WO2016114374A1 - 透明な高耐熱性樹脂組成物 - Google Patents

透明な高耐熱性樹脂組成物 Download PDF

Info

Publication number
WO2016114374A1
WO2016114374A1 PCT/JP2016/051055 JP2016051055W WO2016114374A1 WO 2016114374 A1 WO2016114374 A1 WO 2016114374A1 JP 2016051055 W JP2016051055 W JP 2016051055W WO 2016114374 A1 WO2016114374 A1 WO 2016114374A1
Authority
WO
WIPO (PCT)
Prior art keywords
unsaturated dicarboxylic
resin composition
mass
dicarboxylic acid
acid anhydride
Prior art date
Application number
PCT/JP2016/051055
Other languages
English (en)
French (fr)
Inventor
広平 西野
有一 進藤
裕一 下木場
哲央 野口
真典 松本
黒川 欽也
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN201680005781.0A priority Critical patent/CN107429023A/zh
Priority to US15/543,499 priority patent/US20170369694A1/en
Priority to JP2016569519A priority patent/JP6684228B2/ja
Priority to KR1020177021863A priority patent/KR20170104534A/ko
Priority to EP16737445.3A priority patent/EP3246360A4/en
Publication of WO2016114374A1 publication Critical patent/WO2016114374A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention relates to a transparent high heat resistant resin composition excellent in weather resistance.
  • Transparent resins such as methacrylic resin and polystyrene are used in various applications such as home appliance parts, automobile parts, food packaging containers, building materials, and miscellaneous goods. Further, taking advantage of excellent transparency, it is also used as an optical member for liquid crystal displays such as an optical film, a diffusion plate, and a light guide plate.
  • Methacrylic resins and polystyrene have good optical properties such as transparency, but have problems such as low heat resistance, and have been used only for limited applications. There are the following technologies for improving heat resistance.
  • An object of the present invention is to provide a transparent resin composition having excellent weather resistance and heat resistance, and a molded product thereof.
  • the present invention is as follows.
  • a transparent high heat-resistant resin composition having a UV absorber (B) content of 0.03 to 1.0 mass% with respect to the total amount of (A) and (B) object.
  • Aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid anhydride copolymer (A) has an aromatic vinyl monomer unit of 45 to 85% by mass, (meth) acrylic acid ester single amount Any of (1) to (3), wherein the body unit is 5 to 45% by mass, the unsaturated dicarboxylic acid anhydride monomer unit is 10 to 30% by mass, and the weight average molecular weight (Mw) is 100,000 to 300,000.
  • the transparent high heat-resistant resin composition as described in 1.
  • a molded article comprising the resin composition according to any one of (1) to (5).
  • the resin composition and molded product of the present invention are useful for home appliance parts, automobile parts, building materials, optical members and the like that are required to have heat resistance and weather resistance.
  • the aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic anhydride copolymer (A) used in the present invention comprises an aromatic vinyl monomer, a (meth) acrylic acid ester monomer and an unsaturated dicarboxylic acid. It is a copolymer having a unit structure derived from an acid anhydride monomer, and is obtained by copolymerizing these monomers.
  • Aromatic vinyl monomers include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, 2,4-dimethyl styrene, ethyl styrene, p-tert-butyl styrene, ⁇ -methyl styrene, ⁇ - Methyl-p-methylstyrene and the like. Of these, styrene is preferred.
  • the aromatic vinyl monomer may be used alone or in combination of two or more.
  • (Meth) acrylic acid ester monomers include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, isobornyl methacrylate and other methacrylic acid ester monomers, and methyl acrylate Acrylate monomers such as ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, and decyl acrylate. Among these, a methyl methacrylate unit is preferable.
  • the (meth) acrylic acid ester monomer may be used alone or in combination of two or more.
  • Examples of the unsaturated dicarboxylic acid anhydride monomer include maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, and aconitic acid anhydride. Of these, maleic anhydride is preferred.
  • the unsaturated dicarboxylic acid anhydride monomer may be one kind or a combination of two or more kinds.
  • the structural unit of the aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid anhydride copolymer (A) is 45 to 85% by mass of an aromatic vinyl monomer unit, and a (meth) acrylic acid ester type single unit. It is preferably 5 to 45% by mass of a monomer unit, 10 to 30% by mass of an unsaturated dicarboxylic anhydride monomer unit, more preferably 50 to 73% by mass of an aromatic vinyl monomer unit, and (meth) acrylic.
  • the acid ester monomer unit is 15 to 35% by mass, and the unsaturated dicarboxylic anhydride monomer unit is 12 to 25% by mass.
  • An unsaturated dicarboxylic acid anhydride monomer unit of 10 to 30% by mass is preferred because of excellent heat resistance.
  • An aromatic vinyl monomer unit of 45 to 85% by mass and a (meth) acrylic acid ester monomer unit of 5 to 45% by mass are preferable because of excellent balance of moldability, water absorption and strength.
  • unsaturated dicarboxylic acid anhydride monomer units of 10 to 30% by mass and aromatic vinyl monomer units of 45 to 85% by mass are preferred because of excellent compatibility with methacrylic resins.
  • an aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic anhydride copolymer (A) an aromatic vinyl monomer, a (meth) acrylic acid ester monomer, and an unsaturated dicarboxylic acid Those having a unit structure derived from a vinyl monomer copolymerizable with an anhydride monomer can also be used.
  • copolymerizable vinyl monomers examples include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, N-ethylmaleimide, N-alkylmaleimide monomers such as N-butylmaleimide and N-cyclohexylmaleimide, and N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide and N-chlorophenylmaleimide. Two or more types of copolymerizable vinyl monomers may be used.
  • the amount of residual unsaturated dicarboxylic acid anhydride monomer in the aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid anhydride copolymer (A) is 100 ppm or less, preferably less than 70 ppm.
  • the amount of the saturated dicarboxylic acid anhydride monomer is 100 ppm or less, a copolymer having a little yellowish hue and excellent in weather resistance is obtained.
  • the amount of unsaturated dicarboxylic acid anhydride is difficult to remove by devolatilization because of its high boiling point, and if unreacted unsaturated dicarboxylic acid anhydride monomer is present at the end of polymerization, residual unsaturated dicarboxylic acid anhydride is present in the copolymer. Present as an acid anhydride monomer.
  • the amount of residual unsaturated dicarboxylic anhydride monomer is a value measured by liquid chromatography. First, 200 to 250 mg of the copolymer is precisely weighed and dissolved in 5 mL of dichloroethane. Add 5 mL of hexane to the resulting solution and filter with a syringe-filter.
  • the amount of residual unsaturated dicarboxylic acid anhydride monomer is a value calculated by measuring the amount of unsaturated dicarboxylic acid under the following conditions.
  • Device name LC-10 CLASS-VP (manufactured by Shimadzu Corporation)
  • the weight average molecular weight (Mw) of the aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid anhydride copolymer (A) is preferably 70,000 to 300,000, more preferably 100,000 to 200,000.
  • a weight average molecular weight (Mw) in the range of 70,000 to 300,000 is preferable because of excellent balance between moldability and strength.
  • the weight average molecular weight (Mw) of the copolymer should be controlled by the polymerization temperature in the polymerization process, the type and addition amount of the polymerization initiator, the type and addition amount of the chain transfer agent, the type and amount of the solvent used during the polymerization, etc. Can do.
  • the weight average molecular weight (Mw) is a value in terms of polystyrene measured by gel permeation chromatography (GPC), and is a value measured under the measurement conditions described below.
  • Device name SYSTEM-21 Shodex (manufactured by Showa Denko) Column: 3 series PL gel MIXED-B Temperature: 40 ° C Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2% by mass Calibration curve: Prepared using standard polystyrene (PS) (manufactured by PL).
  • the polymerization mode is not particularly limited and can be produced by a known method such as solution polymerization or bulk polymerization, but solution polymerization is more preferable.
  • the solvent used in the solution polymerization is preferably non-polymerizable from the viewpoint that a by-product is difficult to produce and that there are few adverse effects.
  • the type of the solvent is not particularly limited.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, ethers such as tetrahydrofuran, 1,4-dioxane, toluene, ethylbenzene, xylene, chlorobenzene Aromatic hydrocarbons, etc. are mentioned, but methyl ethyl ketone and methyl isobutyl ketone are preferred from the viewpoint of the solubility of the monomer and copolymer and the ease of solvent recovery.
  • the amount of the solvent added is preferably 10 to 100 parts by mass, more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the copolymer to be obtained. If it is 10 parts by mass or more, it is suitable for controlling the reaction rate and the polymerization solution viscosity, and if it is 100 parts by mass or less, it is suitable for obtaining a desired weight average molecular weight (Mw).
  • the polymerization process may be any of a batch polymerization method, a semi-batch polymerization method, and a continuous polymerization method, but the batch polymerization method is suitable for obtaining a desired molecular weight range and transparency.
  • the continuous polymerization method it is preferable to use two or more reactors connected in series, and it is preferable to use a plug flow type reactor as the final reactor after the complete mixing tank type reactor. It is preferable for reducing the amount of acid anhydride monomer.
  • the polymerization method is not particularly limited, but is preferably a radical polymerization method from the viewpoint that it can be produced with high productivity by a simple process.
  • the polymerization initiator is not particularly limited.
  • Known organic compounds such as isopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyacetate, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate
  • Known azo compounds such as peroxides, azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, and the like can be used. Two or more of these
  • the aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid anhydride copolymer (A) it is preferable to perform polymerization so that the copolymer composition distribution becomes small. Since the aromatic vinyl monomer and unsaturated dicarboxylic acid anhydride monomer have strong alternating copolymerization, it corresponds to the polymerization rate of the aromatic vinyl monomer and the (meth) acrylate monomer. Thus, a method of continuously adding unsaturated dicarboxylic acid anhydride monomers is preferred. The control of the polymerization rate can be adjusted by the polymerization temperature, the polymerization time, and the addition amount of the polymerization initiator.
  • the copolymer composition distribution can be evaluated by transparency.
  • the total light transmittance with a thickness of 2 mm measured based on ASTM D1003 is preferably 88% or more, and more preferably 90% or more.
  • the amount of residual unsaturated dicarboxylic acid anhydride monomer in the aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid anhydride copolymer (A) can be reduced to 100 ppm or less.
  • the chain transfer agent is not particularly limited.
  • a known chain transfer agent such as n-dodecyl mercaptan, t-dodecyl mercaptan or 2,4-diphenyl-4-methyl-1-pentene is used. Can do.
  • the method for recovering the copolymer of the present invention from the polymerization solution is not particularly limited, and a known devolatilization technique can be used.
  • a method of continuously feeding the polymerization liquid to a twin-screw devolatilizing extruder using a gear pump and devolatilizing a polymerization solvent, an unreacted monomer and the like can be mentioned.
  • the devolatilizing component including the polymerization solvent, unreacted monomer, etc. is condensed and recovered using a condenser, etc., and the polymerization solvent can be reused by purifying the condensate in a distillation tower. .
  • the content of the ultraviolet absorber (B) used in the present invention is equal to the total amount of the aromatic vinyl- (meth) acrylic ester-unsaturated dicarboxylic acid anhydride copolymer (A) and the ultraviolet absorber (B).
  • the content is 0.03 to 1.0% by mass. More preferably, it is 0.05 to 0.8%, and still more preferably 0.08 to 0.6%. If the content of the ultraviolet absorber (B) is small, the weather resistance may be insufficient. If the amount is too large, the yellowness of the copolymer may become strong and the hue may be deteriorated, which may cause a decrease in heat resistance.
  • the ultraviolet absorber (B) is a light stabilizer that absorbs ultraviolet rays that cause deterioration of the polymer material.
  • UV absorbers (B) include benzotriazole, cyanoacrylate, triazine, benzophenone, benzoate, salicylate, malonic acid ester, oxanilide (oxalic acid anilide), etc. Thus, it has the effect of converting energy into harmless energy for polymer materials such as heat.
  • benzotriazole type examples include 2- (2H-benzotriazol-2-yl) -4-6-bis (1-methyl-1-phenylethyl) phenol, 2- (2H-benzotriazol-2-yl)- p-cresol, 2- [5-chloro (2H) -benzotriazol-2-yl] -4-methyl-6- (tert-butyl) phenol, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2,2'-methyllenbis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol ] 2- (2H-benzotriazol-2-yl) -4-methyl-6- (3,4,5,6-tetrahydrophthalimidylmethyl) phenol, 2- (3,5-di -Tert-pentyl-2-hydroxyphenyl) -2H-benzotri
  • cyanoacrylate examples include 2,2-bis ⁇ [2-cyano-3,3-diphenylacryloyl] oxy] methyl ⁇ propane-1,3-diyl bis (2-cyano-3,3-diphenyl acrylate). 2-cyano-3,3-diphenyl acrylate and 2-cyanohexyl 2-cyano-3,3-diphenyl acrylate.
  • triazines examples include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2- (4,6-diphenyl-1, There is 3,5-triazin-2-yl) -5- [2- (2-ethylhexanoyloxy] ethoxyphenol.
  • benzophenone examples include octabenzone, 2,2′-dihydroxy-4,4′-dimethoxybenphenone, 2,2′-4,4′-tetrahydrobenphenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4 -Methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid trihydrate, 4-dodecyloxy-2-hydroxybenzophenone, 4-benzyloxy-2-hydroxybenzophenone, 1,4-bis (4- Benzoyl-3-hydroxyphenoxy) -butane, 2,2'-dihydroxy-4-methoxybenzophenone.
  • benzoate type examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate and hexadecyl 3,5-bis-tert-4-hydroxybenzoate.
  • salicylates examples include phenyl salicylate and 4-tert-butylphenyl salicylate.
  • malonic acid esters examples include malonic acid [(4-methoxyphenyl) -methylene] -dimethyl ester and tetraethyl-2,2- (1,4-phenylene-dimethylidene) -bismalonate.
  • oxanilide type examples include 2-ethyl-2′-ethoxy-oxanilide.
  • the molecular weight of the ultraviolet absorber (B) is preferably 300 g / mol or more, more preferably 400 g / mol. If the molecular weight of the ultraviolet absorber (B) is small, the degree of decrease in heat resistance when blended in the copolymer may increase. Moreover, it may be volatilized at the time of shaping
  • the absorbance at a measured concentration of 10 mg / L at a wavelength of 380 nm of the ultraviolet absorber (B) is preferably 0.2 or less, more preferably 0.1 or less. If the absorbance at a wavelength of 380 nm close to the visible light region is large, the initial yellowness may become strong when blended with the copolymer.
  • the transparent high heat resistant resin composition of the present invention is an aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid anhydride copolymer having a residual unsaturated dicarboxylic acid anhydride monomer content of 100 ppm or less.
  • a resin composition comprising (A) and an ultraviolet absorber (B), wherein the content of the ultraviolet absorber (B) is 0.03 to 1.0% by mass, but from (A) and (B)
  • the method for preparing the resin composition is not particularly limited.
  • the polymerization step, devolatilization step, and granulation step of the aromatic vinyl- (meth) acrylic ester-unsaturated dicarboxylic acid anhydride copolymer (A) are used.
  • examples thereof include a method of adding and mixing, and a method of adding and mixing with an extruder or an injection molding machine at the time of molding.
  • the transparent high heat resistant resin composition of the present invention comprises an aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid anhydride copolymer having a residual unsaturated dicarboxylic acid anhydride monomer amount of 100 ppm or less.
  • a methacrylic resin (C) can also be mixed. It is possible to improve the surface hardness by mixing the methacrylic resin (C).
  • the content of the methacrylic resin (C) is preferably 30 to 85% by mass, more preferably 45 to 75% by mass with respect to the total amount of (A), (B) and (C).
  • the content of the methacrylic resin is too large, the heat resistance may be insufficient, and if it is too small, the surface hardness may be insufficient. Even when the methacrylic resin (C) is mixed, the content of the ultraviolet absorber (B) is preferably 0.03 to 1.0% by mass with respect to the total amount of (A) and (B).
  • the methacrylic resin (C) used in the present invention is preferably 70 to 100% by mass of (meth) acrylate monomer units and 0 to 30% by mass of aromatic vinyl monomer units, more preferably 0 to 25% by mass. If there are too many aromatic vinyl monomer units, the compatibility between the aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid anhydride copolymer (A) and the methacrylic resin (C) may deteriorate. is there.
  • the methacrylic resin (C) can be melt-kneaded with an aromatic vinyl- (meth) acrylic ester-unsaturated dicarboxylic acid anhydride copolymer (A).
  • A aromatic vinyl- (meth) acrylic ester-unsaturated dicarboxylic acid anhydride copolymer
  • screw extruders such as single-screw extruders, meshing-type co-rotating or meshing-type counter-rotating twin-screw extruders, incomplete meshing-type twin-screw extruders, Banbury mixers, kneaders, and mixing rolls.
  • the ultraviolet absorber (B) is mixed at the same time when the aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic anhydride copolymer (A) and the methacrylic resin (C) are melt-kneaded. You can also.
  • a hindered amine light stabilizer can be used in combination as a light stabilizer.
  • the hindered amine light stabilizer is a light stabilizer having a tetramethylpiperidine skeleton as a basic skeleton. It is thought that radicals such as polymer radicals and polyoxy radicals generated by photodegradation are captured and the progress of degradation due to radical chain reaction is stopped.
  • Examples of hindered amine light stabilizers include polycondensates of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, olefins (C20-C24), maleic anhydride, 4-amino.
  • Additives such as heat-resistant stabilizers such as hindered phenol compounds, lactone compounds, phosphorus compounds and sulfur compounds, lubricants and plasticizers, colorants, antistatic agents, mineral oils and the like may be blended.
  • the Vicat softening temperature measured at a load of 50 N is preferably 115 to 150, more preferably 120 to 145 ° C.
  • a Vicat softening temperature in the range of 110 to 150 ° C. is preferable because a molded article having excellent heat resistance can be obtained.
  • the Vicat softening temperature is a measured value based on JIS K7206: 1999, using 50 specimens (load 50 N, temperature rising rate 50 ° C./hour) with a test piece of 10 mm ⁇ 10 mm and a thickness of 4 mm.
  • the melt mass flow rate (MFR) measured at 220 ° C. and 49 N is preferably 0.5 to 30 g / min.
  • the melt mass flow rate (MFR) is a value measured at 220 ° C. and 98 N load based on JIS K7210: 1999.
  • the total light transmittance with a thickness of 2 mm measured based on ASTM D1003 is preferably 88% or more, and more preferably 90% or more. Further, the Haze having a thickness of 2 mm is preferably 1.0% or less, and more preferably 0.5% or less.
  • the b value of 2 mm thickness measured based on JIS K7105 is preferably 1.5 or less, more preferably 1.0 or less.
  • the resin composition of the present invention can be used for applications requiring transparency, heat resistance, and weather resistance. Examples of such applications include home appliance parts, automobile parts, building materials, optical members, and the like. Moreover, since it is excellent in moldability, a molded article can be produced by various molding methods such as extrusion molding and injection molding.
  • a 2% t-butyl peroxy-2-ethylhexanoate solution diluted in isobutyl ketone was prepared in advance and used for the polymerization.
  • a 120 liter autoclave equipped with a stirrer was charged with 3.6 kg of a 20% maleic anhydride solution, 24 kg of styrene, 8.8 kg of methyl methacrylate, and 20 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, the temperature was raised to 88 ° C. over 40 minutes with stirring. After maintaining the temperature at 88 ° C., a 20% maleic anhydride solution was added at a rate of 2.7 kg / hour, and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 375 g / hour. The addition continued continuously over 8 hours.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (A-1) was obtained.
  • the obtained copolymer (A-1) was subjected to composition analysis by C-13 NMR method. Furthermore, molecular weight measurement was performed with a GPC apparatus. When the composition analysis was carried out, the constitutional units of the copolymer were 60% by mass of styrene monomer units, 22% of methyl methacrylate monomer units, and 18% by mass of maleic anhydride monomer units.
  • the amount of residual maleic anhydride monomer in the copolymer was less than the lower detection limit ( ⁇ 60 ppm).
  • the weight average molecular weight was 160,000, and the total light transmittance of a 2 mmt mirror plate molded by injection molding was 91%.
  • a 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1.
  • a 120 liter autoclave equipped with a stirrer was charged with 2.8 kg of a 20% maleic anhydride solution, 25.6 kg of styrene, 8.8 kg of methyl methacrylate, and 20 g of t-dodecyl mercaptan. The temperature was raised to 88 ° C. over 40 minutes with stirring. While maintaining the temperature at 88 ° C.
  • the 20% maleic anhydride solution was added at a rate of 2.1 kg / hour and the 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 500 g / hour, respectively. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 4 hours at a temperature rising rate of 8 ° C./hour while maintaining the addition rate of 2.1 kg / hour as it was.
  • the addition of the 20% maleic anhydride solution was stopped when the amount of addition reached 25.2 kg.
  • the polymerization liquid which has been held at 120 ° C. for 1 hour to finish the polymerization is continuously fed to a twin-screw devolatilizing extruder using a gear pump to remove methyl isobutyl ketone and a small amount of unreacted monomer.
  • the pellet-shaped copolymer (A-2) was obtained by volatilization treatment and extrusion cutting into strands. With respect to the obtained copolymer (A-2), the composition analysis, the molecular weight, and the total light transmittance were measured in the same manner as in A-1.
  • the constituent units of the copolymer were 64% by mass of styrene monomer units, 22% of methyl methacrylate monomer units, and 14% by mass of maleic anhydride monomer units.
  • the amount of residual maleic anhydride monomer in the copolymer was less than the lower detection limit ( ⁇ 60 ppm).
  • the weight average molecular weight was 170,000, and the total light transmittance of a 2 mmt mirror plate molded by injection molding was 91%.
  • the temperature was raised to 92 ° C. over 40 minutes with stirring. While maintaining the temperature at 92 ° C. after the temperature rise, a 25% maleic acid-free aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were successively added.
  • the 25% maleic anhydride solution was 3.96 kg / hour from the 4th hour to the start of the addition, 3.17 kg / hour from the 4th to the 7th hour, and 1.58 kg from the 7th to the 10th hour. / Hour, the addition speed was changed stepwise so that the addition speed was 0.54 kg / hour from the 10th hour to the 13th hour, and a total of 31.71 kg was added.
  • the 2% t-butylperoxy-2-ethylhexanonate solution was added at a rate of 0.24 kg / hour from the start of the addition to 7 hours and 0.39 kg / hour from the 7th hour to the 13th hour.
  • the addition speed was changed stepwise so that a total of 4.02 kg was added.
  • the polymerization temperature is maintained at 92 ° C. until 7 hours from the start of the addition, and then heated to 116 ° C. over 6 hours at a rate of 4 ° C./hour, and further maintained at 116 ° C. for 1 hour for polymerization. Was terminated.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (A-3) was obtained.
  • a composition analysis, a molecular weight, and a total light transmittance were measured in the same manner as in A-1.
  • the constitutional units of the copolymer were 60% by mass of styrene monomer units, 18% of methyl methacrylate monomer units, and 22% by mass of maleic anhydride monomer units.
  • the amount of residual maleic anhydride monomer in the copolymer was less than the lower detection limit ( ⁇ 60 ppm).
  • the weight average molecular weight was 160,000, and the total light transmittance of a 2 mmt mirror plate molded by injection molding was 90%.
  • a 20% maleic anhydride solution was added at a rate of 2.65 kg / hour and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 375 g / hour, respectively. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated up to 120 ° C. over 4 hours at a heating rate of 8 ° C./hour while maintaining the addition rate of 2.65 kg / hour.
  • the addition of the 20% maleic anhydride solution was stopped when the amount of addition reached 32.4 kg. After the temperature increase, the polymerization was terminated by maintaining 120 ° C. for 1 hour.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (A-4) was obtained. With respect to the obtained copolymer (A-4), the composition analysis, the molecular weight, and the total light transmittance were measured in the same manner as in A-1.
  • the constitutional units of the copolymer were 60% by mass of styrene monomer units, 22% of methyl methacrylate monomer units, and 18% by mass of maleic anhydride monomer units.
  • the amount of residual maleic anhydride monomer in the copolymer was 80 ppm.
  • the weight average molecular weight was 160,000, and the total light transmittance of a 2 mmt mirror plate molded by injection molding was 91%.
  • the 20% maleic anhydride solution was 2.6 kg / hour and the 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 375 g / hour. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added.
  • the 20% maleic anhydride solution was heated up to 120 ° C. over 4 hours at a heating rate of 8 ° C./hour while maintaining the addition rate of 2.6 kg / hour.
  • the addition of the 20% maleic anhydride solution was stopped when the amount of addition reached 32.4 kg. After the temperature increase, the polymerization was terminated by maintaining 120 ° C. for 1 hour.
  • the polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it.
  • a polymer (A-5) was obtained. With respect to the obtained copolymer (A-5), the composition analysis, the molecular weight, and the total light transmittance were measured in the same manner as in A-1.
  • the constitutional units of the copolymer were 60% by mass of styrene monomer units, 22% of methyl methacrylate monomer units, and 18% by mass of maleic anhydride monomer units.
  • the amount of residual maleic anhydride monomer in the copolymer was 230 ppm.
  • the weight average molecular weight was 160,000, and the total light transmittance of a 2 mmt mirror plate molded by injection molding was 91%.
  • a 20% maleic anhydride solution was added at a rate of 2.55 kg / hour and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 375 g / hour, respectively. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated up to 120 ° C. over 4 hours at a heating rate of 8 ° C./hour while maintaining the addition rate of 2.55 kg / hour.
  • a polymer (A-6) was obtained. With respect to the obtained copolymer (A-6), a composition analysis, a molecular weight, and a total light transmittance were measured in the same manner as in A-1.
  • the constitutional units of the copolymer were 60% by mass of styrene monomer units, 23% of methyl methacrylate monomer units, and 17% by mass of maleic anhydride monomer units.
  • the amount of residual maleic anhydride monomer in the copolymer was 240 ppm.
  • the weight average molecular weight was 130,000, and the total light transmittance of a 2 mmt mirror plate molded by injection molding was 91%.
  • Aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid anhydride copolymers (A-1) to (A-6), UV absorbers (B-1) to (B- 5) and methacrylic resin (C-1) were mixed with a Henschel mixer, and then melt-kneaded at a cylinder temperature of 230 ° C. in a twin screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.) to form a pellet.
  • Got. Test pieces were prepared from the obtained resin composition pellets and evaluated as follows. The evaluation results are shown in Tables 1 to 3.
  • the ultraviolet absorber and methacrylic resin used are as follows.
  • Example 10 As a hindered amine light stabilizer (HALS), a polycondensate of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (Tinvin 622 manufactured by BASF Japan Ltd.) ).
  • HALS hindered amine light stabilizer
  • the Vicat softening point was measured according to JIS K7206: 1999 using 50 specimens (load 50 N, temperature rising rate 50 ° C./hour) with a test piece of 10 mm ⁇ 10 mm and a thickness of 4 mm.
  • the measuring machine used the Toyo Seiki Seisakusho HDT & VSPT test apparatus.
  • Total light transmittance, haze, hue The total light transmittance and Haze were 90 mm in length, 55 mm in width, and 2 mm in thickness formed using an injection molding machine (IS-50EPN manufactured by Toshiba Machine Co., Ltd.) under molding conditions of a cylinder temperature of 240 ° C. and a mold temperature of 70 ° C.
  • the mirror surface plate was measured using a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with ASTM D1003.
  • the b value was measured using an ultraviolet-visible spectrophotometer (V-670 manufactured by JASCO Corporation) in accordance with JIS K7105.
  • the weather resistance was measured in a light irradiation environment (no rain) using a xenon weatherometer (Ci65A manufactured by Atlas).
  • the specimen used was a mirror plate with a length of 90 mm, width 55 mm, and thickness 2 mm, a black panel temperature of 89 ° C., an irradiance of 60 W / m 2 at a wavelength of 300 to 400 nm, an irradiation time of 463 hours, and a radiation exposure of 100 MJ / m 2
  • the test was conducted under conditions. The b value of the test piece after irradiation was measured, and the difference between the b value after irradiation and the b value before irradiation was ⁇ b.
  • Examples have high heat resistance, good transparency and hue, and excellent weather resistance. On the other hand, in the comparative example, the physical properties of either hue or weather resistance were inferior.
  • the resin composition of the present invention is suitable for applications requiring heat resistance, transparency, hue and weather resistance, and is useful for home appliance parts, automobile parts, building materials, and optical members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 透明で耐候性及び耐熱性に優れた樹脂組成物及びその成形品を提供することを課題とする。 残存不飽和ジカルボン酸無水物単量体量が100ppm以下である芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)と紫外線吸収剤(B)とからなる樹脂組成物において、紫外線吸収剤(B)の含有量を0.03~1.0質量%とする事で透明な高耐熱性樹脂組成物が得られる。更に、(A)、(B)の他、メタクリル樹脂(C)を加えた組成物としても良い。

Description

透明な高耐熱性樹脂組成物
 本発明は、耐候性に優れた透明な高耐熱性樹脂組成物に関するものである。
 メタクリル樹脂やポリスチレン等の透明樹脂は、家電製品の部品や自動車部品、食品包装容器、建材、雑貨等様々な用途に用いられている。また、優れた透明性を活かして、光学フィルムや拡散板、導光板等の液晶ディスプレイ用の光学部材としても使用されている。メタクリル樹脂やポリスチレンは透明性等の光学特性が良好な反面、耐熱性が低い等の課題があり、限定された用途にしか使用されていなかった。耐熱性を高める技術としては下記がある。
特開昭57-153008号公報 WO2009/031544号公報 WO2014/021264号公報
 本発明は、透明で耐候性及び耐熱性に優れた樹脂組成物及びその成形品を提供することを課題とする。
即ち、本発明は以下の通りである。
(1)残存不飽和ジカルボン酸無水物単量体量が100ppm以下である芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)と紫外線吸収剤(B)とからなる樹脂組成物であり、紫外線吸収剤(B)の含有量が(A)と(B)の合計量に対して0.03~1.0質量%である透明な高耐熱性樹脂組成物。
(2)残存不飽和ジカルボン酸無水物単量体量が100ppm以下である芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)と紫外線吸収剤(B)とメタクリル樹脂(C)とからなる樹脂組成物であり、紫外線吸収剤(B)の含有量が(A)と(B)の合計量に対して0.03~1.0質量%である透明な高耐熱性樹脂組成物。
(3)メタクリル樹脂(C)の含有量が、(A)と(B)と(C)の合計量に対して30~85質量%である(2)に記載の透明な高耐熱性樹脂組成物。
(4)芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)の芳香族ビニル単量体単位が45~85質量%、(メタ)アクリル酸エステル単量体単位が5~45質量%、不飽和ジカルボン酸無水物単量体単位が10~30質量%、重量平均分子量(Mw)が10万~30万である(1)~(3)のいずれかに記載の透明な高耐熱性樹脂組成物。
(5)50N荷重で測定したビカット軟化温度が115~150℃である(1)~(4)のいずれかに記載の透明な高耐熱性樹脂組成物。
(6) (1)~(5)のいずれかに記載の樹脂組成物からなる成形品。
 本発明の樹脂組成物及びその成形品は耐熱性と耐候性の要求される家電製品の部品や自動車部品、建材、光学部材等に有用である。
<用語の説明>
 本願明細書において、例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
 以下、本発明の実施形態について、詳細に説明する。
 本発明で用いる芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)は、芳香族ビニル単量体と(メタ)アクリル酸エステル単量体と不飽和ジカルボン酸無水物単量体とに由来する単位構造を有する共重合体であり、これらの単量体を共重合して得られる。
 芳香族ビニル単量体とは、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン等である。これらの中でもスチレンが好ましい。芳香族ビニル単量体は、単独でも良いが2種類以上を併用してもよい。
 (メタ)アクリル酸エステル単量体は、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ジシクロペンタニルメタクリレート、イソボルニルメタクリレートなどの各メタクリル酸エステル単量体、およびメチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-メチルヘキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレートなどの各アクリル酸エステル単量体である。これらの中でもはメチルメタクリレート単位が好ましい。(メタ)アクリル酸エステル単量体は、単独でも良いが2種類以上を併用してもよい。
 不飽和ジカルボン酸無水物単量体は、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、アコニット酸無水物などである。これらの中でもマレイン酸無水物が好ましい。不飽和ジカルボン酸無水物単量体は、1種でもよく、2種類以上の併用であってもよい。
 芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)の構成単位は、芳香族ビニル単量体単位45~85質量%、(メタ)アクリル酸エステル系単量体単位5~45質量%、不飽和ジカルボン酸無水物単量体単位10~30質量%であることが好ましく、より好ましくは芳香族ビニル単量体単位50~73質量%、(メタ)アクリル酸エステル単量体単位15~35質量%、不飽和ジカルボン酸無水物単量体単位12~25質量%である。不飽和ジカルボン酸無水物単量体単位10~30質量%であれば、耐熱性に優れることから好ましい。芳香族ビニル単量体単位45~85質量%、(メタ)アクリル酸エステル系単量体単位5~45質量%であれば、成形性、吸水性および強度のバランスに優れることから好ましい。また、不飽和ジカルボン酸無水物単量体単位10~30質量%、芳香族ビニル単量体単位45~85質量%であれば、メタクリル樹脂との相溶性に優れることから好ましい。
 芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)として、更に、芳香族ビニル単量体、(メタ)アクリル酸エステル単量体、および不飽和ジカルボン酸無水物単量体と共重合可能なビニル系単量体に由来する単位構造を有するものも用いることができる。共重合可能なビニル系単量体としては、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル単量体、アクリル酸、メタクリル酸などのビニルカルボン酸単量体、N-メチルマレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミドなどのN-アルキルマレイミド単量体、N-フェニルマレイミド、N-メチルフェニルマレイミド、N-クロルフェニルマレイミドなどのN-アリールマレイミド単量体などが挙げられる。共重合可能なビニル単量体は、2種類以上の併用であってもよい。
 芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)中の残存不飽和ジカルボン酸無水物単量体量は100ppm以下であり、好ましくは70ppm未満である。飽和ジカルボン酸無水物単量体量が100ppm以下であれば、黄色味の少ない色相に優れた共重合体が得られ、耐候性にも優れる。不飽和ジカルボン酸無水物量は沸点が高いことから脱揮処理により除去するのが難しく、重合終了時に未反応の不飽和ジカルボン酸無水物単量体が存在すると、共重合体中に残存不飽和ジカルボン酸無水物単量体として存在する。残存不飽和ジカルボン酸無水物単量体量は、液体クロマトグラフにより測定した値である。まず、共重合体200~250mgを精秤しジクロロエタン5mLに溶解させる。得られた溶液にヘキサン5mLを加え、シリンジ―フィルターでろ過する。10mL程度の試験管にろ過した溶液3mLと純水3mLを入れ、栓をした後、振とう器を用いて2時間振とうする。純水を加えることで不飽和ジカルボン酸無水物単量体は加水分解され、不飽和ジカルボン酸単量体に転換し、水層に移行する。振とう後、30分間静置し、2層に分かれた溶液の下層(水層)をシリンジで吸い取り、測定試料とする。なお、2層に分離し難い場合は振とう時間と静置時間を延長する。残存不飽和ジカルボン酸無水物単量体量は、下記条件にて不飽和ジカルボン酸の量を測定し算出した値である。
  装置名:LC-10 CLASS-VP(島津製作所社製)
  カラム:YMC-Pack ODS-A 150mm×6.0mmI.D S-5μm、12nm
  検出器:SPDM10Avp
  検出波長:230nm
  移動相:メタノール/水=50/50 リン酸緩衝溶液 pH=3.2
  流量:1.0mL/分
  注入量:20μL
 芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)の重量平均分子量(Mw)は、7万~30万であることが好ましく、より好ましくは10万~20万である。重量平均分子量(Mw)が7万~30万の範囲であれば、成形性と強度のバランスに優れることから好ましい。共重合体の重量平均分子量(Mw)は重合工程での重合温度、重合開始剤の種類及び添加量、連鎖移動剤の種類及び添加量、重合時に使用する溶媒の種類及び量等によって制御することができる。なお、重量平均分子量(Mw)とは、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の値であり、下記記載の測定条件における測定値である。
  装置名:SYSTEM-21 Shodex(昭和電工社製)
  カラム:PL gel MIXED-Bを3本直列
  温度:40℃
  検出:示差屈折率
  溶媒:テトラヒドロフラン
  濃度:2質量%
  検量線:標準ポリスチレン(PS)(PL社製)を用いて作製した。
 芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)の製造方法について説明する。重合様式においては特に限定はなく、溶液重合、塊状重合等公知の方法で製造できるが、溶液重合がより好ましい。溶液重合で用いる溶剤は、副生成物が出来難く、悪影響が少ないという観点から非重合性であることが好ましい。溶剤の種類としては、特に限定されるものではないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン等のケトン類、テトラヒドロフラン、1、4-ジオキサン等のエーテル類、トルエン、エチルベンゼン、キシレン、クロロベンゼン等の芳香族炭化水素などが挙げられるが、単量体や共重合体の溶解度、溶剤回収のし易さの観点から、メチルエチルケトン、メチルイソブチルケトンが好ましい。溶剤の添加量は、得られる共重合体量100質量部に対して、10~100質量部が好ましく、より好ましくは30~80質量部である。10質量部以上であれば、反応速度および重合液粘度を制御する上で好適であり、100質量部以下であれば、所望の重量平均分子量(Mw)を得る上で好適である。
 重合プロセスは回分式重合法、半回分式重合法、連続重合法のいずれの方式であっても差し支えないが、所望の分子量範囲と透明性を得る上で回分式重合法が好適である。連続重合法の場合、直列に接続された2基以上の反応器を用いることが好ましく、完全混合槽型の反応器の後に最終反応器としてプラグフロー型の反応器を用いることが残存不飽和ジカルボン酸無水物単量体量を低減する上で好ましい。
 重合方法は特に限定されないが、簡潔プロセスによって生産性良く製造することが可能であるという観点から、好ましくはラジカル重合法である。重合開始剤としては特に限定されるものではないが、例えばジベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシアセテート、ジクミルパーオキサイド、エチル-3,3-ジ-(t-ブチルパーオキシ)ブチレート等の公知の有機過酸化物やアゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスメチルプロピオニトリル、アゾビスメチルブチロニトリル等の公知のアゾ化合物を用いることができる。これらの重合開始剤は2種以上を併用することも出来る。これらの中でも10時間半減期温度が、70~110℃である有機過酸化物を用いるのが好ましい。
 芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)の重合の際、共重合組成分布が小さくなるように重合することが好ましい。芳香族ビニル単量体と不飽和ジカルボン酸無水物単量体とが強い交互共重合性を有することから、芳香族ビニル単量体と(メタ)アクリル酸エステル単量体の重合速度に対応するように不飽和ジカルボン酸無水物単量体を連続的に分添する方法が好適である。重合速度のコントロールについては、重合温度、重合時間、および重合開始剤添加量とで調整することが出来る。重合開始剤を連続分添すると、より重合速度をコントロールし易くなるので好ましい。共重合体組成分布を小さくすることで透明性や耐熱性、強度に優れた共重合体が得られ、メタクリル樹脂との相溶性にも優れることから好ましい。共重合体組成分布は、透明性によって評価することができる。共重合組成分布の目安として、ASTM D1003に基づき測定した2mm厚みの全光線透過率が88%以上であることが好ましく、さらに好ましくは90%以上である。
 重合終了時に重合液中の不飽和ジカルボン酸無水物単量体の濃度が100ppm以下となるよう、不飽和ジカルボン酸無水物単量体を分添する速度やタイミングと重合速度をコントロールすることで、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)中の残存不飽和ジカルボン酸無水物単量体量を100ppm以下にすることができる。
 さらに、好ましい重量平均分子量(Mw)の範囲である7万~30万である本発明の共重合体を得る方法については、重合温度、重合時間、および重合開始剤添加量の調整に加えて、溶剤添加量および連鎖移動剤添加量を調整することで得ることが出来る。連鎖移動剤としては、特に限定されるものではないが、例えば、n-ドデシルメルカプタン、t-ドデシルメルカプタンや2,4-ジフェニル-4-メチル-1-ペンテン等の公知の連鎖移動剤を用いることができる。
 重合液から本発明の共重合体を回収する方法については、特に限定はなく、公知の脱揮技術を用いることが出来る。例えば、重合液を二軸脱揮押出機にギヤーポンプを用いて連続的にフィードし、重合溶剤や未反応モノマー等を脱揮処理する方法が挙げられる。なお、重合溶剤や未反応モノマー等を含む脱揮成分は、コンデンサー等を用いて凝縮させて回収し、凝縮液を蒸留塔にて精製することで、重合溶剤は再利用することが可能である。
 本発明で用いる紫外線吸収剤(B)の含有量は、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)と紫外線吸収剤(B)の合計量に対して0.03~1.0質量%である。より好ましくは0.05~0.8%であり、更に好ましくは0.08~0.6%である。紫外線吸収剤(B)の含有量が少ないと耐候性が不足することがある。多すぎると共重合体の黄色味が強くなって色相を悪化させることがあり、耐熱性を下げる要因にもなることがある。
 紫外線吸収剤(B)は、高分子材料の劣化要因となる紫外線を吸収する光安定剤である。紫外線吸収剤(B)には、ベンゾトリアゾール系、シアノアクリレート系、トリアジン系、ベンゾフェノン系、ベンゾエート系、サリシレート系、マロン酸エステル系、オキザニリド系(蓚酸アニリド系)等があり、いずれも紫外線を吸収して、熱のような高分子材料に対して無害なエネルギーに転換する作用を持つ。
 ベンゾトリアゾール系とは、例えば2-(2H-ベンゾトリアゾール-2-イル)-4-6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-〔5-クロロ(2H)-ベンゾトリアゾール-2-イル〕-4-メチル-6-(tert-ブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2,2'-メチルレンビス〔6-(2H-ベンゾトリアゾール-2イル)-4-(1,1,3,3-テトラメチルブチル)フェノール〕、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラハイドロフタルイミディルメチル)フェノール、2-(3,5-ジ-tert-ペンチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチルオキシフェニル)-2H-ベンゾトリアゾール、6-(2-ベンゾトリアゾイル)-4-t-オクチル-6'-t-ブチル-4'-メチル-2,2'-メチレンビスフェノールがある。
 シアノアクリレート系とは、例えば2,2-ビス{〔2-シアノー3,3-ジフェニルアクリロイル〕オキシ〕メチル}プロパン-1,3-ジイル=ビス(2-シアノ-3,3-ジフェニルアクリラート)、2-シアノー3,3-ジフェニルアクリル酸エチル、2-シアノー3,3-ジフェニルアクリル酸2-エチルヘキシルがある。
 トリアジン系とは、例えば2-(4,6-ジフェニル―1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕-フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔2-(2-エチルヘキサノイルオキシ〕エトキシフェノールがある。
 ベンゾフェノン系とは、例えばオクタベンゾン、2,2'-ジヒドロキシ-4,4'-ジメトキシベンフェノン、2,2'-4,4'-テトラヒドロベンフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸三水和物、4-ドデシルオキシ-2-ヒドロキシベンゾフェノン、4-ベンジルオキシ-2-ヒドロキベンゾフェノン、1,4-ビス(4-ベンゾイル-3-ヒドロキシフェノキシ)-ブタン、2,2'-ジヒドロキシ-4-メトキシベンゾフェノンがある。
 ベンゾエート系とは、例えば2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート、ヘキサデシル3,5-ビス-tert-4-ヒドロキシベンゾエートがある。
 サリシレート系とは、例えばフェニルサリシレート、4-tert-ブチルフェニルサリシレートがある。
 マロン酸エステル系とは、例えばマロン酸[(4-メトキシフェニル)-メチレン]-ジメチルエステル、テトラエチル-2,2-(1,4-フェニレン-ジメチリデン)-ビスマロネートがある。
 オキザニリド系(蓚酸アニリド系)とは、例えば2-エチル-2'-エトキシ-オキザニリドがある。
 紫外線吸収剤(B)の分子量は300g/mol以上であることが好ましく、より好ましくは400g/molである。紫外線吸収剤(B)の分子量が小さいと共重合体に配合した際の耐熱性の低下度合が大きくなることがある。また、押出機や射出成形機などの成形加工時に揮散してしまうこともある。
 紫外線吸収剤(B)の波長380nmにおける測定濃度10mg/Lの吸光度は0.2以下であることが好ましく、より好ましくは0.1以下である。可視光領域に近い波長380nmの吸光度が大きいと共重合体に配合したときに初期の黄色味が強くなることがある。
本発明の透明な高耐熱性樹脂組成物は、残存不飽和ジカルボン酸無水物単量体量が100ppm以下である芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)と紫外線吸収剤(B)とからなる樹脂組成物であり、紫外線吸収剤(B)の含有量が0.03~1.0質量%であるが、(A)と(B)から樹脂組成物を調製する方法は特に限定されない。例えば、紫外線吸収剤(B)の添加方法としては、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)の重合工程、脱揮工程、造粒工程で添加混合する方法や、成形加工時の押出機や射出成形機などで添加混合する方法が挙げられる。
 また本発明の透明な高耐熱性樹脂組成物は、残存不飽和ジカルボン酸無水物単量体量が100ppm以下である芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)と紫外線吸収剤(B)の他、更にメタクリル樹脂(C)を混合することも可能である。メタクリル樹脂(C)を混合することで表面硬度を向上させることが可能である。メタクリル樹脂(C)の含有量は、(A)と(B)と(C)の合計量に対して30~85質量%であることが好ましく、より好ましくは45~75質量%である。メタクリル樹脂の含有量が多すぎると、耐熱性が不足することがあり、少なすぎると表面硬度が不足することがある。なおメタクリル樹脂(C)を混合する場合も、紫外線吸収剤(B)の含有量は(A)と(B)の合計量に対して0.03~1.0質量%である事が好ましい。
 本発明で用いるメタクリル樹脂(C)は、(メタ)アクリル酸エステル単量体単位70~100質量%、芳香族ビニル単量体単位0~30質量%であることが好ましく、より好ましくは0~25質量%である。芳香族ビニル単量体単位が多すぎると、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)とメタクリル樹脂(C)の相溶性が悪化することがある。
 メタクリル樹脂(C)の混合方法として、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)と溶融混錬することができる。溶融混錬の方法については特に限定はなく、公知の技術を用いることができる。単軸押出機、噛合型同方向回転または噛合型異方向回転二軸押出機、不完全噛合型二軸押出機等のスクリュー押出機やバンバリーミキサー、コニーダー及び混合ロール等がある。また、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)とメタクリル樹脂(C)の溶融混錬の際に紫外線吸収剤(B)を同時に混合することもできる。
 本発明で用いる紫外線吸収剤(B)の他に、光安定剤としてヒンダードアミン系光安定剤(HALS)を併用することもできる。ヒンダードアミン系光安定剤は、テトラメチルピペリジン骨格を基本骨格とした光安定剤である。光劣化によって生じたポリマーラジカルやポリオキシラジカル等のラジカルを捕捉しラジカル連鎖反応による劣化の進行を停止すると考えられている。ヒンダードアミン系光安定剤は、例えばコハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重縮合物、オレフィン(C20-C24)・無水マレイン酸・4-アミノ-2,2,6,6-テトラメチルピペリジン共重合物、ジブチルアミン・1,3,5-トリアジン・N,N'-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、N,N'-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-N,N'-ジホルミルヘキサメチレンジアミン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル]メチル]ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラ-メチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザ-ジスピロ-[5.1.11.2]-ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキソ-7-オキサ-3.20-ジアザジスピロ-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザ-20(2,3-エポキシ-プロピル)ジスピロ-[5.1.11.2]-ヘネイコサン-オンのポリマーがある。ヒンダードアミン系光安定剤の添加量は芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)100質量部に対して1質量部未満であることが好ましい。
 ヒンダードフェノール系化合物、ラクトン系化合物、リン系化合物、イオウ系化合物などの耐熱安定剤、滑剤や可塑剤、着色剤、帯電防止剤、鉱油等の添加剤を配合してもよい。
 本発明の樹脂組成物において、50N荷重で測定したビカット軟化温度は、115~150であることが好ましく、より好ましくは120~145℃である。ビカット軟化温度が110~150℃の範囲であれば、耐熱性に優れた成形品を得られることから好ましい。ビカット軟化温度は、JIS K7206:1999に基づき、50法(荷重50N、昇温速度50℃/時間)で試験片は10mm×10mm、厚さ4mmのものを用いた測定値である。
 本発明の樹脂組成物において、220℃、49Nで測定したメルトマスフローレート(MFR)は、0.5~30g/分であることが好ましい。メルトマスフローレート(MFR)は、JIS K7210:1999に基づき、220℃、98N荷重にて測定した値である。
 本発明の樹脂組成物において、ASTM D1003に基づき測定した2mm厚みの全光線透過率は、88%以上であることが好ましく、より好ましくは90%以上である。また、2mm厚みのHazeは、1.0%以下であることが好ましく、より好ましくは0.5%以下である。JIS K7105に基づき測定した2mm厚みのb値は1.5以下が好ましく、より好ましくは1.0以下である。
 本発明の樹脂組成物は、透明性、耐熱性、耐候性の求められる用途に使用することができる。その用途例としては、家電製品の部品や自動車部品、建材、光学部材などが挙げられる。また、成形性に優れることから、押出成形法、射出成形法など各種成形方法にて成形品を作製することができる。
 以下、詳細な内容について実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。
<共重合体(A-1)の製造例>
マレイン酸無水物が20質量%濃度となるようにメチルイソブチルケトンに溶解させた20%マレイン酸無水物溶液と、t-ブチルパーオキシ-2-エチルヘキサノエートが2質量%となるようにメチルイソブチルケトンに希釈した2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを事前に調製し、重合に使用した。
撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液3.6kg、スチレン24kg、メチルメタクレリレート8.8kg、t-ドデシルメルカプタン20gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.7kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を375g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.7kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で32.4kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-1)を得た。得られた共重合体(A-1)をC-13NMR法により組成分析を行った。さらにGPC装置にて分子量測定を行った。
 組成分析を実施したところ、共重合体の構成単位は、スチレン単量体単位60質量%、メチルメタクリレート単量体単位22%、無水マレイン酸単量体単位18質量%であった。共重合体中の残存無水マレイン酸単量体量は検出下限未満(<60ppm)であった。また、重量平均分子量は16万で、射出成形にて成形した2mmtの鏡面プレートの全光線透過率は91%であった。
<共重合体(A-2)の製造例>
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。
撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2.8kg、スチレン25.6kg、メチルメタクレリレート8.8kg、t-ドデシルメルカプタン20gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.1kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を500g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.1kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で25.2kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-2)を得た。得られた共重合体(A-2)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。
 組成分析を実施したところ、共重合体の構成単位は、スチレン単量体単位64質量%、メチルメタクリレート単量体単位22%、無水マレイン酸単量体単位14質量%であった。共重合体中の残存無水マレイン酸単量体量は検出下限未満(<60ppm)であった。また、重量平均分子量は17万で、射出成形にて成形した2mmtの鏡面プレートの全光線透過率は91%であった。
<共重合体(A-3〉の製造例>
マレイン酸無水物が25質量%濃度となるようにメチルイソブチルケトンに溶解させた25%マレイン酸無水物溶液を事前に調製し、重合に使用した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は(A-1)の製造例と同様に調整し、重合に使用した。
攪拌機を備えた120リットルのオートクレーブ中に、25%マレイン酸無水物溶液3.52kg、スチレン24kg、メチルメタクリレート7.2kg、t-ドデシルメルカプタン20gを仕込み、気相部を窒素ガスで置換した後、攪拌しながら40分かけて92℃まで昇温した。昇温後92℃を保持しながら、25%マレイン酸無水溶液と、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液とを各々連続的に分添開始した。25%マレイン酸無水物溶液は、分添開始4時間目までが3.96kg/時、4時間目から7時間目までが3.17kg/時、7時間目から10時間目までが1.58kg/時、10時間目から13時間目までが0.54kg/時の分添速度となるように段階的に分添速度を変え、合計で31.71kg添加した。2%t-ブチルパーオキシ-2-エチルヘキサノネート溶液は、分添開始から7時間目までが0.24kg/時、7時間目から13時間目までが0.39kg/時の分添速度となるように段階的に分添速度を変え、合計で4.02kg添加した。重合温度は、分添開始から7時間目までは92℃を保持し、その後4℃/時の昇温速度で6時間かけて116℃まで昇温し、さらに116℃を1時間保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-3)を得た。得られた共重合体(A-3)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。
 組成分析を実施したところ、共重合体の構成単位は、スチレン単量体単位60質量%、メチルメタクリレート単量体単位18%、無水マレイン酸単量体単位22質量%であった。共重合体中の残存無水マレイン酸単量体量は検出下限未満(<60ppm)であった。また、重量平均分子量は16万で、射出成形にて成形した2mmtの鏡面プレートの全光線透過率は90%であった。
<共重合体(A-4)の製造例> 
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。
撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液3.6kg、スチレン24kg、メチルメタクレリレート8.8kg、t-ドデシルメルカプタン20gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.65kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を375g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.65kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で32.4kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-4)を得た。得られた共重合体(A-4)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。
 組成分析を実施したところ、共重合体の構成単位は、スチレン単量体単位60質量%、メチルメタクリレート単量体単位22%、無水マレイン酸単量体単位18質量%であった。共重合体中の残存無水マレイン酸単量体量は80ppmであった。また、重量平均分子量は16万で、射出成形にて成形した2mmtの鏡面プレートの全光線透過率は91%であった。
<共重合体(A-5)の製造例>
20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。
撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液3.6kg、スチレン24kg、メチルメタクレリレート8.8kg、t-ドデシルメルカプタン20gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.6kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を375g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.6kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で32.4kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-5)を得た。得られた共重合体(A-5)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。
 組成分析を実施したところ、共重合体の構成単位は、スチレン単量体単位60質量%、メチルメタクリレート単量体単位22%、無水マレイン酸単量体単位18質量%であった。共重合体中の残存無水マレイン酸単量体量は230ppmであった。また、重量平均分子量は16万で、射出成形にて成形した2mmtの鏡面プレートの全光線透過率は91%であった。
<共重合体(A-6)の製造例>
 20%マレイン酸無水物溶液と2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液は、A-1と同様に調製した。
 撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液3.4kg、スチレン24kg、メチルメタクレリレート9.2kg、t-ドデシルメルカプタン60gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.55kg/時、および2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液を375g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t-ブチルパーオキシ-2-エチルヘキサノエート溶液の分添を停止し、t-ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.55kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で30.6kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A-6)を得た。得られた共重合体(A-6)について、A-1と同様に組成分析、分子量、および全光線透過率を測定した。
 組成分析を実施したところ、共重合体の構成単位は、スチレン単量体単位60質量%、メチルメタクリレート単量体単位23%、無水マレイン酸単量体単位17質量%であった。共重合体中の残存無水マレイン酸単量体量は240ppmであった。また、重量平均分子量は13万で、射出成形にて成形した2mmtの鏡面プレートの全光線透過率は91%であった。
<実施例・比較例>
 製造例で記した芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A-1)~(A-6)、紫外線吸収剤(B-1)~(B-5)及びメタクリル樹脂(C-1)をヘンシェルミキサーで混合した後、二軸押出機(東芝機会社製 TEM-35B)にて、シリンダー温度230℃で溶融混錬してペレット化して樹脂組成物を得た。得られた樹脂組成物のペレットより試験片を作成し以下の評価を行い、評価結果を表1~3に示した。使用した紫外線吸収剤とメタクリル樹脂は次の通りである。
(B-1)2-(2H-ベンゾトリアゾール-2-イル)-4-6-ビス(1-メチル-1-フェニルエチル)フェノール(BASFジャパン株式会社製 Tinuvin 234)
(B-2)2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール(BASFジャパン株式会社製 Tinuvin P)
(B-3)2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(BASFジャパン株式会社製 Tinuvin 120)
(B-4)2-エチル,2'-エトキシ-オキザニリド(クラリアントジャパン株式会社製 Sanduvor VSU)
(B-5)テトラエチル-2,2-(1,4-フェニレン-ジメチリデン)-ビスマロネート(クラリアントジャパン株式会社製 Hostavin B-Cap)
(C-1)PMMA樹脂(三菱レイヨン株式会社製 アクリペットVH5)
 得られた樹脂組成物のペレットより試験片を作成し以下の評価を行い、評価結果を表1~3に示した。なお実施例10ではヒンダードアミン系光安定剤(HALS)として、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重縮合物(BASFジャパン株式会社製 Tinuvin 622)を配合した。
(ビカット軟化点)
 ビカット軟化点は、JIS K7206:1999に基づき、50法(荷重50N、昇温速度50℃/時間)で試験片は10mm×10mm、厚さ4mmのものを用いて測定した。なお、測定機は東洋精機製作所社製HDT&VSPT試験装置を使用した。
(全光線透過率、Haze、色相)
 全光線透過率およびHazeは、射出成型機(東芝機械社製IS-50EPN)を用いて、シリンダー温度240℃、金型温度70℃の成形条件で成形された縦90mm、横55mm、厚み2mmの鏡面プレートをASTM D1003に準拠しヘーズメータ(日本電色工業社製NDH-1001DP型)を用いて測定した。また、b値は、JIS K7105に準拠し紫外線可視分光光度計(日本分光株式会社製V-670)を用いて測定した。
(耐候性)
 耐候性は、キセノンウェザオメーター(アトラス社製Ci65A)を用いて、光照射のみ(雨無し)の環境下で行った。試験片には縦90mm、横55mm、厚み2mmの鏡面プレートを用い、ブラックパネル温度89℃、波長300~400nmにおける放射照度60W/m、照射時間463時間とし、放射露光量100MJ/mの条件にて試験を実施した。照射後の試験片についてb値を測定し、照射後のb値と照射前のb値の差をΔbとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例は、高い耐熱性を有し、透明性と色相が良好で耐候性に優れる。一方、比較例では色相、耐候性のいずれかの物性が劣るものであった。
 本発明の樹脂組成物は、耐熱性、透明性、色相及び耐候性の要求される用途に好適であり、家電製品の部品や自動車部品、建材、光学部材に有用である。

Claims (6)

  1. 残存不飽和ジカルボン酸無水物単量体量が100ppm以下である芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)と紫外線吸収剤(B)とからなる樹脂組成物であり、紫外線吸収剤(B)の含有量が(A)と(B)の合計量に対して0.03~1.0質量%である透明な高耐熱性樹脂組成物。
  2. 残存不飽和ジカルボン酸無水物単量体量が100ppm以下である芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)と紫外線吸収剤(B)とメタクリル樹脂(C)とからなる樹脂組成物であり、紫外線吸収剤(B)の含有量が(A)と(B)の合計量に対して0.03~1.0質量%である透明な高耐熱性樹脂組成物。
  3. メタクリル樹脂(C)の含有量が、(A)と(B)と(C)の合計量に対して30~85質量%である請求項2に記載の透明な高耐熱性樹脂組成物。
  4. 芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸無水物系共重合体(A)の芳香族ビニル単量体単位が45~85質量%、(メタ)アクリル酸エステル単量体単位が5~45質量%、不飽和ジカルボン酸無水物単量体単位が10~30質量%、重量平均分子量(Mw)が10万~30万である請求項1~3のいずれかに記載の透明な高耐熱性樹脂組成物。
  5. 50N荷重で測定したビカット軟化温度が115~150℃である請求項1~4のいずれかに記載の透明な高耐熱性樹脂組成物。
  6. 請求項1~5のいずれかに記載の樹脂組成物からなる成形品。
PCT/JP2016/051055 2015-01-15 2016-01-14 透明な高耐熱性樹脂組成物 WO2016114374A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680005781.0A CN107429023A (zh) 2015-01-15 2016-01-14 透明高耐热性树脂组合物
US15/543,499 US20170369694A1 (en) 2015-01-15 2016-01-14 Transparent, highly heat resistant resin composition
JP2016569519A JP6684228B2 (ja) 2015-01-15 2016-01-14 透明な高耐熱性樹脂組成物
KR1020177021863A KR20170104534A (ko) 2015-01-15 2016-01-14 투명한 고내열성 수지 조성물
EP16737445.3A EP3246360A4 (en) 2015-01-15 2016-01-14 Transparent, highly heat resistant resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015005693 2015-01-15
JP2015-005693 2015-01-15

Publications (1)

Publication Number Publication Date
WO2016114374A1 true WO2016114374A1 (ja) 2016-07-21

Family

ID=56405914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051055 WO2016114374A1 (ja) 2015-01-15 2016-01-14 透明な高耐熱性樹脂組成物

Country Status (7)

Country Link
US (1) US20170369694A1 (ja)
EP (1) EP3246360A4 (ja)
JP (1) JP6684228B2 (ja)
KR (1) KR20170104534A (ja)
CN (1) CN107429023A (ja)
TW (1) TWI683830B (ja)
WO (1) WO2016114374A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017094748A1 (ja) * 2015-11-30 2018-09-20 デンカ株式会社 透明な高耐熱性スチレン系共重合体
JP2019529652A (ja) * 2016-09-20 2019-10-17 アルケマ フランス ポリマー組成物、その調製方法、その使用及びそれを含む物体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122536A (ja) * 1982-12-28 1984-07-16 Mitsubishi Rayon Co Ltd 耐熱性メタクリル樹脂組成物
JPS60147417A (ja) * 1984-01-11 1985-08-03 Mitsubishi Rayon Co Ltd 耐熱性メタクリル系樹脂の製造法
JPS6414220A (en) * 1987-07-07 1989-01-18 Mitsubishi Rayon Co Base for information recording medium
WO2010013557A1 (ja) * 2008-07-31 2010-02-04 旭化成ケミカルズ株式会社 アクリル系熱可塑性樹脂、及びその成形体
JP2011026563A (ja) * 2009-06-22 2011-02-10 Asahi Kasei Chemicals Corp 耐熱アクリル系樹脂組成物、及びその成形体
WO2014021264A1 (ja) * 2012-07-30 2014-02-06 電気化学工業株式会社 メタクリル樹脂耐熱性向上用の共重合体
JP2014160583A (ja) * 2013-02-20 2014-09-04 Denki Kagaku Kogyo Kk 導光板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558098A (en) * 1982-12-28 1985-12-10 Mitsubishi Rayon Co., Ltd. Methacrylic resin composition
JP6272787B2 (ja) * 2013-01-29 2018-01-31 デンカ株式会社 ガラス強化樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122536A (ja) * 1982-12-28 1984-07-16 Mitsubishi Rayon Co Ltd 耐熱性メタクリル樹脂組成物
JPS60147417A (ja) * 1984-01-11 1985-08-03 Mitsubishi Rayon Co Ltd 耐熱性メタクリル系樹脂の製造法
JPS6414220A (en) * 1987-07-07 1989-01-18 Mitsubishi Rayon Co Base for information recording medium
WO2010013557A1 (ja) * 2008-07-31 2010-02-04 旭化成ケミカルズ株式会社 アクリル系熱可塑性樹脂、及びその成形体
JP2011026563A (ja) * 2009-06-22 2011-02-10 Asahi Kasei Chemicals Corp 耐熱アクリル系樹脂組成物、及びその成形体
WO2014021264A1 (ja) * 2012-07-30 2014-02-06 電気化学工業株式会社 メタクリル樹脂耐熱性向上用の共重合体
JP2014160583A (ja) * 2013-02-20 2014-09-04 Denki Kagaku Kogyo Kk 導光板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3246360A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017094748A1 (ja) * 2015-11-30 2018-09-20 デンカ株式会社 透明な高耐熱性スチレン系共重合体
EP3385290A4 (en) * 2015-11-30 2018-12-05 Denka Company Limited Transparent highly heat-resistant styrene copolymer
JP2019529652A (ja) * 2016-09-20 2019-10-17 アルケマ フランス ポリマー組成物、その調製方法、その使用及びそれを含む物体

Also Published As

Publication number Publication date
US20170369694A1 (en) 2017-12-28
EP3246360A4 (en) 2018-02-14
TWI683830B (zh) 2020-02-01
TW201629109A (zh) 2016-08-16
KR20170104534A (ko) 2017-09-15
JP6684228B2 (ja) 2020-04-22
CN107429023A (zh) 2017-12-01
EP3246360A1 (en) 2017-11-22
JPWO2016114374A1 (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6055832B2 (ja) メタクリル樹脂耐熱性向上用の共重合体
JP6228126B2 (ja) 芳香族ビニル−シアン化ビニル系樹脂耐熱性向上用の共重合体
JP2002254544A (ja) 熱可塑性樹脂積層体
JP6568687B2 (ja) 光学補償フィルム用共重合体
JP6587620B2 (ja) メタクリル樹脂の耐熱性向上に適した共重合体
JP5403777B2 (ja) 光学材料用成形体
JP6684228B2 (ja) 透明な高耐熱性樹脂組成物
JP7088672B2 (ja) 透明な高耐熱性スチレン系共重合体
JP6931350B2 (ja) 偏光子保護フィルム用樹脂組成物、偏光子保護フィルム
WO2015107954A1 (ja) 共重合体および成形体
WO2018084068A1 (ja) 加飾フィルム
JP2018012530A (ja) 二軸延伸シートおよび包装用容器
CN107960084B (zh) 树脂组合物、汽车透明部件用树脂组合物、仪表面板透明盖、半球形透镜
JP6976785B2 (ja) 樹脂組成物及び成形体
US11891466B2 (en) Heat resistant PMMA copolymers having high temperature and high humidity environmental stability for electronic component applications
JP2023038989A (ja) 樹脂組成物
CN117083310A (zh) 共聚物、射出成型用树脂组合物、成型品、以及共聚物的制造方法
WO2016186121A1 (ja) 透明な樹脂組成物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177021863

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15543499

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016737445

Country of ref document: EP