JP2018101465A - 超電導コイル、超電導コイルの製造方法及び超電導コイル装置 - Google Patents

超電導コイル、超電導コイルの製造方法及び超電導コイル装置 Download PDF

Info

Publication number
JP2018101465A
JP2018101465A JP2016245090A JP2016245090A JP2018101465A JP 2018101465 A JP2018101465 A JP 2018101465A JP 2016245090 A JP2016245090 A JP 2016245090A JP 2016245090 A JP2016245090 A JP 2016245090A JP 2018101465 A JP2018101465 A JP 2018101465A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coil
current bypass
winding
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016245090A
Other languages
English (en)
Other versions
JP6786375B2 (ja
Inventor
達郎 宇都
Tatsuro Uto
達郎 宇都
貞憲 岩井
Sadanori Iwai
貞憲 岩井
寛史 宮崎
Hiroshi Miyazaki
寛史 宮崎
泰造 戸坂
Taizo Tosaka
泰造 戸坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016245090A priority Critical patent/JP6786375B2/ja
Publication of JP2018101465A publication Critical patent/JP2018101465A/ja
Application granted granted Critical
Publication of JP6786375B2 publication Critical patent/JP6786375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

【課題】熱暴走またはクエンチの発生を抑制することができる超電導コイルおよび超電導コイル装置を提供する。【解決手段】超電導線材20と絶縁材16が巻枠14の周囲に共巻されてなる巻線部材12と前記巻線部材の間及び前記巻線部材の幅方向端部の少なくとも一部に形成された導電性樹脂17と、前記巻線部材の少なくとも幅方向端部の一方に設けられ、前記超電導線材及び/又は導電性樹脂に電気的に接続される電流迂回路19と、を有する。【選択図】図3

Description

本発明の実施形態は、熱暴走またはクエンチを防止する機能を備えた超電導コイル、超電導コイルの製造方法及び超電導コイル装置に関する。
NMR(核磁気共鳴装置)やMRI(磁気共鳴画像診断装置)等の超電導応用機器で用いられる超電導線材は、超電導状態を維持するためには、超電導線材を流れる電流の電流密度、超電導線材の温度、超電導線材に作用する磁場を、それぞれの臨界値以下にする必要がある。
このため、超電導状態、すなわち、電気抵抗がほぼゼロの状態においても、超電導線材に無限量の電流を流すことはできない。電流密度、温度および磁場のいずれかが、対応する臨界値を越えると、超電導線材における超電導状態は常電導状態へ転移する。
常電導状態に転移すると、常電導状態への転移箇所において発生するジュール熱によって、超電導線材を焼損させる熱暴走又は瞬時に多量の発熱をするクエンチが発生するおそれがある。
このため、超電導コイルにおいては、超電導状態から常電導状態に転移する際の熱暴走又はクエンチに対する保護が必要になる。従来の保護手段として、例えば、超電導コイルに並列に保護抵抗を接続する技術が知られている。この保護手段は、常電導状態への転移に伴うコイル電圧またはコイル温度の上昇をトリガーとして、励磁電源を遮断し、励磁電源の遮断後に、超電導コイルと保護抵抗によって閉回路を形成する。これにより、常電導状態の超電導コイルに流れる電流を減衰させることができる。
また、超電導コイルに軸方向の圧縮力を作用させて、超電導線材がコイルの軸方向に移動することを抑制することで、クエンチの発生を抑制する手段が提案されている。
また、超電導線材の機械的動きを抑制するとともに、超電導線材間に絶縁テープを配置することで、クエンチを防止する手段が提案されている。
さらに、超電導線材に金属テープ線を重ね合わせて巻回し、超電導線材の一部が常電導状態になったときに、電流の一部を金属テープ線に迂回させることでクエンチ又は熱暴走の発生を防止する手段が提案されている。
特開平04−032207号公報 特開2010−267835号公報 特開2008−118006号公報
ところで、熱暴走又はクエンチの発生を抑制するために、従来の励磁電源を遮断する防護手段やコイルの軸方向の移動を制限する防護手段では、別途、遮断機構や移動規制手段を設ける必要があり、超電導コイル装置が大型化するとともに装置構成が複雑になるという課題がある。
また、従来の金属テープを用いた防護手段では、超電導線材を迂回した電流は、全て金属テープ線を流れるため、常電導状態の超電導線材の付近での発熱が継続する。その結果、熱暴走に至るリスクがあるという課題がある。
本発明は、上記課題を解決するためになされたものであり、熱暴走又はクエンチの発生を抑制することができる超電導コイル、超電導コイルの製造方法及び超電導コイル装置を提供することを目的とする。
上記課題を解決するために、本発明の実施形態に係る超電導コイルは、超電導線材と絶縁材が巻枠の周囲に共巻されてなる巻線部材と、前記巻線部材の間及び前記巻線部材の幅方向端部の少なくとも一部に形成された導電性樹脂と、前記巻線部材の少なくとも幅方向端部の一方に設けられ、前記超電導線材及び/又は導電性樹脂に電気的に接続される電流迂回路と、を有することを特徴とする。
また、本発明の実施形態に係る超電導コイルは、超電導線材が巻枠の周囲に巻回されてなる巻線部材と、前記巻線部材の間及び前記巻線部材の幅方向端部の少なくとも一部に形成された導電性樹脂と、前記巻線部材の少なくとも幅方向端部の一方に設けられ、前記超電導線材及び/又は導電性樹脂に電気的に接続される電流迂回路と、を有する超電導コイルであって、隣接する前記超電導線材間の少なくとも一部に導電性部材を配置したことを特徴とする。
また、本発明の実施形態に係る超電導コイルの製造方法は、超電導線材と絶縁材が巻枠の周囲に共巻されてなる巻線部材を導電性樹脂に含浸させることで、前記超電導線材同士の間及び超電導線材の前記巻線部材の幅方向端部に導電性樹脂を形成し、前記巻線部材の幅方向端部の一方に電流迂回路を設けることを特徴とする。
また、本発明の実施形態に係る超電導コイル装置は、本発明の実施形態に係る超電導コイルを含む超電導コイルを複数積層するとともに、前記積層された超電導コイルの前記巻線部材の幅方向端部に電流迂回路を設けたことを特徴とする。
本発明の実施形態によれば、超電導コイルに電流迂回路を設けることにより、熱暴走又はクエンチの発生を抑制することができる。
第1の実施形態に係る超電導コイルの模式図。 第1の実施形態に係る超電導コイルの断面図。 図2の領域A1の拡大断面図。 (a)は図2の領域A1の拡大断面図で導電性樹脂が充填される前の状態を示す図、(b)は導電性樹脂が充填された後の状態を示す図。 超電導線材の断面図。 第1の実施形態の第1変形例に係る巻線部材の断面図。 第1の実施形態の第2変形例に係る巻線部材の断面図。 図7の領域A2の拡大断面図。 超電導コイルに作用する磁場の形状を示す図。 第1の実施形態の第3変形例に係る巻線部材の断面図。 第2の実施形態に係る電流迂回路の平面図。 第3の実施形態に係る電流迂回路の平面図。 第4の実施形態に係る超電導コイルの模式図。 第5の実施形態に係る超電導コイル装置の模式図。 第6の実施形態に係る超電導コイル装置の模式図。
以下、本発明に係る超電導コイル、超電導コイルの製造方法及び超電導コイル装置の実施形態について、図面を参照して説明する。なお、以下の説明において、同一又は類似の構成については同一の符号を付し、重複説明を省略する。
[第1の実施形態]
第1の実施形態に係る超電導コイル及び超電導コイルの製造方法について、図1乃至図5を参照して説明する。
図1は、第1の実施形態に係る超電導コイル10の模式図、図2は超電導コイル10の断面図、図3、図4(a)、(b)は図2における領域A1の拡大断面図である。図5は、本実施形態で用いられる超電導線材20の構成例を示す模式図である。
(超電導コイル10の構成)
本実施形態に係る超電導コイル10は、図1〜図3に示すように、超電導線材20が隣接する超電導線材20の間に配置された例えばテープ状の絶縁材16とともに巻枠14の周囲に同心状又は渦巻き状に共巻され、いわゆるパンケーキ形状のコイルを形成している。
(超電導線材20の構成)
超電導線材20は、例えば、図5に示すように、複数の層(21〜26)が積層された積層体からなる。図5の例では、超電導線材20は、金属基板21と、配向層22と、中間層23と、超電導層24と、保護層25と、安定化層26とを含む。なお、超電導線材20を構成する層のうち、超電導層24以外の層、例えば、配向層22及び/又は安定化層26は適宜省略してもよい。超電導層24は、例えば、RE123系の組成(RE等)を有する超電導体薄膜である。
(巻線部材12及び電流迂回路19の構成)
超電導線材20と絶縁材16が共巻されてなる巻線部材12は、巻回後に巻枠14ごと導電性樹脂17に含浸されることにより、図4(b)に示すように、超電導線材20同士の間及び超電導線材20の上下端部に導電性樹脂17が形成される。
このようにして作成された巻線部材12の上端面には、電流迂回路19が形成される。 電流迂回路19は、巻線部材12を巻枠14の周囲に巻回しながら、巻線部材12の上端面に設けることができるが、粘着性の導電性樹脂17により含浸された巻線部材12の上端面に電流迂回路19及び絶縁層16aを設けることで、導電性樹脂17、巻線部材12及び絶縁層16aを一体的に固着成形するようにしてもよい。
その際、巻線部材12は、図3に示すように、巻線部材12を構成する超電導線材20の全ての上端面が電流迂回路19と接触していることが好ましい。
しかしながら、実際の巻線部材12の作製に際しては、超電導線材20が幅方向にばらつきを持つ場合がある。その場合、図4(a)に示すように、一部の超電導線材20の端部と電流迂回路19の間に間隙が生じ、超電導線材20の一部は電流迂回路19に接触しない可能性がある。
そこで、本第1の実施形態では、超電導線材20の位置が超電導線材20の幅方向にばらついている場合でも、超電導線材20と電流迂回路19を確実に電気的に接触させるために、巻線部材12の巻回後に巻枠14ごと導電性樹脂17で含浸するようにしている。
これにより、図4(b)に示すように、巻線部材12同士の間隙及び超電導線材20の幅方向(図中上下方向)端部の間隙に導電性樹脂17が形成される。
この導電性樹脂17は、例えば導電性を持たない樹脂に導電性粉末を混入させたものを用いることができる。導電性粉末としては、例えばカーボンブラック、炭素繊維またはグラファイトなどのカーボン系の粉末が用いられる。
また、導電性粉末として、金属微粒子、金属酸化物、金属繊維またはウィスカー等の金属系の粉末を用いてもよく、又は、導電性の微粒子または合成繊維をコーティングしてもよい。
さらに、巻線部材12を、巻回後に巻枠14ごと導電性樹脂17で含浸させるのではなく、巻線部材12を巻枠14へ巻回しながら、導電性樹脂17に含浸させるようにしてもよい。
この電流迂回路19の材料は、通常運転時(超電導線材20が超電導状態の時)において、超電導線材20の電気抵抗より電気抵抗が大きく、かつ、常電導転移時において、常電導転移箇所の電気抵抗より電気抵抗が小さく、さらに、導電性樹脂17の抵抗と同程度の抵抗であることが好ましい。
すなわち、導電性樹脂17の抵抗が電流迂回路19の抵抗よりも大きい場合は、超電導線材20と電流迂回路19の間に介在する導電性樹脂17の厚さによっては、導電性樹脂17を通じて電流迂回路19へ流れる電流が少なくなってしまう恐れがある一方、導電性樹脂17の抵抗が電流迂回路19の抵抗よりも小さい場合は、超電導線材20を流れる電流が電流迂回路19を介さずに導電性樹脂17のみを介して流れ、電流迂回路19が電流迂回路として機能しなくなる恐れがあるからである。
電流迂回路19の具体的な材料としては、ステンレス、アルミニウムもしくはインジウム等の常電導体が含まれてもよく、あるいは、半導体、半導体セラミックス材、導電性プラスチック材、または、超電導材料等が含まれてもよい。また、グラファイト、炭素繊維または炭素繊維複合材などのカーボン材料なども電流迂回路19の材料として用いることもできる。
また、図1〜図3に示す例では、電流迂回路19の図中上面が絶縁層16aで覆われている。このように、電流迂回路19は、図において絶縁層16aと巻線部材12の上端面との間に挟まれているが、必要に応じて絶縁層16aを省略してもよい。
なお、上記の説明では電流迂回路19を巻線部材12の上端面に設ける例を説明したが、巻線部材12の下端面に設けてもよく、又は上端面及び下端面に設けてもよい。これにより超電導線材20及び導電性樹脂17と電流迂回路19との接続をより確実なものにすることができる。
(作用)
上記のように構成された超電導コイルにおいて、通常運転時、すなわち、超電導線材20が超電導状態の時、電流の大部分は、超電導線材20を通って流れる。ここで、常電導転移の場合、すなわち、超電導線材20の少なくとも一部、例えば、図4(a)、(b)の領域(常電導領域)15が常電導状態に転移した場合を想定する。
この場合、常電導領域15を含む超電導線材20の電気抵抗は、電流迂回路19の電気抵抗よりも大きくなるため、電流の大部分は、常電導領域15を含む超電導線材20を迂回して、電流迂回路19へ流れる。図3に示す例では、超電導線材20が全て電流迂回路19に接触しているため、超電導線材20の常電導転移箇所がどこであっても、電流を電流迂回路19に迂回させることができる。
一方、図4(a)に示すように、巻線部材12の巻回工程及び含浸工程によっては、超電導線材20の幅方向にばらつく場合があったり、導電性樹脂が十分に含浸されない場合がある。その場合、超電導線材20の一部が電流迂回路19に電気的に接続されない箇所が生じる恐れがあるが、本実施形態では、図4(b)に示すように、巻線部材12を導電性樹脂17に含浸することで、超電導線材20は電流迂回路19と直接、又は導電性樹脂17を介して電流迂回路19と電気的に接続される。これにより、巻線部材12を巻回するときに、超電導線材20の位置が線材幅方向にばらついたとしても、超電導線材20と電流迂回路19を電気的に接続することが可能となる。これにより、大きなジュール熱が継続的に発生することが抑制されるため、熱暴走又はクエンチの発生を抑制することができる。
(効果)
ところで、超電導線材20を流れる電流の値が、通電電流の限界である臨界電流値に近づくにつれ、超電導線材20には、徐々に外部磁場が侵入する。そして、外部磁場の侵入により、超電導線材20の超電導状態が局所的に破壊され、局所的に常電導転移する部分(常電導領域15)が生じる可能性がある。この局所的な常電導転移に伴うフラックスフロー抵抗は、ジュール熱発生の原因となり、熱暴走またはクエンチの発生原因となる。
しかしながら、本実施形態によれば、巻線部材12の幅方向端部(図中上端部)に電流迂回路19を設け、幅方向にばらつきのある超電導線材20や径方向に離間した超電導線材20同士を、電流迂回路19と導電性樹脂17とを介して電気的に接続する。これにより、超電導線材20の一部、例えば常電導領域15で常電導転移に伴う局所的なフラックスフロー抵抗が発生したとしても、巻線部材12の周方向に沿って流れていた通電電流Iの一部(ΔI)が、電流迂回路19を介して、超電導コイル10の径方向に沿って流れる。その結果、電流は、局所的なフラックスフロー抵抗が発生した部分を避けて、他の超電導線材20に流れることができる。すなわち、コイルの周方向に沿って流れる通電電流はIからI−ΔIに減少する。このとき、コイルの径方向に沿って流れる電流ΔIは、電流迂回路19の電気抵抗をR1とし、フラックスフロー抵抗をR2とすると、R2/(R1+R2)に比例する。このため、フラックスフロー抵抗が増大すればするほど、より多くの通電電流が、コイルの径方向に沿って流れる(すなわち、迂回して流れる)こととなる。
このように、本実施形態では、常電導領域15に多量の電流が流れるのを未然に防止することができるため、熱暴走又はクエンチ等の発生を抑制することができる。
(第1変形例)
第1の実施形態の第1変形例に係る超電導コイル10は、図6に示すように、隣接する超電導線材20の間の少なくとも一部に常電導金属等からなる導電性部材32を配置した構成としている。なお、導電性部材32の代わりに導電性樹脂を充填してもよい。
上記のように構成された第1変形例において、超電導線材20に、局所的に常電導領域15が発生した場合を想定する。この場合、コイルの周方向に沿って流れていた通電電流Iの一部(ΔI)は、導電性部材32を横断して、隣接する超電導線材20に向かって流れる。換言すれば、通電電流Iの一部(ΔI)は、電流迂回路19又は導電性部材32を介してコイルの径方向に沿って流れる。
これにより、局所的な常電導領域15に多量の通電電流が流れるのを未然に防止することができるため、熱暴走又はクエンチ等の発生を抑制することができる。
(第2変形例)
第2変形例では、第1変形例で示す巻線部材12において、図7に示すように、巻線部材12の径方向に少なくとも1つの離型層31を配置する構成としている。図7に示す例では、巻線部材12を領域12a〜12cに分けた場合、各領域の境界に離型層31を配置している。図8は、図7における領域A2の拡大断面図である。
この離型層31により、巻線部材12には、径方向の層間接着力が弱い箇所が形成される。すなわち、離型層31が配置されている箇所は径方向の層間接着力が弱いため、仮に、超電導コイル10の使用時等において、運転温度までの冷却時に発生するコイル径方向の熱応力又は励磁により発生する電磁応力などの剥離応力がコイル径方向に印加された場合、この離型層31によって剥離応力を吸収し、他の超電導線材20等にかかる剥離応力を緩和する。
このように、予想される剥離応力に応じて、巻線部材12の径方向に少なくとも1つの離型層31を配置することで、超電導線材20にかかる剥離応力を緩和することができるため、多層体からなる超電導線材20(図5参照)の剥離破損を抑制することができる。
ところで、熱暴走等の発生を抑制するために、図8に示すように、離型層31に隣接して超電導線材20の間隙に導電性部材32を配置している場合がある。その場合、離型層31によって導電性部材32が非接着になった箇所では、この箇所の近傍で常電導転移が発生しても通電電流Iを径方向に横断して流出させることができなくなり、熱暴走又はクエンチ等の発生を抑制することができなくなる可能性がある。
そこで、第2変形例では、図7、図8に示すように、離型層31を跨ぐように、巻線部材12の上面に電流迂回路19を配置する。すなわち、第2変形例では、離型層31によって径方向に電流が流れにくくなることに対応して、電流迂回路19が離型層31を跨ぐように配置される。
その結果、離型層31を跨ぐ電流迂回路19が形成される。なお、図8に示すように、電流迂回路19と導電性樹脂17を併用してもよい。
第2変形例によれば、離型層31によって径方向に電流が流れにくくなる部分が存在する場合であっても、離型層31を跨ぐように配置された電流迂回路19によって、熱暴走等の発生を抑制することができる。
なお、この離型層31を他の実施形態に係る巻線部材にも適用できることはもちろんである。
(第3変形例)
第3変形例にかかる超電導コイル10を図9〜図10を参照して説明する。
図9は、超電導コイル10に作用する磁場Bの模式図である。超電導コイル10を構成する超電導線材20を流れる通電電流Iに基づく磁場Bは、超電導コイル10の中心軸Cを含む面内を旋回し、図9に示されるように、磁場Bの一部が超電導線材20に侵入する。超電導線材20の各位置におけるフラックスフロー抵抗の大きさは、各位置を貫く磁場Bの向きおよび大きさ等によって変化するが、フラックスフロー抵抗による電界強度が最大になるのは、巻線部材12の最内周からコイル径方向の中央部付近までの位置である。
すなわち、超電導コイル10の最内周から中央部付近までの位置では、一般に臨界電流値Icが他の位置よりも低くなる。
そこで、第3変形例では、超電導コイル10の内部で臨界電流値Icを低下させるフラックスフロー抵抗が高くなるように、図10に示すように、環状の電流迂回路19を超電導コイル10の最内周から中央部付近までの領域に設けている。
なお、図9に示す磁場Bの形状は、典型的な形状を例示したもので、電流迂回路19が配置される具体的な位置は、実際の磁場Bの形状等によって、適宜変更可能である。
このように、電流迂回路19を超電導コイル10の上面の一部にのみ設けることで、超電導線材20の内、臨界電流値Icが他の位置よりも低くなる部分を流れる電流のみを他の超電導線材20へ迂回させることができる。
(効果)
本第3変形例によれば、超電導線材20を流れる電流をゼロから定格電流まで増加させる際に、予定された磁場形状の形成の遅れが抑制される。また、電流迂回路19における発熱の発生が抑制される。しかも、臨界電流値Icが他の領域よりも低くなる領域に、電流迂回路19を配置することで、熱暴走が発生しやすい領域における電流を好適に迂回させることが可能となる。その結果、熱暴走又はクエンチ等の発生を抑制することができる。
なお、この第3変形例を他の実施形態に係る巻線部材にも適用できることはもちろんである。
[第2の実施形態]
第2の実施形態に係る超電導コイルについて、図11を参照して説明する。
第2の実施形態では、図11に示すように、放射状に複数に分割した電流迂回路19aが用いられる。各電流迂回路19aは、巻線部材12の周方向に沿って所定の間隙11を介して配置される。その形状は扇形状である。
(作用)
超電導コイル10を流れる電流を増加させる時、通電電流Iの変化に起因して磁場が変動する。当該磁場の変動によって、電流迂回路19には、渦電流が発生する。当該渦電流は、磁場の変動を抑制する方向、すなわち、通電電流Iを減少させる方向に流れる。このため、渦電流の発生は好ましくない。
そこで、第2の実施形態では、電流迂回路19を超電導コイルの周方向に沿って放射状に複数に分割し、各電流迂回路19a間に間隙11を形成している。こうして、渦電流の周回経路が分断されることにより、渦電流の発生に起因する通電電流Iの損失を抑制することができる。
また、渦電流に起因する発熱が抑制されることにより、熱暴走等の発生も抑制することができる。
(効果)
第2の実施形態における超電導コイルによれば、第1の実施形態における超電導コイルによって奏される効果に加え、超電導コイルの始動時等において、電流迂回路19に生じる渦電流に起因する通電電流Iの損失が抑制されるため、予定された磁場の形状をより早く形成することができる。
[第3の実施形態]
第3の実施形態に係る超電導コイルについて、図12を参照して説明する。
第3の実施形態に係る電流迂回路19bは、電流迂回路19bの容積を調整するため、多数の空隙又は貫通孔18が設けられている。空隙(貫通孔)18の個数は適宜増減可能である。
空隙18は、例えば、平板状の薄膜導電体に多数の孔を穿孔するか、導電線材を編み込むことによって形成される。また、電流迂回路19bとして、メッシュ材、パンチング材、フィラメント材、不織布、フェルト、ウールまたはスリット材など、空隙または貫通孔を有する既存の導電体製品を用いてもよく、又はこれらの組み合わせた部材を用いてもよい。
さらに、上記実施形態で説明した空隙を有さない電流迂回路19と組み合わせて使用してもよい。
(作用)
電流迂回路19の最適な導電率は超電導コイル10の性質又は用途等によって異なるため、電流迂回路19の導電率は自由に変更できることが望ましい。
しかし、電流迂回路19の外形形状および電流迂回路19の材質は、電流迂回路19の強度または厚みなどの観点から、変更可能な範囲に制限がある。
そこで、本第3の実施形態では、電流迂回路19bの外形形状および材質を変更することなく、空隙(貫通孔)18を有する電流迂回路19bを用いることによって、電流迂回路19cの導電率を所望の値に調節することができる。
(効果)
第3の実施形態における超電導コイルによれば、第1の実施形態における超電導コイルによって奏される効果に加え、導電率を調整可能な電流迂回路19bを用いることで、導電率を容易に調節することが可能となる。導電率の変更は、電流迂回路19bの空隙(貫通孔)18の割合を適宜増減し、電流迂回路19bの容積を調節することによって簡便に行われる。つまり、電流迂回路19bの外形や厚み等の基本的な形状を変更することなく、電流迂回路19の導電率を、最適な導電率に調整することができる。
[第4の実施形態]
第4の実施形態に係る超電導コイルについて、図13を参照して説明する。
第4の実施形態では、電流迂回路19が、電気絶縁材16bを介して、熱伝導部材13に熱的に接続される構成としている。なお、電流迂回路19の材質として、アルミニウムまたは銅などの高熱伝導率材料が用いられる。
このように、第4の実施形態では、電流迂回路19が、電気絶縁材16bを介して、熱伝導部材13に熱的に接続されているため、電流迂回路19は超電導コイル10を冷却するための熱伝導部材としても機能する。この場合、熱伝導部材13は、冷却装置に接続されていてもよい。
本第4の実施形態によれば、電流迂回路19を、冷却用の熱伝導部材として機能させることにより、超電導コイル10の厚みの増加を抑制することができるとともに、冷却効率を向上させることができる。
[第5の実施形態]
第5の実施形態に係る超電導コイル装置50について、図14を参照して説明する。
第5の実施形態では、複数の超電導コイル10a〜10dが、超電導コイルの中心軸Cに沿って積層される構成としている。この超電導コイル装置50は複数の超電導コイル10a〜10dを支持し、磁場発生源となるフランジ部も備えている(図示せず)。
複数の超電導コイル10a〜10dうちの少なくとも1つは、常電導コイルであってもよく、又は全てが上述した実施形態の超電導コイルであってもよい。
以下の説明では、超電導コイル装置50が全て本発明の実施形態に係る超電導コイルからなる例について説明する。
前述したように、通電電流Iによって発生した磁場Bの強度および向きは各位置によって異なる。
積層される超電導コイル10a〜10dは、巻回中心方向の中央部に位置するほど、磁場Bの垂直成分が小さく、遮蔽電流の影響が小さい。
そこで、本実施形態の超電導コイル装置50では、電流迂回路19を設けた超電導線材20は、超電導コイル10a、10dなど、巻回中心Cに沿った端部近傍のものに用いられることが望ましい。
その場合、巻回中心Cに沿って積層された複数の超電導コイル10a〜10dは、その位置によって磁場Bに基づくフラックスフロー抵抗の大きさは異なる。
つまり、超電導コイル10a〜10dは、その積層される位置によって、臨界電流値Icは異なる。
具体的には、通常、磁場Bの剥離方向(すなわち、コイル径方向)の成分が最大になる積層体38における両端の超電導コイル10a、10dにおいて、臨界電流値Icが低くなる。
そこで、本第5の実施形態に係る超電導コイル装置50では、上述した第1の実施形態〜第4の実施形態に示した電流迂回路19が設けられた超電導コイル10を超電導コイル装置50の両端に配置する。
(作用)
超電導コイル装置を構成する複数の超電導コイルのうち、臨界電流値が最も低くなる領域に配置される超電導コイルを、上述した第1乃至第4の実施形態に係る超電導コイル10とすることで、上述の第1乃至第4の実施形態に説明した作用効果を奏することができる。
なお、超電導コイル10を具体的に超電導コイル装置50に適用したこと、および超電導コイル10の配置位置を限定したこと以外は、第5実施形態は第1実施形態と同じ構造および動作手順となるので、重複説明を省略する。
(効果)
以上説明したように、第5実施形態にかかる超電導コイル装置50によれば、第1実施形態などと同様の効果を発揮することができる。
また、全ての超電導コイル10a〜10dとして、電流迂回路19が設けられた超電導コイル10を用いると、超電導コイル装置の始動時に、電流迂回路19を流れる電流が大きくなり、予定された磁場形状が形成されるまでの時間が長くなる。したがって、本第5の実施形態のように、電流迂回路19が設けられた超電導コイル10を、臨界電流値Icが低くなる両端の位置に限定して用いることで、想定した磁場形状にするまでの励磁時間の短縮化を図ることができる。
[第6の実施形態]
第6の実施形態に係る超電導コイル装置50について、図15を参照して説明する。
第6の実施形態における超電導コイル装置50では、隣接する2つの超電導コイル(例えば、超電導コイル10a、10bと超電導コイル10c、10d)の間に、コイル間電流迂回路37を配置する構成としている。
(作用)
上述した第1の実施形態に係る電流迂回路19は、通電電流Iを、超電導線材20から、他の超電導線材20に迂回させるための部材であり、超電導線材20の一部分のみで常電導転移が生じている時に、電流を好適に迂回させることができる。
ところで、特定の超電導コイル(例えば10a)の大部分が常電導転移している場合を想定すると、通電電流Iを、隣接する他の超電導コイル(例えば10b)に迂回させることが望ましい。
そこで、第6の実施形態における超電導コイル装置50では、例えば超電導コイル10aと、隣接する超電導コイル10bとを、超電導コイル10aの下面に配置されたコイル間電流迂回路37を介して電気的に接続する。これにより、例えば、超電導コイル10aにおいて、常電導転移が進行した場合に、通電電流Iを、超電導コイル10aからコイル間電流迂回路37を介して超電導コイル10bに迂回させることが可能となる。
なお、第5の実施形態と同様に、コイル間電流迂回路37は、すべての超電導コイルの各々に設けるのではなく、一部の超電導コイルのみに設けることが好ましい。例えば、超電導コイル10aと超電導コイル10bとが隣接しており、超電導コイル10bと超電導コイル10cとが隣接している場合を想定する。
この場合、超電導コイル10aと超電導コイル10bとの間には、コイル間電流迂回路37を配置する一方、超電導コイル10bと超電導コイル10cとの間には、コイル間電流迂回路37を配置しなくてもよい。すなわち、超電導コイル10bと超電導コイル10cとは、電気的に絶縁されていてもよい。
図15に示す例では、超電導コイル10aと超電導コイル10bとの間、及び超電導コイル10cと超電導コイル10dとの間にコイル間電流迂回路37が配置されている。2つのコイル間電流迂回路37の導電率は、同じであってもよいし、異なっていてもよい。
例えば、超電導コイル10a又は超電導コイル10bが、臨界電流値Icが低くなる領域に配置され、超電導コイル10c及び超電導コイル10dが、臨界電流値Icが高い領域に配置される場合を想定する。この場合、超電導コイル10aと第2の超電導コイル10bとの間に配置されるコイル間電流迂回路37の導電率は、超電導コイル10cと超電導コイル10dとの間に配置されるコイル間電流迂回路37の導電率よりも高いことが好ましい。
コイル間電流迂回路37は、磁場の侵入が強く、臨界電流値Icが低くなる領域にある超電導コイルに設けられるのが好ましい。さらに、コイル間電流迂回路37の導電率は、電流迂回路19の導電率よりも低いのが好ましい。これは、磁場形状を予定した磁場形状にできるだけ速く形成するために、通電電流Iは、一つの超電導コイルの中でのみ迂回するのが望ましいからである。
以上説明したように、第6の実施形態によれば、第5の実施形態によって奏される効果に加え、常電導転移が進行した特定の超電導コイルから隣接する他の超電導コイルに通電電流Iを迂回させることで、熱暴走等の発生を抑制することができる。
なお、第6の実施形態において、コイル間電流迂回路37を、臨界電流値Icが高い領域にある超電導コイルに配置することは排除されない。この場合、臨界電流値Icが高い領域にある超電導コイルにおいて、何らかの異常で予期せぬ電気抵抗が発生する場合であっても、熱暴走等の発生を抑制することができる。
以上説明したように、本実施形態に係る超電導コイルおよび超電導コイル装置によれば、常電導転移状態に転移した超電導線材又は超電導コイルに流れる電流を電流迂回路19又はコイル間電流迂回路37により迂回させることで、熱暴走またはクエンチの発生を抑制することが可能となる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。
例えば、図1では、電流迂回路19が配置される超電導コイルの形状として、パンケーキ形状を例示したが、パンケーキ形状のものに限定されず、非円形に巻回したレーストラック型、鞍型、楕円またはソレノイド型でもよく、電流迂回路はいずれの形状の超電導コイルにも適用可能である。
これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10、10a〜10d…超電導コイル、11…間隙、12、12a〜12c…巻線部材、13…熱伝導部材、14…巻枠、15…常電導領域、16…絶縁材、16a…絶縁層、16b…電気絶縁材、17…導電性樹脂、18…空隙(貫通孔)、19、19a、19b…電流迂回路、20…超電導線材、31…離型層、32…導電性部材、37…コイル間電流迂回路、50…超電導コイル装置

Claims (12)

  1. 超電導線材と絶縁材が巻枠の周囲に共巻されてなる巻線部材と
    前記巻線部材の間及び前記巻線部材の幅方向端部の少なくとも一部に形成された導電性樹脂と、
    前記巻線部材の少なくとも幅方向端部の一方に設けられ、前記超電導線材及び/又は導電性樹脂に電気的に接続される電流迂回路と、を有することを特徴とする超電導コイル。
  2. 超電導線材が巻枠の周囲に巻回されてなる巻線部材と
    前記巻線部材の間及び前記巻線部材の幅方向端部の少なくとも一部に形成された導電性樹脂と、
    前記巻線部材の少なくとも幅方向端部の一方に設けられ、前記超電導線材及び/又は導電性樹脂に電気的に接続される電流迂回路と、を有する超電導コイルであって、
    隣接する前記超電導線材間の少なくとも一部に導電性部材を配置したことを特徴とする超電導コイル。
  3. 前記巻線部材を導電性樹脂に含浸することにより、前記巻線部材の間及び前記巻線部材の幅方向端部の少なくとも一部に導電性樹脂を形成することを特徴とする請求項1又は2に記載の超電導コイル。
  4. 前記電流迂回路の上面に絶縁層を設けたことを特徴とする請求項1乃至3のいずれかに記載の超電導コイル。
  5. 前記電流迂回路を前記巻線部材の最内周から中央部付近まで配置したことを特徴とする請求項1乃至4のいずれかに記載の超電導コイル。
  6. 前記巻線部材の径方向に少なくとも1つの離型層を設け、当該離型層を跨がるよう前記電流迂回路を配置したことを特徴とする請求項1乃至5のいずれかに記載の超電導コイル。
  7. 前記電流迂回路を所定の間隙を介して複数に分割したことを特徴とする請求項1乃至6のいずれかに記載の超電導コイル。
  8. 前記電流迂回路に複数の空隙を設けたことを特徴とする請求項1乃至7のいずれかに記載の超電導コイル。
  9. 前記電流迂回路を、電気絶縁体を介して熱伝導部材に熱的に接続したことを特徴とする請求項1乃至8のいずれかに記載の超電導コイル。
  10. 請求項1乃至9のいずれかに記載の超電導コイルの製造方法において、超電導線材と絶縁材が巻枠の周囲に共巻されてなる巻線部材を導電性樹脂に含浸させることで、前記超電導線材同士の間及び超電導線材の前記巻線部材の幅方向端部に導電性樹脂を形成し、前記巻線部材の幅方向端部の一方に電流迂回路を設けることを特徴とする超電導コイルの製造方法。
  11. 請求項1乃至9のいずれかに記載の超電導コイルを含む超電導コイルを複数積層するとともに、前記積層された超電導コイルの前記巻線部材の幅方向端部に電流迂回路を設けたことを特徴とする超電導コイル装置。
  12. 前記積層された超電導コイルのうち、隣接する2つの超電導コイルを電気的に接続するコイル間電流迂回路を設けたことを特徴とする請求項11に記載の超電導コイル装置。
JP2016245090A 2016-12-19 2016-12-19 超電導コイル、超電導コイルの製造方法及び超電導コイル装置 Active JP6786375B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016245090A JP6786375B2 (ja) 2016-12-19 2016-12-19 超電導コイル、超電導コイルの製造方法及び超電導コイル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016245090A JP6786375B2 (ja) 2016-12-19 2016-12-19 超電導コイル、超電導コイルの製造方法及び超電導コイル装置

Publications (2)

Publication Number Publication Date
JP2018101465A true JP2018101465A (ja) 2018-06-28
JP6786375B2 JP6786375B2 (ja) 2020-11-18

Family

ID=62715506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016245090A Active JP6786375B2 (ja) 2016-12-19 2016-12-19 超電導コイル、超電導コイルの製造方法及び超電導コイル装置

Country Status (1)

Country Link
JP (1) JP6786375B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013960A (ja) * 2018-07-20 2020-01-23 株式会社東芝 超電導コイル及び超電導コイル装置
JP2020025014A (ja) * 2018-08-07 2020-02-13 株式会社東芝 高温超電導コイル及び超電導磁石装置
JP2021015833A (ja) * 2019-07-10 2021-02-12 株式会社東芝 超電導コイル及び超電導コイルユニット
JP2021093421A (ja) * 2019-12-09 2021-06-17 株式会社東芝 超電導コイル装置
JP2022058914A (ja) * 2018-02-01 2022-04-12 トカマク エナジー リミテッド Hts界磁コイル

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093721A (ja) * 1999-09-24 2001-04-06 Toshiba Corp 高温超電導マグネット
JP2014022693A (ja) * 2012-07-23 2014-02-03 Toshiba Corp 超電導コイル及びその製造装置
JP2015179764A (ja) * 2014-03-19 2015-10-08 株式会社東芝 高温超電導磁石装置および高温超電導磁石消磁方法
JP2016039289A (ja) * 2014-08-08 2016-03-22 株式会社東芝 高温超電導コイルおよび高温超電導磁石装置
JP2016086138A (ja) * 2014-10-29 2016-05-19 住友電気工業株式会社 超電導マグネットおよび超電導機器
WO2016117658A1 (ja) * 2015-01-21 2016-07-28 新日鐵住金株式会社 酸化物超電導バルクマグネット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093721A (ja) * 1999-09-24 2001-04-06 Toshiba Corp 高温超電導マグネット
JP2014022693A (ja) * 2012-07-23 2014-02-03 Toshiba Corp 超電導コイル及びその製造装置
JP2015179764A (ja) * 2014-03-19 2015-10-08 株式会社東芝 高温超電導磁石装置および高温超電導磁石消磁方法
JP2016039289A (ja) * 2014-08-08 2016-03-22 株式会社東芝 高温超電導コイルおよび高温超電導磁石装置
JP2016086138A (ja) * 2014-10-29 2016-05-19 住友電気工業株式会社 超電導マグネットおよび超電導機器
WO2016117658A1 (ja) * 2015-01-21 2016-07-28 新日鐵住金株式会社 酸化物超電導バルクマグネット

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022058914A (ja) * 2018-02-01 2022-04-12 トカマク エナジー リミテッド Hts界磁コイル
JP2020013960A (ja) * 2018-07-20 2020-01-23 株式会社東芝 超電導コイル及び超電導コイル装置
JP7222622B2 (ja) 2018-07-20 2023-02-15 株式会社東芝 超電導コイル及び超電導コイル装置
JP2020025014A (ja) * 2018-08-07 2020-02-13 株式会社東芝 高温超電導コイル及び超電導磁石装置
JP2021015833A (ja) * 2019-07-10 2021-02-12 株式会社東芝 超電導コイル及び超電導コイルユニット
JP2021093421A (ja) * 2019-12-09 2021-06-17 株式会社東芝 超電導コイル装置
JP7247080B2 (ja) 2019-12-09 2023-03-28 株式会社東芝 超電導コイル装置

Also Published As

Publication number Publication date
JP6786375B2 (ja) 2020-11-18

Similar Documents

Publication Publication Date Title
US20230368953A1 (en) Superconducting coil and superconducting coil device
JP6786375B2 (ja) 超電導コイル、超電導コイルの製造方法及び超電導コイル装置
JP6490851B2 (ja) 超電導コイルおよび超電導コイル装置
JP4620637B2 (ja) 抵抗型超電導限流器
JP6666274B2 (ja) 高温超電導永久電流スイッチ及び高温超電導磁石装置
JP2011187524A (ja) 高温超電導並列導体、それを用いた高温超電導コイル及び高温超電導マグネット
WO2017057064A1 (ja) 高温超電導導体、高温超電導コイル及び高温超電導コイルの接続構造
JPH0523485B2 (ja)
JPS63257203A (ja) 超電導磁石のためのクエンチ伝播装置
JP6353674B2 (ja) 高温超電導磁石装置および高温超電導磁石消磁方法
CN105103247A (zh) 超导磁性线圈装置
JP2001093721A (ja) 高温超電導マグネット
JP7222622B2 (ja) 超電導コイル及び超電導コイル装置
JP2012195413A (ja) 超電導コイル
JP2020025014A (ja) 高温超電導コイル及び超電導磁石装置
Yanagisawa et al. Suppression of catastrophic thermal runaway for a REBCO innermost coil of an LTS/REBCO NMR magnet operated at 400–600 MHz (9.4–14.1 T)
JPH04237105A (ja) 超電導電磁石
JP7247080B2 (ja) 超電導コイル装置
JP2013120777A (ja) 超電導コイルおよび超電導変圧器
JP7110035B2 (ja) 超電導磁石装置
JP7404187B2 (ja) 超電導コイル及び超電導コイル装置
JP2016186905A (ja) 超電導線材及びそれを用いた超電導コイル
JP2021015833A (ja) 超電導コイル及び超電導コイルユニット
JP2023044839A (ja) 超電導コイル及び超電導コイル装置
JP2022174411A (ja) 超電導コイルおよび超電導コイルの製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6786375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150