けられており、高強度補強部材1420として、6つの高強度補強部材1421~1426が設けられている。
 図14Aに示す例では内側の5つの外周補強リング1440(1441~1445)、外側の5つの内周補強リング1460(1461~1465)からなる。酸化物超電導バルク体1410として、5つの超電導バルク体1411~1415が設けられており、高強度補強部材1420として、6つの高強度補強部材1421~1426が設けられている。
 本実施形態に係る酸化物超電導バルクマグネット1400は、第1~第5の実施形態と比較して、高強度補強部材1420の外周端部が内側の外周補強リング1440と外側の外周補強リング1430とで結合されている点で異なり、さらに、高強度補強部材1420の内周端部が内側の内周補強リング1450と外側の内周補強リング1460とで結合されている点で相違する。
 各外周および内周補強リングは、金属を使用できるため、金属の高強度補強部材と半田等により強固に接続することが可能であり、二重の内周および外周リングにより側面および上下面のニ方向から強固に結合することができる。この効果により酸化物超電導バルク体1410は、周囲の補強部材と強固に結合することができ、割れを抑制する顕著な効果を有する。
 さらに、高強度補強部材1420、二重の内周補強リング(1450、1460)および二重の外周補強リング(1430、1440)として熱伝導度の高い材料を用いることで、クエンチの発生も抑制できる。このとき、高強度補強部材1420および外周補強リング(1430、1440)は、上記第1の実施形態と同様に構成することができる。また、内周補強リング(1450、1460)についても、クエンチ抑制効果を高めるために、例えば、高い熱伝導率を有する銅、アルミニウム、銀等の金属を主成分として含む材質を用いることができる。高い熱伝導率を有する内周補強リング(1450、1460)の熱伝導率は、超電導材料内で発生した熱の伝達・吸収の観点から、冷凍機冷却等により安定して強磁場を発生できる20K~70Kの温度領域で20W/(m・K)以上が望ましく、さらに望ましくは、100W/(m・K)以上が望ましい。また、内周補強リング(1450、1460)は、同心円状に複数のリングを配置して構成することも可能である。すなわち、対向するリングの周面同士を接するようにして全体として1つの内周補強リングを構成する。この場合、内周補強リングを構成するリングのうち少なくとも1つが20W/(m・K)以上の熱伝導率を有していればよい。
 図14Bに外周のみ二重リング構造による高強度補強板の外周端部の側面および上下面からの結合した場合の一例を示す。設計上、内径を確保する必要がある場合等、内周補強高強度補強板の内周端部は内周リングによる上下面からの結合のみの場合も考えられる。
 図14Cに内周のみ二重リング構造による高強度補強板の外周端部の側面および上下面からの結合した場合の一例を示す。設計上、外径の制約をある場合等、補強高強度補強板の外周端部は外周リングによる上下面からの結合のみの場合も考えられる。
 <第7の実施形態>
 次に、第7の実施形態について、図15を用いて説明する。図15は、超電導バルク体1510の結晶学的方位の揺らぎを示す説明図である。
 酸化物超電導バルク体1510は単結晶材料であることから、結晶方位の異方性が捕捉磁束密度分布の乱れ(軸対称性からのズレ)として現れる。この結晶方位の異方性を平均化するために、酸化物超電導バルク体1510の結晶方位をずらしながら酸化物超電導バルク体1510を積層してもよい。
 複数のリング形状の酸化物超電導バルク体1510を積層する際、相対的な結晶軸に関し、c軸方向が各リングの内周軸と略一致するように配置すると同時にa軸の方位をずらすことが望ましい。単結晶状のREBaCu中にREBaCuOが微細分散されたリング形状の酸化物超電導バルク体1510は、一般に単結晶状のREBaCuの結晶方位に揺らぎを有している。c軸方向の揺らぎの大きさは、±15°程度あり、ここでいうc軸方向が各リングの内周軸と略一致するとは、単結方位のずれが±15°程度あることを意味する。a軸をずらす角度は積層枚数にもよるが、180°、90°等、4回対称にならない角度が望ましい。
 このように、酸化物超電導バルク体1510の結晶方位をずらしながら酸化物超電導バルク体1510を積層することで、結晶方位の異方性を平均化することができる。
 <第8の実施形態>
 次に、第8の実施形態について、図16A~図16Dを用いて説明する。図16Aは、本実施形態に係る酸化物超電導バルクマグネット1600の一例を示す概略分解斜視図である。図16B~図16Dは、本実施形態に係る酸化物超電導バルク体1610の構成例であって、酸化物超電導バルク体1610の平面図を示す。
 本実施形態に係る酸化物超電導バルクマグネット1600は、第1~第6の実施形態と比較して、酸化物超電導バルク体1610が径方向に多重リング構造を有する点で相違する。多重リング構造とは、径方向に単一のリングではなく、複数のリングが同心円状に配置された構造をいう。例えば図16Bに示すように、酸化物超電導バルク体1610は、内径および外径の異なる、径方向の幅が略同一であるリング1610a~1610eを、径方向に所定の隙間1613を設けて同心円状に配置した五重リング構造としてもよい。
 また、例えば図16Cに示すように、酸化物超電導バルク体1610は、内径および外径の異なるリング1610a~1610cを、径方向に所定の隙間1613を設けて同心円状に配置した四重リング構造としてもよい。このとき、リング1610cの径方向の幅が、他のリング1610a、1610bの径方向の幅よりも大きくともよい。各リングの幅は設計事項である。
 このような多重リング構造のリング形状の酸化物超電導バルク体1610を積層することによって、酸化物超電導バルク体1610は、4回対称性を伴う結晶成長により超電導電流分布にも4回対称性が僅かに反映される傾向があるが、同心円の多重リング形状とすることで、着磁によって誘起される超電導電流の流路を軸対称に近づけるという作用が生ずる。この効果により、捕捉した磁場の均一性が向上する。このような特性を有する酸化物超電導バルクマグネット1600は、特に高い磁場均一度が求められるNMRやMRI応用に適している。
 また、酸化物超電導バルク体1610は、例えば図16Dに示すように、1つのリングに、同心円の円弧形状の隙間1613を形成し、同一円周上にある隙間1613の周方向に複数の継ぎ目1615を設けるようにしてもよい。これにより、酸化物超電導バルクマグネット1600の組み立て作業を簡便にすることができる。
 (実施例1)
 図6Aに、実施例1の酸化物超伝導バルクマグネットを示す。実施例1の酸化物超電導バルクマグネット600では、Gd-Ba-Cu-O系酸化物超電導バルク体を用いた。まず、市販されている純度99.9質量%のガドリニウム(Gd)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Gd:Ba:Cu=1.6:2.3:3.3のモル比で秤量し、それに白金を0.5質量%及び銀を10質量%加えた。この秤量粉を1時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。
 次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1278K~1252Kの温度領域を180時間かけて徐冷し結晶成長させ、直径70mmの単結晶状の酸化物超電導バルク体を得た。この単結晶状の酸化物超電導バルク体を外径65.0mm、高さ8.0mmに加工した。この時、加工によりできた端材を鏡面研磨し微細組織を光学顕微鏡で確認したところ、1μm程度の211相が分散していた。
 さらに、スパッタリングより超電導バルク体の表面に銀を約2μmのコーティングをした。これを酸素気流中において703Kで100時間熱処理した。同様に処理を行い、超電導バルク体610(611~615)を5個作製した。
 また、厚さ1.0mmのニクロムの板を外径65.0mmに加工し、同様に4枚の高強度補強部材620(621~624)を作製した。ニクロムの表面には予め半田を薄く付けた。外周補強リング630にはSUS316L製の外径73.0mm、内径65.05mm、高さ44.5mmのリングを用い、その内周面にも薄く半田を付けた。
 次に、半田が溶融する温度に加熱した外周補強リング630中に、超電導バルク体610とニクロム(高強度補強部材620)とを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させ、酸化物超電導バルクマグネット600を作製した。図6Aに得られた有孔の酸化物超電導バルクマグネットの積層状態を示す。また、図6Cに図6Aの断面図を示す。
 得られた酸化物超電導バルクマグネット600を室温で9Tの磁場中に配置した後、冷凍機を用い45Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この結果、酸化物超電導バルクマグネット600の軸上表面で7.92Tの捕捉磁束密度を確認し、この着磁によって超電導バルク体610が割れることなく着磁できることが確かめられた。
 図6Bに、比較材として作製した酸化物超伝導バルクマグネットを示す。比較材として、上記と同様に作製した単結晶状の酸化物超電導バルク体から、外径65.0mm、高さ22.2mmの超電導バルク体651(651a、651b)を2個、上記と同様に作製した。これらを上記と同様に作製したSUS316L製の外径73.0mm、内径65.05mm、高さ44.5mmの外周補強リング653中に配置し同様に半田により結合することで比較材の酸化物超電導バルクマグネット650を作製した。すなわち、比較材には高強度補強部材が設けられていない。図6Bに得られた比較材の状態を示す。また、図6Dに図6Bの断面図を示す。
 比較材を上記と同様に室温で9Tの磁場中に配置した後、冷凍機を用い45Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この着磁過程において4.9Tまで減磁した段階で、酸化物超電導バルクマグネット650の軸上中心部で磁束密度の急激な低下が確認された。ゼロ磁場に減磁した時の軸上表面部での捕捉磁束密度は2.65Tであった。着磁実験の後、室温で超電導バルク体651を調べたところ、超電導バルク体651に割れが確認された。
 これらの実験により酸化物超電導バルク体間に高強度補強部材を配置し、上下の酸化物超電導バルク体と結合または接着することによって、超電導バルク体に割れが発生することなく高い捕捉磁束密度を有する酸化物超電導バルク積層体が得られることが明らかになった。
 表1に、上記実施例1についての着磁試験結果を示す。着磁試験に際して、表1に記載の各試験の本発明または比較例として用いる酸化物超電導バルク体、高強度補強部材および外周補強リングを作製した。酸化物超電導バルク体については、上記実施例1と同様に作製した直径70mmの単結晶状の酸化物超電導バルク体を用いて、表1の各試験の製造条件に基づき、厚さの異なる外径65.0mmの円柱形状に加工し、円柱状の酸化物超電導バルク体を作製した。また、各高強度部材に関しても、表1に記載の材質および厚さの板から外径65.0mmの円盤状の板に加工した。さらに、外周補強リングに関しても、表1に記載の材質およびサイズのリングに加工した。
Figure JPOXMLDOC01-appb-T000001
 これらの円柱状の酸化物超電導バルク体、高強度補強部材および外周補強リングを結合し、各試験で用いる酸化物超電導バルクマグネットを作製した。本発明および比較例のバルクマグネットの組み立てには半田を用いた。半田による組み立ての場合、上記実施例1と同様に、それぞれの部材をホットプレート上で半田が溶融する温度に加熱した外周補強リング中に、超電導バルク体と各高強度補強部材とを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させ、超電導バルクマグネットを作製した。
 また、外周補強リングの材質として、表1中の試験No.1-5の「内周:無酸素銅、外周:SUS316Lの接合材」は、外径87.6mm、内径76.35mm、高さ53.6mmのSUS316Lリング中に、外径76.3mm、内径65.05mm、高さ53.6mmの無酸素銅リングをSn-Zn系半田で接合した接合材を意味する。また、高強度補強部材の材質として、表1中の試験No.1-6の「ニクロムの無酸素銅クラッド材」は、厚さ0.5mmのニクロム板の両面を厚さ0.5mmの無酸素銅板でSn-Zn系の半田で半田付けし積層化した材料を意味する。
 性能評価のための着磁試験に関しては、表1に示す各着磁条件で行った。着磁試験の結果は、表1に示すように、高強度補強部材を交互に積層した超電導バルクマグネットは割れが発生していないのに対し、高強度補強部材を交互に積層していない比較材では割れが発生する結果となった。このことから、高強度補強部材による補強が有効に機能し、強い磁場を発生できることが明らかになった。
 (実施例2)
 図7Aに、実施例2の酸化物超伝導バルクマグネットを示す。実施例2の酸化物超電導バルクマグネット700では、Gd-Dy-Ba-Cu-O系酸化物超電導バルク体を用いた。まず、市販されている純度99.9質量%のガドリニウム(Gd)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Gd:Dy:Ba:Cu=4.5:0.5:7:10のモル比で秤量し、それにBaCeOを1.0質量%及び銀を10質量%加えた。この秤量粉を1時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。
 次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1275K~1248Kの温度領域を180時間かけて徐冷し結晶成長させ、直径70mmの単結晶状の酸化物超電導バルク体を得た。このようにして得られた単結晶状の酸化物超電導バルク体を加工して、外径65.0mmであって、高さ4.0mmの円板状の超電導バルク体710(711、715)を2個、高さ6.0mmの円板状の超電導バルク体710(712、714)を2個および高さ10.0mmの円板状の超電導バルク体710(713)を1個得た。さらに、スパッタリングより超電導体の表面に銀を約2.5μmのコーティングをした。これを酸素気流中において703Kで100時間熱処理することで、酸化物超電導バルク体710(合計5個)を作製した。
 また、厚さ1.5mmのニクロムの板から外径65.0mmの円板状の高強度補強部材720(725、726)を2枚、厚さ1.0mmのニクロムの板から外径65.0mmの円板状の高強度補強部材720(721、724)を2枚、厚さ0.5mmのニクロムの板から外径65.0mmの円板状の高強度補強部材720(722、723)を2枚作製した。ニクロムの表面には予め半田を薄く付けた。外周補強リング730にはSUS316L製の外径73.0mm、内径65.05mm、高さ36.5mmのリングを用い、その内周面にも薄く半田を付けた。
 次に、半田が溶融する温度に加熱した外周補強リング730中に、ニクロム(高強度補強部材720)と超電導バルク体710とを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させ、酸化物超電導バルクマグネット700を作製した。なお、超電導バルク体710については、酸化物超電導バルクマグネット700の中心軸線方向の中央に配置されるものほど肉厚の部材が配置されるようにし、高強度補強部材720については、中心軸線方向の中央に配置されるものほど薄肉の部材が配置されるようにした。この酸化物超電導バルクマグネット700の積層状態を図7Aに示す。また、図7Cに図7Aの断面図を示す。
 得られた酸化物超電導バルクマグネットを室温で9.5Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この結果、酸化物超電導バルクマグネット700の軸上表面で8.85Tの捕捉磁束密度を確認し、この着磁によって超電導バルク体710が割れることなく着磁できることが確かめられた。
 図7Bに、比較材として作製した酸化物超伝導バルクマグネットを示す。比較材として、上記と同様に作製した単結晶状の酸化物超電導バルク体から、外径65.0mm、高さ18.0mmの超電導バルク体751を2個、上記と同様に作製した。これらを上記と同様に作製したSUS316L製の外径73.0mm、内径65.05mm、高さ36.5mmの外周補強リング753中に配置し同様に半田により結合することで比較材の酸化物超電導バルクマグネット750を作製した。すなわち、比較材には高強度補強部材が設けられていない。図7Bに得られた比較材の状態を示す。また、図7Dに図7Bの断面図を示す。
 これを同様に室温で9.5Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この着磁過程において5.6Tまで減磁した段階で、酸化物超電導バルクマグネット750の軸上中心部で磁束密度の急激な低下が確認された。ゼロ磁場に減磁した時の軸上表面部での捕捉磁束密度は2.65Tであった。着磁実験の後、室温で超電導バルク体751を調べたところ、超電導バルク体751に割れが確認された。
 これらの実験により、酸化物超電導バルク体間に高強度補強部材を配置し、上下の酸化物超電導バルク体と結合または接着することによって、超電導バルク体に割れが発生することなく高い捕捉磁束密度を有する酸化物超電導バルク積層体が得られることが明らかになった。
 表2に、上記実施例2についての着磁試験結果を示す。着磁試験に際して、表2に記載の各試験の本発明または比較例として用いる酸化物超電導バルク体、高強度補強部材および外周補強リングを作製した。酸化物超電導バルク体については、上記実施例2と同様に作製した直径70mmの単結晶状の酸化物超電導バルク体を用いて、表2に記載した種々の厚さの異なる外径65.0mmの円柱形状に加工し、酸化物超電導バルク体を作製した。また、各高強度補強部材に関しても、表2に記載の材質および厚さの板から、外径65.0mmの円板状の板に加工した。さらに、外周補強リングに関しても、表2に記載の材質およびサイズのリングに加工した。
Figure JPOXMLDOC01-appb-T000002
 これらの円柱状の酸化物超電導バルク体、高強度補強部材および外周補強リングを結合し、各試験で用いる酸化物超電導バルクマグネットを作製した。本発明および比較例のバルクマグネットの組み立てには半田を用いた。半田による組み立ての場合、上記実施例2と同様に、それぞれの部材をホットプレート上で半田が溶融する温度に加熱した外周補強リング中に、超電導バルク体と各高強度補強部材とを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させて、超電導バルクマグネットを作製した。また、最上面および最下面の高強度補強材を外周補強リングの上面および下面に貼り付けた超電導バルクマグネットも作製した。
 なお、表2中の試験No.2-2、No.2-3、No.2-4、No.2-6の最上面および最下面の高強度補強材については、強固に最上面および最下面の高強度補強材と外周補強リングとを接合させるため、その外径を外周補強リングの外径に等くし、外周補強リングの上面および下面と接合させた。図7Eおよび図7Fに、試験No.2-2に対応する酸化物超電導バルクマグネットの構成を示す。
 また、高強度補強部材の材質として、表2中の試験No.2-5の「ニクロムの無酸素銅クラッド材」は、厚さ0.5mmのニクロム板の両面を厚さ0.5mmの無酸素銅板でSn-Zn系の半田で半田付けし積層化した材料を意味する。外周補強リングの材質については、表2中の試験No.2-6の「内周:無酸素銅、外周:SUS316Lの接合材」は、外径87.6mm、内径76.35mm、高さ53.6mmのSUS316Lリング中に外径76.3mm、内径65.05mm、高さ53.6mmの無酸素銅リングをSn-Zn系半田で接合した接合材を意味する。
 性能評価のための着磁試験に関しては、表2に示す各着磁条件で行った。着磁試験の結果は、表2に示すように、本発明のように高強度補強部材を交互に積層し、かつ、上面および下面に高強度部材を接合した超電導バルクマグネットでは割れは発生しなかった。これに対し、高強度補強部材を交互に積層していない比較材では割れが発生する結果となった。このことから、高強度補強部材による補強が有効に機能し、強い磁場を発生できることが明らかになった。
 (実施例3)
 図8Aに、実施例3の酸化物超伝導バルクマグネットを示す。実施例3の酸化物超電導バルクマグネット800では、Eu-Ba-Cu-O系酸化物超電導バルク体を用いた。まず市販されている純度99.9質量%のユーロビウム(Eu)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Eu:Ba:Cu=9:12:17のモル比で秤量し、それにBaCeOを1.0質量%及び銀を16質量%加えた。この秤量粉を1時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。
 次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1288K~1258Kの温度領域を200時間かけて徐冷し結晶成長させ、直径70mmの単結晶状の酸化物超電導バルク体を得た。この単結晶状の酸化物超電導バルク体を一辺が50.0mm、高さ1.8mmの四角形状に加工した。さらに、スパッタリングより超電導バルク体の表面に銀を約1.5μmコーティングした。これを酸素気流中において713Kで100時間熱処理した。同様に処理を行い、超電導バルク体810を20枚作製した。
 また、厚さ1.0mmのニクロムの板から一辺50.0mmの四角形状の高強度補強部材820(820a、820b)を2枚、厚さ0.3mmのニクロムの板から一辺が50.0mmの四角形状の高強度補強部材820を19枚作製した。ニクロムの表面には予め半田を薄く付けた。外周補強リング830にはアルミ合金製の外周の一辺70.0mm、内周は一辺が50.05mm、高さ44.2mmのリングを用い、その内周面にも薄く半田を付けた。
 次に、半田が溶融する温度に加熱した矩形の外周補強リング830中に、ニクロム(高強度補強部材820)と超電導バルク体810とを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させた。このとき、酸化物超電導バルクマグネット800の最上面および最下面には1.0mm厚のニクロムの高強度補強部材820a、820bを配置した。この酸化物超電導バルクマグネット800の積層状態を図8Aに示す。
 得られた酸化物超電導バルクマグネット800を室温で9.5Tの磁場中に配置した後、冷凍機を用い45Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この結果、酸化物超電導バルクマグネット800の軸上表面で7.34Tの捕捉磁束密度を確認し、この着磁によって超電導バルク体810が割れることなく着磁できることが確かめられた。
 図8Bに、比較材として作製した酸化物超伝導バルクマグネットを示す。比較材として、上記と同様に作製した単結晶状の酸化物超電導バルク体から一辺50.0mm、高さ1.8mmの矩形の超電導バルク体851を24枚、上記と同様に作製した。これらを同様に作製したアルミ合金製の外周の一辺70.0mm、内周は一辺が50.05mm、高さ44.2mmの外周補強リング853を用い半田により結合することで比較材の酸化物超電導バルクマグネット850を作製した。
 比較材を上記と同様に室温で9.5Tの磁場中に配置した後、冷凍機を用い45Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この着磁過程において5.1Tまで減磁した段階で、酸化物超電導バルクマグネット850の軸上表面で磁束密度の急激な低下が確認された。ゼロ磁場に減磁した時の軸上表面での捕捉磁束密度は2.41Tであった。着磁実験の後、室温で超電導バルク体851を調べたところ、超電導バルク体851に割れが確認された。
 これらの実験により矩形の酸化物超電導バルク体間に高強度補強部材を配置し、上下の酸化物超電導バルク体と結合または接着することによって、超電導バルク体に割れが発生することなく高い捕捉磁束密度を有する酸化物超電導バルク積層体が得られることが明らかになった。
 (実施例4)
 実施例1で作製した直径70mmの単結晶状の白金添加のGd系酸化物超電導バルク体を加工して、外径65.0mm、高さ4.0mmの円板状の超電導バルク体を6個作製した。さらに、スパッタリングより超電導体の表面に銀を約2.5μmのコーティングをした。これを酸素気流中において703Kで100時間熱処理することで、酸化物超電導バルク体6個を作製した。
 また、厚さ1.0mmのニクロムの板から外径69.0mmの円板状の高強度補強部材を2枚、厚さ0.3mmのニクロムの板から外径69.0mmの円板状の高強度補強部材を5枚作製した。ニクロムの表面には予め半田を薄く付けた。内側の外周補強リングにはSUS314製の外径69.0mm、内径65.05mm、高さ4.0mmのリングを用い、その表面にも薄く半田を付けた。また、外側の外周補強リングにはSUS316L製の外径79.0mm、内径69.05mm、高さ28.5mmのリングを用い、その内周面にも薄く半田を付けた。
 次に、半田が溶融する温度に加熱した外側の外周補強リング(7300)中に、ニクロム製の高強度補強部材、内側の外周補強リングと超電導バルク体とを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させ、酸化物超電導バルクマグネット(本発明(1))を作製した。この酸化物超電導バルクマグネットの断面図を図7Gに示す。積層された酸化物超電導バルク体710(711~716)と高強度補強部材720(721~727)の外周に分割された内側の外周補強リング7310(7311~7316)、その外側に外側の外周リング7300が備えられている。
 また、同様に、外径65.0mm、高さ4.0mmの円板状の超電導バルク体を6個作製した。厚さ0.6mmのニクロムの板から外径69.0mmの円板状の高強度補強部材を7枚作製した。ニクロムの表面には予め半田を薄く付けた。外周補強リングにはSUS316L製の外径79.0mm、内径65.05mm、高さ28.5mmのリングを用い、その内周面にも薄く半田を付けた。
 次に、半田が溶融する温度に加熱した外周補強リング中に、ニクロム製の高強度補強部材と超電導バルク体とを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させ、酸化物超電導バルクマグネット(本発明(2))を作製した。この酸化物超電導バルクマグネットの断面図を図7Hに示す。積層された酸化物超電導バルク体710(711~716)と高強度補強部材720(721~727)の外周に外周補強リング730が備えられている。
 次に比較材として、上記と同様に作製した単結晶状の酸化物超電導バルク体から、外径65.0mm、高さ14.2mmの超電導バルク体を2個、上記と同様に作製した。これらを上記と同様に作製したSUS314製の外径86.0mm、内径65.05mm、高さ28.8mmの外周補強リング中に配置し同様に半田により結合することで比較材の酸化物超電導バルクマグネットを作製した。すなわち、比較材には高強度補強部材が設けられていない。
 得られた酸化物超電導バルクマグネット[本発明(1)、本発明(2)、比較例]を室温で8.5Tの磁場中に配置した後、冷凍機を用い40Kに冷却し、外部磁場を0.05T/分の速度でゼロ磁場まで減磁した。この結果、酸化物超電導バルクマグネットの軸上表面で、本発明(1)、本発明(2)は割れることなく、7.2Tの捕捉磁束密度を確認した。しかしながら、比較材は、着磁過程において磁束密度の急激な低下が確認された。着磁実験の後、室温で超電導バルク体を調べたところ、超電導バルク体に割れが確認された。
 次に本発明(1)、本発明(2)を室温で12.0Tの磁場中に配置した後、冷凍機を用い40Kに冷却し、外部磁場を0.05T/分の速度でゼロ磁場まで減磁した。この結果、酸化物超電導バルクマグネットの軸上表面で、本発明(1)は割れることなく、9.5Tの捕捉磁束密度を確認した。しかしながら、本発明(2)は、着磁過程において磁束密度の急激な低下が確認された。着磁実験の後、室温で超電導バルク体を調べたところ、超電導バルク体に割れが確認された。
 これらの実験により、酸化物超電導バルク体間に高強度補強部材を配置し、上下の酸化物超電導バルク体と結合または接着することによって、超電導バルク体の割れ抑制効果を有することが明らかになった。また、さらに外周補強リングをニ重構造にし、高強度補強部材を外周端部で上下面および側面で強固に接合することによって、さらに割れの発生を抑えより高い捕捉磁束密度を有する酸化物超電導バルク積層体が得られることが明らかになった。
 表3(表3-1と表3-2を総称して表3とよぶ。)に、上記実施例4についての着磁試験結果を示す。着磁試験に際して、表3に記載の各試験の本発明または比較例として用いる酸化物超電導バルク体、高強度補強部材および外周補強リングを作製した。酸化物超電導バルク体については、上記実施例4と同様に作製した直径70mmの単結晶状の酸化物超電導バルク体を用いて、表3に記載した種々の厚さの異なる円柱形状に加工し、酸化物超電導バルク体を作製した。また、各高強度補強部材に関しても、表3に記載の材質および厚さの板から、円板状の板に加工した。さらに、外周補強リングに関しても、表3に記載の材質およびサイズのリングに加工した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 これらの円柱状の酸化物超電導バルク体、高強度補強部材および外周補強リングを結合し、各試験で用いる酸化物超電導バルクマグネットを作製した。本発明および比較例のバルクマグネットの組み立てには半田を用いた。半田による組み立ての場合、上記実施例4と同様に、それぞれの部材をホットプレート上で半田が溶融する温度に加熱した外周補強リング中に、超電導バルク体、内側の外周補強リングと各高強度補強部材とを挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させて、超電導バルクマグネットを作製した。
 性能評価のための着磁試験に関しては、表3に示す各着磁条件で行った。着磁試験の結果は、表3に示すように、酸化物超電導バルク体間に高強度補強部材を配置し、上下の酸化物超電導バルク体と結合または接着することによって、超電導バルク体の割れ抑制効果を有することが明らかになった。また、さらに外周補強リングを二重構造にし、高強度補強部材を外周端部で上下面および側面で強固に接合することによって、さらに割れの発生を抑えより高い捕捉磁束密度を有する酸化物超電導バルク積層体が得られることが明らかになった。
 (実施例5)
 実施例5の超電導バルクマグネット1700では、Gd-Ba-Cu-O系酸化物超電導バルク体1710を用いた。まず、市販されている純度99.9質量%のガドリニウム(Gd)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Gd:Ba:Cu=1.6:2.3:3.3のモル比で秤量し、それに白金を0.5質量%及び銀を10質量%加えた。この秤量粉を1時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。
 次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1278K~1252Kの温度領域を180時間かけて徐冷し結晶成長させ、超電導相の結晶学的方位のc軸が略円板平面の法線と平行な円板形状の直径70mmの単結晶状の酸化物超電導バルク体を得た。この単結晶状の酸化物超電導バルク体を、外径65.0mm、内径35.0mm、高さ8.0mmのリング形状に加工した。加工によりできた端材を鏡面研磨し微細組織を光学顕微鏡で確認したところ、1μm程度の211相が分散していた。さらに、スパッタリングより超電導体の表面に銀を約2μmのコーティングした。これを酸素気流中において723Kで100時間熱処理した。同様に処理を行い、リング状の酸化物超電導バルク体1710(1711~1716)を6個作製した。
 また、厚さ1.0mmのニクロムの板を外径65.0mm、内径35.0mmに加工し、同様に5枚の高強度補強部材1720(1721~1725)を作製した。ニクロムの表面には予め半田を薄く付けた。外周補強リング1730にはSUS316L製の外径73.0mm、内径65.05mm、高さ53.6mmのリングを用い、その内周面にも薄く半田を付けた。
 次に、半田が溶融する温度に加熱した外周補強リング1730中に、超電導バルク体とニクロムリングとを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させ、超電導バルクマグネット1700を作製した。図17Aに得られた有孔の酸化物超電導バルク積層体の積層状態を示す。また、図17Cに図17Aの断面図を示す。
 得られた酸化物超電導バルクマグネット1700を室温で7Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この結果、酸化物超電導バルクマグネット1700の軸上中心部で6.85Tの捕捉磁束密度を確認し、この着磁によって酸化物超電導バルク体1710が割れることなく着磁できることが確かめられた。
 次に比較材として、上記と同様に作製した単結晶状の酸化物超電導バルク体11から、外径65.0mm、内径35.0mm、高さ17.0mmのリング2個、高さ19mmのリング1個を上記と同様に作製した。図17Bに得られた比較材の状態を示す。また、図17Dに図17Bの断面図を示す。これらを上記と同様に作製したSUS316L製の外径73.0mm、内径65.05mm、高さ53.6mmの外周補強リング13中に配置し、上記と同様に半田により結合することで比較材の酸化物超電導バルクマグネット1750を作製した。すなわち、比較材には高強度補強部材が設けられていない。
 比較材を上記と同様に室温で7Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この着磁過程において5.1Tまで減磁した段階で、酸化物超電導バルクマグネット1750の軸上中心部で磁束密度の急激な低下が確認された。ゼロ磁場に減磁したときの軸上中心部での捕捉磁束密度は0.23Tであった。着磁実験の後、室温で超電導バルク体1751を調べたところ、超電導バルク体1751に割れが確認された。
 これらの実験によりリング形状の酸化物超電導バルク体間に高強度補強部材を配置し、上下のリング形状の酸化物超電導バルク体と結合または接着することによって、超電導体に割れが発生することなく高い捕捉磁束密度を有する酸化物超電導バルクマグネットが得られることが明らかになった。
 表4(表4-1と表4-2を総称して表4とよぶ。)に、上記実施例5についての着磁試験結果を示す。着磁試験に際して、表4に記載の各試験の本発明または比較例として用いるリング状の酸化物超電導バルク体、高強度補強部材および外周補強リングを作製した。リング状の酸化物超電導バルク体については、上記実施例5と同様に作製した直径70mmの単結晶状の酸化物超電導バルク体を用いて、表4の各試験の製造条件に基づき、厚さの異なる外径65.0mm、内径35.0mmのリング形状に加工し、リング状の酸化物超電導バルク体を作製した。また、各高強度補強部材に関しても、表4に記載の材質および厚さの板から外径65.0mm、内径35.0mm~35.2mmのリングに加工した。さらに、外周補強リングに関しても表4記載の材質およびサイズのリングに加工した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 これらのリング状の酸化物超電導バルク体、高強度補強部材および外周補強リングを結合し、各試験で用いる酸化物超電導バルクマグネットを作製した。本発明および比較例の酸化物超電導バルクマグネットの組み立てには半田を用いた。半田による組み立ての場合、上記実施例5と同様に、それぞれの部材をホットプレート上で半田が溶融する温度に加熱した外周補強リング1730中に、超電導バルク体と各高強度補強部材とを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させ、超電導バルクマグネット1700を作製した。
 なお、高強度補強部材の材質として、表4中の試験No.1-5の「ニクロムの無酸素銅クラッド材」は、厚さ0.5mmのニクロム板の両面を厚さ0.5mmの無酸素銅板でSn-Zn系の半田で半田付けし、積層化した材料を意味する。また、表1中の試験No.1-8の「ニクロムのアルミクラッド材」は、厚さ0.5mmのニクロム板の両面を厚さ0.5mmのアルミ板でSn-Zn系の半田で半田付けし、積層化した材料を意味する。
 また、外周補強リングの材質として、表4中の試験No.1-6の「内周:無酸素銅、外周:SUS316Lの接合材」は、外径87.6mm、内径76.05mm、高さ53.6mmのSUS316Lリング中に外径76.0mm、内径65.05mm、高さ53.6mmの無酸素銅リングをSn-Zn系半田で接合した接合材を意味する。試験No.1-8の「内周:Cu合金、外周:SUS304Lの接合材」は、外径87.6mm、内径76.35mm、高さ53.6mmのSUS304Lリング中に外径76.3mm、内径65.05mm、高さ53.6mmのCu合金リングをSn-Zn系半田で接合した接合材を意味する。
 性能評価のための着磁試験に関しては、表4に示す各着磁条件で行った。着磁試験の結果は、表4に示すように、本発明のように高強度補強部材を交互に積層した超電導バルクマグネットは割れが発生していないのに対し、高強度補強部材を交互に積層していない比較材では割れが発生する結果となった。このことから、高強度補強部材による補強が有効に機能し、強い磁場を発生できることが明らかになった。
 (実施例6)
 実施例6の超電導バルクマグネット1800では、Eu-Ba-Cu-O系酸化物超電導バルク体1810を用いた。まず、市販されている純度99.9質量%のユーロビウム(Eu)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Eu:Ba:Cu=1.6:2.3:3.3のモル比で秤量し、それにCeOを1.0質量%及び銀を10質量%加えた。この秤量粉を1時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。
 次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1288K~1262Kの温度領域を180時間かけて徐冷し結晶成長させ、超電導相の結晶学的方位のc軸が略円板平面の法線と平行な円板形状の直径70mmの単結晶状の超電導バルク体を得た。これらの単結晶状の酸化物超電導バルク体を加工し、外径65.0mm、内径32.0mm、高さ8.0mmのリング1個、外径65.0mm、内径32.0mm、高さ10.0mmのリング1個、外径65.0mm、内径36.0mm、高さ10.0mmのリング2個を得た。さらに、スパッタリングより超電導体の表面に銀を約2μmのコーティングをした。これを酸素気流中において723Kで100時間熱処理した。同様に処理を行い、リング状の酸化物超電導バルク体1810(1811~1814)を4個作製した。
 また、ニクロムの板から、外径65.0mm、内径31.8mm厚さ1.5mmのリング状の高強度補強部材1枚、外径65.0mm、内径31.8mm厚さ0.8mmのリング状の高強度補強部材2枚、外径65.0mm、内径35.8mm厚さ0.8mmのリング状の高強度補強部材1枚の、4つの高強度補強部材1820(1821~1824)を作製した。ニクロムの表面には予め半田を薄く付けた。外周補強リング1830にはSUS316L製の外径73.0mm、内径65.05mm、高さ42.2mmのリングを用い、その内周面にも薄く半田を付けた。
 つぎに、半田が溶融する温度に加熱した外周補強リング1830中に、酸化物超電導バルク体および高強度補強部材を以下のように配置し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させ、有孔の酸化物超電導バルク積層体を作製した。この有孔の酸化物超電導バルク積層体の積層状態を図18Aに示す。また、図18Cに図18Aの断面図を示す。
 1)ニクロム製リング(高強度補強部材1821、最上面)
    :外径65.0mm、内径31.8mm、厚さ1.5mm
 2)酸化物超電導バルク体1811
    :外径65.0mm、内径32.0mm、高さ8.0mm
 3)ニクロム製リング(高強度補強部材1822)
    :外径65.0mm、内径31.8mm、厚さ0.8mm
 4)酸化物超電導バルク体1812
    :外径65.0mm、内径32.0mm、高さ10.0mm
 5)ニクロム製リング(高強度補強部材1823)
    :外径65.0mm、内径31.8mm、厚さ0.8mm
 6)酸化物超電導バルク体1813
    :外径65.0mm、内径36.0mm、高さ10.0mm
 7)ニクロム製リング(高強度補強部材1824)
    :外径65.0mm、内径35.8mm、厚さ0.8mm
 8)酸化物超電導バルク体1814
    :外径65.0mm、内径36.0mm、高さ10.0mm
 さらに、同様の方法でもう一組の有孔の酸化物超電導バルク積層体を作製した。そして、ニクロム製の高強度補強部材がある側を上面および下面となるように積層し、樹脂接着し、一つの有孔の酸化物超電導バルク積層体とした。
 得られた有孔の酸化物超電導バルク積層体を室温で8Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この結果、超電導バルクマグネットの軸上中心部で7.85Tの捕捉磁束密度を確認し、この着磁によって超電導バルク体1810が割れることなく着磁できることが確かめられた。
 次に、比較材として、上記と同様に作製した単結晶状超電導バルク体から、外径65.0mm、内径32.0mm、高さ21.0mmのリング1個と、外径65.0mm、内径36.0mm、高さ21.0mmのリング1個とを、上記と同様に作製した(符号1851a、1851b)。これらを上記と同様に作製したSUS316L製の外径73.0mm、内径65.05mm、高さ42.2mmの外周補強リング1853中に配置し、上記と同様に半田により結合することで有孔の酸化物超電導バルク積層体を得た。この積層状態を図18Bに示す。また、図18Bの断面図を図18Dに示す。
 さらに、同様にして作製した有孔の酸化物超電導バルク積層体を、超電導バルク体の内径が小さい方をそれぞれ上面および下面になるように配置し、樹脂で接着することによって、一つの比較材の超電導バルクマグネットを作製した。これを上記と同様に室温で8Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この着磁過程において5.1Tまで減磁した段階で、超電導バルクマグネットの軸上中心部で磁束密度の急激な低下が確認された。ゼロ磁場に減磁した時の軸上中心部での捕捉磁束密度は0.23Tであった。着磁実験の後、室温で超電導バルク体1851を調べたところ、超電導バルク体1851に割れが確認された。
 これらの実験によりリング形状の酸化物超電導バルク体間に高強度補強部材を配置して、上下の前記リング形状の酸化物超電導バルク体と結合または接着し、さらに、酸化物超電導バルク積層体の最上面および最下面に配置された高強度補強部材の厚さが、酸化物超電導バルク体の間に配置された高強度補強部材の厚さよりも厚く、かつ、高強度補強部材の内径が酸化物超電導バルク体の内径よりも小さくすることにより、超電導バルク体に割れが発生することなく高い捕捉磁束密度を有する有孔の酸化物超電導バルク積層体が得られることが明らかになった。
 表5(表5-1と表5-2を総称して表5とよぶ。)に、上記実施例6についての着磁試験結果を示す。着磁試験に際して、表5に記載の各試験の本発明または比較例として用いるリング状の酸化物超電導バルク体、高強度補強部材および外周補強リングを作製した。リング状の酸化物超電導バルク体については、上記実施例6と同様に作製した直径70mmの単結晶状の酸化物超電導バルク体を用いて、表5の各試験の製造条件に基づき、厚さの異なる外径65.0mm、内径35.0mmのリング形状に加工し、リング状の酸化物超電導バルク体を作製した。また、各高強度補強部材に関しても、表5に記載の材質および厚さの板から外径65.0mm、内径35.0mm~35.4mmのリングに加工した。さらに、外周補強リングに関しても、表5記載の材質およびサイズのリングに加工した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 これらのリング状の酸化物超電導バルク体、高強度補強部材および外周補強リングを結合し、各試験で用いる酸化物超電導バルクマグネットを作製した。本発明および比較例の酸化物超電導バルクマグネットの組み立てには、半田、または表5中に記載のように樹脂を用いた。半田による組み立ての場合、上記実施例6と同様に、それぞれの部材をホットプレート上で半田が溶融する温度に加熱した外周補強リング1830中に、超電導バルク体と各高強度補強部材とを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させ、超電導バルクマグネット1800を作製した。
 なお、高強度補強部材の材質として、表5中の試験No.2-5の「ニクロムの無酸素銅クラッド材」は、厚さ0.5mmのニクロム板の両面を厚さ0.5mmの無酸素銅板でSn-Zn系の半田で半田付けし積層化した材料を意味する。また、表5中の試験No.2-7の「ニクロムのアルミクラッド材」は、厚さ0.5mmのニクロム板の両面を厚さ0.5mmのアルミ板でSn-Zn系の半田で半田付けし積層化した材料を意味する。
 また、外周補強リングの材質として、表5中の試験No.2-6の「内周:無酸素銅、外周:SUS316Lの接合材」は、外径87.6mm、内径76.05mm、高さ53.6mmのSUS316Lリング中に外径76.0mm、内径65.05mm、高さ53.6mmの無酸素銅リングをSn-Zn系半田で接合した接合材を意味する。表5中の試験No.2-7の「内周:銅合金、外周:SUS304Lの接合材」は、外径87.6mm、内径76.05mm、高さ53.6mmのSUS304Lリング中に外径76.0mm、内径65.05mm、高さ53.6mmの銅合金リングをSn-Zn系半田で接合した接合材を意味する。
 性能評価のための着磁試験に関しては、表5に示す各着磁条件で行った。着磁試験の結果は、表5に示すように、本発明のように高強度補強部材を交互に積層し、かつ、上面および下面に高強度補強部材を接合した超電導バルクマグネットは割れが発生していないのに対し、高強度補強部材を交互に積層していない比較材では割れが発生する結果となった。このことから、高強度補強部材による補強が有効に機能し、強い磁場を発生できることが明らかになった。
 (実施例7)
 実施例7の超電導バルクマグネット1900では、Gd-Ba-Cu-O系酸化物超電導バルク体を用いた。まず、市販されている純度99.9質量%のガドリニウム(Gd)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Gd:Ba:Cu=9:12:17のモル比で秤量し、それにBaCeOを1.0質量%及び銀を10質量%加えた。この秤量粉を1時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。
 次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1278K~1245Kの温度領域を200時間かけて徐冷し結晶成長させ、超電導相の結晶学的方位のc軸が略円板平面の法線と平行な円板形状の直径70mmの単結晶状の酸化物超電導バルク体を得た。このようにして得られた単結晶状の酸化物超電導バルク体から、外径65.0mm、内径35.0mm、高さ6.0mmのリング2個、および、高さ7.5mmのリング2個を作製した。さらに、スパッタリングよりこれらの酸化物超電導バルク体の表面に銀を約2μmのコーティングした。これを酸素気流中において723Kで100時間熱処理した。同様に処理を行い、リング状の酸化物超電導バルク体1910(1911~1914)を4個作製した。
 また、厚さ1.5mmおよび厚さ0.5mmのニクロムをそれぞれ2枚加工し、各板から外径65.0mm、内径31.0mmのリング状の高強度補強部材1920(1921~1924)を作製した。ニクロムの表面には予め半田を薄く付けた。外周補強リング1930にはアルミ合金製の外径77.0mm、内径65.05mm、高さ30.2mmのリングを用い、その内周面にも薄く半田を付けた。さらにFe-36Ni合金製の内周補強リング(外径34.95mm、内径31.0mm、高さ6.0mmのリング2個、および外径34.95mm、内径31.0mm、高さ15.0mmのリング1個)1940(1941~1943)を作製し、その外周面にも薄く半田を付けた。
 次に、半田が溶融する温度に加熱した外周補強リング1930中に高強度補強部材としてのニクロムリング、リング状の超電導バルク体、内周補強リングを順に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させた。このとき各超電導バルク体は、超電導相の結晶学的方位のa軸を約7°ずらしながら積層させた。図19Aに、得られた有孔の酸化物超電導バルク積層体の積層状態を示す。また、図19Cに図19Aの断面図を示す。
 得られた超電導バルクマグネット1000を室温で9.5Tの磁場中に配置した後、冷凍機を用い45Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この結果、超電導バルクマグネットの軸上中心部で8.9Tの捕捉磁束密度を確認し、この着磁によって超電導バルク体1910が割れることなく着磁できることが確かめられた。
 次に比較材として、上記と同様に作製した単結晶状の酸化物超電導バルク体から、外径65.0mm、内径35.0mm、高さ30.2mmのリング1個を、上記と同様に作製した。これらを上記と同様に作製したアルミ合金製の外径77.0mm、内径65.05mm、高さ30.2mmの外周補強リング1953中に配置した。さらにFe-36Ni合金製の外径34.95mm、内径31.0mm、高さ30.2mmの内周補強リング1954を超電導バルク体1951の内部に配置し、上記と同様に半田により結合することで比較材の有孔の酸化物超電導バルク積層体を作製した。この積層状態を図19Bに示す。また、図19Dに図19Bの断面図を示す。
 これを上記と同様に室温で9.5Tの磁場中に配置した後、冷凍機を用い45Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この着磁過程において5.8Tまで減磁した段階で、超電導バルクマグネットの軸上中心部で磁束密度の急激な低下が確認された。ゼロ磁場に減磁した時の軸上中心部での捕捉磁束密度は1.89Tであった。着磁実験の後、室温で超電導バルク体1951を調べたところ、超電導バルク体1951に割れが確認された。
 これらの実験によりリング形状の酸化物超電導バルク体間に高強度補強部材を配置し、さらに、内周補強リングを配置し、上下の酸化物超電導バルク体と結合または接着され、強度補強部材の内径が酸化物超電導バルク体の内径に対して同一または小さく、それぞれの内周軸が一致した有孔の酸化物超電導バルク積層体が形成される。有孔の酸化物超電導バルク積層体の内周面に内周補強リングが結合または接着されて配置されていることによって、超電導バルク体に割れが発生することなく高い捕捉磁束密度を有する酸化物超電導バルクマグネットが得られることが明らかになった。
 表6(表6-1と表6-2を総称して表6とよぶ。)に、上記実施例7についての着磁試験結果を示す。着磁試験に際して、表6に記載の各試験の本発明または比較例として用いるリング状の酸化物超電導バルク体、高強度補強部材および外周補強リングを作製した。リング状の酸化物超電導バルク体については、上記実施例7と同様に作製した直径70mmの単結晶状の酸化物超電導バルク体を用いて、表6に記載した種々の厚さの異なる外径65.0mm、内径35.0mmのリング形状に加工し、リング状の酸化物超電導バルク体を作製した。また、各高強度補強部材に関しても、表6に記載の材質および厚さの板から外径65.0mm、内径31.0mmのリングに加工した。さらに、外周補強リングに関しても、表6に記載の材質およびサイズのリングに加工した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 これらのリング状の酸化物超電導バルク体、高強度補強部材および外周補強リングを結合し、各試験で用いる酸化物超電導バルクマグネットを作製した。各実施例の本発明および比較例のバルクマグネットの組み立てには、半田を用いた。半田による組み立ての場合、上記実施例と同様に、それぞれの部材をホットプレート上で半田が溶融する温度に加熱した外周補強リング1930中に、超電導バルク体と各高強度補強部材とを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させ、超電導バルクマグネット1900を作製した。
 性能評価のための着磁試験に関しては、表6に示す各着磁条件で行った。着磁試験の結果は、表6に示すように、内周補強リングを有するバルクマグネットにおいて、高強度補強部材を交互に積層し接合した超電導バルクマグネットは割れが発生していないのに対し、高強度補強部材を交互に積層していない比較材では割れが発生する結果となった。このことから、高強度補強部材による補強が有効に機能し、強い磁場を発生できることが明らかになった。
 (実施例8)
 本実施例の超電導バルクマグネット2000では、Gd(Dy)-Ba-Cu-O系酸化物超電導バルク体を用いた。まず、市販されている純度99.9質量%のガドリニウム(Gd)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Gd:Dy:Ba:Cu=8:1:12:17のモル比で秤量し、それにCeOを1.0質量%及び銀を12質量%加えた。この秤量粉を1時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。
 次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1278K~1245Kの温度領域を200時間かけて徐冷し結晶成長させ、直径70mmの単結晶状の酸化物超電導バルク体を得た。この単結晶状の酸化物超電導バルク体を、外径65.0mm、内径35.0mm、高さ10.0mmのリング形状に加工した。さらに、スパッタリングより超電導バルク体の表面に銀を約2μmのコーティングをした。これを酸素気流中において723Kで100時間熱処理した。同様に処理を行い、リング状の酸化物超電導バルク体2010(2011~2014)を4個作製した。
 また、厚さ1.5mmのニクロムの板2枚および厚さ1.0mmのニクロムの板3枚を加工して、外径65.0mm、内径31.0mmのリング状の高強度補強部材2020(2021~2025)をそれぞれ作製した。ニクロムの表面には予め半田を薄く付けた。外周補強リング2030にはアルミ合金製の外径77.0mm、内径65.05mm、高さ46.5mmのリングを用い、その内周面にも薄く半田を付けた。さらにFe-36Ni合金製の外径34.95mm、内径31.0mm、高さ10.0mmの内周補強リング2040(2041~2044)を作製し、その外周面にも薄く半田を付けた。
 次に、半田が溶融する温度に加熱した外周補強リング2030中に高強度補強部材としてのニクロムリング、リング状の超電導バルク体、内周補強リングを順に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させた。このとき、酸化物超電導バルク体の最上面および最下面には、1.5mm厚のニクロムリングを配置した。このとき各超電導バルク体2041~2044は、超電導相の結晶学的方位のa軸を約9°ずらしながら積層された。図20Aに得られた有孔の酸化物超電導バルク積層体の積層状態を示す。また、図20Cに図20Aの断面図を示す。
 得られた超電導バルクマグネット2000を室温で9Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この結果、超電導バルクマグネットの軸上中心部で8.85Tの捕捉磁束密度を確認し、この着磁によって超電導バルク体2010が割れることなく着磁できることが確かめられた。
 次に比較材として、上記と同様に作製した単結晶状の酸化物超電導バルク体から外径65.0mm、内径35.0mm、高さ23.1mmのリング2個を、上記と同様に作製した(符号2051(2051a、2051b))。これらを上記と同様に作製したアルミ合金製の外径77.0mm、内径65.05mm、高さ46.5mmの外周補強リング2053中に配置し、さらにFe-36Ni合金製の外径34.95mm、内径31.0mm、高さ46.5mmの内周補強リング2054に、上記と同様に半田により結合し、比較材の有孔の酸化物超電導バルク積層体を作製した。この積層状態を図20Bに示す。また、図20Dに図20Bの断面図を示す。
 これを、上記と同様に室温で9Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この着磁過程において5.8Tまで減磁した段階で、超電導バルクマグネットの軸上中心部で磁束密度の急激な低下が確認された。ゼロ磁場に減磁した時の軸上中心部での捕捉磁束密度は1.89Tであった。着磁実験の後、室温で超電導バルク体2051を調べたところ、超電導バルク体2051に割れが確認された。
 これらの実験により、リング形状の酸化物超電導バルク体間に高強度補強部材を配置し、さらに、内周補強リングを配置し、上下の酸化物超電導バルク体と結合または接着され、強度補強部材の内径が酸化物超電導バルク体の内径に対して小さく、それぞれの内周軸が一致した有孔の酸化物超電導バルク積層体が形成される。有孔の酸化物超電導バルク積層体の内周に金属リングが結合または接着されて配置されていることによって、超電導バルク体に割れが発生することなく高い捕捉磁束密度を有する酸化物超電導バルクマグネットが得られることが明らかになった。
 (実施例9)
 本実施例の超電導バルクマグネット2100では、Eu-Ba-Cu-O系酸化物超電導バルク体を用いた。まず、市販されている純度99.9質量%のユーロビウム(Eu)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Eu:Ba:Cu=9:12:17のモル比で秤量し、それにBaCeOを1.0質量%及び銀を16質量%加えた。この秤量粉を1時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。
 次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1288K~1258Kの温度領域を200時間かけて徐冷し結晶成長させ、直径70mmの単結晶状の酸化物超電導バルク体を得た。この単結晶状の酸化物超電導バルク体を、外径65.0mm、内径35.0mm、高さ1.8mmのニ重リング形状に加工した。二重リング形状の超電導バルク体2110の溝は、中心から23.5mmの位置に約1.0mmの幅で、サンドブラスト法により加工して形成した。このとき、酸化物超電導バルク体2110の内側リング2111と外側リング2112とを結ぶ継ぎ目(図16Dの継ぎ目1615に対応)は2個所設けた。さらに、スパッタリングより超電導バルク体の表面に銀を約2μmコーティングした。これを酸素気流中において723Kで100時間熱処理した。同様に処理を行い、リング状の酸化物超電導バルク体2110を20枚作製した。
 また、厚さ1.0mmのニクロムの板2枚および厚さ0.3mmのニクロムの板19枚を加工して、外径65.0mm、内径31.0mmのリング状の高強度補強部材2120をそれぞれ作製した。ニクロムの表面には予め半田を薄く付けた。外周補強リング2130にはアルミ合金製の外径77.0mm、内径65.05mm、高さ44.0mmのリングを用い、その内周面にも薄く半田を付けた。さらにニクロム製の外径34.95mm、内径31.0mm、高さ1.8mmの内周補強リング2140を作製し、その表面にも薄く半田を付けた。
 次に、半田が溶融する温度に加熱した外周補強リング2130中に高強度補強部材としてのニクロムリング、リング状の超電導バルク体、内周補強リングを順に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させた。このとき、酸化物超電導バルク体の最上面および最下面には、1.0mm厚のニクロムリングの高強度補強部材を配置した。また、このとき各超電導バルク体2110は、超電導相の結晶学的方位のa軸を約4°ずらしながら積層された。図21Aに得られた有孔の酸化物超電導バルク積層体の積層状態を示す。
 得られた超電導バルクマグネット2140を室温で7Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この結果、超電導バルクマグネットの軸上中心部で6.85Tの捕捉磁束密度を確認し、この着磁によって超電導バルク体が割れることなく着磁できることが確かめられた。
 次に比較材として、上記と同様に作製した単結晶状の酸化物超電導バルク体から、外径65.0mm、内径35.0mm、高さ1.8mmの二重リング形状の超電導バルク体22枚を同様に作製した(符号2151)。これらを、上記と同様に作製したアルミ合金製の外径77.0mm、内径65.05mm、高さ44.0mmの外周補強リング2153中に配置し、さらにGFRP(Glass Fiber Reinforced Plastics)製の外径34.95mm、内径31.0mm、高さ44.0mmの内周補強リング2154を同様に配置し、半田により結合することで比較材の有孔の酸化物超電導バルク積層体を作製した。この積層状態を図21Bに示す。
 これを、上記と同様に室温で7Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.1T/分の速度でゼロ磁場まで減磁した。この着磁過程において4.8Tまで減磁した段階で、超電導バルクマグネットの軸上中心部で磁束密度の急激な低下が確認された。ゼロ磁場に減磁した時の軸上中心部での捕捉磁束密度は1.35Tであった。着磁実験の後、室温で超電導バルク体2151を調べたところ、超電導バルク体2151に割れが確認された。
 これらの実験により、リング形状の酸化物超電導バルク体間に高強度補強部材を配置し、さらに、内周補強リングを配置し、上下の酸化物超電導バルク体と結合または接着することによって、超電導バルク体に割れが発生することなく高い捕捉磁束密度を有する酸化物超電導バルクマグネットが得られることが明らかになった。
 (実施例10)
 実施例5で作製した白金添加Gd系の直径70mmの酸化物超電導体を用い、外径62.0mm、内径32.0mm、高さ3.0mmのリング8個を作製した。さらに、スパッタリングよりこれらの酸化物超電導バルク体の表面に銀を約2μmのコーティングをした。これを酸素気流中において723Kで100時間熱処理した。同様に処理を行い、リング状の酸化物超電導バルク体2210(2211~2218)を8個作製した。
 また、厚さ1.0mmを2枚、厚さ0.3mmのSUS316を7枚加工し、各板から外径66.0mm、内径29.0mmのリング状の高強度補強部材2220(2221~2227)を作製し、表面には予め半田を薄く付けた。内側の外周補強リング22310(22311~22318)にはSUS314製の外径66.0mm、内径62.05mm、高さ3.0mmのリングを8個用い、また、外側の外周補強リング22300にはSUS314製の外径86.0mm、内径66.05mm、高さ28.8mmのリングを用いその内周面にも薄く半田を付けた。さらに外側のニクロム製内周補強リング(外径31.95mm、内径29.0mm、高さ3.0mm)を8個作製し、内側のSUS314製内周リングには外径28.95mm、内径27.0mm、高さ28.8mmのリング1個作製し、その外周面にも薄く半田を付けた。
 次に、半田が溶融する温度に加熱した外側の外周補強リング22300中に高強度補強部材としてのSUS316リング、内側の外周補強リング、リング状の超電導バルク体、外側の内周補強リング、内側の内周補強リングを挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させた。このとき各超電導バルク体は、超電導相の結晶学的方位のa軸を約7°ずらしながら積層させた。図22Aに、得られた有孔の酸化物超電導バルク積層体[本発明(1)]の断面図を示す。
 また、さらに、厚さ1.0mmを2枚、厚さ0.3mmのSUS316を7枚加工し、各板から外径62.0mm、内径32.0mmのリング状の高強度補強部材を作製し、表面には予め半田を薄く付けた。外周補強リングにはSUS314製の外径86.0mm、内径62.05mm、高さ28.8mmのリングを用い、その内周面にも薄く半田を付けた。さらにSUS314製内周リングには外径31.95mm、内径27.0mm、高さ28.8mmのリング1個作製し、その外周面にも薄く半田を付けた。
 次に、半田が溶融する温度に加熱した外側の外周補強リング2230中に高強度補強部材としてのSUS316リング、リング状の超電導バルク体、内周補強リングを挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させた。このとき各超電導バルク体は、超電導相の結晶学的方位のa軸を約7°ずらしながら積層させた。図22Bに、得られた有孔の酸化物超電導バルク積層体[本発明(2)]の断面図を示す。
 次に比較材として、上記と同様に作製した単結晶状の酸化物超電導バルク体から、外径62.0mm、内径32.0mm、高さ14.3mmのリング2個を、上記と同様に作製した。これらを上記と同様に作製したSUS314製の外径86.0mm、内径62.05mm、高さ28.8mmの外周補強リング中に配置した。さらにSUS314製の外径31.95mm、内径27.0mm、高さ28.8mmの内周補強リングを超電導バルク体の内部に配置し、上記と同様に半田により結合することで比較材の有孔の酸化物超電導バルク積層体[比較材]を作製した。この断面図を図22Cに示す。
 得られた超電導バルクマグネット[本発明(1)、本発明(2)、比較材]を室温で8.0Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.05T/分の速度でゼロ磁場まで減磁した。この結果、超電導バルクマグネットの軸上中心部で、本発明(1)および本発明(2)は、割れることなく、7.95Tを捕捉していたが、比較材は、着磁実験の後、室温で超電導バルク体を調べたところ、超電導バルク体に割れが確認された。
 次に、本発明(1)および本発明(2)を11.0Tの磁場中に配置した後、冷凍機を用い40Kに冷却した後、外部磁場を0.05T/分の速度でゼロ磁場まで減磁した。この結果、超電導バルクマグネットの軸上中心部で、本発明(1)は、割れることなく、10.9Tを捕捉していたが、本発明(2)は、着磁実験の後、室温で超電導バルク体を調べたところ、超電導バルク体に割れが確認された。
 これらの実験によりリング形状の酸化物超電導バルク体間に高強度補強部材を配置し、さらに、二重の内周および外周補強リングを配置し、上下の酸化物超電導バルク体と結合または接着されることによって、超電導バルク体に割れが発生することなく高い捕捉磁束密度を有する酸化物超電導バルクマグネットが得られることが明らかになった。
 表7(表7-1と表7-2、表7-3を総称して表7とよぶ。)に、上記実施例10についての着磁試験結果を示す。着磁試験に際して、表7に記載の各試験の本発明(1)、本発明(2)または比較例として用いるリング状の酸化物超電導バルク体、高強度補強部材および外周補強リングを作製した。リング状の酸化物超電導バルク体については、上記実施例10と同様に作製した直径70mmの単結晶状の酸化物超電導バルク体を用いて、表4に記載した種々の厚さの異なるリング形状に加工し、リング状の酸化物超電導バルク体を作製した。また、各高強度補強部材に関しても、表7に記載の材質および厚さの板から加工した。さらに、外周補強リングに関しても、表7に記載の材質およびサイズのリングに加工した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 これらのリング状の酸化物超電導バルク体、高強度補強部材および外周補強リングを結合し、各試験で用いる酸化物超電導バルクマグネットを作製した。各実施例の本発明および比較例のバルクマグネットの組み立てには、半田を用いた。半田による組み立ての場合、上記実施例と同様に、それぞれの部材をホットプレート上で半田が溶融する温度に加熱した外周補強リング2230中に、超電導バルク体と各高強度補強部材とを交互に挿入し、それぞれに半田を馴染ませた後、全体を室温に冷却することでそれぞれを結合させ、超電導バルクマグネット2200を作製した。
 性能評価のための着磁試験に関しては、表7に示す各着磁条件で行った。着磁試験の結果は、表7に示すように、内周補強リングを有するバルクマグネットにおいて、10T以下の着磁条件では、高強度補強部材を交互に積層し接合した超電導バルクマグネットは割れが発生していないのに対し、高強度補強部材を交互に積層していない比較材では割れが発生する結果となった。また、11T以上の着磁条件では、二重の外周および内周リング構造を有し高強度補強部材をより強固に結合した超電導バルクマグネットにおいても割れが発生せず、より強い磁場を発生できることが明らかになった。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 100、100A、100B、100C  酸化物超電導バルクマグネット
 110  超電導バルク体
 120  高強度補強部材
 130  外周補強リング
 600  酸化物超電導バルクマグネット
 610  超電導バルク体
 620  高強度補強部材
 630  外周補強リング
 700  酸化物超電導バルクマグネット
 710  超電導バルク体
 720  高強度補強部材
 730  外周補強リング
 740  外側の外周補強リング
 800  酸化物超電導バルクマグネット
 810  超電導バルク体
 820  高強度補強部材
 830  外周補強リング
 900  酸化物超電導バルクマグネット
 910  リング形状の酸化物超電導バルク体
 920  高強度補強部材
 930  外周補強リング
 1000  酸化物超電導バルクマグネット
 1010  リング形状の酸化物超電導バルク体
 1020  高強度補強部材
 1030  外周補強リング
 1100  酸化物超電導バルクマグネット
 1110  リング形状の酸化物超電導バルク体
 1120  高強度補強部材
 1130  外周補強リング
 1200  酸化物超電導バルクマグネット
 1210  リング形状の酸化物超電導バルク体
 1220  高強度補強部材
 1230  外周補強リング
 1300  酸化物超電導バルクマグネット
 1310  リング形状の酸化物超電導バルク体
 1320  高強度補強部材
 1330  外周補強リング
 1340  外周補強リング
 1400  酸化物超電導バルクマグネット
 1410  リング形状の酸化物超電導バルク体
 1420  高強度補強部材
 1430  内側の外周補強リング
 1440  外側の外周補強リング
 1450  外側の内周補強リング
 1460  内側の内周補強リング
 1510  リング形状の酸化物超電導バルク体
 1600  酸化物超電導バルクマグネット
 1610  リング形状の酸化物超電導バルク体
 1610a、1610b、1610c、1610d、1610e  リング(酸化物超電導バルク体)
 1613  隙間
 1615  継ぎ目
 1620  高強度補強部材
 1630  外周補強リング
 1700  酸化物超電導バルクマグネット(実施例5)
 1710  リング形状の酸化物超電導バルク体
 1720  高強度補強部材
 1730  外周補強リング
 1800  酸化物超電導バルクマグネット(実施例6)
 1810  リング形状の酸化物超電導バルク体
 1820  高強度補強部材
 1830  外周補強リング
 1900  酸化物超電導バルクマグネット(実施例7)
 1910  リング形状の酸化物超電導バルク体
 1920  高強度補強部材
 1930  外周補強リング
 1940  内周補強リング
 2000  酸化物超電導バルクマグネット(実施例8)
 2010  リング形状の酸化物超電導バルク体
 2020  高強度補強部材
 2030  外周補強リング
 2040  内周補強リング
 2100  酸化物超電導バルクマグネット(実施例9)
 2110  リング形状の酸化物超電導バルク体
 2111  リング形状の酸化物超電導バルク体の内側リング
 2112  リング形状の酸化物超電導バルク体の外側リング
 2120  高強度補強部材
 2130  外周補強リング
 2140  内周補強リング
 2200  酸化物超電導バルクマグネット(実施例10 図22A)
 2250  酸化物超電導バルクマグネット(実施例10 図22B )
 2290  酸化物超電導バルクマグネット(実施例10 図22C )
 2210  リング形状の酸化物超電導バルク体
 2220  高強度補強部材
 22300  外側の外周補強リング
 22310  内側の外周補強リング
 22400  内側の内周補強リング
 22410  外側の内周補強リング
 2230  外周補強リング
 2240  内周補強リング
 O  各酸化物超電導バルク体および外周補強リングの中心軸線

Claims (28)

  1.  単結晶状のREBaCu(REはY又は希土類元素から選ばれる1種又は2種以上の元素。6.8≦y≦7.1)中にREBaCuOが分散された複数の板状の酸化物超電導バルク体、及び、積層された前記酸化物超電導バルク体の間に配置された1つ以上の高強度補強部材により形成された酸化物超電導バルク積層体と、
     前記酸化物超電導バルク積層体の外周に設けられた1つ以上の外周補強部材と、
    を備え、
     前記酸化物超電導バルク体が、前記高強度補強部材と結合または接着されていることを特徴とする酸化物超電導バルクマグネット。
  2.  前記高強度補強部材が前記外周補強部材と結合または接着されていることを特徴とする請求項1に記載の酸化物超電導バルクマグネット。
  3.  前記酸化物超電導バルク体が、前記外周補強部材と結合または接着されていることを特徴とする請求項1又は2に記載の酸化物超電導バルクマグネット。
  4.  前記高強度補強部材の室温での引っ張り強度が80MPa以上であることを特徴とする請求項1~3のいずれか1項に記載の酸化物超電導バルクマグネット。
  5.  前記高強度補強部材の熱伝導率が20W/(m・K)以上であることを特徴とする請求項1~4のいずれか1項に記載の酸化物超電導バルクマグネット。
  6.  前記外周補強部材は、酸化物超電導バルク積層体の外周に一体に設けられたことを特徴とする請求項1~5のいずれか1項に記載の酸化物超電導バルクマグネット。
  7.  前記外周補強部材は前記酸化物超電導バルク積層体の積層方向に複数に分割されたことを特徴とする請求項1~5のいずれか1項に記載の酸化物超電導バルクマグネット。
  8.  隣り合う前記外周補強部材は、前記高強度補強部材を介して配置されたことを特徴とする請求項7に記載の酸化物超電導バルクマグネット。
  9.  前記外周補強部材の室温での引っ張り強度が80MPa以上であることを特徴とする請求項1~8のいずれか1項に記載の酸化物超電導バルクマグネット。
  10.  前記外周補強部材の熱伝導率が20W/(m・K)以上であることを特徴とする請求項1~8のいずれか1項に記載の酸化物超電導バルクマグネット。
  11.  前記酸化物超電導バルク積層体の最上面及び/又は最下面に、前記高強度補強部材が配置されていることを特徴とする請求項1~10のいずれか1項に記載の酸化物超電導バルクマグネット。
  12.  前記酸化物超電導バルク積層体の最上面及び/又は最下面に配置された少なくとも1つの前記高強度補強部材厚さが、前記酸化物超電導バルク体の間に配置された前記高強度補強部材の厚さよりも厚いことを特徴とする請求項11に記載の酸化物超電導バルクマグネット。
  13.  前記酸化物超電導バルク積層体の最上面及び最下面に配置された前記高強度補強部材は、前記外周補強部材と結合または接着されていることを特徴とする請求項11又は12に記載の酸化物超電導バルクマグネット。
  14.  前記外周補強部材の外側に、さらに第2の外周補強部材を備えることを特徴とする請求項1~13のいずれか1項に記載の酸化物超電導バルクマグネット。
  15.  前記第2の外周補強部材の室温での引っ張り強度が80MPa以上であることを特徴とする請求項14に記載の酸化物超電導バルクマグネット。
  16.  前記第2の外周補強部材の熱伝導率が20W/(m・K)以上であることを特徴とする請求項14又は15に記載の酸化物超電導バルクマグネット。
  17.  前記酸化物超電導バルク体、及び前記高強度補強部材がリング状であり、前記酸化物超電導バルク積層体が有孔の構造であることを特徴とする請求項1~16のいずれか1項に記載の酸化物超電導バルクマグネット。
  18.  前記酸化物超電導バルク積層体の内周に、内周補強部材が一体に設けられたことを特徴とする請求項17に記載の酸化物超電導バルクマグネット。
  19.  前記酸化物超電導バルク積層体の内周に、前記酸化物超電導バルク積層体の積層方向に複数に分割された内周補強部材が設けられたことを特徴とする請求項17に記載の酸化物超電導バルクマグネット。
  20.  隣り合う前記内周補強部材は、前記高強度補強部材を介して配置されたことを特徴とする請求項19に記載の酸化物超電導バルクマグネット。
  21.  前記内周補強部材の室温での引っ張り強度が80MPa以上であることを特徴とする請求項18~20のいずれか1項に記載の酸化物超電導バルクマグネット。
  22.  前記内周補強部材の熱伝導率が20W/(m・K)以上であることを特徴とする請求項18~21のいずれか1項に記載の酸化物超電導バルクマグネット。
  23.  前記酸化物超電導バルク積層体の最上面及び/又は最下面に、前記高強度補強部材が結合または接着されており、前記高強度補強部材は、前記酸化物超電導バルク積層体の内周に設けられた内周補強部材とも結合または接着されていることを特徴とする請求項18~22のいずれか1項に記載の酸化物超電導バルクマグネット。
  24.  前記内周補強部材の内側に第2の内周補強部材をさらに備えることを特徴とする請求項18~23のいずれか1項に記載の酸化物超電導バルクマグネット。
  25.  前記第2の内周補強部材の室温での引っ張り強度が80MPa以上であることを特徴とする請求項24に記載の酸化物超電導バルクマグネット。
  26.  前記第2の内周補強部材の熱伝導率が20W/(m・K)以上であることを特徴とする請求項24又は25に記載の酸化物超電導バルクマグネット。
  27.  前記酸化物超電導バルク体は、それぞれ、結晶軸のc軸方向が前記酸化物超電導バルク体の内周軸に略一致し、かつ、結晶軸のa軸方向が前記各酸化物超電導バルク体同士で所定の角度範囲内でずらして積層されていることを特徴とする請求項17~26のいずれか1項に記載の酸化物超電導バルクマグネット。
  28.  前記有孔の酸化物超電導バルク積層体における前記リング形状の酸化物超電導バルク体は、内周軸が一致する多重リング構造を有している、請求項17~27のいずれか1項に記載の酸化物超電導バルクマグネット。
PCT/JP2016/051745 2015-01-21 2016-01-21 酸化物超電導バルクマグネット WO2016117658A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/545,170 US10643772B2 (en) 2015-01-21 2016-01-21 Oxide superconducting bulk magnet
EP16740265.0A EP3249663B1 (en) 2015-01-21 2016-01-21 Oxide superconducting bulk magnet
JP2016570706A JP6493419B2 (ja) 2015-01-21 2016-01-21 酸化物超電導バルクマグネット
CN201680003462.6A CN107112108B (zh) 2015-01-21 2016-01-21 氧化物超导块状磁铁

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015-009538 2015-01-21
JP2015009537 2015-01-21
JP2015009538 2015-01-21
JP2015-009537 2015-01-21
JP2015-196575 2015-10-02
JP2015196575 2015-10-02
JP2015196576 2015-10-02
JP2015-196576 2015-10-02

Publications (1)

Publication Number Publication Date
WO2016117658A1 true WO2016117658A1 (ja) 2016-07-28

Family

ID=56417188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051745 WO2016117658A1 (ja) 2015-01-21 2016-01-21 酸化物超電導バルクマグネット

Country Status (5)

Country Link
US (1) US10643772B2 (ja)
EP (1) EP3249663B1 (ja)
JP (1) JP6493419B2 (ja)
CN (1) CN107112108B (ja)
WO (1) WO2016117658A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101465A (ja) * 2016-12-19 2018-06-28 株式会社東芝 超電導コイル、超電導コイルの製造方法及び超電導コイル装置
JP2018198245A (ja) * 2017-05-23 2018-12-13 アイシン精機株式会社 超電導磁場発生素子
WO2019049720A1 (ja) * 2017-09-07 2019-03-14 国立大学法人東京工業大学 超伝導装置及び磁石装置
WO2020067458A1 (ja) 2018-09-28 2020-04-02 日本製鉄株式会社 核磁気共鳴用磁石ユニット及び核磁気共鳴用磁場発生装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380463B2 (en) * 2017-02-14 2022-07-05 Sumitomo Electric Industries, Ltd. Superconducting wire and superconducting coil
FR3104804B1 (fr) * 2019-12-13 2023-09-29 Safran Pastille supraconductrice comprenant une cavité et machine électrique associée

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173719A (ja) * 2001-09-26 2003-06-20 Nippon Steel Corp 低抵抗導体およびその製造方法
JP2005294471A (ja) * 2004-03-31 2005-10-20 Japan Science & Technology Agency バルク超伝導体の着磁方法
JP2012214329A (ja) * 2011-03-31 2012-11-08 Shibaura Institute Of Technology 超伝導バルク体とその製造方法および超伝導バルク磁石
JP2014075522A (ja) * 2012-10-05 2014-04-24 Saho Midori 空洞付き超電導バルク体およびそれを装着した超電導バルク磁石

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4101903B2 (ja) 1997-05-02 2008-06-18 新日本製鐵株式会社 酸化物超電導バルク材料及びその製造方法
JP3389094B2 (ja) * 1998-03-27 2003-03-24 株式会社イムラ材料開発研究所 超電導磁場発生素子
JP4012311B2 (ja) * 1998-05-26 2007-11-21 新日本製鐵株式会社 バルク超電導部材とマグネットおよびそれらの製造方法
JP2001307916A (ja) 2000-04-24 2001-11-02 Toshiba Corp 超電導磁石装置
JP4317646B2 (ja) 2000-06-26 2009-08-19 独立行政法人理化学研究所 核磁気共鳴装置
DE10033869C2 (de) * 2000-07-12 2003-07-31 Karlsruhe Forschzent HTS-Kryomagnet und Aufmagnetisierungsverfahren
CN100452250C (zh) * 2001-01-16 2009-01-14 新日本制铁株式会社 低电阻导体及其制造方法和使用其的电子部件
JP4653555B2 (ja) * 2005-05-10 2011-03-16 新日本製鐵株式会社 酸化物超伝導磁石材料及び酸化物超伝導磁石システム
JP5162088B2 (ja) 2005-09-27 2013-03-13 新日鐵住金株式会社 窒素−酸素混合冷媒による冷却方法
WO2007041532A2 (en) 2005-10-03 2007-04-12 Massachusetts Institute Of Technology Magnet system for magnetic resonance spectroscopy comprising superconducting annuli
JP4895714B2 (ja) * 2006-07-31 2012-03-14 アイシン精機株式会社 超電導体、超電導磁場発生素子、超電導磁場発生装置および核磁気共鳴装置
JP4719308B1 (ja) 2009-12-08 2011-07-06 新日本製鐵株式会社 酸化物超伝導バルク磁石部材
US8948829B2 (en) 2009-12-08 2015-02-03 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet member
JP6422631B2 (ja) 2013-01-30 2018-11-14 新日鐵住金株式会社 超電導バルク磁石
US20160155554A1 (en) 2013-05-22 2016-06-02 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173719A (ja) * 2001-09-26 2003-06-20 Nippon Steel Corp 低抵抗導体およびその製造方法
JP2005294471A (ja) * 2004-03-31 2005-10-20 Japan Science & Technology Agency バルク超伝導体の着磁方法
JP2012214329A (ja) * 2011-03-31 2012-11-08 Shibaura Institute Of Technology 超伝導バルク体とその製造方法および超伝導バルク磁石
JP2014075522A (ja) * 2012-10-05 2014-04-24 Saho Midori 空洞付き超電導バルク体およびそれを装着した超電導バルク磁石

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3249663A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101465A (ja) * 2016-12-19 2018-06-28 株式会社東芝 超電導コイル、超電導コイルの製造方法及び超電導コイル装置
JP2018198245A (ja) * 2017-05-23 2018-12-13 アイシン精機株式会社 超電導磁場発生素子
WO2019049720A1 (ja) * 2017-09-07 2019-03-14 国立大学法人東京工業大学 超伝導装置及び磁石装置
JPWO2019049720A1 (ja) * 2017-09-07 2020-11-26 国立大学法人東京工業大学 超伝導装置及び磁石装置
JP7122007B2 (ja) 2017-09-07 2022-08-19 国立大学法人東京工業大学 超伝導装置及び磁石装置
WO2020067458A1 (ja) 2018-09-28 2020-04-02 日本製鉄株式会社 核磁気共鳴用磁石ユニット及び核磁気共鳴用磁場発生装置
JPWO2020067458A1 (ja) * 2018-09-28 2021-08-30 日本製鉄株式会社 核磁気共鳴用磁石ユニット及び核磁気共鳴用磁場発生装置
JP7205545B2 (ja) 2018-09-28 2023-01-17 日本製鉄株式会社 酸化物超電導バルク体を用いた核磁気共鳴用磁石ユニット及び核磁気共鳴用磁場発生装置

Also Published As

Publication number Publication date
CN107112108A (zh) 2017-08-29
EP3249663A4 (en) 2018-07-18
US20180012690A1 (en) 2018-01-11
JP6493419B2 (ja) 2019-04-03
CN107112108B (zh) 2020-01-21
US10643772B2 (en) 2020-05-05
EP3249663A1 (en) 2017-11-29
EP3249663B1 (en) 2022-04-06
JPWO2016117658A1 (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
JP6493419B2 (ja) 酸化物超電導バルクマグネット
JP7060034B2 (ja) バルクマグネット構造体の着磁方法、これを用いたnmr用マグネットシステム
US8948829B2 (en) Oxide superconducting bulk magnet member
JP6119851B2 (ja) 酸化物超電導バルクマグネット
JP4653555B2 (ja) 酸化物超伝導磁石材料及び酸化物超伝導磁石システム
JP4799979B2 (ja) 酸化物超伝導体コイル、酸化物超伝導体コイルの製造方法、酸化物超伝導体コイルの励磁方法、酸化物超伝導体コイルの冷却方法、及びマグネットシステム
JP4719308B1 (ja) 酸化物超伝導バルク磁石部材
JP5195961B2 (ja) 酸化物超伝導バルク磁石部材
JP6658384B2 (ja) バルクマグネット構造体及びnmr用バルクマグネットシステム
JP6493547B2 (ja) 酸化物超電導バルクマグネット
JP6202190B2 (ja) 酸化物超電導バルクマグネット
JP2006222435A (ja) 超伝導マグネット
JP2013036541A (ja) 超電導軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570706

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016740265

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15545170

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE