WO2016117438A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2016117438A1
WO2016117438A1 PCT/JP2016/050926 JP2016050926W WO2016117438A1 WO 2016117438 A1 WO2016117438 A1 WO 2016117438A1 JP 2016050926 W JP2016050926 W JP 2016050926W WO 2016117438 A1 WO2016117438 A1 WO 2016117438A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
bus
power
power storage
Prior art date
Application number
PCT/JP2016/050926
Other languages
English (en)
French (fr)
Inventor
竹島 由浩
山田 正樹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016541734A priority Critical patent/JP6012915B1/ja
Priority to CN201680003759.2A priority patent/CN107000739B/zh
Priority to DE112016000426.5T priority patent/DE112016000426B4/de
Priority to US15/518,125 priority patent/US9975449B2/en
Publication of WO2016117438A1 publication Critical patent/WO2016117438A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an inverter that drives a motor generator, a DC / DC converter that is connected to a DC bus of the inverter, and a power converter that includes a control device that controls the inverter and the DC / DC converter. .
  • the basic powertrain system of a hybrid vehicle consists of an internal combustion engine (engine), a motor generator (motor generator), a high voltage battery, an inverter, a low voltage battery (14V lead battery), a step-down DC / DC converter, a 14V electrical component, and an ECU. Is done.
  • a powertrain system that uses a nickel-metal hydride battery or lithium-ion battery, which is an electricity storage device that excels in rapid charge and discharge of energy, as a high-voltage battery, and adds the high-voltage battery to the DC bus line of the inverter.
  • a nickel-metal hydride battery or lithium-ion battery which is an electricity storage device that excels in rapid charge and discharge of energy, as a high-voltage battery, and adds the high-voltage battery to the DC bus line of the inverter.
  • the DC bus voltage of the inverter becomes a high value during deceleration regeneration, and the energy regeneration amount can be positively increased.
  • the 14V electrical component is In the heavy load state where the required power is large, the generated loss accompanying the power conversion of the step-down DC / DC converter increases, and there is a problem that leads to an increase in size of the step-down DC / DC converter.
  • M / G start when the engine is restarted from the idling stop state using the motor generator (hereinafter referred to as M / G start), if the DC bus voltage remains high, an inverter is used to limit the current flowing to the motor generator.
  • the storage device has a CMU (cell monitor unit) in order to control the charge state variation between the storage devices, but the time required to correct the charge state variation (cell balance function) is at least. There was a problem that the cell balance function could not be realized in real time because it was several hours.
  • CMU cell monitor unit
  • An object of the present invention is to reduce loss in an inverter and a step-down DC / DC converter, and to downsize the inverter and the step-down DC / DC converter.
  • the power converter according to the present invention includes an inverter that drives a motor generator, a first DC / DC converter connected to a DC bus of the inverter, a second DC / DC converter that varies the voltage of the DC bus, and And a control device that controls the inverter, the first DC / DC converter, and the second DC / DC converter, and the control device controls the second DC / DC converter to control the first DC / DC converter.
  • the voltage of the DC bus in the control state is set higher than the voltage of the DC bus in the second control state.
  • the power converter according to the present invention includes an inverter that drives a motor generator, a first DC / DC converter connected to a DC bus of the inverter, a second DC / DC converter that varies the voltage of the DC bus, and the A control device that controls an inverter, the first DC / DC converter, and the second DC / DC converter is provided, and the first control is performed by controlling the second DC / DC converter by the control device.
  • the voltage of the DC bus at the time of the state is higher than the voltage of the DC bus at the time of the second control state, the voltage of the DC bus is set to a low voltage except when necessary so that the inverter and the first Loss in the DC / DC converter can be reduced, and the inverter and the first DC / DC converter can be downsized.
  • the power converter device by Embodiment 1 of this invention it is the figure which represented typically the relationship between the vehicle speed and the DC bus-line voltage (step shape) of an inverter.
  • the power converter device by Embodiment 1 of this invention it is the figure which represented typically the relationship between the vehicle speed and the DC bus-line voltage (step shape) of an inverter.
  • the power converter device by Embodiment 2 of this invention it is the figure which represented typically the relationship between a vehicle speed and the DC bus-line voltage (lamp shape) of an inverter.
  • the power converter device by Embodiment 3 of this invention it is the figure which represented typically the relationship between the vehicle speed and the DC bus-line voltage (lamp shape) of an inverter.
  • Embodiment 5 of this invention is a circuit diagram of the power converter device by Embodiment 5 of this invention.
  • FIG. 1 shows a block configuration diagram of the power conversion device according to Embodiment 1 of the present invention
  • FIG. 2 shows a circuit diagram of the power conversion device to which a representative circuit of each block is added
  • FIG. 3 shows each vehicle control state. The control flow figure of is shown.
  • the first power storage device 1 for example, a lead battery
  • a plurality of second power storage devices 7 and 8 for example, a nickel metal hydride battery, a lithium ion battery, etc.
  • a device is used. That is, the output voltage of the second power storage devices 7 and 8 (for example, nickel metal hydride battery, lithium ion battery, etc.) is higher than the output voltage of the first power storage device 1 (for example, lead battery), and the second power storage device.
  • the first power storage device 1 has different electrical characteristics as is well known.
  • the first power storage device 1 is connected in parallel to the connection lines between the terminals 2 a and 2 b of the in-vehicle electrical component 2 and the terminals 3 c and 3 d of the first DC / DC converter 3. Is done.
  • the terminals 3a and 3b of the first DC / DC converter 3, the terminals 4a and 4b of the inverter 4, and the terminals 6a and 6b of the second DC / DC converter 6 are respectively connected as illustrated in FIG. .
  • connection line that connects the DC side terminal 4a of the inverter 4 and the inverter side terminal 3a of the first converter 3 and a DC side terminal 4b of the inverter 4 and the inverter side terminal 3b of the first converter 3 are connected.
  • the connection line is generally referred to as a DC bus of the inverter 4.
  • the terminals 4c, 4d, 4e on the AC side of the inverter 4 are respectively connected to terminals 5a, 5b, 5c of a motor generator (motor generator) (M / G) 5 as illustrated in FIG.
  • the output terminals 7a and 7b of the second power storage device 7 are connected to the input terminals 6c and 6d of the second DC / DC converter 6, respectively, as illustrated in FIG.
  • the output terminals 8a and 8b of the second power storage device 8 are connected to the input terminals 6e and 6f of the second DC / DC converter 6, respectively, as illustrated in FIG. That is, the second DC / DC converter 6 includes the input terminals 6c and 6d supplied with power from one of the two second power storage devices 7 and 8, and the two second power storage devices 7 and 8. Input side terminals 6e and 6f to which power is supplied from the other second power storage device 8 of the power storage devices 7 and 8 are provided. In other words, the second DC / DC converter 6 is provided with a number of input-side terminal pairs corresponding to the number of second power storage devices.
  • Each of the first DC / DC converter 3, the inverter 4, and the second DC / DC converter 6 has a function of being controlled by the control device 9 so that each output changes.
  • the controller 9 controls the first DC / DC converter 3, the inverter 4, and the second DC / DC converter 6 so that each of the first DC / DC converter 3, the inverter 4, and the second DC / DC converter 6 is in a necessary operation state.
  • the terminal 9 a of the control device 9 is connected to the terminal 4 f of the inverter 4 so that each of the second DC / DC converters 6 can be commanded, and the terminal 9 b of the control device 9 is connected to the terminal 3 e of the first DC / DC converter 9.
  • the terminal 9 c of the control device 9 is connected to the terminal 6 g of the second DC / DC converter 6.
  • the first DC / DC converter 3, the inverter 4, and the second DC / DC converter 6 are main components of the power conversion device of the present embodiment.
  • FIG. 2 is an example circuit diagram of each component, which is an example circuit diagram of each component, will be described below.
  • the source terminal of the MOSFET 41a and the drain terminal of the MOSFET 41b are connected, the source terminal of the MOSFET 41c and the drain terminal of the MOSFET 41d are connected, and the source terminal of the MOSFET 41e and the drain terminal of the MOSFET 41f are connected.
  • the drain terminal of the MOSFET 41a, the drain terminal of the MOSFET 41c, and the drain terminal of the MOSFET 41e are connected, and the source terminal of the MOSFET 41b, the source terminal of the MOSFET 41d, and the source terminal of the MOSFET 41f are connected.
  • the drain terminal of MOSFET 41a is connected to one terminal of smoothing capacitor 41g and terminal 4a, and the source terminal of MOSFET 41b is connected to the other terminal of smoothing capacitor 41g and terminal 4b.
  • the source terminal of the MOSFET 41a and the terminal 4c are connected, the source terminal of the MOSFET 41c and the terminal 4d are connected, and the source terminal of the MOSFET 41e and the terminal 4e are connected.
  • the source terminal of the MOSFET 31b and the drain terminal of the MOSFET 31c are connected, and the connection point and one terminal of the smoothing inductor 31d are connected.
  • the other terminal of the smoothing inductor 31d is connected to one terminal of the smoothing capacitor 31e and the terminal 3c, and the source terminal of the MOSFET 31c is connected to the other terminal of the smoothing capacitor 31e and the terminal 3d.
  • the drain terminal of MOSFET 31b is connected to one terminal of smoothing capacitor 31a and terminal 3a, respectively, and the drain terminal of MOSFET 31c is connected to the other terminal of smoothing capacitor 31a and terminal 3b.
  • the source terminal of the MOSFET 61c and the drain terminal of the MOSFET 61d are connected, and the connection point and one terminal of the smoothing inductor 61b are connected.
  • the drain terminal of MOSFET 61c is connected to one terminal of smoothing capacitor 61e and terminal 6c, respectively, and the source terminal of MOSFET 61d is connected to the other terminal of smoothing capacitor 61e and terminal 6d.
  • the source terminal of the MOSFET 61f is connected to the MOSFET 61g, and the connection point is connected to the source terminal of the MOSFET 61d.
  • the drain terminal of MOSFET 61f is connected to one terminal of smoothing capacitor 61h and terminal 6e, respectively, and the source terminal of MOSFET 61g is connected to the other terminal of smoothing capacitor 61h and terminal 6f.
  • the other terminal of the smoothing inductor 61b is connected to the smoothing capacitor 61a and the terminal 6a, respectively, and the source terminal of the MOSFET 61g is connected to the other terminal of the smoothing capacitor 61a and the terminal 6b.
  • a terminal 9a of the control device 9 for instructing an operation state necessary for each of the components is connected to a terminal 4f of the inverter 4, a terminal 9b is connected to a terminal 3e of the first DC / DC converter 9, and a terminal 9c is a first terminal.
  • 2 is connected to the terminal 6g of the DC / DC converter 6, the terminal 9d is connected to the terminal 5d of the motor generator 5, and the terminal 9e is connected to the terminal 2c of the in-vehicle electrical component 2.
  • the control device 9 controls the system by issuing a command of the necessary operating state to each component while monitoring the operating state of each component.
  • FIG. 4 shows an example schematically showing the relationship between the vehicle speed and the DC bus voltage of the inverter.
  • first vehicle control state As an example of the first vehicle control state (first control state), it is the case of the control state at the time of “M / G start” (step ST2 in FIG. 3).
  • M / G start is when the motor generator (M / G) is used to restart the engine from a state where the vehicle is stopped and the engine is stopped (idling stop state) due to a signal waiting or the like.
  • the MOSFET 61c and the MOSFET 61g in the second DC / DC converter 6 are turned on and the MOSFET 61d and the MOSFET 61f are turned off so that the DC bus voltage of the inverter is set to a low voltage (for example, 14V).
  • the second instantaneous type power storage device 7 is visible from the DC bus 4DCB of the inverter 6. While monitoring the SOC (State Of Charge) of the first power storage device 7, the MOSFET 61 d and the MOSFET 61 f are turned on and the MOSFET 61 c and the MOSFET 61 g are turned off at a timing below a predetermined SOC. Further, the MOSFET 61c and the MOSFET 61g are turned on and the MOSFET 61d and the MOSFET 61f are turned off at the timing when the second power storage device 8 falls below the predetermined SOC.
  • SOC State Of Charge
  • the second power storage device 7 and the second power storage device 8 are alternately connected to the DC bus 4DCB of the inverter 6, and the voltage of the DC bus 4DCB is set to a low voltage (for example, 12V) (FIG. 3).
  • Step ST3 it is possible to prevent an excessive current from flowing to the inverter 4 and the motor generator (M / G) 5 when the motor generator (M / G) 5 is started. 5) Breakage of 5 can be avoided.
  • the voltage of the DC bus 4DCB becomes low, the loss generated in the MOSFETs 41a to 41f of the inverter 4 can be reduced, the radiator of the inverter 4 can be simplified, and the inverter 4 can be made compact. Can be realized.
  • the SOC of the second power storage device 7 and the second power storage device 8 is adjusted for voltage balance over several hours.
  • the SOC and energy charging / discharging of the power storage devices 7 and 8 are performed.
  • the voltage balance can be adjusted in units of several seconds, and the power storage devices 7 and 8 can be miniaturized without making a surplus size in consideration of voltage imbalance.
  • the motor can be driven by 180 degrees energization with a small number of switching times as a driving method of the inverter 4
  • the semiconductor loss of the MOSFETs 41a to 41f of the inverter 4 can be greatly reduced, and the inverter 4 can be downsized.
  • the semiconductor loss of the MOSFETs 41a to 41f of the inverter 4 can be reduced while the conventional DC bus voltage is in a high and constant state, and the inverter 4 can be downsized.
  • first control state is the case of the control state when “the on-vehicle electrical component is a heavy load” (step ST4 in FIG. 3).
  • the voltage of the DC bus 4DCB can be lowered (step ST3 in FIG. 3). It is possible to reduce the generated loss in the first DC / DC converter 3, simplify the heat radiator of the first DC / DC converter 3, and realize the downsizing of the first DC / DC converter 3. be able to.
  • the generation loss is reduced by reducing the input voltage of the first DC / DC converter 3.
  • the generation loss of the first DC / DC converter 3 can be further greatly reduced.
  • the first DC / DC converter 3 can be reduced in size by reducing the generation loss of the first DC / DC converter 3.
  • the installation in the engine room (first installation) from the conventional installation in the vehicle interior (installation in the vehicle interior of the first DC / DC converter 3) to the high temperature environment.
  • DC / DC converter 3 installed in the engine room
  • (Wiring) can be shortened, and energy saving of the vehicle can be realized by reducing loss generated in the wiring.
  • An example of the third vehicle control state is the control state at the time of “deceleration energy regeneration” (step ST5 in FIG. 3).
  • the MOSFET 61c and the MOSFET 61f of the second DC / DC converter 6 are turned on, and the MOSFET 61d and the MOSFET 61g are turned off.
  • the voltage of the DC bus 4DCB can be set to a high voltage (for example, 48V) (step ST6 in FIG. 3), and the large deceleration regeneration energy from the motor generator 5 is positively applied to the first and second power storage devices 1 and 7. , 8 can be collected.
  • the SOC of each of the second power storage devices 7 and 8 is taken into consideration by causing the second DC / DC converter 6 to operate in the first vehicle control state described above.
  • the voltage balance can be adjusted in a few seconds, and the power storage devices 7 and 8 can be miniaturized without making the surplus size in consideration of the voltage imbalance.
  • An example of the fourth vehicle control state is the control state at the time of “torque assist” (step ST7 in FIG. 3).
  • torque is generated by supplying high power to the motor generator 5 by operating the second DC / DC converter 6 so that the voltage of the DC bus 4DCB becomes high (step ST6 in FIG. 3).
  • the second DC / DC converter 6 controls the voltage of the DC bus 4DCB from the step shape illustrated in FIG. 4 to the step shape illustrated in FIG.
  • the loss generated in the MOSFETs 61c, 61d, 61f, 61g of the second DC / DC converter can be reduced.
  • the switching loss of the switching element of the second DC / DC converter is obtained by changing the voltage of the DC bus 4DCB stepwise or stepwise as shown in FIG. 4 or FIG. Therefore, it is possible to reduce the size and size. Further, by reducing the loss of the first DC / DC converter 3 that is conventionally arranged in the vehicle interior, it is possible to cope with the arrangement in an environment higher in temperature than the vehicle interior, for example, in the engine compartment. Further, by selectively charging / discharging the plurality of second power storage devices 7 and 8, the state of charge between the second power storage devices 7 and 8 can be controlled in real time together with the power flow control. .
  • the second power storage device 7 and the second power storage device 8 can selectively switch from one to two series connections in this embodiment, and there is no state of parallel connection, and each of the power storage devices Excessive inrush current that occurs when paralleling power storage devices in a voltage unbalanced state does not occur.
  • the first to fourth vehicle control states described above are recognized / identified by an “ECU (Electronic Control Unit / Engine Control Unit) 100 that controls vehicle operation”, which is higher in the control system of the control device 9.
  • the control device 9 performs the above-described operation based on the first to fourth vehicle control state signals (vehicle control state signal) SCCS (step ST1 in FIG. 3) received from the ECU 100.
  • a MOSFET field effect transistor
  • a bipolar transistor, an insulated bipolar transistor (IGBT), a silicon carbide transistor, or a silicon carbide is used. The same effect can be obtained even if a MOSFET is used.
  • the non-insulated step-down chopper circuit has been described as an example of the circuit configuration of the first DC / DC converter 3.
  • the circuit configuration and type of the first DC / DC converter 3 are not particularly limited.
  • the motor generator 5 and the inverter 4 have been described by exemplifying one set of three-phase circuit systems, but the same effect can be obtained by using two or more sets of three-phase circuit systems. Needless to say.
  • the case where the second DC / DC converter has an LC filter (reactor 61b, capacitor 61a) has been described as an example.
  • a similar effect can be obtained by using an LC filter including an inductance, a smoothing capacitor 41g of the inverter 4, and a capacitor 31a of the first DC / DC converter 3.
  • the first power storage device and the second power storage device have been described by exemplifying those having different electrical characteristics at different voltages. However, similar electrical characteristics are obtained at different voltages. The same effect can be obtained even if one having the same is used.
  • Embodiment 2 an example of the power conversion device according to the second embodiment of the present invention will be described. Since the configuration diagram of the power conversion device according to the second embodiment of the present invention is the same as that shown in FIGS. 1 to 2 shown in the first embodiment, description of the circuit configuration is omitted. In addition, regarding the operation state of the power conversion device according to the second embodiment of the present invention, the operation of the first DC / DC converter 3 is the same as that shown in the first embodiment, and thus the description thereof is omitted.
  • the difference from the first embodiment is the operation of the second DC / DC converter 6.
  • the second DC / DC converter 6 operates to switch the voltage of the DC bus 4DCB stepwise.
  • the MOSFETs 61a and 61f and the MOSFET 61d of the second DC / DC converter 6 are used.
  • 61g is a set and complementary switching is performed to perform the PWM operation, whereby the voltage of the DC bus 4DCB can be controlled in a ramp shape (see FIG. 6).
  • the semiconductor loss of the MOSFETs 41a to 41f of the inverter 4 can be reduced while controlling the current supplied to the motor generator 5, and the inverter 4 can be downsized.
  • the second power storage device 7 and the second power storage device 8 that are electrically insulated from each other are replaced by any one of the second power storage devices 7 and 8 and two second power storage devices 7 and 8. It is possible to selectively switch the power storage devices 7 and 8 in series connection, or to selectively switch from two to one. There is no state where the second power storage device 7 and the second power storage device 8 are connected in parallel, and an excessive inrush current generated when the power storage devices 7 and 8 are paralleled in a voltage unbalanced state of the power storage devices 7 and 8. Does not occur.
  • the circuit configuration of the first DC / DC converter 3 has been described as a non-insulated step-down chopper circuit. As long as the voltage can be stepped down, it is not particularly limited as long as it is a non-insulated and insulated circuit system that can be estimated by those skilled in the art.
  • the motor generator 5 and the inverter 4 have been described by one set of three-phase circuit systems. It goes without saying that the same effect can be obtained even in the phase circuit system.
  • the second DC / DC converter is described as having an LC filter (reactor 61b, capacitor 61a). However, the same effect can be obtained by using an LC filter composed of the parasitic inductance of the wiring of the DC bus, the smoothing capacitor 41g of the inverter 4, and the capacitor 31a of the first DC / DC converter 3.
  • the first power storage device and the second power storage device are described as having different electrical characteristics at different voltages in the second embodiment of the present invention. However, the same effect can be obtained even if different electric voltages are used at different voltages.
  • Embodiment 3 an example of the power converter device by Embodiment 3 of this invention is demonstrated.
  • the configuration diagram of the power conversion device according to the third embodiment of the present invention is the same as that of FIG. 1 and FIG. 2 shown in the first and second embodiments, and therefore the description of the circuit configuration is omitted.
  • the operation of the first DC / DC converter is the same as that shown in the first and second embodiments, and thus the description thereof is omitted. To do.
  • the difference from the second embodiment is the operation of the second DC / DC converter 6.
  • the MOSFETs 61a and 61f and the MOSFETs 61d and 61g of the second DC / DC converter 2 are set to perform complementary switching, and the PWM operation is performed.
  • the MOSFET 61a is turned on.
  • the MOSFET 61f is maintained in the OFF state, and the MOSFETs 61d and 61g perform the complementary switching, the DC bus voltage can be controlled in a ramp shape as illustrated in FIG.
  • the generation loss of the MOSFET can be reduced, and the second DC / DC converter can be reduced in size.
  • the second power storage device 7 and the second power storage device 8 can selectively switch from one to three series connections in the present invention, there is no parallel connection state, and the voltage of each power storage device is Excessive inrush current that occurs when parallelizing power storage devices in a balanced state does not occur.
  • a case where three second power storage devices are provided is illustrated as the fourth embodiment.
  • MOSFET field effect transistor
  • IGBT transistor
  • silicon carbide transistor silicon carbide MOSFET
  • the circuit configuration of the first DC / DC converter 3 has been described as a non-insulated step-down chopper circuit. As long as the voltage can be stepped down, it is not particularly limited as long as it is a non-insulated and insulated circuit system that can be estimated by those skilled in the art.
  • the motor generator 5 and the inverter 4 have been described by one set of three-phase circuit systems. It goes without saying that the same effect can be obtained even in the phase circuit system.
  • the second DC / DC converter has an LC filter (reactor 61b, capacitor 61a).
  • the same effect can be obtained by using an LC filter composed of the parasitic inductance of the wiring of the DC bus, the smoothing capacitor 41g of the inverter 4, and the capacitor 31a of the first DC / DC converter 3.
  • the MOSFET 61a is maintained in the ON state
  • the MOSFET 61f is maintained in the OFF state
  • the MOSFETs 61d and 61g perform complementary switching, thereby controlling the DC bus voltage in a ramp shape.
  • the same effect can be obtained by maintaining the MOSFET 61a in the OFF state, maintaining the MOSFET 61f in the ON state, and switching the MOSFETs 61d and 61g in a complementary manner.
  • the first power storage device and the second power storage device are described as having different electrical characteristics at different voltages in the third embodiment of the present invention. However, the same effect can be obtained even if different electric voltages are used at different voltages.
  • Embodiment 4 FIG.
  • the block diagram of the power converter device by Embodiment 4 of this invention is shown in FIG. The difference is the circuit configuration of the second DC / DC converter 6.
  • the second power storage device 10 the smoothing capacitor 61k, the MOSFET 61i, and the MOSFET 61j are further added to the second DC / DC converter 6 of the first embodiment.
  • the fourth embodiment is a case where three second power storage devices of the second DC / DC converter 6 are used.
  • the source terminal of the MOSFET 61c and the drain terminal of the MOSFET 61d are connected, and the connection point and one terminal of the smoothing inductor 61b are connected.
  • the drain terminal of MOSFET 61c is connected to one terminal of smoothing capacitor 61e and terminal 6c, respectively, and the source terminal of MOSFET 61d is connected to the other terminal of smoothing capacitor 61e and terminal 6d.
  • the source terminal of the MOSFET 61f and the drain terminal of the MOSFET 61g are connected, and the connection point is connected to the source terminal of the MOSFET 61d.
  • the drain terminal of MOSFET 61f is connected to one terminal of smoothing capacitor 61h and terminal 6e, respectively, and the source terminal of MOSFET 61g is connected to the other terminal of smoothing capacitor 61h and terminal 6f.
  • the source terminal of the MOSFET 61i and the drain terminal of the MOSFET are connected, and the connection point is connected to the source terminal of the MOSFET 61g.
  • the drain terminal of the MOSFET 61i is connected to one terminal of the smoothing capacitor 61k and the terminal 6e, and the source terminal of the MOSFET 61j is connected to the other terminal of the smoothing capacitor 61k, the terminal 6h, and the terminal 6b.
  • the third power storage device 10 is connected between the terminals 6g-6h.
  • the second power storage is operated so that the device 7, 8, 10 having the highest charge state is connected to the DC bus 4 DCB with priority, and the third vehicle control state “deceleration energy regeneration” ”And“ torque assist ”, which is the fourth vehicle control state, are connected to the DC bus 4DCB of the inverter 6 with priority given to the one with the lowest charge state among the second power storage devices 7, 8, 10.
  • the second DC / DC converter 6 is operated as described above.
  • the plurality of power storage device charge states can be controlled in real time together with the power flow control accompanying the vehicle control state transition. Circuit operations other than those described above are the same as those in the first to third embodiments of the present invention, and thus the description thereof is omitted.
  • the maximum value of the DC bus voltage can be increased, the amount of deceleration regenerative energy can be increased, the input power for torque assist can be increased, and fuel consumption can be improved.
  • the second power storage devices 7, 8, and 10 can selectively switch from one to three series connections, and there is no state of parallel connection, and each power storage device 7. , 8, 10 in an unbalanced state, no excessive inrush current is generated when the storage devices are paralleled.
  • the first to fourth vehicle control states described above are in the upper level of the control system by the control device 9 “control the vehicle operation. ECU100 "recognizes / identifies.
  • the control device 9 performs the above-described operation based on the first to fourth vehicle control state signals (vehicle control state signal) SCCS received from the ECU 100.
  • the fourth embodiment of the present invention has been described using a MOSFET (field effect transistor) as a switching element.
  • MOSFET field effect transistor
  • a bipolar transistor or an insulated bipolar transistor has been described. The same effect can be obtained by using a transistor (IGBT), a silicon carbide transistor, or a silicon carbide MOSFET.
  • the non-insulated step-down chopper circuit has been described as the circuit configuration of the first DC / DC converter 3 in the fourth embodiment of the present invention.
  • the voltage can be stepped down it is not particularly limited as long as it is a non-insulated and insulated circuit system that can be estimated by those skilled in the art.
  • the motor generator 5 and the inverter 4 have been described by one set of three-phase circuit systems. It goes without saying that the same effect can be obtained even in the phase circuit system.
  • the second DC / DC converter has an LC filter (reactor 61b, capacitor 61a).
  • the same effect can be obtained by using an LC filter composed of the parasitic inductance of the wiring of the DC bus, the smoothing capacitor 41g of the inverter 4, and the capacitor 31a of the first DC / DC converter 3.
  • MOSFET 61a is maintained in the ON state
  • MOSFET 61f is maintained in the OFF state
  • MOSFETs 61d and 61g perform switching in a complementary manner, thereby controlling the DC bus voltage in a ramp shape.
  • the same effect can be obtained by maintaining the MOSFET 61a in the OFF state, maintaining the MOSFET 61f in the ON state, and switching the MOSFETs 61d and 61g in a complementary manner.
  • the first power storage device and the second power storage device are described as having different electrical characteristics at different voltages in the fourth embodiment of the present invention. However, the same effect can be obtained even if different electric voltages are used at different voltages.
  • FIG. 9 shows a configuration diagram of the power conversion device according to the fifth embodiment of the present invention.
  • the difference from the first embodiment to the fourth embodiment is that the first to fourth embodiments are only the low-voltage electrical component 2 mounted on the vehicle, but the second high-voltage electrical component mounted on the vehicle is the fifth embodiment.
  • the configuration of the power conversion device is that the third DC / DC converter 11 that is a step-up DC / DC converter that supplies power to the second electrical component 200 is added.
  • one end of the reactor 110a, one end of the smoothing capacitor 110b, and the terminal 11a are respectively connected, and the other end of the reactor 110a, the drain terminal of the MOSFET 110c, and the source terminal of the MOSFET 110d are respectively connected.
  • the drain terminal of MOSFET 110d is connected to one end of smoothing capacitor 110e and terminal 11c, and the other end of smoothing capacitor 110b is connected to the source terminal of MOSFET 110c and the other end of smoothing capacitor 110e is connected to terminal 11d.
  • Terminal 6a and terminal 11a, terminal 6b and terminal 11b are respectively connected, and terminal 200a and terminal 11c, and terminal 200b and terminal 11d of second on-vehicle electrical component 200 are respectively connected.
  • the control device 9f and the terminal 11e are connected.
  • the fifth embodiment of the present invention is characterized in that the third DC / DC converter 11 is operated at the lowest boost in the input voltage range and the output voltage range. As a result, the third DC / DC converter 11 can be realized in a small size. As a result, the vehicle-mounted low-voltage electrical component 2 and the vehicle-mounted high-voltage second electrical component 200 can be used at the same time, and the input power to the electrical component can be increased. Increased energy usage leads to improved fuel efficiency.
  • the second power storage device 7, the second power storage device 8, and the second power storage device 10 can selectively switch from one to three series connections in the present embodiment. There is no state where the second power storage devices 7, 8, 10 are connected in parallel, and an excessive amount that occurs when the power storage devices 7, 8, 10 are parallelized in a voltage unbalanced state of the power storage devices 7, 8, 10. Inrush current does not occur.
  • the fifth embodiment of the present invention has been described using a MOSFET (field effect transistor) as a switching element.
  • MOSFET field effect transistor
  • a bipolar transistor or an insulated bipolar transistor has been described.
  • the same effect can be obtained by using a transistor (IGBT), a silicon carbide transistor, or a silicon carbide MOSFET.
  • the circuit configuration of the first DC / DC converter 3 has been described as a non-insulated step-down chopper circuit in the fifth embodiment of the present invention.
  • the voltage can be stepped down it is not particularly limited as long as it is a non-insulated and insulated circuit system that can be estimated by those skilled in the art.
  • the motor generator 5 and the inverter 4 have been described by one set of three-phase circuit systems. It goes without saying that the same effect can be obtained even in the phase circuit system.
  • the second DC / DC converter has an LC filter (reactor 61b, capacitor 61a).
  • the same effect can be obtained by using an LC filter composed of the parasitic inductance of the wiring of the DC bus, the smoothing capacitor 41g of the inverter 4, and the capacitor 31a of the first DC / DC converter 3.
  • the MOSFET 61a is maintained in the ON state
  • the MOSFET 61f is maintained in the OFF state
  • the MOSFETs 61d and 61g perform complementary switching, thereby controlling the DC bus voltage in a ramp shape.
  • the same effect can be obtained by maintaining the MOSFET 61a in the OFF state, maintaining the MOSFET 61f in the ON state, and switching the MOSFETs 61d and 61g in a complementary manner.
  • the second power storage devices 7, 8, and 10 are nickel hydrogen batteries, lithium ion batteries, and other instantaneous types (high power density type (stored compared to high energy density type).
  • the first electricity storage device 7 is a continuous type other than a lead battery (high energy density type (compared to high power density type) It is preferable to use a high energy charge / discharge characteristic that has a large amount of stored energy but a small short-time charge / discharge current)).
  • the first power storage device 7 is also a nickel metal hydride battery, a lithium ion battery, or the like. Any suitable battery may be used as long as the effects of the present invention are achieved.
  • the control device 9 may be provided in the ECU 100.
  • a magnitude relationship of “voltage of electrical component 200> voltage of electrical component 2” is assumed, and the voltage of electrical component 2 is, for example, 12V (an example is not limited to 12V).
  • Examples of the electrical component 2 include a headlight, a car navigation system, and audio.
  • the voltage of the electrical component 200 is, for example, 48V (an example is not limited to 48V), and examples of the electrical component 200 include EPS (electric power steering), an electric air conditioner, and the like.
  • the voltage of the DC bus 4DCB is, for example, as shown in the following (a) to (e).
  • the voltage of the DC bus 4DCB in the first vehicle control state is 12V (an example is not limited to 12V).
  • the voltage of the DC bus 4DCB in the second vehicle control state is 12V (an example is not limited to 12V).
  • the voltage of the DC bus 4DCB in the third vehicle control state is 48V (an example is not limited to 48V).
  • the voltage of the DC bus 4DCB in the fourth vehicle control state is 48V (an example is not limited to 48V).
  • the voltage of the DC bus 4DCB in the vehicle control state other than the first to fourth vehicle control states (during steady running) is 12V (an example is not limited to 12V).

Abstract

 モータジェネレータ(5)を駆動するインバータ(4)、前記インバータ(4)の直流母線(4DCB)と接続された第1のDC/DCコンバータ(3)、前記直流母線の電圧を可変する第2のDC/DCコンバータ(6)、および前記インバータ(4)と前記第1のDC/DCコンバータ(3)と前記第2のDC/DCコンバータ(6)とを制御する制御装置(9)を備え、前記制御装置(9)により、前記第2のDC/DCコンバータ(6)を制御することにより第1の制御状態のときの前記直流母線(4DCB)の電圧を第2の制御状態のときの前記直流母線(4DCB)の電圧より高くする電力変換装置であり、インバータの直流母線(4DCB)の電圧を必要な時以外は低電圧にしておくことで、インバータや降圧DC/DCコンバータでの損失を低減することができ、インバータや降圧DC/DCコンバータを小型化することができる。

Description

電力変換装置
 本発明は、モータジェネレータを駆動するインバータ、前記インバータの直流母線と接続されたDC/DCコンバータ、および前記インバータと前記DC/DCコンバータとを制御する制御装置を備えた電力変換装置に関するものである。
近年、環境問題・資源問題を背景として、自動車においては燃費改善が強く求められている。それを実現する技術として、従来の内燃機関によるパワートレイン系に、電動パワートレイン系を追加したハイブリッド自動車が急速に普及してきている。
 ハイブリッド自動車の基本パワートレインシステムとしては、内燃機関(エンジン)、モータジェネレータ(電動発電機)、高圧バッテリ、インバータ、低圧バッテリ(14V鉛バッテリ)、降圧DC/DCコンバータ、14V電装品、ECUから構成される。
 また、できるだけ燃費を改善するため、減速回生エネルギーをたくさん回収する必要があり、減速回生エネルギーは短時間で大電力となり、低圧バッテリ(14V鉛バッテリ)では受け入れることができない。
 またモータジェネレータの発電電圧を高め、且つエネルギーの急速充放電を得意とする蓄電デバイスであるニッケル水素電池やリチウムイオン電池を高圧バッテリとして用い、高圧バッテリをインバータの直流母線ラインに付加するパワートレインシステムが特許文献1で開示されている。
特開2009-18719号公報
 上記特許文献1では、減速回生時はインバータの直流母線電圧は高い値となり、積極的にエネルギー回生量を増大することができるが、直流母線電圧が高い電圧のままであるため、14V電装品が要求する電力が大きい状態である重負荷状態では、降圧DC/DCコンバータの電力変換に伴う発生損失が大きくなり、降圧DC/DCコンバータの大型化に繋がる課題がある。
 また、モータジェネレータを用いてアイドリングストップ状態からエンジンを再始動させる(以下、M/G始動と称する)時、直流母線電圧が高い電圧のままであると、モータジェネレータに流れる電流制限を行うためインバータでの電力変換に伴う発生損失が大きくなり、インバータの冷却性能向上に伴う大型化および高コスト化に繋がる課題もある。
 また、蓄電デバイス間の充電状態ばらつきを制御するために蓄電デバイスはCMU(セルモニターユニット)を有しているが、充電状態のばらつきを補正する(セルバランス機能)のに必要な時間は最低でも数時間レベルであり、リアルタイムにセルバランス機能を実現させることができない課題もあわせてあった。
 この発明の目的は、インバータや降圧DC/DCコンバータでの損失を低減し、インバータや降圧DC/DCコンバータを小型化することにある。
 本発明に係る電力変換装置は、モータジェネレータを駆動するインバータ、前記インバータの直流母線と接続された第1のDC/DCコンバータ、前記直流母線の電圧を可変する第2のDC/DCコンバータ、および前記インバータと前記第1のDC/DCコンバータと前記第2のDC/DCコンバータとを制御する制御装置を備え、前記制御装置により、前記第2のDC/DCコンバータを制御することにより第1の制御状態のときの前記直流母線の電圧を第2の制御状態のときの前記直流母線の電圧より高くするものである。
 本発明による電力変換装置は、モータジェネレータを駆動するインバータ、前記インバータの直流母線と接続された第1のDC/DCコンバータ、前記直流母線の電圧を可変する第2のDC/DCコンバータ、および前記インバータと前記第1のDC/DCコンバータと前記第2のDC/DCコンバータとを制御する制御装置を備え、前記制御装置により、前記第2のDC/DCコンバータを制御することにより第1の制御状態のときの前記直流母線の電圧を第2の制御状態のときの前記直流母線の電圧より高くするので、直流母線の電圧を必要な時以外低電圧にしておくことで、インバータおよび第1のDC/DCコンバータでの損失を低減することができ、インバータおよび第1のDC/DCコンバータを小型化することができる。
本発明の実施の形態1による電力変換装置のブロック構成図である。 本発明の実施の形態1による電力変換装置の回路図である。 本発明の実施の形態1による電力変換器の制御フロー図である。 本発明の実施の形態1による電力変換装置において、車速とインバータの直流母線電圧(ステップ状)の関係を模式的に表した図である。 本発明の実施の形態1による電力変換装置において、車速とインバータの直流母線電圧(階段状)の関係を模式的に表した図である。 本発明の実施の形態2による電力変換装置において、車速とインバータの直流母線電圧(ランプ状)の関係を模式的に表した図である。 本発明の実施の形態3による電力変換装置において、車速とインバータの直流母線電圧(ランプ状)の関係を模式的に表した図である。 本発明の実施の形態4による電力変換装置の回路図である。 本発明の実施の形態5による電力変換装置の回路図である。
実施の形態1.
 以下、本発明の実施の形態1による電力変換装置の一例を、図1から図5に基づいて説明する。
 図1は、本発明の実施の形態1による電力変換装置のブロック構成図を示し、図2は各ブロックの代表回路を追加した電力変換装置の回路図を示し、図3は各車両制御状態での制御フロー図を示す。
 まず、図1のブロック構成図を説明する。
 蓄電デバイスとしては、第1の蓄電デバイス1(例えば鉛バッテリ)と複数の第2の蓄電デバイス7,8(例えばニッケル水素バッテリ、リチウムイオンバッテリ、等)の2種類の電圧および電気特性の異なる蓄電デバイスが用いられる。即ち、第2の蓄電デバイス7,8(例えばニッケル水素バッテリ、リチウムイオンバッテリ、等)の出力電圧は第1の蓄電デバイス1(例えば鉛バッテリ)の出力電圧より高く、また、第2の蓄電デバイス7,8(例えばニッケル水素バッテリ、リチウムイオンバッテリ、等)と第1の蓄電デバイス1(例えば鉛バッテリ)とは周知のように電気特性が異なる。
 第1の蓄電デバイス1は、図1に例示のように、車載の電装品2の端子2a,2bと第1のDC/DCコンバータ3の端子3c,3dとの各々の接続線に並列に接続される。
 第1のDC/DCコンバータ3の端子3a,3bとインバータ4の端子4a,4bと第2のDC/DCコンバータ6の端子6a,6bとが図1に例示のように、各々接続されている。なお、インバータ4の直流側端子4aと第1のコンバータ3のインバータ側端子3aとを接続する接続線、およびインバータ4の直流側端子4bと第1のコンバータ3のインバータ側端子3bとを接続する接続線は、一般的にインバータ4の直流母線と言われている。
 インバータ4の交流側の端子4c,4d,4eは、図1に例示のように、モータジェネレータ(電動発電機)(M/G)5の端子5a,5b,5cに各々接続される。
 第2の蓄電デバイス7の出力端子7a、7bは、図1に例示のように、第2のDC/DCコンバータ6の入力側の端子6c,6dに各々接続される。第2の蓄電デバイス8の出力端子8a,8bは、図1に例示のように、第2のDC/DCコンバータ6の入力側の端子6e、6fに各々接続される。つまり、第2のDC/DCコンバータ6は、二つの第2の蓄電デバイス7,8の一方の第2の蓄電デバイス7から電力供給される入力側の端子6c,6dと、二つの第2の蓄電デバイス7,8の他方の第2の蓄電デバイス8から電力供給される入力側の端子6e、6fとが設けられている。換言すると、第2のDC/DCコンバータ6は、第2の蓄電デバイスの数に応じた数の入力側の端子対が設けられている。
 第1のDC/DCコンバータ3、インバータ4、および第2のDC/DCコンバータ6の各々は、制御装置9によって各々の出力が変わるように制御される機能を有している。第1のDC/DCコンバータ3、インバータ4、および第2のDC/DCコンバータ6の各々が必要な動作状態となるように、制御装置9が第1のDC/DCコンバータ3、インバータ4、および第2のDC/DCコンバータ6の各々に指令できるように、制御装置9の端子9aはインバータ4の端子4fに接続され、制御装置9の端子9bは第1のDC/DCコンバータ9の端子3eに接続され、制御装置9の端子9cは第2のDC/DCコンバータ6の端子6gに接続される。
 第1のDC/DCコンバータ3、インバータ4、および第2のDC/DCコンバータ6は本実施の形態の電力変換装置の主要コンポーネントである。
 以上の説明は、前記各コンポーネント間の接続状況を説明した内容である。
 前記各コンポーネント内の一例の回路図である図2における機能の一例および動作の一例について以下に説明する。
 インバータ4内は、MOSFET41aのソース端子とMOSFET41bのドレイン端子とが接続され、MOSFET41cのソース端子とMOSFET41dのドレイン端子とが接続され、MOSFET41eのソース端子とMOSFET41fのドレイン端子とが各々接続される。MOSFET41aのドレイン端子とMOSFET41cのドレイン端子とMOSFET41eのドレイン端子とが接続され、MOSFET41bのソース端子とMOSFET41dのソース端子とMOSFET41fのソース端子とが接続される。MOSFET41aのドレイン端子と平滑コンデンサ41gの一方の端子と端子4aとが各々接続され、MOSFET41bのソース端子と平滑コンデンサ41gの他方の端子と端子4bとが各々接続される。MOSFET41aのソース端子と端子4cとが接続され、MOSFET41cのソース端子と端子4dとが接続され、MOSFET41eのソース端子と端子4eとが接続される。
 第1のDC/DCコンバータ3内は、MOSFET31bのソース端子とMOSFET31cのドレイン端子とが接続され、その接続点と平滑インダクタ31dの一方の端子とが接続される。平滑インダクタ31dの他方の端子が平滑コンデンサ31eの一方の端子と端子3cとに各々接続され、MOSFET31cのソース端子は平滑コンデンサ31eの他方の端子と端子3dとに各々接続される。MOSFET31bのドレイン端子は平滑コンデンサ31aの一方の端子と端子3aとに各々接続され、MOSFET31cのドレイン端子は平滑コンデンサ31aの他方の端子と端子3bとに各々接続される。
 第2のDC/DCコンバータ6内は、MOSFET61cのソース端子とMOSFET61dのドレイン端子とが接続され、その接続点と平滑インダクタ61bの一方の端子とが接続される。MOSFET61cのドレイン端子は平滑コンデンサ61eの一方の端子と端子6cとに各々接続され、MOSFET61dのソース端子は平滑コンデンサ61eの他方の端子と端子6dとに各々接続される。MOSFET61fのソース端子とMOSFET61gとは接続され、その接続点とMOSFET61dのソース端子とは接続される。MOSFET61fのドレイン端子は平滑コンデンサ61hの一方の端子と端子6eとに各々接続され、MOSFET61gのソース端子は平滑コンデンサ61hの他方の端子と端子6fとに各々接続される。平滑インダクタ61bの他方の端子は平滑コンデンサ61aと端子6aとに各々接続され、MOSFET61gのソース端子は平滑コンデンサ61aの他方の端子と端子6bとに接続される。
 各々の前記コンポーネントに必要な動作状態を指令する制御装置9の端子9aはインバータ4の端子4fに接続され、端子9bは第1のDC/DCコンバータ9の端子3eに接続され、端子9cは第2のDC/DCコンバータ6の端子6gに接続され、端子9dはモータジェネレータ5の端子5dに接続され、端子9eは車載電装品2の端子2cに接続される。
 上記システム構成をとることにより、制御装置9は前記各コンポーネントの動作状態をモニターしながら前記各コンポーネントに必要な動作状態の指令を出しシステムをコントロールする。
 車速とインバータの直流母線電圧の関係を模式的に表した例を図4に示す。次に各車両制御状態におけるシステム動作について、図2に基づき、図4を用いて説明する。
 第1の車両制御状態(第1の制御状態)の事例としては、「M/G始動」のときの制御状態の場合である(図3のステップST2)。「M/G始動」のときとは、信号待ちなどで車両が停止状態でエンジンを止める状態(アイドリングストップ状態)からのエンジン再始動にモータジェネレータ(M/G)を用いるときのことである。第1の制御状態では、インバータの直流母線電圧を低電圧(例えば14V)にするよう、第2のDC/DCコンバータ6内のMOSFET61cとMOSFET61gとをオンにし、MOSFET61dとMOSFET61fとをオフにすることでインバータ6の直流母線4DCBから第2の瞬発型の蓄電デバイス7だけが見えるようにする。第1の蓄電デバイス7のSOC(State Of Charge(充電状態))をモニターしながら所定のSOCを下回ったタイミングでMOSFET61dとMOSFET61fとをオンにし、MOSFET61cとMOSFET61gとをオフにする。また、第2の蓄電デバイス8が所定のSOCを下回ったタイミングでMOSFET61cとMOSFET61gとをオンにし、MOSFET61dとMOSFET61fとをオフにすることを繰り返す。
 その結果、第2の蓄電デバイス7および第2の蓄電デバイス8が交互にインバータ6の直流母線4DCBに接続されることになり、直流母線4DCBの電圧を低電圧(例えば12V)にする(図3のステップST3)ことで、モータジェネレータ(M/G)5の始動時に、インバータ4およびモータジェネレータ(M/G)5に過大な電流が流れることを防止でき、インバータ4およびモータジェネレータ(M/G)5の破損を回避することができる。
 また、直流母線4DCBの電圧が低電圧になることで、インバータ4のMOSFET41a~41fでの発生損失を低減させることができ、インバータ4の放熱器を簡素化することが可能となり、インバータ4の小型化を実現できる。
 また、従来は第2の蓄電デバイス7と第2の蓄電デバイス8のSOCは数時間かけて電圧バランス調整を行うが、本実施の形態1では各蓄電デバイス7,8のSOCやエネルギー充放電に合わせて数秒単位で電圧バランス調整が可能となり、蓄電デバイス7,8を、電圧のアンバランスを考慮した余剰サイズにすることなく小型化することが可能となる。
 また、モータジェネレータ(M/G)5のインピーダンスだけでインバータ4の耐電流以下かつ始動必要トルクを供給できる電流供給が可能なときは、インバータ4の駆動方法としてスイッチング回数の少ない180度通電でモータジェネレータ5を駆動することで、インバータ4のMOSFET41a~41fの半導体損失を大幅に低減でき、インバータ4を小型化することができる。
 また、インバータ4がPWM駆動されても、従来の直流母線電圧が高い一定状態であるのに対して、インバータ4のMOSFET41aから41fの半導体損失を低減でき、インバータ4を小型化することができる。
 第2の車両制御状態(第1の制御状態)の事例としては、「車載電装品が重負荷」のときの制御状態の場合である(図3のステップST4)。前述の第1の車両制御状態の場合と同様に、第2のDC/DCコンバータ6を動作させることで、直流母線4DCBの電圧を低電圧にする(図3のステップST3)ことができ、第1のDC/DCコンバータ3での発生損失を削減可能となり、第1のDC/DCコンバータ3の放熱器を簡素化することが可能となり、第1のDC/DCコンバータ3の小型化を実現することができる。
 なお、第2の車両制御状態として上記では第1のDC/DCコンバータ3の入力電圧が低くなることで発生損失が削減されることについて説明を行ったが、第1のDC/DCコンバータ3のMOSFET31bがオンしMOSFET31cがオフしてそれらの状態を継続して車載電装品2に電力を供給するときは、さらに第1のDC/DCコンバータ3の発生損失を大幅に低減することが可能となる。
 また、第1のDC/DCコンバータ3の発生損失低減により、第1のDC/DCコンバータ3を小型化することができる。
 また、第1のDC/DCコンバータ3の発生損失低減により、例えば従来の車室内設置(第1のDC/DCコンバータ3の車室内設置)から高温環境下であるエンジンルーム内設置(第1のDC/DCコンバータ3のエンジンルーム内設置)に対応可能となり、第1のDC/DCコンバータ3と第1の蓄電デバイス1(エンジンルーム内設置)との間の大きな電流(100A~200A)の経路(配線)を短くすることができ、配線での発生損失低減により車両の省エネルギー化を実現できる。
 第3の車両制御状態(第2の制御状態)の事例としては、「減速エネルギー回生」のときの制御状態の場合である(図3のステップST5)。この時ときは、前述の第1および第2の車両制御状態での動作とは異なり、第2のDC/DCコンバータ6のMOSFET61cとMOSFET61fとをオンにし、MOSFET61dとMOSFET61gとをオフにすることで、直流母線4DCBの電圧を高電圧(例えば48V)にする(図3のステップST6)ことができ、モータジェネレータ5からの大きな減速回生エネルギーを積極的に第1および第2の蓄電デバイス1,7,8に回収することが可能となる。
 また、減速エネルギーが減少してきた場合、前述の第1の車両制御状態での第2のDC/DCコンバータ6の動作をさせることで、第2の蓄電デバイス7,8の各々のSOCを考慮しながら数秒で電圧バランス調整が可能となり、蓄電デバイス7,8を、電圧のアンバランスを考慮した余剰サイズにすることなく小型化することが可能となる。
 第4の車両制御状態(第2の制御状態)の事例としては、「トルクアシスト」のときの制御状態の場合である(図3のステップST7)。このときは、直流母線4DCBの電圧が高くなる(図3のステップST6)ように第2のDC/DCコンバータ6を動作させることで、モータジェネレータ5に高電力を供給することでトルクを発生しエンジン駆動軸にトルクをアシスト動作させることで、エンジンの動作点を高効率ポイントに移動させて駆動に必要なガソリン量を低減することで車両の省エネルギー化を実現できる。
 また、第2のDC/DCコンバータ6は直流母線4DCBの電圧を、モータジェネレータ5の回転数に応じて、図4に例示のステップ状から図5に例示の階段状にコントロールすることで、第2のDC/DCコンバータのMOSFET61c,61d,61f,61gの発生損失を低減することができる。
 第3および第4の車両制御状態のとき、直流母線4DCBの電圧を図4あるいは図5のようにステップ状または階段状に変化させることにより、第2のDC/DCコンバータのスイッチング素子ではスイッチング損失が発生しないため、低損失であり小型化することができる。
 また、従来は車室内に配置されている第1のDC/DCコンバータ3の損失低減により、車室より高温な環境への配置、例えばエンジンルーム内への配置、に対応することができる。
 また、複数の第2の蓄電デバイス7,8を選択的に充放電することにより、第2の蓄電デバイス7,8間の充電状態を、電力フロー制御と一緒に、リアルタイムで制御することができる。
また、第2の蓄電デバイス7、第2の蓄電デバイス8は、本実施の形態において1個から2個の直列接続を選択的に切替可能であり、並列接続になる状態はなく各蓄電デバイスの電圧アンバランス状態で蓄電デバイス並列化をした場合に生じる過大な突入電流は発生しない。
 なお、前述の第1から第4の車両制御状態は、制御装置9による制御システムの上位にある「車両動作を制御するECU(Electronic Control Unit/Engine Control Unit)100」が認識/識別する。制御装置9はECU100から受信した前述の第1から第4の車両制御状態の信号(車両制御状態信号)SCCS(図3のステップST1)に基づいて前述の動作をする。
 なお、本発明の実施の形態1において、スイッチング素子としてMOSFET(電界効果型トランジスタ)を用いて説明を行ったが、バイポーラトランジスタ、または絶縁型バイポーラトランジスタ(IGBT)、またはシリコンカーバイドトランジスタ、またはシリコンカーバイドMOSFETを用いても同様の効果が得られる。
 なお、本発明の実施の形態1において、第1のDC/DCコンバータ3の回路構成として、非絶縁型の降圧チョッパ回路を例示して説明を行ったが、降圧することができればよく、同業者が推測できる非絶縁型、絶縁型の回路方式であればよく、第1のDC/DCコンバータ3の回路構成および種別は特に問わない。
 なお、本発明の実施の形態1において、モータジェネレータ5およびインバータ4は1組の三相回路方式を例示して説明を行ったが、2組以上の三相回路方式でも同様の効果が得られることはいうまでもない。
 なお、本発明の実施の形態1において、第2のDC/DCコンバータはLCフィルタ(リアクトル61b、コンデンサ61a)を有している場合を例示して説明を行ったが、直流母線の配線の寄生インダクタンスとインバータ4の平滑コンデンサ41g、第1のDC/DCコンバータ3のコンデンサ31aで構成されるLCフィルタを用いても同様の効果が得られる。
 なお、本発明の実施の形態1において、第1の蓄電デバイスと第2の蓄電デバイスは異なる電圧で異なる電気特性を有するものを例示して説明を行ったが、異なる電圧で同様の電気特性を有するものを用いても同様の効果が得られる。
実施の形態2.
 以下、本発明の実施の形態2による電力変換装置の一例を説明する。
 本発明の実施の形態2による電力変換装置の構成図は、実施の形態1で示した図1から図2と同様であるため、回路構成についての説明は割愛する。
 また、本発明の実施の形態2による電力変換装置の動作状態について、第1のDC/DCコンバータ3の動作は実施の形態1で示したものと同様であるため、説明を割愛する。
 実施の形態1と異なる点は、第2のDC/DCコンバータ6の動作である。実施の形態1では第2のDC/DCコンバータ6は直流母線4DCBの電圧を階段状に切り替える動作であったが、本実施の形態2では第2のDC/DCコンバータ6のMOSFET61aと61f、MOSFET61dと61gがセットとなり相補的にスイッチングを行うことでPWM動作を行うことで、直流母線4DCBの電圧をランプ状に制御することができる(図6参照)。その結果、インバータ4での制御がPWM駆動の場合はインバータ4の制御応答を下げることができ、簡素な制御回路で実現可能となる。
 またインバータ4が180度通電の場合は、モータジェネレータ5への供給電流をコントロールしながらインバータ4のMOSFET41aから41fの半導体損失を低減でき、インバータ4を小型化することができる。
 また、互いに電気的に絶縁された第2の蓄電デバイス7および第2の蓄電デバイス8は、本実施の形態において、第2の蓄電デバイス7,8の何れか1個から、2個の第2の蓄電デバイス7,8の直列接続への選択的り切替え、あるいは前記2個から1個への選択的切り替えが可能である。第2の蓄電デバイス7と第2の蓄電デバイス8とが並列接続になる状態はなく各蓄電デバイス7,8の電圧アンバランス状態で蓄電デバイス7,8を並列化した場合に生じる過大な突入電流は発生しない。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態2において、スイッチング素子としてMOSFET(電界効果型トランジスタ)を用いて説明を行ったが、バイポーラトランジスタ、または絶縁型バイポーラトランジスタ(IGBT)、またはシリコンカーバイドトランジスタ、またはシリコンカーバイドMOSFETを用いても同様の効果が得られる。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態2において、第1のDC/DCコンバータ3の回路構成として、非絶縁型の降圧チョッパ回路で説明を行ったが、降圧することができればよく、同業者が推測できる非絶縁型、絶縁型の回路方式であれば特に問わない。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態2において、モータジェネレータ5およびインバータ4は1組の三相回路方式で説明を行ったが、2組以上の三相回路方式でも同様の効果が得られることはいうまでもない。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態2において、第2のDC/DCコンバータはLCフィルタ(リアクトル61b、コンデンサ61a)を有している場合で説明を行ったが、直流母線の配線の寄生インダクタンスとインバータ4の平滑コンデンサ41g、第1のDC/DCコンバータ3のコンデンサ31aで構成されるLCフィルタを用いても同様の効果が得られる。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態2において、第1の蓄電デバイスと第2の蓄電デバイスは異なる電圧で異なる電気特性を有するものとして説明を行ったが、異なる電圧で同様の電気特性を有するものを用いても同様の効果が得られる。
実施の形態3.
 以下、本発明の実施の形態3による電力変換装置の一例を説明する。
 本発明の実施の形態3による電力変換装置の構成図は、実施の形態1および実施の形態2で示した図1あら図2と同様であるため、回路構成についての説明は割愛する。
 また、本発明の実施の形態3による電力変換装置の動作状態について、第1のDC/DCコンバータの動作は実施の形態1および実施の形態2で示したものと同様であるため、説明を割愛する。
 実施の形態2と異なる点は、第2のDC/DCコンバータ6の動作である。実施の形態2では第2のDC/DCコンバータ2のMOSFET61aと61f、MOSFET61dと61gがセットとなり相補的にスイッチングを行うことでPWM動作を行っていたが、本実施の形態3では、MOSFET61aがON状態を維持し、MOSFET61fがOFF状態を維持し、MOSFET61dと61gが相補的にスイッチングを行うことで、直流母線電圧を図7に例示のようなランプ状に制御することができる。その結果、MOSFETの発生損失を低減することができ、第2のDC/DCコンバータの小型化することができる。
 また、第2の蓄電デバイス7、第2の蓄電デバイス8は、本発明において1個から3個の直列接続を選択的に切替可能である、並列接続になる状態はなく各蓄電デバイスの電圧アンバランス状態で蓄電デバイス並列化をした場合に生じる過大な突入電流は発生しない。
 なお、第2の蓄電デバイスを3個設けた事例は実施の形態4として例示してある。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態3において、スイッチング素子としてMOSFET(電界効果型トランジスタ)を用いて説明を行ったが、バイポーラトランジスタ、または絶縁型バイポーラトランジスタ(IGBT)、またはシリコンカーバイドトランジスタ、またはシリコンカーバイドMOSFETを用いても同様の効果が得られる。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態3において、第1のDC/DCコンバータ3の回路構成として、非絶縁型の降圧チョッパ回路で説明を行ったが、降圧することができればよく、同業者が推測できる非絶縁型、絶縁型の回路方式であれば特に問わない。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態3において、モータジェネレータ5およびインバータ4は1組の三相回路方式で説明を行ったが、2組以上の三相回路方式でも同様の効果が得られることはいうまでもない。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態3において、第2のDC/DCコンバータはLCフィルタ(リアクトル61b、コンデンサ61a)を有している場合で説明を行ったが、直流母線の配線の寄生インダクタンスとインバータ4の平滑コンデンサ41g、第1のDC/DCコンバータ3のコンデンサ31aで構成されるLCフィルタを用いても同様の効果が得られる。
 なお、本発明の実施の形態3において、MOSFET61aがON状態を維持し、MOSFET61fがOFF状態を維持し、MOSFET61dと61gが相補的にスイッチングを行うことで、直流母線電圧をランプ状に制御することができることを説明したが、MOSFET61aがOFF状態を維持し、MOSFET61fがON状態を維持し、MOSFET61dと61gが相補的にスイッチングを行うことでも同様の効果が得られる。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態3において、第1の蓄電デバイスと第2の蓄電デバイスは異なる電圧で異なる電気特性を有するものとして説明を行ったが、異なる電圧で同様の電気特性を有するものを用いても同様の効果が得られる。
実施の形態4.
 以下、本発明の実施の形態4による電力変換装置の一例を説明する。
 本発明の実施の形態4による電力変換装置の構成図を、図8に示す。異なる点は第2のDC/DCコンバータ6の回路構成である。具体的には、実施の形態1の第2のDC/DCコンバータ6に、更に第2の蓄電デバイス10と、平滑コンデンサ61kと、MOSFET61iと、MOSFET61jとが追加されている。即ち、本実施の形態4は、第2のDC/DCコンバータ6の第2の蓄電デバイスが3つ用いられる場合での事例である。
 第2のDC/DCコンバータ6内は、MOSFET61cのソース端子とMOSFET61dのドレイン端子とが接続され、その接続点と平滑インダクタ61bの一方の端子とが接続される。MOSFET61cのドレイン端子は平滑コンデンサ61eの一方の端子と端子6cとに各々接続され、MOSFET61dのソース端子は平滑コンデンサ61eの他方の端子と端子6dとに各々接続される。MOSFET61fのソース端子とMOSFET61gのドレイン端子とは接続され、その接続点とMOSFET61dのソース端子とは接続される。MOSFET61fのドレイン端子は平滑コンデンサ61hの一方の端子と端子6eとに各々接続され、MOSFET61gのソース端子は平滑コンデンサ61hの他方の端子と端子6fとに各々接続される。MOSFET61iのソース端子とMOSFETのドレイン端子とが接続され、その接続点とMOSFET61gのソース端子とが接続される。MOSFET61iのドレイン端子は平滑コンデンサ61kの一方の端子と端子6eとに接続され、MOSFET61jのソース端子は平滑コンデンサ61kの他方の端子と端子6hと端子6bとに接続される。第3の蓄電デバイス10は端子6g-6h間に接続される。
 本発明の実施の形態4において、例えば、第1の車両制御状態である「M/G始動」と第2の車両制御状態である「車載電装品が重負荷」のときは、第2の蓄電デバイス7,8,10の中で充電状態が最も高いものを優先して直流母線4DCBに接続されるよう第2のDC/DCコンバータを動作させ、第3の車両制御状態である「減速エネルギー回生」と第4の車両制御状態である「トルクアシスト」のときは、第2の蓄電デバイス7,8,10の中で充電状態が最も低いものを優先してインバータ6の直流母線4DCBに接続されるように第2のDC/DCコンバータ6を動作させる。その結果、複数の蓄電デバイスを充電状態を考慮して選択的に充放電させることで、車両制御状態推移に伴う電力フロー制御と一緒にリアルタイムで複数の蓄電デバイス充電状態を制御することができる。
 上述の動作以外の回路動作については、本発明の実施の形態1から3と同様のため、説明は割愛する。
 その結果、直流母線電圧の最大値を大きくすることができ、減速回生エネルギー量を増加させたり、トルクアシストの投入電力を大きくすることができ、燃費改善を図ることができる。
また、第2の蓄電デバイス7,8,10は、本実施の形態4においては、1個から3個の直列接続を選択的に切替可能である、並列接続になる状態はなく各蓄電デバイス7,8,10の電圧アンバランス状態で蓄電デバイスを並列化した場合に生じる過大な突入電流は発生しない。
 なお、本発明の実施の形態4において、前述の実施の形態1と同様に、前述の第1から第4の車両制御状態は、制御装置9による制御システムの上位にある「車両動作を制御するECU100」が認識/識別する。制御装置9はECU100から受信した前述の第1から第4の車両制御状態の信号(車両制御状態信号)SCCSに基づいて前述の動作をする。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態4において、スイッチング素子としてMOSFET(電界効果型トランジスタ)を用いて説明を行ったが、バイポーラトランジスタ、または絶縁型バイポーラトランジスタ(IGBT)、またはシリコンカーバイドトランジスタ、またはシリコンカーバイドMOSFETを用いても同様の効果が得られる。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態4において、第1のDC/DCコンバータ3の回路構成として、非絶縁型の降圧チョッパ回路で説明を行ったが、降圧することができればよく、同業者が推測できる非絶縁型、絶縁型の回路方式であれば特に問わない。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態4において、モータジェネレータ5およびインバータ4は1組の三相回路方式で説明を行ったが、2組以上の三相回路方式でも同様の効果が得られることはいうまでもない。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態4において、第2のDC/DCコンバータはLCフィルタ(リアクトル61b、コンデンサ61a)を有している場合で説明を行ったが、直流母線の配線の寄生インダクタンスとインバータ4の平滑コンデンサ41g、第1のDC/DCコンバータ3のコンデンサ31aで構成されるLCフィルタを用いても同様の効果が得られる。
 なお、本発明の実施の形態4において、MOSFET61aがON状態を維持し、MOSFET61fがOFF状態を維持し、MOSFET61dと61gが相補的にスイッチングを行うことで、直流母線電圧をランプ状に制御することができることを説明したが、MOSFET61aがOFF状態を維持し、MOSFET61fがON状態を維持し、MOSFET61dと61gが相補的にスイッチングを行うことでも同様の効果が得られる。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態4において、第1の蓄電デバイスと第2の蓄電デバイスは異なる電圧で異なる電気特性を有するものとして説明を行ったが、異なる電圧で同様の電気特性を有するものを用いても同様の効果が得られる。
実施の形態5.
 以下、本発明の実施の形態5による電力変換装置の一例を説明する。
 本発明の実施の形態5による電力変換装置の構成図を、図9に示す。実施の形態1から実施の形態4と異なる点は、実施の形態1から実施の形態4は車載の低圧の電装品2のみであるが、実施の形態5では、車載の高圧の第2の電装品200が必要な場合、第2の電装品200に給電する昇圧DC/DCコンバータである第3のDC/DCコンバータ11を追加した電力変換装置の構成としてある点である。
 第3のDC/DCコンバータ11は、リアクトル110aの一端と平滑コンデンサ110bの一端と端子11aが各々接続され、リアクトル110aの他端とMOSFET110cのドレイン端子とMOSFET110dのソース端子が各々接続される。MOSFET110dのドレイン端子と平滑コンデンサ110eの一端と端子11cが各々接続され、平滑コンデンサ110bの他端とMOSFET110cのソース端子と平滑コンデンサ110eの他端と端子11dが各々接続される。端子6aと端子11a、端子6bと端子11bが各々接続され、車載の第2の電装品200の端子200aと端子11c、端子200bと端子11dが各々接続される。制御装置9fと端子11eが接続される。
 上述の動作以外の回路動作については、本発明の実施の形態1から4と同様のため、説明は割愛する。
 本発明の実施の形態5では、第3のDC/DCコンバータ11が、入力電圧範囲と出力電圧範囲でもっとも低い昇圧で動作させることを特徴としている。その結果、第3のDC/DCコンバータ11を小型で実現させることが可能となる。
 またその結果、車載の低圧の電装品2と車載の高圧の第2の電装品200とを両立して使用することが可能となり、電装品への投入電力を大きくすることができ、蓄電デバイスのエネルギーの利用先が増えることにより燃費改善に繋がる。
 また、第2の蓄電デバイス7、第2の蓄電デバイス8、第2の蓄電デバイス10は、本実施の形態において1個から3個の直列接続を選択的に切替可能である。第2の蓄電デバイス7,8,10が並列接続になる状態はなく、各蓄電デバイス7,8,10の電圧アンバランス状態で蓄電デバイス7,8,10の並列化をした場合に生じる過大な突入電流は発生しない。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態5において、スイッチング素子としてMOSFET(電界効果型トランジスタ)を用いて説明を行ったが、バイポーラトランジスタ、または絶縁型バイポーラトランジスタ(IGBT)、またはシリコンカーバイドトランジスタ、またはシリコンカーバイドMOSFETを用いても同様の効果が得られる。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態5において、第1のDC/DCコンバータ3の回路構成として、非絶縁型の降圧チョッパ回路で説明を行ったが、降圧することができればよく、同業者が推測できる非絶縁型、絶縁型の回路方式であれば特に問わない。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態5において、モータジェネレータ5およびインバータ4は1組の三相回路方式で説明を行ったが、2組以上の三相回路方式でも同様の効果が得られることはいうまでもない。
 なお、本発明の実施の形態1の場合と同様に、本発明の実施の形態5において、第2のDC/DCコンバータはLCフィルタ(リアクトル61b、コンデンサ61a)を有している場合で説明を行ったが、直流母線の配線の寄生インダクタンスとインバータ4の平滑コンデンサ41g、第1のDC/DCコンバータ3のコンデンサ31aで構成されるLCフィルタを用いても同様の効果が得られる。
 なお、本発明の実施の形態5において、MOSFET61aがON状態を維持し、MOSFET61fがOFF状態を維持し、MOSFET61dと61gが相補的にスイッチングを行うことで、直流母線電圧をランプ状に制御することができることを説明したが、MOSFET61aがOFF状態を維持し、MOSFET61fがON状態を維持し、MOSFET61dと61gが相補的にスイッチングを行うことでも同様の効果が得られる。
 なお、本発明の実施の形態1から5において、第2の蓄電デバイス7,8,10はニッケル水素バッテリ、リチウムイオンバッテリ、ほかの瞬発型(高出力密度型(高エネルギー密度型に比べ、蓄積エネルギー量は少ないが短時間充放電電流が大きい大電流充放電特性が特徴))の蓄電デバイス、第1の蓄電デバイス7を鉛バッテリほかの持続型(高エネルギー密度型(高出力密度型に比べ蓄積エネルギー量は多いが短時間充放電電流が小さい高エネルギーの充放電特性が特徴))とするのが好ましいが、例えば、第1の蓄電デバイス7もニッケル水素バッテリ、リチウムイオンバッテリ、ほかとする等、本発明の効果を奏する範囲内で相応のバッテリを適宜用いればよい。
 なお、本発明の実施の形態5において、整流素子としてMOSFET110dを用いて説明を行ったが、単方向整流素子であるダイオード、またはシリコンカーバイドダイオードを用いても同様の効果が得られる。
 なお、実施の形態1から5において、制御装置9は、ECU100内に設けてもよい。
 また、実施の形態1から5において、「電装品200の電圧>電装品2の電圧」の大小関係が想定されており、電装品2の電圧は例えば12V(一例であり、12Vに限られない)であり、電装品2の事例としては例えばヘッドライト、カーナビ、オーディオなどである。電装品200の電圧は例えば48V(一例であり、48Vに限られない)であり、電装品200の事例としては例えばEPS(電動パワーステアリング)、電動エアコンなどである。
 また、上記電圧12V,48Vの事例の場合、直流母線4DCBの電圧は、例えば次の(a)から(e)のようになる。
 (a)前記第1の車両制御状態時の直流母線4DCBの電圧は12V(一例であり12Vに限られない)。
 (b)前記第2の車両制御状態時の直流母線4DCBの電圧は12V(一例であり12Vに限られない)。
 (c)前記第3の車両制御状態時の直流母線4DCBの電圧は48V(一例であり48Vに限られない)。
 (d)前記第4の車両制御状態時の直流母線4DCBの電圧は48V(一例であり48Vに限られない)。
 (e)前記第1から第4の車両制御状態時以外の車両制御状態時(定常走行時)の直流母線4DCBの電圧は12V(一例であり、12Vに限られない)。
 なお、本発明は、その発明の範囲内において、各実施の形態を適宜、組み合わせ、変形、省略することができる。
 なお、各図中、同一符合は同一または相当部分を示す。
 1 第1の蓄電デバイス、 2 車載の低圧の電装品、 2a,2b 車載電装品の端子、 3 第1のDC/DCコンバータ、 3a,3b,3c,3d,3e 第1のDC/DCコンバータの端子、 4 インバータ、 4DCB インバータの直流母線、 4a,4b,4c,4d,4e,4f インバータの端子、 5 モータジェネレータ(M/G)、 5a,5b,5c M/Gの端子、 6 第2のDC/DCコンバータ、 6a,6b,6c,6d,6e,6f,6g 第2のDC/DCコンバータの端子、 7 第2の蓄電デバイス、 7a,7b 第2の蓄電デバイスの出力端子、 8 第2の蓄電デバイス、 8a,8b 第2の蓄電デバイスの出力端子、 9 制御装置、 9a,9b,9c,9d,9e,9f 制御装置の端子、 11 第3のDC/DCコンバータ、 100 ECU、 200 車載の高圧の第2の電装品、 SCCS 車両制御状態信号。

Claims (15)

  1.  モータジェネレータを駆動するインバータ、
     前記インバータの直流母線と接続された第1のDC/DCコンバータ、
     前記直流母線の電圧を可変する第2のDC/DCコンバータ、および
     前記インバータと前記第1のDC/DCコンバータと前記第2のDC/DCコンバータとを制御する制御装置を備え、
     前記制御装置により、前記第2のDC/DCコンバータを制御することにより第1の制御状態のときの前記直流母線の電圧を第2の制御状態のときの前記直流母線の電圧より高くする
    ことを特徴とする電力変換装置。
  2.  モータジェネレータを駆動するインバータ、
     電装品に給電する第1の蓄電デバイス、
     前記インバータの直流母線と前記第1の蓄電デバイスとを接続する第1のDC/DCコンバータ、
     複数の電気的に絶縁された第2の蓄電デバイス、
     前記複数の電気的に絶縁された第2の蓄電デバイスを入力電源とする第2のDC/DCコンバータ、および
     前記インバータと前記第2のDC/DCコンバータと前記第1のDC/DCコンバータとを制御する制御装置を備え、
     前記制御装置により、複数の電気的に絶縁された前記第2の蓄電デバイスを選択的に切り替えて前記第2のDC/DCコンバータの出力を制御することにより第1の制御状態のときの前記直流母線の電圧を第2の制御状態のときの前記直流母線の電圧より高くすることを特徴とする電力変換装置。
  3. 前記第1の蓄電デバイスが高エネルギー密度型蓄電デバイスであり、前記第2の蓄電デバイスは高出力密度型蓄電デバイスであることを特徴とする請求項2に記載の電力変換装置。
  4.  前記第1の制御状態のときが前記モータジェネレータを始動させるときであり、前記第1の制御状態のときの前記直流母線の電圧を前記第2の制御状態のときの前記直流母線の電圧より低くするように前記制御装置が前記第2のDC/DCコンバータを制御することを特徴とする請求項1から3の何れか一つに記載の電力変換装置。
  5.  前記第1の制御状態のときが、前記第1のDC/DCコンバータから給電される電装品が重負荷のときであり、前記第1の制御状態のときの前記直流母線の電圧を前記第2の制御状態のときの前記直流母線の電圧より低くするように前記制御装置が前記第2のDC/DCコンバータを制御することを特徴とする請求項1から4の何れか一つに記載の電力変換装置。
  6.  前記第2の制御状態のときが減速エネルギー回生またはトルクアシストのときであり、前記第2の制御状態のときの前記直流母線の電圧を前記第1の制御状態のときの前記直流母線の電圧より高くするように前記制御装置が前記第2のDC/DCコンバータを制御することを特徴とする請求項1から5の何れか一つに記載の電力変換装置。
  7. 前記第2のDC/DCコンバータの出力電圧をステップ状波形で変化させることを特徴とする請求項1から6の何れか一に記載の電力変換装置。
  8.  前記第2のDC/DCコンバータの出力電圧を階段状波形で変化させることを特徴とする請求項1から6の何れか一に記載の電力変換装置。
  9.  前記第2のDC/DCコンバータの出力電圧をランプ状波形で変化させることを特徴とする請求項1から6の何れか一に記載の電力変換装置。
  10.  前記第2のDC/DCコンバータを構成する複数のスイッチング素子を前記制御装置で制御することにより、前記第2のDC/DCコンバータの出力電圧を、前記複数のスイッチング素子の切り替え動作と前記第2のDC/DCコンバータの前記スイッチング素子のスイッチング動作とを組み合わせた出力電圧としてランプ波形で変化させることを特徴とする請求項9に記載の電力変換装置。
  11.  前記直流母線を入力電源とし第2の電装品に給電する第3のDC/DCコンバータを備えていることを特徴とする請求項1から10の何れか一つに記載の電力変換装置。
  12.  前記第3のDC/DCコンバータが昇圧DC/DCコンバータであり、前記第3のDC/DCコンバータは、前記第3のDC/DCコンバータの入力電圧範囲と出力電圧範囲でもっとも低い昇圧比での出力電圧を前記第2の電装品に給電するように、前記制御装置により制御されることを特徴とする請求項11記載の電力変換装置。
  13.  前記第2のDC/DCコンバータ内のインダクタを、前記第2のDC/DCコンバータと前記直流母線との間の寄生インダクタンス成分で代用することを特徴とする請求項1から12の何れか一つに記載の電力変換装置。
  14.  前記第1の制御状態のときは複数の前記第2の蓄電デバイスが互いに直列接続されて前記第2のDC/DCコンバータを介して前記直流母線に接続され、前記第2の制御状態のときは複数の前記第2の蓄電デバイスが交互に単独で前記第2のDC/DCコンバータを介して前記直流母線に接続されることを特徴とする請求項1から13の何れか一つに記載の電力変換装置。
  15.  前記制御装置は、前記第1の制御状態のときは複数の第2の蓄電デバイスの中で充電状態が最も高い前記第2の蓄電デバイスが優先して前記直流母線に接続されるように、前記第2の制御状態のときは前記複数の第2の蓄電デバイスの中で充電状態が最も低い前記第2の蓄電デバイスが優先して前記直流母線に接続されるように、複数の前記第2のDC/DCコンバータを動作させることを特徴とする請求項1から14の何れか一つに記載の電力変換装置。
PCT/JP2016/050926 2015-01-21 2016-01-14 電力変換装置 WO2016117438A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016541734A JP6012915B1 (ja) 2015-01-21 2016-01-14 電力変換装置
CN201680003759.2A CN107000739B (zh) 2015-01-21 2016-01-14 电力变换装置
DE112016000426.5T DE112016000426B4 (de) 2015-01-21 2016-01-14 Energieumwandlungseinrichtung
US15/518,125 US9975449B2 (en) 2015-01-21 2016-01-14 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-009148 2015-01-21
JP2015009148 2015-01-21

Publications (1)

Publication Number Publication Date
WO2016117438A1 true WO2016117438A1 (ja) 2016-07-28

Family

ID=56416985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050926 WO2016117438A1 (ja) 2015-01-21 2016-01-14 電力変換装置

Country Status (5)

Country Link
US (1) US9975449B2 (ja)
JP (1) JP6012915B1 (ja)
CN (1) CN107000739B (ja)
DE (1) DE112016000426B4 (ja)
WO (1) WO2016117438A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084309A1 (ja) * 2016-11-07 2018-05-11 株式会社Ihi 排ガスエネルギー回収装置
WO2018123141A1 (ja) * 2016-12-28 2018-07-05 三菱電機株式会社 駆動システムおよび駆動制御方法
JP2019176618A (ja) * 2018-03-28 2019-10-10 トヨタ自動車株式会社 電力変換器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE538656C2 (en) * 2014-10-30 2016-10-11 Scania Cv Ab Method and system for switching from a first power supply path to a second power supply path
US10439516B2 (en) * 2015-06-23 2019-10-08 Nissan Motor Co., Ltd. Inverter with charging capability
CN107306087B (zh) * 2016-04-20 2019-07-02 台达电子企业管理(上海)有限公司 一种双级转换器及其控制方法
WO2019181030A1 (ja) * 2018-03-20 2019-09-26 株式会社日立製作所 複合蓄電システム
US10581363B2 (en) 2018-06-22 2020-03-03 Ford Global Technologies, Llc Isolated dual bus hybrid vehicle drivetrain
JP7024667B2 (ja) * 2018-08-30 2022-02-24 トヨタ自動車株式会社 車両用電源システム
KR20200044689A (ko) 2018-10-19 2020-04-29 한온시스템 주식회사 인버터 모듈 및 이를 포함하는 전동압축기
JP6902061B2 (ja) * 2019-02-19 2021-07-14 矢崎総業株式会社 電力分配システム
JP7449750B2 (ja) * 2020-03-30 2024-03-14 本田技研工業株式会社 電源システム及び電動車両
JP7196877B2 (ja) * 2020-05-01 2022-12-27 株式会社デンソー 電力変換装置
DE102021114455A1 (de) * 2020-06-05 2021-12-09 Casco Products Corporation Stromversorgung
CN115339329A (zh) * 2022-08-17 2022-11-15 华为数字能源技术有限公司 一种动力总成、控制方法及混合动力汽车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186081A (ja) * 2006-01-13 2007-07-26 Nissan Motor Co Ltd ハイブリッド車両の駆動装置
JP2010093981A (ja) * 2008-10-09 2010-04-22 Toyota Motor Corp 電源システム
JP2010259220A (ja) * 2009-04-24 2010-11-11 Toyota Motor Corp 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
WO2011125187A1 (ja) * 2010-04-07 2011-10-13 トヨタ自動車株式会社 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
JP2012095418A (ja) * 2010-10-26 2012-05-17 Sharp Corp 直流給電システム
JP2013031238A (ja) * 2011-07-27 2013-02-07 Mitsubishi Electric Corp 電力変換装置
JP2013169140A (ja) * 2013-03-28 2013-08-29 Toyota Motor Corp 電源システムおよびそれを備える電動車両、ならびに電源システムの制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254693B2 (ja) * 2004-11-08 2009-04-15 トヨタ自動車株式会社 駆動装置およびこれを搭載する自動車
JP4396666B2 (ja) * 2006-07-06 2010-01-13 トヨタ自動車株式会社 電源システムおよびそれを備える車両
JP4779947B2 (ja) 2006-11-24 2011-09-28 日産自動車株式会社 車両の電力供給装置
JP4527138B2 (ja) 2007-07-12 2010-08-18 本田技研工業株式会社 ハイブリッド車両の制御装置
JP2009033830A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp 電気システムの制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
JP4640391B2 (ja) * 2007-08-10 2011-03-02 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
EP2538543B1 (en) 2010-02-17 2019-08-21 Fuji Electric Co., Ltd. Power conversion apparatus
JP2012090421A (ja) * 2010-10-19 2012-05-10 Toyota Motor Corp 電源システム
WO2012137315A1 (ja) 2011-04-06 2012-10-11 三菱電機株式会社 車両用電源システム
WO2012137343A1 (ja) 2011-04-08 2012-10-11 三菱電機株式会社 車両用電源システム
JP5991016B2 (ja) 2012-05-14 2016-09-14 三菱電機株式会社 車両用電源システム
JP2014144193A (ja) * 2013-01-30 2014-08-14 Nt Mechatronics Co Ltd 組立式スタンド

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186081A (ja) * 2006-01-13 2007-07-26 Nissan Motor Co Ltd ハイブリッド車両の駆動装置
JP2010093981A (ja) * 2008-10-09 2010-04-22 Toyota Motor Corp 電源システム
JP2010259220A (ja) * 2009-04-24 2010-11-11 Toyota Motor Corp 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
WO2011125187A1 (ja) * 2010-04-07 2011-10-13 トヨタ自動車株式会社 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
JP2012095418A (ja) * 2010-10-26 2012-05-17 Sharp Corp 直流給電システム
JP2013031238A (ja) * 2011-07-27 2013-02-07 Mitsubishi Electric Corp 電力変換装置
JP2013169140A (ja) * 2013-03-28 2013-08-29 Toyota Motor Corp 電源システムおよびそれを備える電動車両、ならびに電源システムの制御方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084309A1 (ja) * 2016-11-07 2018-05-11 株式会社Ihi 排ガスエネルギー回収装置
CN109415965A (zh) * 2016-11-07 2019-03-01 株式会社Ihi 排气能量回收装置
JPWO2018084309A1 (ja) * 2016-11-07 2019-06-24 株式会社Ihi 排ガスエネルギー回収装置
US10865687B2 (en) 2016-11-07 2020-12-15 Ihi Corporation Exhaust gas energy recovery device
WO2018123141A1 (ja) * 2016-12-28 2018-07-05 三菱電機株式会社 駆動システムおよび駆動制御方法
JP6403922B1 (ja) * 2016-12-28 2018-10-10 三菱電機株式会社 駆動システムおよび駆動制御方法
CN110099830A (zh) * 2016-12-28 2019-08-06 三菱电机株式会社 驱动系统及驱动控制方法
US11046191B2 (en) 2016-12-28 2021-06-29 Mitsubishi Electric Corporation Drive system and drive control method
CN110099830B (zh) * 2016-12-28 2021-12-03 三菱电机株式会社 驱动系统及驱动控制方法
JP2019176618A (ja) * 2018-03-28 2019-10-10 トヨタ自動車株式会社 電力変換器
RU2709196C1 (ru) * 2018-03-28 2019-12-17 Тойота Дзидося Кабусики Кайся Система преобразования электрической мощности и способ управления системой преобразования электрической мощности

Also Published As

Publication number Publication date
CN107000739B (zh) 2019-06-14
US20170305298A1 (en) 2017-10-26
US9975449B2 (en) 2018-05-22
DE112016000426T5 (de) 2017-10-05
JPWO2016117438A1 (ja) 2017-04-27
CN107000739A (zh) 2017-08-01
JP6012915B1 (ja) 2016-10-25
DE112016000426B4 (de) 2024-02-15

Similar Documents

Publication Publication Date Title
JP6012915B1 (ja) 電力変換装置
US10358041B2 (en) Electric vehicle
JP6567830B2 (ja) マルチチャネルdcバスを有する車両推進システムおよび同システムを製造する方法
JP5844787B2 (ja) 補助駆動装置及びその製造方法
US8994318B2 (en) Electrical on-board network and method for operating an electrical on-board network
CN108306488B (zh) 获得较低的最小升压比的可变电压转换器
JP2011116330A (ja) ハイブリッド車両用12v補助バッテリーの充電電圧の制御方法
KR101380756B1 (ko) 고전력 부하 장치를 포함하는 마이크로 하이브리드 차량용 배터리 시스템
JP2020099103A (ja) 車両のバッテリ充電制御装置
JP2013150524A (ja) 電気自動車
JP5772530B2 (ja) 電動車両用の電源装置
CN113270932A (zh) 车辆电力转换装置和方法
CN112297846A (zh) 具有加热元件和车载充电装置的电动车辆
KR102008751B1 (ko) 차량용 전력 제어 장치
KR102063921B1 (ko) 차량용 전력 제어 장치
JP4329454B2 (ja) 電気自動車システム
KR101154297B1 (ko) 하이브리드 차량용 12v 보조배터리의 충전 전압 제어 방법
JP2018102038A (ja) 車両用電力供給システム及び電動発電装置
JP5726046B2 (ja) 車両用電源システム
KR102008753B1 (ko) 차량용 전력 제어 장치
KR102008752B1 (ko) 차량용 전력 제어 장치
KR102008747B1 (ko) 차량용 전력 제어 장치
KR102008749B1 (ko) 차량용 전력 제어 장치
KR102008746B1 (ko) 차량용 전력 제어 장치
KR102008748B1 (ko) 차량용 전력 제어 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016541734

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15518125

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000426

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740045

Country of ref document: EP

Kind code of ref document: A1