WO2015107954A1 - 共重合体および成形体 - Google Patents

共重合体および成形体 Download PDF

Info

Publication number
WO2015107954A1
WO2015107954A1 PCT/JP2015/050241 JP2015050241W WO2015107954A1 WO 2015107954 A1 WO2015107954 A1 WO 2015107954A1 JP 2015050241 W JP2015050241 W JP 2015050241W WO 2015107954 A1 WO2015107954 A1 WO 2015107954A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
mass
molecular weight
parts
polymerization
Prior art date
Application number
PCT/JP2015/050241
Other languages
English (en)
French (fr)
Inventor
淳裕 中原
宙 小澤
隆司 福本
伸崇 平岡
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020167018650A priority Critical patent/KR102212537B1/ko
Priority to CN201580004455.3A priority patent/CN105916898A/zh
Priority to JP2015557799A priority patent/JP6574138B2/ja
Priority to US15/111,386 priority patent/US10287380B2/en
Priority to EP15737152.7A priority patent/EP3095800B1/en
Publication of WO2015107954A1 publication Critical patent/WO2015107954A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/005Polyesters prepared from ketenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/38Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F224/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to a copolymer which is excellent in transparency and heat resistance, has a high tensile breaking strain without containing rubber, and a molded article containing such a copolymer.
  • methacrylic resin is excellent in optical properties such as transparency and weather resistance, so conventionally, display members used for lighting fixtures, signboards, etc., optical members used for display devices, interior members, building members, electronic / electrical members It is used in various applications including medical parts. In these applications, in addition to optical properties and weather resistance, mechanical properties such as flexibility, flex resistance, impact resistance, and flexibility are often required.
  • a methacrylic resin composition in which various other resins are added to a methacrylic resin has been proposed.
  • a method of blending methacrylic resin with multilayer structure acrylic rubber particles produced by an emulsion polymerization method is mentioned (Patent Document 1).
  • a methacrylic resin composition comprising a methacrylic resin and a block copolymer having a methacrylic ester polymer block and an acrylic ester polymer block is known (Patent Documents 2 and 3).
  • An object of the present invention is to provide a copolymer that is excellent in transparency and heat resistance, has a high tensile breaking strain without containing other resins, and a molded body containing such a copolymer. .
  • the present inventors have made various studies in order to achieve the above object. As a result, by introducing an ester structural unit derived from a cyclic ketene acetal monomer into a structural unit derived from a methacrylic acid ester monomer, the high transparency and rigidity originally possessed by the methacrylic resin are greatly increased. It was found that it can be made difficult to break without lowering.
  • the present invention provides the following aspects.
  • a copolymer comprising a structural unit derived from 80% by mass to 98% by mass of a methacrylic acid ester monomer and an ester structural unit derived from 2 to 10% by mass of a cyclic ketene acetal monomer. And a copolymer having a weight average molecular weight of 80,000 or more and a molecular weight distribution of 1.75 or more and 3.80 or less.
  • the copolymer of the present invention is excellent in transparency and heat resistance, and can be obtained as a non-crackable copolymer having a large tensile breaking strain without containing other resins. Moreover, the molded object with few external appearance defects containing this copolymer can be provided.
  • FIG. 4 is an enlarged view of a strain 0 to 4% portion of a strain-stress curve in Examples 1 and 2 and Comparative Examples 1 and 2.
  • the copolymer of the present invention contains a structural unit derived from a methacrylic acid ester monomer and an ester structural unit derived from a cyclic ketene acetal monomer.
  • the copolymer of the present invention contains 80% by mass to 98% by mass of structural units derived from methacrylic acid esters with respect to the mass of the copolymer.
  • the content of the structural unit is more preferably 85% by mass to 97% by mass, and particularly preferably 90% by mass to 96% by mass.
  • methacrylic acid ester examples include methacrylic acid alkyl esters such as methyl methacrylate, ethyl methacrylate, and butyl methacrylate; methacrylic acid aryl esters such as phenyl methacrylate; cyclohexyl methacrylate, 2-isobornyl methacrylate, and methacrylic acid 8 Methacrylic acid cycloalkyl esters such as tricyclo [5.2.1.0 2,6 ] decanyl, 2-norbornyl methacrylate and 2-adamantyl methacrylate; alkyl methacrylates are preferred, and methyl methacrylate is preferred. Most preferred.
  • the copolymer of the present invention contains 2 to 10% by mass of an ester structural unit derived from a cyclic ketene acetal monomer with respect to the mass of the copolymer.
  • the content of the structural unit is more preferably 3% by mass to 9% by mass, and particularly preferably 4% by mass to 8% by mass.
  • the ester structural unit derived from the cyclic ketene acetal monomer is formed by the ring-opening polymerization of the cyclic ketene acetal monomer. That is, the structural unit derived from the cyclic ketene acetal monomer and having an ester bond by ring-opening polymerization is 2 to 10% by mass with respect to the mass of the copolymer.
  • the ring opening rate of the structure derived from the cyclic ketene acetal monomer in the copolymer is preferably 50% or more, more preferably 70% or more, most Preferably it is 100%.
  • the copolymer of the present invention has a structure derived from a radical polymerizable monomer other than a methacrylic acid ester monomer and a cyclic ketene acetal monomer (hereinafter sometimes referred to as a radical polymerizable monomer (A)). You may have a unit.
  • the radical polymerizable monomer (A) include vinyl aromatic hydrocarbons such as styrene, ⁇ -methylstyrene, p-methylstyrene, and m-methylstyrene; vinylcyclohexane, vinylcyclopentane, vinylcyclohexene, vinylcycloheptane.
  • Vinyl cycloaliphatic hydrocarbons such as vinylcycloheptene and vinyl norbornene; ethylenically unsaturated carboxylic acids such as maleic anhydride, maleic acid and itaconic acid; ethylene, propylene, 1-butene, isobutylene, 1-octene and the like Olefin; Conjugated dienes such as butadiene, isoprene, myrcene; acrylamide, methacrylamide, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl ketone, vinyl chloride, vinylidene chloride, vinylidene fluoride; methyl acrylate, acrylic acid N-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, s-butyl acrylate, t-butyl acrylate, amyl acrylate, isoamyl acrylate, n-hexyl
  • the amount of the structural unit derived from the radical polymerizable monomer (A) contained in the copolymer of the present invention is preferably relative to the mass of the copolymer from the balance of ductility performance, heat resistance, and water absorption. Is 15% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less.
  • the copolymer of the present invention has a ductile performance because an ester structural unit that easily entangles the molecular chain between the copolymers is introduced into the main chain. It is expressed. Therefore, it is important that the weight average molecular weight, which is a factor affecting the ease of entanglement between the molecular chains of the copolymer, is large to some extent.
  • the weight average molecular weight is 80,000 or more, preferably 80,000 to 2,000,000, more preferably 90,000 to 1,000,000, still more preferably 100,000 to 700,000, and particularly preferably 120,000 to 500,000. When the weight average molecular weight is too low, the entanglement between the copolymers is reduced, and it becomes difficult to exhibit ductility performance. If the weight average molecular weight is too high, molding becomes difficult.
  • the weight average molecular weight can be controlled by adjusting the types and amounts of the polymerization initiator and the chain transfer agent in the polymerization reaction during copolymer synthesis.
  • the copolymer of the present invention has a weight average molecular weight / number average molecular weight ratio (hereinafter, this ratio is referred to as “molecular weight distribution”), preferably 1.75 to 3.80, more preferably 1. 80 to 3.50, more preferably 1.90 to 3.20. If the molecular weight distribution is too narrow, the ratio between the high molecular weight substance and the low molecular weight substance generally decreases.However, if the ratio of the high molecular weight substance decreases, the ductility performance is remarkably lowered, and if the ratio of the low molecular weight substance decreases, molding is performed. The nature will decline.
  • the weight average molecular weight and molecular weight distribution are values in terms of standard polystyrene measured by GPC (gel permeation chromatography).
  • Such weight average molecular weight and molecular weight distribution can be controlled by adjusting the type and amount of the polymerization initiator and chain transfer agent during the polymerization reaction. Further, a purification method such as reprecipitation that removes low molecular weight substances is not preferable because the molecular weight distribution is smaller than 1.80.
  • GPC measurement is performed as follows. Tetrahydrofuran is used as the eluent, and TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 are connected in series as the column.
  • HLC-8320 product number
  • RI detector differential refractive index detector
  • As a sample a solution in which 4 mg of methacrylic resin was dissolved in 5 ml of tetrahydrofuran was used.
  • the column oven temperature was set to 40 ° C., 20 ⁇ l of sample solution was injected at an eluent flow rate of 0.35 ml / min, and the chromatogram was measured.
  • Standard polystyrene having a molecular weight in the range of 5000000 to 400 was measured, and a calibration curve showing the relationship between retention time and molecular weight was prepared.
  • the baseline connecting the point where the slope on the high molecular weight side of the chromatogram changes from zero to positive and the point where the slope of the peak on the low molecular weight side changes from negative to zero was taken as the baseline. If the chromatogram shows multiple peaks, connect the line connecting the point where the slope of the highest molecular weight peak changes from zero to positive and the point where the slope of the lowest molecular weight peak changes from negative to zero. Baseline.
  • the copolymer of the present invention has a glass transition temperature of preferably 70 to 180 ° C, more preferably 80 to 180 ° C, still more preferably 80 to 120 ° C, and still more preferably 85 to 120 ° C. If the glass transition temperature is too low, the heat resistance of the copolymer is insufficient, and the usable applications are limited. If the glass transition temperature is too high, the copolymer is brittle and easily cracked, and the effects of the present invention are hardly exhibited.
  • the glass transition temperature is a value measured in accordance with JIS K7121.
  • the copolymer of the present invention was heated once to 230 ° C., then cooled to room temperature, and then DSC curve was measured by differential scanning calorimetry under the condition that the temperature was raised from room temperature to 230 ° C. at 10 ° C./min. And the midpoint glass transition temperature obtained from the DSC curve measured at the second temperature rise was defined as the glass transition temperature of the present invention.
  • the ester structural unit introduced into the main chain of the copolymer of the present invention can be cleaved by methanolysis.
  • the molar ratio of the ester structural unit introduced into the main chain of the copolymer of the present invention can be determined from the number average molecular weight of the polymer obtained after the decomposition with methanol. Further, by measuring the molecular weight distribution of the polymer obtained after the decomposition with methanol, it can be seen how uniformly the ester structural unit is introduced into the main chain of the copolymer.
  • the polymer obtained after methanol decomposition is a polymer or copolymer obtained by methanol decomposition.
  • the polymer which consists only of methacrylic acid ester corresponds.
  • a structural unit derived from the radically polymerizable monomer (A) is present in the copolymer before being decomposed
  • what is obtained by methanol decomposition is a structure derived from a methacrylic acid ester monomer. It becomes a copolymer comprising a unit and a structural unit derived from the radical polymerizable monomer (A).
  • Such a copolymer is also referred to as a polymer obtained after methanol decomposition. It can be seen that the narrower the molecular weight distribution of the polymer obtained after methanol decomposition, the more uniformly the cyclic ketene acetal monomer was copolymerized.
  • the molecular weight distribution of the polymer obtained after the decomposition with methanol is narrow, that is, the ester structure unit is uniformly introduced into the copolymer main chain, the entanglement between the copolymers increases, and the higher ductility.
  • the molecular weight distribution of the polymer obtained after methanol decomposition is preferably 2.0 or less, more preferably 1.90 or less, and most preferably 1.75 or less.
  • the method for producing the copolymer of the present invention There is no particular limitation on the method for producing the copolymer of the present invention. Usually, from the viewpoint of productivity, a radical polymerization method is employed to produce a copolymer by adjusting the polymerization temperature, polymerization time, type and amount of chain transfer agent, type and amount of polymerization initiator, etc. The method is preferred.
  • the radical polymerization method is preferably performed in the absence of a solvent or in a solvent, and is preferably performed in the absence of a solvent from the viewpoint of obtaining a copolymer having a low impurity concentration. From the viewpoint of suppressing the occurrence of silver and coloring in the molded body, the polymerization reaction is preferably performed with a low dissolved oxygen content.
  • the polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen gas.
  • the polymerization initiator used in the radical polymerization method for producing the copolymer of the present invention is not particularly limited as long as it generates a reactive radical.
  • t-hexyl peroxyisopropyl monocarbonate t-hexyl peroxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutyl peroxy 2-ethylhexanoate, t-butyl peroxypivalate T-hexylperoxypivalate, t-butylperoxyneodecanoate, t-hexylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1 , 1-bis (t-hexylperoxy) cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, 2,2′-azobis (2-methylpropionitrile), 2, 2
  • t-hexylperoxy 2-ethylhexanoate 1,1-bis (t-hexylperoxy) cyclohexane, and dimethyl 2,2'-azobis (2-methylpropionate) are preferable.
  • the 1-hour half-life temperature of such a polymerization initiator is preferably 60 to 140 ° C, more preferably 80 to 120 ° C.
  • the polymerization initiator used for the production of the copolymer preferably has a hydrogen abstraction ability of 20% or less, more preferably 10% or less, and even more preferably 5% or less.
  • Such polymerization initiators can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is preferably 0.0001 to 0.02 parts by mass, more preferably 0.001 to 0.01 parts by mass, and still more preferably 100 parts by mass of the monomer subjected to the polymerization reaction. Is 0.005 to 0.007 parts by mass.
  • the hydrogen abstraction ability can be known from the technical data of the polymerization initiator manufacturer (for example, Nippon Oil & Fats Co., Ltd. technical document “Hydrogen abstraction capacity and initiator efficiency of organic peroxide” (created in April 2003)). . Further, it can be measured by a radical trapping method using ⁇ -methylstyrene dimer, that is, ⁇ -methylstyrene dimer trapping method. The measurement is generally performed as follows. First, the polymerization initiator is cleaved in the presence of ⁇ -methylstyrene dimer as a radical trapping agent to generate radical fragments.
  • radical fragments having a low hydrogen abstraction ability are added to and trapped by the double bond of ⁇ -methylstyrene dimer.
  • a radical fragment having a high hydrogen abstraction capacity abstracts hydrogen from cyclohexane to generate a cyclohexyl radical, and the cyclohexyl radical is added to and trapped by a double bond of ⁇ -methylstyrene dimer to generate a cyclohexane trapping product. Therefore, the ratio (mole fraction) of radical fragments having a high hydrogen abstraction capacity with respect to the theoretical radical fragment generation amount, which is obtained by quantifying cyclohexane or cyclohexane-trapped product, is defined as the hydrogen abstraction capacity.
  • the chain transfer agent used in the radical polymerization method for producing the copolymer of the present invention includes n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexane.
  • Dithiol ethylene glycol bisthiopropionate, butanediol bisthioglycolate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris- ( ⁇ -thiopro)
  • alkyl mercaptans such as pentaerythritol tetrakisthiopropionate.
  • monofunctional alkyl mercaptans such as n-octyl mercaptan and n-dodecyl mercaptan are preferred.
  • These chain transfer agents can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is preferably 0.1 to 1 part by weight, more preferably 0.15 to 0.8 part by weight, and still more preferably 0 to 100 parts by weight of the monomer to be subjected to the polymerization reaction. .2 to 0.6 parts by mass, most preferably 0.2 to 0.5 parts by mass.
  • the amount of the chain transfer agent used is preferably 2500 to 10000 parts by mass, more preferably 3000 to 9000 parts by mass, and further preferably 3500 to 6000 parts by mass with respect to 100 parts by mass of the polymerization initiator. When the amount of chain transfer agent used is within the above range, the resulting copolymer tends to have good moldability and high mechanical strength.
  • the solvent used in the radical polymerization method for producing the copolymer of the present invention is not limited as long as it can dissolve the monomer and the copolymer, but aromatic hydrocarbons such as benzene, toluene, and ethylbenzene are not limited. preferable. These solvents can be used alone or in combination of two or more.
  • the usage-amount of a solvent can be suitably set from a viewpoint of the viscosity and productivity of a reaction liquid.
  • the amount of the solvent used is, for example, preferably 100 parts by mass or less, more preferably 90 parts by mass or less with respect to 100 parts by mass of the polymerization reaction raw material.
  • the temperature during the polymerization reaction is preferably 100 to 200 ° C., more preferably 110 to 180 ° C.
  • productivity tends to be improved due to an improvement in the polymerization rate, a decrease in the viscosity of the polymerization solution, and the like.
  • polymerization temperature is 200 degrees C or less, control of a superposition
  • the polymerization reaction time is preferably 0.5 to 4 hours, more preferably 1.5 to 3.5 hours, and further preferably 1.5 to 3 hours.
  • the polymerization reaction time is an average residence time in the reactor.
  • the polymerization conversion rate in the radical polymerization method for producing the copolymer of the present invention is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and further preferably 35 to 65% by mass.
  • the polymerization conversion rate is 20% by mass or more, the remaining unreacted monomer can be easily removed, and the appearance of the molded body made of the copolymer tends to be good.
  • the polymerization conversion rate is 70% by mass or less, the viscosity of the polymerization solution is lowered and productivity tends to be improved.
  • Radical polymerization may be carried out using a batch reactor, but it is preferred to carry out using a continuous flow reactor from the viewpoint of productivity and the ductility performance of the resulting copolymer.
  • a polymerization reaction raw material (monomer (meaning methacrylate ester, cyclic ketene acetal, radical polymerizable monomer (A)), polymerization initiator, chain transfer agent, etc.
  • a mixed solution containing the liquid, and is supplied to the reactor at a constant flow rate, and the liquid in the reactor is withdrawn at a flow rate corresponding to the supply amount.
  • a tubular reactor that can be in a state close to plug flow and / or a tank reactor that can be in a state close to complete mixing can be used.
  • continuous flow polymerization may be performed in one reactor, or continuous flow polymerization may be performed by connecting two or more reactors.
  • the amount of liquid in the tank reactor during the polymerization reaction is preferably 1/4 to 3/4, more preferably 1/3 to 2/3 with respect to the volume of the tank reactor.
  • the reactor is usually equipped with a stirring device.
  • the stirring device include a static stirring device and a dynamic stirring device.
  • the dynamic agitation device include a Max blend type agitation device, an agitation device having a grid-like blade rotating around a vertical rotation shaft disposed in the center, a propeller type agitation device, and a screw type agitation device.
  • a Max blend type stirring apparatus is preferably used from the point of uniform mixing property.
  • the removal method is not particularly limited, but heating devolatilization is preferable.
  • the devolatilization method include an equilibrium flash method and an adiabatic flash method.
  • the devolatilization temperature by the adiabatic flash method is preferably 200 to 280 ° C, more preferably 220 to 260 ° C.
  • the time for heating the resin by the adiabatic flash method is preferably 0.3 to 5 minutes, more preferably 0.4 to 3 minutes, and further preferably 0.5 to 2 minutes. When devolatilized in such a temperature range and heating time, a copolymer with little coloring is easily obtained.
  • the removed unreacted monomer can be recovered and used again for the polymerization reaction. Since the yellow index of the recovered monomer may be high due to heat applied during the recovery operation, etc., the recovered monomer should be purified by an appropriate method to reduce the yellow index. Is preferred.
  • another copolymer may be mixed with the copolymer of the present invention within a range not impairing the effects of the present invention.
  • examples of such other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, and high impact polystyrene.
  • the molded product of the present invention preferably contains 80% by mass or more of the copolymer of the present invention, more preferably 90% by mass or more.
  • the manufacturing method of the molded object of this invention is not specifically limited.
  • the copolymer of the present invention or a molding material containing the copolymer of the present invention is, for example, a T-die method (lamination method, coextrusion method, etc.), an inflation method (coextrusion method, etc.), a compression molding method, a blow molding.
  • a melt molding method such as a method, a calendar molding method, a vacuum molding method, and an injection molding method (insert method, two-color method, press method, core back method, sandwich method, etc.) and a solution casting method.
  • the T die method, the inflation method, or the injection molding method is preferable from the viewpoint of high productivity and cost.
  • the copolymer of the present invention can be in the form of pellets or the like in order to enhance convenience during storage, transportation or molding.
  • the molding may be performed a plurality of times.
  • the pellet-shaped molded body can be further molded to obtain a molded body having a desired shape.
  • an antioxidant as required for the copolymer, an antioxidant, a thermal deterioration inhibitor, an ultraviolet absorber, a light stabilizer, a lubricant, a mold release agent, a polymer processing aid, an antistatic agent, a flame retardant, Various additives such as dyes and pigments, light diffusing agents, organic dyes, matting agents, and phosphors may be added.
  • the blending amount of such various additives can be appropriately determined within a range not impairing the effects of the present invention, and the total amount is preferably 7% by mass or less, more preferably 5% by mass. Hereinafter, it is more preferably 4% by mass or less.
  • additives may be added to the polymerization reaction solution when the copolymer is produced, may be added to the copolymer produced by the polymerization reaction, or may be added during the production of the molded article. Also good.
  • An antioxidant is effective in preventing oxidative degradation of a resin alone in the presence of oxygen.
  • examples thereof include phosphorus antioxidants, hindered phenol antioxidants, and thioether antioxidants. These antioxidants may be used alone or in combination of two or more.
  • a phosphorus-based antioxidant and a hindered phenol-based antioxidant are preferable, and a combination of a phosphorus-based antioxidant and a hindered phenol-based antioxidant is more preferable.
  • the amount of phosphorus antioxidant used is 1: 5 to 2: 1 is preferable, and 1: 2 to 1: 1 is more preferable.
  • Examples of phosphorus antioxidants include 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (manufactured by ADEKA; trade name: ADK STAB HP-10), tris (2,4-di-) t-butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168), 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3 , 9-diphosphaspiro [5.5] undecane (manufactured by ADEKA; trade name: ADK STAB PEP-36) and the like.
  • pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANOX 1010), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANOX1076) is preferred.
  • the thermal degradation inhibitor is capable of preventing thermal degradation of the resin by capturing polymer radicals generated when exposed to high heat in a substantially oxygen-free state.
  • thermal degradation inhibitor examples include 2-t-butyl-6- (3′-t-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilizer GM), 2,4-di-t-amyl-6- (3 ′, 5′-di-t-amyl-2′-hydroxy- ⁇ -methylbenzyl) phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumitizer GS) preferable.
  • the ultraviolet absorber is a compound having an ability to absorb ultraviolet rays, and is mainly said to have a function of converting light energy into heat energy.
  • ultraviolet absorbers examples include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, formamidines, and the like. These may be used alone or in combination of two or more.
  • Benzotriazoles are preferable as ultraviolet absorbers used when the film of the present invention is applied to optical applications because it has a high effect of suppressing deterioration of optical properties such as coloring due to ultraviolet irradiation.
  • benzotriazoles include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H- Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234), 2,2′-methylenebis [6- (2H-benzotriazole-2) -Yl) -4-t-octylphenol] (manufactured by ADEKA; LA-31), 2- (5-octylthio-2H-benzotriazol-2-yl) -6-tert-butyl-4
  • an ultraviolet absorber for triazines 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA; LA-F70) Further, hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; TINUVIN477 and TINUVIN460), 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5- A triazine etc. can be mentioned.
  • the light stabilizer is a compound that is said to have a function of capturing radicals generated mainly by oxidation by light.
  • Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
  • lubricant examples include stearic acid, behenic acid, stearamide acid, methylene bisstearamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, and hardened oil.
  • the release agent examples include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride.
  • higher alcohols and glycerin fatty acid monoester are used in combination, the ratio is not particularly limited, but the amount of higher alcohol used: the amount of glycerin fatty acid monoester is 2.5: 1 to 3. 5: 1 is preferable, and 2.8: 1 to 3.2: 1 is more preferable.
  • polymer particles having a particle diameter of 0.05 to 0.5 ⁇ m which can be usually produced by an emulsion polymerization method, are used.
  • the polymer particles may be single layer particles composed of polymers having a single composition ratio and single intrinsic viscosity, or multilayer particles composed of two or more kinds of polymers having different composition ratios or intrinsic viscosities. May be.
  • particles having a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferable.
  • the polymer processing aid preferably has an intrinsic viscosity of 3 to 6 dl / g. If the intrinsic viscosity is too small, the effect of improving moldability tends to be low. If the intrinsic viscosity is too large, the molding processability of the copolymer tends to be lowered.
  • organic dye a compound having a function of converting ultraviolet light into visible light is preferably used.
  • Examples of the light diffusing agent and matting agent include glass fine particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, barium sulfate and the like.
  • Fluorescent substances include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent brighteners, fluorescent bleaches, and the like.
  • a film which is one form of the molded body of the present invention can be produced by a solution casting method, a melt casting method, an extrusion molding method, an inflation molding method, a blow molding method, or the like.
  • the extrusion molding method is preferred from the viewpoint that a film having excellent transparency, improved toughness, excellent handleability, and excellent balance between toughness, surface hardness and rigidity can be obtained.
  • the temperature of the copolymer discharged from the extruder is preferably set to 160 to 270 ° C, more preferably 220 to 260 ° C.
  • a film points out the planar molded object of thickness 0.005mm or more and 0.25mm or less.
  • the copolymer of the present invention or the molding material containing the copolymer of the present invention is in a molten state.
  • a method comprising extruding from a T-die and then forming it by sandwiching it with two or more mirror rolls or mirror belts is preferred.
  • the mirror roll or mirror belt is preferably made of metal.
  • the linear pressure between the pair of mirror rolls or the mirror belt is preferably 10 N / mm or more, more preferably 30 N / mm or more.
  • the surface temperature of the mirror roll or the mirror belt is preferably 130 ° C. or less.
  • the pair of mirror rolls or mirror belts preferably have at least one surface temperature of 60 ° C. or higher.
  • the copolymer of the present invention discharged from the extruder or the molding material containing the copolymer of the present invention can be cooled at a faster rate than natural cooling, and the surface smoothness can be achieved. It is easy to produce a film having excellent properties and low haze.
  • the thickness of the unstretched film obtained by extrusion molding is preferably 10 to 300 ⁇ m.
  • the haze of the film is preferably 0.5% or less, more preferably 0.3% or less at a thickness of 100 ⁇ m.
  • a stretch treatment may be applied to the molded product of the present invention formed into a film.
  • the stretching process increases the mechanical strength, and a film that is difficult to crack can be obtained.
  • the stretching method is not particularly limited, and examples thereof include a simultaneous biaxial stretching method, a sequential biaxial stretching method, and a tuber stretching method. From the viewpoint that a film having high strength that can be stretched uniformly is obtained, the lower limit of the temperature during stretching is 10 ° C. higher than the glass transition temperature of the copolymer, and the upper limit of the temperature during stretching is the glass transition of the copolymer. The temperature is 40 ° C. higher than the temperature. Stretching is usually performed at 100 to 5000% / min. A film with less heat shrinkage can be obtained by heat setting after stretching.
  • the thickness of the stretched film is preferably 10 to 200 ⁇ m.
  • the copolymer and molded product of the present invention are difficult to break due to ductility, and have high transparency and heat resistance. Therefore, the copolymer and the molded product are suitable for optical applications.
  • Polarizer protective film, liquid crystal protective plate, surface of portable information terminal It is particularly suitable for use as a material, a display window protection film for a portable information terminal, a light guide film, and front plates for various displays.
  • a building material such as a decorative film, vehicle interior, furniture, door material, and baseboard.
  • a sample solution was prepared by dissolving 4 mg of the polymer, copolymer or polymer composition to be measured in 5 ml of tetrahydrofuran.
  • the column oven temperature was set to 40 ° C., 20 ⁇ l of sample solution was injected at an eluent flow rate of 0.35 ml / min, and the chromatogram was measured.
  • Ten standard polystyrenes having a molecular weight in the range of 400 to 5000000 were measured by GPC, and a calibration curve showing the relationship between retention time and molecular weight was prepared. Based on this calibration curve, the weight average molecular weight (Mw) and the number average molecular weight (Mn) were determined, and the molecular weight distribution (Mw / Mn) was determined.
  • the DSC curve was measured under the condition of cooling to room temperature and then raising the temperature from room temperature to 230 ° C. at 10 ° C./min.
  • the midpoint glass transition temperature obtained from the DSC curve measured at the second temperature rise was defined as the glass transition temperature in the present invention.
  • Total light transmittance The polymer, copolymer or polymer composition was hot press molded at 230 ° C. to obtain a test piece (A) of 50 mm ⁇ 50 mm ⁇ thickness 3.2 mm.
  • the total light transmittance of the test piece (A) was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K7361-1.
  • the haze of the test piece (A) for which the total light transmittance was measured was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K7136.
  • Test piece (Tensile modulus / Tensile breaking strain)
  • the polymer or copolymer was hot press molded at 230 ° C. to obtain a test piece of 120 mm ⁇ 50 mm ⁇ 0.4 mm thickness.
  • the obtained test piece was cut into a size of 90 mm ⁇ 10 mm, and the cross section was polished with No. 1500 sandpaper.
  • the cut specimen was set in a tensile tester (manufactured by Shimadzu: Autograph AG-IS 5 kN) set at a distance of 70 mm between the chucks, and a tensile test was performed at a tensile speed of 5 mm / min to measure tensile stress and tensile strain ( Strain-Stress curve). From this measurement, the tensile modulus and tensile breaking strain were calculated.
  • the strain at the time of fracture is defined as tensile fracture strain.
  • the polymer, copolymer or polymer composition was hot press molded at 230 ° C. to obtain a test piece of 50 mm ⁇ 50 mm ⁇ thickness 3.2 mm.
  • the pencil hardness of the obtained test piece was measured according to JIS K5600-5-4 with a 0.75 kg load.
  • An emulsion was obtained by maintaining at 70 ° C. for 30 minutes after the completion of the polymerization peak.
  • emulsion containing multilayer polymer particles (A) contains 40% multilayer polymer particles (A) (three-stage polymer) having an average particle size of 0.23 ⁇ m. It was.
  • the intrinsic viscosity of the (meth) acrylate polymer particles (B) in the resulting emulsion is 0.44 g. / Dl.
  • Example 1 The inside of the pressure vessel equipped with a stirrer that was sufficiently dried was purged with nitrogen. The pressure vessel was charged with 19.8 parts by mass of methyl methacrylate and 5 parts by mass of 7MDO obtained in Synthesis Example 2 with respect to 25 parts by mass of toluene.
  • the polymerization was stopped by cooling to room temperature. After 25 parts by mass of toluene was added to the obtained solution for dilution, the solution was poured into 2000 parts by mass of methanol to precipitate a solid. The precipitated solid was filtered and sufficiently dried to obtain 12 parts by mass of the copolymer (A1).
  • the content of structural units derived from methyl methacrylate was 92% by mass
  • the content of structural units derived from 7MDO was 8.0% by mass
  • the copolymer (A1) had a weight average molecular weight (Mw) of 272,000 and a molecular weight distribution (Mw / Mn) of 2.23.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 2 The inside of the pressure vessel equipped with a stirrer that was sufficiently dried was purged with nitrogen. The pressure vessel was charged with 21 parts by mass of methyl methacrylate and 4.1 parts by mass of 7MDO obtained in Synthesis Example 2 with respect to 25 parts by mass of toluene.
  • the copolymer (A2) had a weight average molecular weight (Mw) of 312,000 and a molecular weight distribution (Mw / Mn) of 2.17.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 3 The inside of the pressure vessel equipped with a stirrer that was sufficiently dried was purged with nitrogen. The pressure vessel was charged with 21 parts by mass of methyl methacrylate, 4.1 parts by mass of 7MDO obtained in Synthesis Example 2, and 0.100 parts by mass of n-octyl mercaptan with respect to 25 parts by mass of toluene. Was polymerized in the same manner as in Example 1 to obtain 12 parts by mass of the copolymer (A3). When 1 H-NMR of the copolymer (A3) was measured, the content of structural units derived from methyl methacrylate was 94.1% by mass, and the content of structural units derived from 7MDO was 5.9% by mass.
  • the copolymer (A3) had a weight average molecular weight (Mw) of 147,000 and a molecular weight distribution (Mw / Mn) of 3.04. The results are shown in Table 1 together with other evaluation results.
  • Example 4 The inside of the pressure vessel equipped with a stirrer that was sufficiently dried was purged with nitrogen.
  • the polymer (A4) had a weight average molecular weight (Mw) of 285,200 and a molecular weight distribution (Mw / Mn) of 2.84. The results are shown in Table 1 together with other evaluation results.
  • Example 5 The inside of the pressure vessel equipped with a stirrer that was sufficiently dried was purged with nitrogen.
  • 7.0 parts by mass of 7MDO obtained in Synthesis Example 2 0.084 parts by mass of n-octyl mercaptan, di-t-butyl peroxide with respect to 62.3 parts by mass of methyl methacrylate.
  • Polymerization was carried out in the same manner as in Example 4 except that 0.0018 part by mass (Nippon Yushi Co., Ltd .: Perbutyl D) was charged to obtain 40 parts by mass of copolymer (A5).
  • the copolymer (A5) had a weight average molecular weight (Mw) of 695,000 and a molecular weight distribution (Mw / Mn) of 3.25. The results are shown in Table 1 together with other evaluation results.
  • the polymer (B1) had a weight average molecular weight (Mw) of 853,000 and a molecular weight distribution (Mw / Mn) of 1.85.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • the copolymer (B2) had a weight average molecular weight (Mw) of 176,000 and a molecular weight distribution (Mw / Mn) of 2.02.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • 7MDO was 100% ring-opening polymerized and had ester structural units in the polymer main chain.
  • the copolymer (B3) had a weight average molecular weight (Mw) of 75,000 and a molecular weight distribution (Mw / Mn) of 2.20. The results are shown in Table 1 together with other evaluation results.
  • the copolymer (B4) had a weight average molecular weight (Mw) of 200,000 and a molecular weight distribution (Mw / Mn) of 2.12. The results are shown in Table 1 together with other evaluation results.
  • Example 7 A copolymer was synthesized in the same manner as in Example 8 of JP-A-11-228633. That is, the inside of the pressure vessel equipped with a stirrer sufficiently dried was purged with nitrogen. 25 parts by mass of 7MDO obtained in Synthesis Example 2 with respect to 25 parts by mass of methyl methacrylate in the pressure vessel, 0 of dimethyl 2,2-azobisisobutyrate (Wako Pure Chemicals: V-601) 0.058 part by mass was charged.
  • copolymer (B7) After sufficiently replacing the pressure vessel with nitrogen gas, the temperature was raised to 60 ° C. with stirring. The polymerization was carried out at 60 ° C. for 1 hour with stirring, and then cooled to room temperature to stop the polymerization. The obtained solution was poured into 2000 parts by mass of methanol to precipitate a solid. The precipitated solid was filtered and sufficiently dried to obtain 2.5 parts by mass of copolymer (B7).
  • 1 H-NMR of the copolymer (B7) was measured, the content of the structural unit derived from methyl methacrylate was 95.5% by mass, and the content of the structural unit derived from 7MDO was 4.5% by mass. 7MDO was 100% ring-opening polymerized and had ester structural units in the polymer main chain.
  • the polymer (B7) had a weight average molecular weight (Mw) of 533,000 and a molecular weight distribution (Mw / Mn) of 1.68. The results are shown in Table 1 together with other evaluation results.
  • the copolymer of the example has 2 to 10% by mass of an ester structural unit derived from a cyclic ketene acetal monomer, and the structural unit contains an ester structure generated by ring-opening polymerization, Since the average molecular weight is not less than 80,000 and the molecular weight distribution is not less than 1.80 and not more than 3.80, they all have high tensile fracture strain and exhibit high ductility performance without cracking when bent. It can also be seen that the total light transmittance is high, the haze is low, and the transparency is high.
  • the copolymer or polymer of Comparative Examples 1 and 2 has high transparency, it does not have an ester structural unit derived from 2 to 10% by mass of a cyclic ketene acetal monomer, so that the tensile strain at break is small. It does not show ductility performance (see FIGS. 1 and 2) and breaks when bent. Further, a copolymer having a weight average molecular weight of less than 80,000 (Comparative Example 3) and a copolymer having less than 2% by mass of an ester structural unit derived from a cyclic ketene acetal monomer (Comparative Example 4) are also subjected to tensile breaking strain. Is small and does not exhibit ductility.
  • ester structural unit derived from the cyclic ketene acetal monomer is more than 10% by mass as in the copolymer of Comparative Example 6, the ductility performance is high, but the soft material has a low glass transition temperature and a low tensile elastic modulus. turn into.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)

Abstract

 透明性および耐熱性に優れ、大きい引張破断ひずみを有する割れ難い共重合体および成型体の提供。 80質量%~98質量%のメタクリル酸エステル単量体に由来する構造単位と、2~10質量%の環状ケテンアセタール単量体に由来するエステル構造単位よりなる共重合体であって、重量平均分子量8万以上、かつ、分子量分布が1.75以上3.80以下の共重合体。

Description

共重合体および成形体
 本発明は、透明性および耐熱性に優れ、ゴムを含有することなく大きい引張破断ひずみを有する割れ難い共重合体、およびかかる共重合体を含有する成形体に関する。
 一般に、メタクリル樹脂は透明性等の光学特性および耐候性に優れることから、従来から、照明器具、看板等に用いる表示部材、ディスプレイ装置等に用いる光学部材、インテリア部材、建築部材、電子・電気部材、医療用部材をはじめとする様々な用途で使用されている。これらの用途において、しばしば光学特性および耐候性に加え、可撓性、耐屈曲性、耐衝撃性、柔軟性などの機械物性が求められる。
 上記機械物性を改善する方法として、メタクリル樹脂に様々な他の樹脂を加えたメタクリル樹脂組成物が提案されている。例えば、乳化重合法によって製造した多層構造アクリルゴム粒子をメタクリル系樹脂にブレンドする方法が挙げられている(特許文献1)。また、例えば、メタクリル樹脂と、メタクリル酸エステル重合体ブロックとアクリル酸エステル重合体ブロックとを有するブロック共重合体とからなるメタクリル樹脂組成物が知られている(特許文献2、3)
 これら様々な他の樹脂を添加する場合、分散不良により透明性が低下したり、フィルムやシートの場合、ブツ欠点の原因となったりして外観不良を発生させる。これら課題を根本的に解決するためには、他の樹脂を添加することなく、可撓性、耐屈曲性、耐衝撃性、柔軟性などの機械物性を向上させる究極の手法が必要である。
特公昭59-36645号公報 WO 2010/055798 A WO 2012/057079 A 特開平11-228633号公報
Polymer Journal 2007, Vol39,No2,163-174pp
 本発明の目的は、透明性および耐熱性に優れ、他の樹脂を含有することなく大きい引張破断ひずみを有する割れ難い共重合体、およびかかる共重合体を含有する成形体を提供することである。
 本発明者らは、上記目的を達成するために種々の検討を行った。その結果、メタクリル酸エステル単量体に由来する構造単位に環状ケテンアセタール単量体に由来するエステル構造単位を導入することで、メタクリル系樹脂が本来有していた高い透明性や剛性を大幅に低下させることなく、割れ難くできることを見出した。
 すなわち、本発明は、以下の態様を提供する。
 [1]:80質量%~98質量%のメタクリル酸エステル単量体に由来する構造単位と、2~10質量%の環状ケテンアセタール単量体に由来するエステル構造単位よりなる共重合体であって、重量平均分子量8万以上、かつ、分子量分布が1.75以上3.80以下の共重合体。
 [2]:前記共重合体中の前記エステル構造単位を加メタノール分解後に得られる重合体の分子量分布が2.0以下であることを特徴とする[1]に記載の共重合体。
 [3]:前記メタクリル酸エステル単量体がメタクリル酸メチルである[1]または[2]に記載の共重合体。
 [4]:[1] ~[3]のいずれか一項に記載の共重合体を含有する成形体。
 [5]:[4]に記載の成型体からなる導光フィルム。
 [6]:[4]に記載の成型体からなる加飾フィルム。
 [7]:[4]に記載の成型体からなる偏光子保護フィルム。
 本発明の共重合体は、透明性および耐熱性に優れ、他の樹脂を含有することなく、大きい引張破断ひずみを有する割れ難い共重合体を得ることができる。また、かかる共重合体を含有する外観不良の少ない成形体を提供することができる。
実施例1、2および比較例1、2の引張り試験結果(Strain-Stressカーブ)を示す図である。 実施例1、2および比較例1、2におけるStrain-Stressカーブのひずみ0~4%部分の拡大図である。
 本発明の共重合体は、メタクリル酸エステル単量体に由来する構造単位および環状ケテンアセタール単量体に由来するエステル構造単位を含有する。
 なお、メタクリル酸エステル単量体と環状ケテンアセタール単量体との共重合体は、以前から知られていたものの(特許文献4、非特許文献1)、生分解性向上等を目的としており、本発明の効果に値するものは得られていなかった。また、本発明の目的の耐屈曲性や柔軟性が付与されることは知られておらず、その最適な共重合体の要件も、示唆も提示されていなかった。
 本発明の共重合体は、共重合体の質量に対してメタクリル酸エステルに由来する構造単位を80質量%~98質量%含有する。当該構造単位の含有量は85質量%~97質量%がより好ましく、90質量%~96質量%が特に好ましい。かかるメタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなどのメタクリル酸アルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸シクロへキシル、メタクリル酸2-イソボルニル、メタクリル酸8-トリシクロ[5.2.1.02,6]デカニル、メタクリル酸2-ノルボルニル、メタクリル酸2-アダマンチルなどのメタクリル酸シクロアルキルエステル;が挙げられ、メタクリル酸アルキルエステルが好ましく、メタクリル酸メチルが最も好ましい。
 本発明の共重合体は、共重合体の質量に対して環状ケテンアセタール単量体に由来するエステル構造単位を2~10質量%含有する。当該構造単位の含有量は、3質量%~9質量%がより好ましく、4質量%~8質量%が特に好ましい。環状ケテンアセタール単量体に由来するエステル構造単位は、環状ケテンアセタール単量体が開環して重合することで形成される。すなわち、環状ケテンアセタール単量体に由来する構造単位であって、開環重合によりエステル結合を有する構造単位が共重合体の質量に対して2~10質量%である。それにより共重合体の主鎖にエステル結合を持った構造単位が導入される。このような開環して重合する環状ケテンアセタール単量体の具体例としては、2-メチレン-1,3-ジオキソラン、2-メチレン-4-メチル-1,3-ジオキソラン、2-メチレン-4,5-ジメチル-1,3-ジオキソラン、8-メチレン-7,9-ジオキサビシクロ[4.3.0]ノナン、2-メチレン-1,3-ジオキサン、2-メチレン-5-メチル-1,3-ジオキサン、2-メチレン-5,5-ジメチル-1,3-ジオキサン、2-メチレン-1,3-ジオキソラン-5-スピロシクロペンタン、2-メチレン-1,3-ジオキソラン-5-スピロシクロヘキサン、2-メチレン-1,3-ジオキセパン、2-メチレン-1,3-ジオキソカン、2-メチレン-4-フェニル-1,3-ジオキソラン、4,7-ジメチル-2-メチレン-1,3-ジオキセパン、5,6-ベンゾ-2-メチレン-1,3-ジオキセパン、2-メチレン-1,3,6-トリオキソカン等が挙げられる。これらの中で、得られる共重合体の延性性能が好ましい点、また、環状ケテンアセタール単量体の貯蔵安定性の良さや、開環重合し易いという点から、2-メチレン-1,3-ジオキセパンが特に好ましい。延性性能を発揮できる必要量のエステル構造を導入するためには、共重合体における環状ケテンアセタール単量体に由来する構造の開環率は50%以上が好ましく、70%以上がより好ましく、最も好ましくは100%である。
 本発明の共重合体は、メタクリル酸エステル単量体および環状ケテンアセタール単量体以外のラジカル重合性単量体(以下ラジカル重合性単量体(A)と呼ぶことがある)に由来する構造単位を有していてもよい。かかるラジカル重合性単量体(A)としては、スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレンなどのビニル芳香族炭化水素;ビニルシクロヘキサン、ビニルシクロペンタン、ビニルシクロヘキセン、ビニルシクロヘプタン、ビニルシクロヘプセン、ビニルノルボルネンなどのビニル脂環式炭化水素;無水マレイン酸、マレイン酸、イタコン酸などのエチレン性不飽和カルボン酸;エチレン、プロピレン、1-ブテン、イソブチレン、1-オクテンなどのオレフィン;ブタジエン、イソプレン、ミルセンなどの共役ジエン;アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリル、酢酸ビニル、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデン;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸s-ブチル、アクリル酸t-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-へキシル、アクリル酸2-エチルへキシル、アクリル酸ペンタデシル、アクリル酸ドデシルなどのアクリル酸アルキルエステル;アクリル酸2-ヒドロキシエチル、アクリル酸2-エトキシエチル、アクリル酸グリシジル、アクリル酸アリル、アクリル酸ベンジルなどのアクリル酸誘導体;2-ビニルフラン、2-イソプロペニルフラン、2-ビニルベンゾフラン、2-イソプロペニルベンゾフラン、2-ビニルジベンゾフラン、2-ビニルチオフェン、2-イソプロペニルチオフェン、2-ビニルジベンゾチオフェン、2-ビニルピロール、N-ビニルインドール、N-ビニルカルバゾール、2-ビニルオキサゾール、2-イソプロペニルオキサゾール、2-ビニルベンゾオキサゾール、3-ビニルイソオキサゾール、3-イソプロペニルイソオキサゾール、2-ビニルチアゾール、2-ビニルイミダゾール、4(5)-ビニルイミダゾール、N-ビニルイミダゾール、N-ビニルイミダゾリン、2-ビニルベンズイミダゾール、5(6)-ビニルベンズイミダゾール、5-イソプロペニルピラゾール、2-イソプロペニル1,3,4-オキサジアゾール、ビニルテトラゾール、2-ビニルピリジン、4-ビニルピリジン、2-イソプロペニルピリジン、3-ビニルピリジン、3-イソプロペニルピリジン、2-ビニルキノリン、2-イソプロペニルキノリン、4-ビニルキノリン、4-ビニルピリミジン、2,4-ジメチル-6-ビニル-S-トリアジン、3-メチリデンジヒドロフラン-2(3H)-オン、4-メチル-3-メチリデンジヒドロフラン-2(3H)-オン、4-デシル-3-メチリデンジヒドロフラン-2(3H)-オンなどのエチレン性不飽和ヘテロ環式化合物;ジメチルメタクリロイルオキシメチルホスフェート、2-メタクリロイルオキシ-1-メチルエチルホスフェートなどのエチレン性不飽和基を有するリン酸エステルなどが挙げられる。
 本発明の共重合体に含まれるラジカル重合性単量体(A)に由来する構造単位の量は、延性性能や耐熱性、吸水性とのバランスから、共重合体の質量に対して、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。
 本発明の共重合体は、通常のメタクリル酸エステル重合体に比して、共重合体間で分子鎖と分子鎖がからみ合い易いエステル構造単位が主鎖に導入されているため、延性性能を発現している。そのため、共重合体の分子鎖どうしのからみ合い易さに影響を及ぼす因子である重量平均分子量はある程度大きいことが重要である。その重量平均分子量は、8万以上であり、好ましくは8万~200万、より好ましくは9万~100万、さらに好ましくは10万~70万、特に好ましくは12万~50万である。重量平均分子量が低すぎると共重合体どうしのからみ合いが少なくなり、延性性能を発現し難くなってしまう。重量平均分子量が高すぎると、成形が困難になってしまう。
 かかる重量平均分子量は、共重合体合成時の重合反応における重合開始剤および連鎖移動剤の種類や量などを調整することによって制御できる。
 本発明の共重合体は、重量平均分子量/数平均分子量の比(以下、この比を「分子量分布」と称する。)が、好ましくは1.75~3.80であり、より好ましくは1.80~3.50、さらに好ましくは1.90~3.20である。分子量分布が狭すぎると、一般的に高分子量体と低分子量体の割合が少なくなるが、高分子量体の割合が少なくなると延性性能が顕著に低下し、また低分子量体の割合が少なくなると成形性が低下してしまう。また分子量分布が広すぎると、低分子量体の割合が増大し、延性性能の低下や耐薬品性が低下する傾向がある。重量平均分子量および分子量分布は、GPC(ゲルパーミエーションクロマトグラフィ)で測定した標準ポリスチレン換算の値である。
 かかる重量平均分子量および分子量分布は、重合反応時の重合開始剤および連鎖移動剤の種類や量などを調整することによって制御できる。また再沈殿など低分子量体が除去されるような精製法は、分子量分布が1.80より小さくなるため好ましくない。
 なお、GPC測定は、次のようにして行う。溶離液としてテトラヒドロフラン、カラムとして東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いる。検出装置として、示差屈折率検出器(RI検出器)を備えた東ソー株式会社製のHLC-8320(品番)を使用した。試料は、メタクリル樹脂4mgをテトラヒドロフラン5mlに溶解させた溶液を用いた。カラムオーブンの温度を40℃に設定し、溶離液流量0.35ml/分で、試料溶液20μlを注入して、クロマトグラムを測定した。
 分子量が5000000~400の範囲の標準ポリスチレンを測定し、保持時間と分子量との関係を示す検量線を作成した。クロマトグラムの高分子量側の傾きがゼロからプラスに変化する点と、低分子量側のピークの傾きがマイナスからゼロに変化する点を結んだ線をベースラインとした。クロマトグラムが複数のピークを示す場合は、最も高分子量側のピークの傾きがゼロからプラスに変化する点と、最も低分子量側のピークの傾きがマイナスからゼロに変化する点を結んだ線をベースラインとした。
 本発明の共重合体は、ガラス転移温度が、好ましくは70~180℃、より好ましくは80~180℃、さらに好ましくは80~120℃、よりさらに好ましくは85~120℃である。ガラス転移温度が低すぎると共重合体の耐熱性が不足し、使用できる用途が限定されてしまう。ガラス転移温度が高すぎると共重合体が脆く割れ易くなり、本発明の効果が発現し難くなる。なおガラス転移温度はJIS K7121に準拠して測定した値である。すなわち、本発明の共重合体を230℃まで一度昇温し、次いで室温まで冷却し、その後室温から230℃までを10℃/分で昇温させる条件にて示差走査熱量測定法にてDSC曲線を測定し、2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明のガラス転移温度とした。
 本発明の共重合体主鎖に導入されたエステル構造単位は加メタノール分解により切断することが可能である。加メタノール分解後に得られる重合体の数平均分子量から本発明の共重合体の主鎖中に導入されたエステル構造単位のモル比率がわかる。また加メタノール分解後に得られる重合体の分子量分布を測定することにより、エステル構造単位がどの程度均一に共重合体の主鎖中に導入されたかが分かる。なお、ここでの加メタノール分解後に得られる重合体とは加メタノール分解によって得られる重合体もしくは共重合体である。例えば、メタクリル酸エステルのみからなる重合体が該当する。また、例えば、分解する前の共重合体にラジカル重合性単量体(A)に由来する構造単位が存在する場合、加メタノール分解により得られるものは、メタクリル酸エステル単量体に由来する構造単位とラジカル重合性単量体(A)に由来する構造単位よりなる共重合体となる。このような共重合体の場合も、加メタノール分解後に得られる重合体と称することとする。加メタノール分解後に得られる重合体の分子量分布が狭いほど、環状ケテンアセタール単量体がより均一に共重合されたことがわかる。本発明において加メタノール分解後に得られる重合体の分子量分布が狭い、つまり共重合体主鎖中に均一にエステル構造単位導入された方が、共重合体同士のからみ合いが多くなり、より高い延性性能を有する。加メタノール分解後に得られる重合体の分子量分布は2.0以下が好ましく、1.90以下がより好ましく、1.75以下が最も好ましい。
 本発明の共重合体の製造方法に特に制限はない。通常、生産性の観点から、ラジカル重合法を採用して、重合温度、重合時間、連鎖移動剤の種類や量、重合開始剤の種類や量などを調整することによって、共重合体を製造する方法が好ましい。該ラジカル重合法は、無溶媒または溶媒中で行うことが好ましく、低不純物濃度の共重合体が得られるという観点から無溶媒で行うことが好ましい。成形体にシルバーや着色が発生するのを抑制する観点から、重合反応は溶存酸素量を低くして行うことが好ましい。また、重合反応は、窒素ガスなどの不活性ガス雰囲気中で行うことが好ましい。
 本発明の共重合体の製造のためのラジカル重合法において用いられる重合開始剤は、反応性ラジカルを発生するものであれば特に限定されない。例えば、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエ-ト、t-ヘキシルパーオキシネオデカノエ-ト、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ベンゾイルパーオキシド、3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)などが挙げられる。これらのうち、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ジメチル2,2’-アゾビス(2-メチルプロピオネート)が好ましい。
 かかる重合開始剤の1時間半減期温度は好ましくは60~140℃、より好ましくは80~120℃である。また、共重合体の製造のために用いられる重合開始剤は、水素引抜き能が好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下である。このような重合開始剤は1種を単独でまたは2種以上を組み合わせて用いることができる。重合開始剤の使用量は、重合反応に供される単量体100質量部に対して好ましくは0.0001~0.02質量部、より好ましくは0.001~0.01質量部、さらに好ましくは0.005~0.007質量部である。
 なお、水素引抜き能は重合開始剤製造業者の技術資料(例えば日本油脂株式会社技術資料「有機過酸化物の水素引抜き能と開始剤効率」(2003年4月作成))などによって知ることができる。また、α-メチルスチレンダイマーを使用したラジカルトラッピング法、即ちα-メチルスチレンダイマートラッピング法によって測定することができる。当該測定は、一般に、次のようにして行われる。まず、ラジカルトラッピング剤としてのα-メチルスチレンダイマーの共存下で重合開始剤を開裂させてラジカル断片を生成させる。生成したラジカル断片のうち、水素引抜き能が低いラジカル断片はα-メチルスチレンダイマーの二重結合に付加して捕捉される。一方、水素引抜き能が高いラジカル断片はシクロヘキサンから水素を引き抜き、シクロヘキシルラジカルを発生させ、該シクロヘキシルラジカルがα-メチルスチレンダイマーの二重結合に付加して捕捉され、シクロヘキサン捕捉生成物を生成する。そこで、シクロヘキサン、またはシクロヘキサン捕捉生成物を定量することで求められる、理論的なラジカル断片発生量に対する水素引抜き能が高いラジカル断片の割合(モル分率)を水素引抜き能とする。
 本発明の共重合体の製造のためのラジカル重合法において用いられる連鎖移動剤としては、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス-(β-チオプロピオネート)、ペンタエリスリトールテトラキスチオプロピオネートなどのアルキルメルカプタン類などが挙げられる。これらのうちn-オクチルメルカプタン、n-ドデシルメルカプタンなどの単官能アルキルメルカプタンが好ましい。これら連鎖移動剤は1種を単独で、または2種以上を組み合わせて用いることができる。
 かかる連鎖移動剤の使用量は重合反応に供される単量体100質量部に対して好ましくは0.1~1質量部、より好ましくは0.15~0.8質量部、さらに好ましくは0.2~0.6質量部、最も好ましくは0.2~0.5質量部である。また、該連鎖移動剤の使用量は、重合開始剤100質量部に対して好ましくは2500~10000質量部、より好ましくは3000~9000質量部、さらに好ましくは3500~6000質量部である。連鎖移動剤の使用量を上記範囲にすると、得られる共重合体は良好な成形加工性と高い力学強度を有する傾向となる。
 本発明の共重合体の製造のためのラジカル重合法において用いられる溶媒は、単量体および共重合体を溶解できるものであれば制限されないが、ベンゼン、トルエン、エチルベンゼンなどの芳香族炭化水素が好ましい。これらの溶媒は1種を単独でまたは2種以上を組み合わせて用いることができる。溶媒の使用量は、反応液の粘度と生産性との観点から適宜設定できる。溶媒の使用量は、例えば、重合反応原料100質量部に対して好ましくは100質量部以下、より好ましくは90質量部以下である。
 本発明の共重合体の製造のためのラジカル重合法において重合反応時の温度は好ましくは100~200℃、より好ましくは110~180℃である。重合温度が100℃以上であることで、重合速度の向上、重合液の低粘度化などに起因して生産性が向上する傾向となる。また重合温度が200℃以下であることで、重合速度の制御が容易になり、さらに副生成物の生成が抑制されるので本発明の共重合体の着色を抑制できる。重合反応の時間は好ましくは0.5~4時間、より好ましくは1.5~3.5時間、さらに好ましくは1.5~3時間である。なお、連続流通式反応装置の場合は、かかる重合反応の時間は反応器における平均滞留時間である。重合反応時の温度および重合反応の時間が上記範囲にあると、透明性に優れた共重合体を高効率で生産できる。
 本発明の共重合体の製造のためのラジカル重合法における重合転化率は、好ましくは20~80質量%、より好ましくは30~70質量%、さらに好ましくは35~65質量%である。重合転化率が20質量%以上であることで残存する未反応単量体の除去が容易となり、共重合体からなる成形体の外観が良好となる傾向がある。重合転化率が70質量%以下であることで、重合液の粘度が低くなり生産性が向上する傾向となる。
 ラジカル重合は回分式反応装置を用いて行ってもよいが、生産性の観点、また得られる共重合体の延性性能の観点から連続流通式反応装置を用いて行うことが好ましい。連続流通式反応では、例えば窒素雰囲気下などで重合反応原料(単量体(メタクリル酸エステル、環状ケテンアセタール、ラジカル重合性単量体(A)を意味する)、重合開始剤、連鎖移動剤などを含む混合液)を調製し、それを反応器に一定流量で供給し、該供給量に相当する流量で反応器内の液を抜き出す。反応器として、栓流に近い状態にすることができる管型反応器および/または完全混合に近い状態にすることができる槽型反応器を用いることができる。また、1基の反応器で連続流通式の重合を行ってもよいし、2基以上の反応器を繋いで連続流通式の重合を行ってもよい。
 本発明においては少なくとも1基は連続流通式の槽型反応器を採用することが好ましい。重合反応時における槽型反応器内の液量は、槽型反応器の容積に対して好ましくは1/4~3/4、より好ましくは1/3~2/3である。反応器には通常、撹拌装置が取り付けられている。撹拌装置としては静的撹拌装置、動的撹拌装置が挙げられる。動的撹拌装置としては、マックスブレンド式撹拌装置、中央に配した縦型回転軸の回りを回転する格子状の翼を有する撹拌装置、プロペラ式撹拌装置、スクリュー式撹拌装置などが挙げられる。これらのうちでマックスブレンド式撹拌装置が均一混合性の点から好ましく用いられる。
 重合終了後、必要に応じて、未反応単量体等の揮発分を除去する。除去方法は特に制限されないが、加熱脱揮が好ましい。脱揮法としては、平衡フラッシュ方式や断熱フラッシュ方式が挙げられる。断熱フラッシュ方式による脱揮温度は、好ましくは200~280℃、より好ましくは220~260℃である。断熱フラッシュ方式で樹脂を加熱する時間は、好ましくは0.3~5分、より好ましくは0.4~3分、さらに好ましくは0.5~2分である。このような温度範囲および加熱時間で脱揮させると、着色の少ない共重合体を得やすい。除去した未反応単量体は、回収して、再び重合反応に使用することができる。回収された単量体のイエロインデックスは回収操作時などに加えられる熱によって高くなっていることがあるので、回収された単量体は、適切な方法で精製して、イエロインデックスを小さくすることが好ましい。
 本発明の成形体の製造においては、本発明の効果を損なわない範囲で、本発明の共重合体に他の重合体を混合して成形してもよい。かかる他の重合体としては、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、ポリノルボルネンなどのポリオレフィン樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂などのスチレン系樹脂;メチルメタクリレート系重合体、メチルメタクリレート-スチレン共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマーなどのポリアミド;ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、ポリフッ化ビニリデン、ポリウレタン、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、シリコーン変性樹脂;アクリルゴム、アクリル系熱可塑性エラストマー、シリコーンゴム;SEPS、SEBS、SISなどのスチレン系熱可塑性エラストマー;IR、EPR、EPDMなどのオレフィン系ゴムなどが挙げられる。
 本発明の成形体は本発明の共重合体を80質量%以上含有するのが好ましく、90質量%以上含有するのがより好ましい。本発明の成形体の製造法は特に限定されない。本発明の共重合体または本発明の共重合体を含む成形用材料を、例えば、Tダイ法(ラミネート法、共押出法など)、インフレーション法(共押出法など)、圧縮成形法、ブロー成形法、カレンダー成形法、真空成形法、射出成形法(インサート法、二色法、プレス法、コアバック法、サンドイッチ法など)などの溶融成形法ならびに溶液キャスト法などで成形する方法が挙げられる。これらのうち、生産性の高さ、コストなどの点から、Tダイ法、インフレーション法または射出成形法が好ましい。
 本発明の共重合体は、保存、運搬、または成形時の利便性を高めるために、ペレットなどの形態にすることができる。また、本発明の成形体を得るにあたり、成形は、複数回行なってもよい。例えば、本発明の共重合体を成形してペレット状の成形体を得たのち、かかるペレット状の成形体をさらに成形して所望の形状の成形体とすることができる。
 本発明においては、共重合体に必要に応じて、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、蛍光体などの各種の添加剤を加えても良い。このような各種の添加剤の配合量は、本発明の効果を損なわない範囲で適宜に決定することができるものであり、その合計量は、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。
 各種の添加剤は、共重合体を製造する際の重合反応液に添加してもよいし、重合反応により製造された共重合体に添加してもよいし、成形体の製造時に添加してもよい。
 酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤などが挙げられる。これらの酸化防止剤は1種を単独で用いても、2種以上を併用してもよい。中でも、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤やヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との併用がより好ましい。
 リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを併用する場合、リン系酸化防止剤の使用量:ヒンダードフェノール系酸化防止剤の使用量は、質量比で、1:5~2:1が好ましく、1:2~1:1がより好ましい。
 リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト(ADEKA社製;商品名:アデカスタブHP-10)、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASF社製;商品名:IRGAFOS168)、3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサー3,9-ジホスファスピロ[5.5]ウンデカン(ADEKA社製;商品名:アデカスタブPEP-36)などが好ましい。
 ヒンダードフェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(BASF社製;商品名IRGANOX1010)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(BASF社製;商品名IRGANOX1076)などが好ましい。
 熱劣化防止剤は、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。
 該熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学社製;商品名スミライザーGM)、2,4-ジ-t-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学社製;商品名スミライザーGS)などが好ましい。
 紫外線吸収剤は、紫外線を吸収する能力を有する化合物であり、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる。
 紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類などが挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。
 ベンゾトリアゾール類は紫外線被照による着色などの光学特性低下を抑制する効果が高いので、本発明のフィルムを光学用途に適用する場合に用いる紫外線吸収剤として好ましい。ベンゾトリアゾール類としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名TINUVIN234)、2,2‘-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール](ADEKA社製;LA-31)、2-(5-オクチルチオ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-4-メチルフェノールなどが好ましい。
 また、トリアジン類の紫外線吸収剤としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(ADEKA社製;LA-F70)や、その類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;TINUVIN477やTINUVIN460)、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジンなどを挙げることができる。
 さらに380~400nmの波長の光を特に効果的に吸収したい場合は、国際公開第2011/089794号、国際公開第2012/124395号、特開2012-012476号公報、特開2013-023461号公報、特開2013-112790号公報、特開2013-194037号公報、特開2014-62228号公報、特開2014-88542号公報、および特開2014-88543号公報等に開示される複素環構造の配位子を有する金属錯体を紫外線吸収剤として用いることが好ましい。
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好適な光安定剤としては、2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物などのヒンダードアミン類が挙げられる。
 滑剤としては、例えば、ステアリン酸、ベヘニン酸、ステアロアミド酸、メチレンビスステアロアミド、ヒドロキシステアリン酸トリグリセリド、パラフィンワックス、ケトンワックス、オクチルアルコール、硬化油などが挙げられる。
 離型剤としては、セチルアルコール、ステアリルアルコールなどの高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライドなどのグリセリン高級脂肪酸エステルなどが挙げられる。本発明においては、離型剤として、高級アルコール類とグリセリン脂肪酸モノエステルとを併用することが好ましい。高級アルコール類とグリセリン脂肪酸モノエステルとを併用する場合、その割合は特に制限されないが、高級アルコール類の使用量:グリセリン脂肪酸モノエステルの使用量は、質量比で、2.5:1~3.5:1が好ましく、2.8:1~3.2:1がより好ましい。
 高分子加工助剤としては、通常、乳化重合法によって製造できる、0.05~0.5μmの粒子径を有する重合体粒子を用いる。該重合体粒子は、単一組成比および単一極限粘度の重合体からなる単層粒子であってもよいし、また組成比または極限粘度の異なる2種以上の重合体からなる多層粒子であってもよい。この中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましいものとして挙げられる。高分子加工助剤は、極限粘度が3~6dl/gであることが好ましい。極限粘度が小さすぎると成形性の改善効果が低い傾向がある。極限粘度が大きすぎると共重合体の成形加工性の低下を招く傾向がある。
 有機色素としては、紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。
 光拡散剤や艶消し剤としては、ガラス微粒子、ポリシロキサン系架橋微粒子、架橋ポリマー微粒子、タルク、炭酸カルシウム、硫酸バリウムなどが挙げられる。
 蛍光体としては、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤などが挙げられる。
 本発明の成形体の一形態であるフィルムは、溶液キャスト法、溶融流延法、押出成形法、インフレーション成形法、ブロー成形法などによって製造することができる。これらのうち、透明性に優れ、改善された靭性を持ち、取扱い性に優れ、靭性と表面硬度および剛性とのバランスに優れたフィルムを得ることができるという観点から、押出成形法が好ましい。押出機から吐出される共重合体の温度は好ましくは160~270℃、より好ましくは220~260℃に設定する。なお、一般にフィルムは厚さ0.005mm以上0.25mm以下の平面状成形体を指す。
 押出成形法のうち、良好な表面平滑性、良好な鏡面光沢、低ヘイズのフィルムが得られるという観点から、本発明の共重合体または本発明の共重合体を含む成形用材料を溶融状態でTダイから押出し、次いでそれを二つ以上の鏡面ロールまたは鏡面ベルトで挟持して成形することを含む方法が好ましい。鏡面ロールまたは鏡面ベルトは金属製であることが好ましい。一対の鏡面ロールまたは鏡面ベルトの間の線圧は好ましくは10N/mm以上、より好ましくは30N/mm以上である。
 また、鏡面ロールまたは鏡面ベルトの表面温度は共に130℃以下であることが好ましい。また、一対の鏡面ロール若しくは鏡面ベルトは、少なくとも一方の表面温度が60℃以上であることが好ましい。このような表面温度に設定すると、押出機から吐出される本発明の共重合体または本発明の共重合体を含む成形用材料を自然放冷よりも速い速度で冷却することができ、表面平滑性に優れ且つヘイズの低いフィルムを製造し易い。押出成形で得られる未延伸フィルムの厚さは、10~300μmであることが好ましい。フィルムのヘイズは、厚さ100μmにおいて、好ましくは0.5%以下、より好ましくは0.3%以下である。
 フィルム状に成形された本発明の成形体に、延伸処理を施してもよい。延伸処理によって機械的強度が高まり、ひび割れし難いフィルムを得ることができる。延伸方法は特に限定されず、同時二軸延伸法、逐次二軸延伸法、チュブラー延伸法などが挙げられる。均一に延伸でき高い強度のフィルムが得られるという観点から、延伸時の温度の下限は共重合体のガラス転移温度より10℃高い温度であり、延伸時の温度の上限は共重合体のガラス転移温度より40℃高い温度である。延伸は通常100~5000%/分で行われる。延伸の後、熱固定を行うことによって、熱収縮の少ないフィルムを得ることができる。延伸後のフィルムの厚さは10~200μmであることが好ましい。
 本発明の共重合体および成形体は、延性性能により割れ難く、また、透明性、耐熱性が高いため、光学用途に好適であり、偏光子保護フィルム、液晶保護板、携帯型情報端末の表面材、携帯型情報端末の表示窓保護フィルム、導光フィルム、各種ディスプレイの前面板用途に特に好適である。またその他の用途としては、耐候性が良好で割れ難いため、加飾フィルム、車両内装、家具、ドア材、巾木等の建材用途に好適である。
 以下、実施例および比較例によって本発明をより具体的に説明するが、本発明は下記実施例に限定されない。なお、物性値等の測定は以下の方法によって実施した。
(重量平均分子量、数平均分子量、分子量分布)
 溶離液としてテトラヒドロフラン、カラムとして東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いた。GPC装置として、示差屈折率検出器(RI検出器)を備えた東ソー株式会社製のHLC-8320(品番)を使用した。測定対象である重合体または共重合体または重合体組成物4mgをテトラヒドロフラン5mlに溶解させて試料溶液を作製した。カラムオーブンの温度を40℃に設定し、溶離液流量0.35ml/分で、試料溶液20μlを注入して、クロマトグラムを測定した。分子量が400~5000000の範囲内にある標準ポリスチレン10点をGPCで測定し、保持時間と分子量との関係を示す検量線を作成した。この検量線に基づいて重量平均分子量(Mw)および数平均分子量(Mn)を決定し、また分子量分布(Mw/Mn)を求めた。
(加メタノール分解)
 重合体または共重合体または重合体組成物の0.5質量部をベンゼンの15質量部に溶解させた。そこに、0.5Nカリウムメトキシドのメタノール溶液を10質量部加えた後、23℃で12時間撹拌した。その溶液をイオン交換水で洗浄後、上澄みを十分乾燥させて、加メタノール分解した重合体を得た。加メタノール分解した重合体の数平均分子量、分子量分布をGPCにて測定した。
(ガラス転移温度)
 重合体または共重合体または重合体組成物を、JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、230℃まで一度昇温し、次いで室温まで冷却し、その後、室温から230℃までを10℃/分で昇温させる条件にてDSC曲線を測定した。2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。
(全光線透過率)
 重合体または共重合体または重合体組成物を230℃にて熱プレス成形して、50mm×50mm×厚さ3.2mmの試験片(A)を得た。JIS K7361-1に準じて、ヘイズメータ(村上色彩研究所製、HM-150)を用いて試験片(A)の全光線透過率を測定した。
(ヘイズ)
 全光線透過率を測定した試験片(A)のヘイズは、JIS K7136に準拠して、ヘイズメータ(村上色彩研究所製、HM-150)を用いて測定した。
(引張弾性率・引張破断ひずみ)
 重合体または共重合体を230℃にて熱プレス成形して、120mm×50mm×厚さ0.4mmの試験片を得た。得られた試験片から90mm×10mmのサイズに切り出し、断面を1500番のサンドペーパーで研磨した。切り出した試験片をチャック間70mmにセットした引張り試験機(島津製:オートグラフAG-IS 5kN)にセットし、引張り速度5mm/分にて引張り試験を行い、引張応力および引張ひずみを測定した(Strain-Stressカーブ)。この測定から引張弾性率および引張破断ひずみを算出した。なお、ここでは試験片が降伏する場合、降伏しない場合に関係なく、破断した時点のひずみを引張破断ひずみとした。
1H-NMR測定)
 後述の合成例で合成した環状ケテンアセタール単量体やその中間体の構造確認、及び、実施例及び比較例の共重合体中の共重合組成、開環率の評価は、1H-NMRにて実施した。1H-NMRスペクトルは、核磁気共鳴装置(Bruker社製 ULTRA SHIELD 400 PLUS)を用いて、分析したい試料10mgに対して重水素化溶媒として重水素化クロロホルムを1mL用い、室温、積算回数64回の条件にて、測定した。
(鉛筆硬度)
 重合体または共重合体または重合体組成物を230℃にて熱プレス成形して、50mm×50mm×厚さ3.2mmの試験片を得た。得られた試験片の鉛筆硬度測定は、JIS K5600-5-4に準拠し、0.75Kg荷重で測定した。
 <合成例1>
2-クロロメチル-1,3-ジオキセパン(i)の合成
Figure JPOXMLDOC01-appb-C000001
 温度計、攪拌装置およびクライゼン型単蒸留装置を備えた容量500mLの四つ口フラスコにクロロアセトアルデヒドジメチルアセタール250.0g(2.0mol)、1,4-ブタンジオール180.9g(2.0mol)およびDowex50WX8(登録商標 ダウ・ケミカル製)2.5gを仕込んだ。内温を100~110℃に昇温し、蒸留装置より搭頂温度70℃以下の留分を抜き取りながら、5時間攪拌した。反応混合物を25℃に冷却した後、Dowex50WX8を濾別した。濾液にヘキサン740gを加えた後、5質量%の炭酸水素ナトリウム水溶液360gで洗浄した。得られた有機層を減圧下に濃縮した。該濃縮液を30cmビグリューカラムを取り付けた蒸留装置を用いて蒸留し、搭頂温度75~76℃/1.5kPaの留分として2-クロロメチル-1,3-ジオキセパン 253.9g(1.7mol)を得た。収率は84.3%であった。
 得られた留分(2-クロロメチル-1,3-ジオキセパン)の1H-NMRを測定したところ、1H-NMRチャートは以下の通りであった。
1H-NMR(400MHz,CDCl3,ppm,TMS,)δ:1.75(4H,m),3.47(2H,d,J=5.2Hz),3.69(2H,m),3.95(2H,m),4.85(1H,t,J=5.2Hz)
 <合成例2>
2-メチレン-1,3-ジオキセパン[7MDO](ii)の合成
Figure JPOXMLDOC01-appb-C000002
 滴下ロート、温度計、攪拌装置および窒素導入管を備えた容量2リットルの四つ口フラスコにカリウム-t-ブトキシド224.4g(2.0mol)、t-ブタノール700mlを仕込んだ。滴下ロートより合成例1で合成した2-クロロメチル-1,3-ジオキセパン200.0g(1.3mol)を内温25℃以下を維持できる速度で滴下した後、内温60℃にて8時間攪拌した。反応液を25℃まで冷却した後、5B濾紙を用いて吸引濾過し、固体を濾別した。続いて、得られた濾液を減圧下に濃縮した。該濃縮液を30cmビグリューカラムを取り付けた蒸留装置を用いて蒸留し、搭頂温度40~42℃/1.3kPaの留分として2-メチレン-1,3-ジオキセパン(7MDO)99.7g(0.9mol)を得た。収率は65.8%であった。
 得られた留分(7MDO)の1H-NMRを測定したところ、1H-NMRチャートは以下の通りであった。
1H-NMR(400MHz,CDCl3,ppm,TMS,)δ:1.76(4H,m),3.48(2H,S),3.94(4H,m)
《製造例1》[多層構造重合体粒子(A)を含むエマルジヨンの製造]
(1) コンデンサー、温度計および撹拌機を備えたグラスライニングを施した反応槽(100リットル)に、イオン交換水48kgを投入し、次いでステアリン酸ナトリウム416g、ラウリルザルコシン酸ナトリウム128gおよび炭酸ナトリウム16gを投入して溶解させた。次いで、メタクリル酸メチル11.2kgおよびメタクリル酸アリル110gを投入し撹拌しながら70℃に昇温した後、2%過硫酸カリウム水溶液560gを添加して重合を開始させた。重合ピーク終了後30分間にわたって70℃に保持してエマルジヨンを得た。
(2) 次いで、上記(1)で得られたエマルジヨンに、2%過硫酸ナトリウム水溶液720gを更に添加した後、アクリル酸ブチル12.4kg、スチレン1.76kgおよびメタクリル酸アリル280gからなる単量体混合物を60分かけて滴下し、その後60分間撹拌を続けてグラフト重合を行った。
(3) 上記(2)で得られたグラフト重合後のエマルジヨンに、2%過硫酸カリウム水溶液320gを添加し、さらにメタクリル酸メチル6.2kg、アクリル酸メチル0.2kgおよびn-オクチルメルカプタン200gからなる単量体混合物を30分間かけて添加し、その後60分間撹拌を続けて重合を完結させた後、冷却して重合体エマルジヨンを得た。それにより得られたエマルジヨン(以下「多層構造重合体粒子(A)を含むエマルジヨン」という)は平均粒径0.23μmの多層構造重合体粒子(A)(3段階重合体)を40%含有していた。
《製造例2》[(メタ)アクリル酸エステル系重合体粒子(B)を含むエマルジヨンの製造]
製造例1で用いたのと同様の反応槽を用いて、イオン交換水48kgを投入した後、界面活性剤(花王株式会社製「ペレックスSS-H」)252gを投入して撹拌して溶解させた。70℃に昇温した後、2%過硫酸カリウム水溶液160gを添加し、次いでメタクリル酸メチル3.04kg、アクリル酸メチル0.16kgおよびn-オクチルメルカプタン15.2gからなる混合物を一括添加して重合を開始させた。重合による発熱が終了した時点から30分間撹拌を続けた後、2%過硫酸カリウム水溶液160gを添加し、次いでメタクリル酸メチル27.4kg、アクリル酸メチル1.44kgおよびn-オクチルメルカプタン98gからなる混合物を2時間かけて連続的に滴下して重合を行った。滴下終了後、60分間放置した後冷却して平均粒径0.12μmの(メタ)アクリル酸エステル系重合体粒子(B)を40%含有する重合体エマルジヨンを得た。それにより得られたエマルジヨン(以下「(メタ)アクリル酸エステル系重合体粒子(B)を含むエマルジヨン」という)中の(メタ)アクリル酸エステル系重合体粒子(B)の極限粘度は0.44g/dlであった。
<実施例1>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にトルエンの25質量部に対して、メタクリル酸メチルの19.8質量部、合成例2で得られた7MDOの5質量部を仕込んだ。
 耐圧容器を窒素ガスにて十分置換した後、撹拌しながら140℃に昇温した。トルエン1質量部に溶解させたジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.001質量部の全量を該耐圧容器に添加し重合を開始した。140℃での撹拌を継続した状態で、重合開始から1.5時間経過時及び重合開始から3時間経過時に、それぞれトルエン0.5質量部に溶解させたジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.0005質量部の全量をさらに追加した。重合開始から4時間後に室温まで冷却して重合を停止した。得られた溶液にトルエンの25質量部を添加して希釈した後に、メタノール2000質量部に注ぎ、固形物を析出させた。析出固形物をろ別し、充分に乾燥して、共重合体(A1)12質量部を得た。共重合体(A1)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は92質量%、7MDOに由来する構造単位の含量は8.0質量%であり、7MDOは100%開環重合し、重合体主鎖にエステル構造単位を有していた。共重合体(A1)は、重量平均分子量(Mw)が272,000、分子量分布(Mw/Mn)が2.23であった。その他評価結果と併せて結果を表1、図1および図2に示す。また、230℃にて熱プレス成形して、得られた試験片(120mm×50mm×厚さ0.4mm)を室温(23℃)にて手で180度に折り曲げたところ、割れることなく、また折れ目が白化することもなかった。
<実施例2>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にトルエンの25質量部に対して、メタクリル酸メチルの21質量部、合成例2で得られた7MDOの4.1質量部を仕込んだ。
 耐圧容器を窒素ガスにて十分置換した後、撹拌しながら140℃に昇温した。トルエン1質量部に溶解させたジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.001質量部の全量を該耐圧容器に添加し重合を開始した。140℃での撹拌を継続した状態で、重合開始から1.5時間経過時及び重合開始から3時間経過時に、それぞれメタクリル酸メチルの2.2質量部に溶解させたジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.0005質量部の全量をさらに追加した。重合開始から4時間後に室温まで冷却して重合を停止した。得られた溶液にトルエンの25質量部を添加して希釈した後に、メタノール2000質量部に注ぎ、固形物を析出させた。析出固形物をろ別し、充分に乾燥して、共重合体(A2)12質量部を得た。共重合体(A2)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は94.8質量%、7MDOに由来する構造単位の含量は5.2質量%であり、7MDOは100%開環重合し、重合体主鎖にエステル構造単位を有していた。共重合体(A2)は、重量平均分子量(Mw)が312,000、分子量分布(Mw/Mn)が2.17であった。その他評価結果と併せて結果を表1、図1および図2に示す。また、230℃にて熱プレス成形して、得られた試験片(120mm×50mm×厚さ0.4mm)を室温(23℃)にて手で180度に折り曲げたところ、割れることなく、また折れ目が白化することもなかった。
<実施例3>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にトルエンの25質量部に対して、メタクリル酸メチルの21質量部、合成例2で得られた7MDOの4.1質量部、n-オクチルメルカプタンの0.100質量部を仕込んだ以外は、実施例1と同様に重合して共重合体(A3)12質量部を得た。共重合体(A3)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は94.1質量%、7MDOに由来する構造単位の含量は5.9質量%であり、7MDOは100%開環重合し、重合体主鎖にエステル構造単位を有していた。共重合体(A3)は、重量平均分子量(Mw)が147,000、分子量分布(Mw/Mn)が3.04であった。その他評価結果と併せて結果を表1に示す。
<実施例4>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にトルエンの17.5質量部に対して、メタクリル酸メチルの48.3質量部、合成例2で得られた7MDOの21質量部、n-オクチルメルカプタンの0.096質量部、ジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.002質量部を仕込んだ。
 耐圧容器を窒素ガスにて十分置換した後、撹拌しながら140℃に昇温した。本実施例では撹拌することなく140℃で4時間重合させた後、室温まで冷却して重合を停止した。得られた溶液にトルエンの150質量部を添加して希釈した後に、メタノール8000質量部に注ぎ、固形物を析出させた。析出固形物をろ別し、充分に乾燥して、共重合体(A4)35質量部を得た。共重合体(A4)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は90質量%、7MDOに由来する構造単位の含量は10質量%であり、7MDOは100%開環重合し、重合体主鎖にエステル構造単位を有していた。重合体(A4)は、重量平均分子量(Mw)が285,200、分子量分布(Mw/Mn)が2.84であった。その他評価結果と併せて結果を表1に示す。
<実施例5>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にメタクリル酸メチルの62.3質量部に対して、合成例2で得られた7MDOの7.0質量部、n-オクチルメルカプタンの0.084質量部、ジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.0018質量部を仕込んだ以外は、実施例4と同様に重合して共重合体(A5)40質量部を得た。共重合体(A5)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は95.4質量%、7MDOに由来する構造単位の含量は4.6質量%であり、7MDOは100%開環重合し、重合体主鎖にエステル構造単位を有していた。共重合体(A5)は、重量平均分子量(Mw)が695,000、分子量分布(Mw/Mn)が3.25であった。その他評価結果と併せて結果を表1に示す。
<比較例1>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にトルエンの17.5質量部に対して、メタクリル酸メチルの69.3質量部、ジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.002質量部を仕込んだ。
 耐圧容器を窒素ガスにて十分置換した後、撹拌しながら140℃に昇温した。撹拌しながら140℃で4時間重合させた後、室温まで冷却して重合を停止した。得られた溶液にトルエンの150質量部を添加して希釈した後に、メタノール8000質量部に注ぎ、固形物を析出させた。析出固形物をろ別し、充分に乾燥して、重合体(B1)35質量部を得た。重合体(B1)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は100質量%であった。重合体(B1)は、重量平均分子量(Mw)が853,000、分子量分布(Mw/Mn)が1.85であった。その他評価結果と併せて結果を表1、図1および図2に示す。また、230℃にて熱プレス成形して、得られた試験片(120mm×50mm×厚さ0.4mm)を室温(23℃)にて手で180度に折り曲げようとしたところ、割れてしまった。
<比較例2>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にメタクリル酸メチルの69.3質量部に対して、n-オクチルメルカプタンの0.084質量部、ジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.0018質量部を仕込んだ以外は、比較例1と同様に重合して共重合体(B2)33質量部を得た。共重合体(B2)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は100質量%であった。共重合体(B2)は、重量平均分子量(Mw)が176,000、分子量分布(Mw/Mn)が2.02であった。その他評価結果と併せて結果を表1、図1および図2に示す。また、230℃にて熱プレス成形して、得られた試験片(120mm×50mm×厚さ0.4mm)を室温(23℃)にて手で180度に折り曲げようとしたところ、割れてしまった。
<比較例3>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にトルエンの25質量部に対して、メタクリル酸メチルの21質量部、合成例2で得られた7MDOの4.1質量部、n-オクチルメルカプタンの0.175質量部を仕込んだ以外は、実施例1と同様に重合して共重合体(B3)12質量部を得た。共重合体(B3)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は94.1質量%、7MDOに由来する構造単位の含量は5.9質量%であり、7MDOは100%開環重合し、重合体主鎖にエステル構造単位を有していた。共重合体(B3)は、重量平均分子量(Mw)が75,000、分子量分布(Mw/Mn)が2.20であった。その他評価結果と併せて結果を表1に示す。
<比較例4>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にトルエンの17.5質量部に対して、メタクリル酸メチルの65.8質量部、合成例2で得られた7MDOの3.5質量部、n-オクチルメルカプタンの0.105質量部、ジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.002質量部を仕込んだ以外は、比較例1と同様に重合して共重合体(B4)30質量部を得た。共重合体(B4)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は98.4質量%、7MDOに由来する構造単位の含量は1.6質量%であり、7MDOは100%開環重合し、重合体主鎖にエステル構造単位を有していた。共重合体(B4)は、重量平均分子量(Mw)が200,000、分子量分布(Mw/Mn)が2.12であった。その他評価結果と併せて結果を表1に示す。
<比較例5>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にトルエンの17.5質量部に対して、メタクリル酸メチルの55.3質量部、合成例2で得られた7MDOの14質量部、n-オクチルメルカプタンの0.105質量部、ジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.002質量部を仕込んだ以外は、比較例1と同様に重合して共重合体(B5)42質量部を得た。共重合体(B5)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は93.1質量%、7MDOに由来する構造単位の含量は6.9質量%であり、7MDOは100%開環重合し、重合体主鎖にエステル構造単位を有していた。共重合体(B5)は、重量平均分子量(Mw)が363,000、分子量分布(Mw/Mn)が3.93であった。その他評価結果と併せて結果を表1に示す。
<比較例6>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にトルエンの17.5質量部に対して、メタクリル酸メチルの34.3質量部、合成例2で得られた7MDOの35.0質量部、n-オクチルメルカプタンの0.096質量部、ジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.0043質量部を仕込んだ以外は、比較例1と同様に重合して共重合体(B6)21質量部を得た。共重合体(B6)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は75.1質量%、7MDOに由来する構造単位の含量は24.9質量%であり、7MDOは100%開環重合し、重合体主鎖にエステル構造単位を有していた。共重合体(B6)は、重量平均分子量(Mw)が223,000、分子量分布(Mw/Mn)が2.60であった。その他評価結果と併せて結果を表1に示す。
<比較例7>
 特開平11-228633号公報の実施例8と同様に共重合体を合成した。すなわち、充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にメタクリル酸メチルの25質量部に対して、合成例2で得られた7MDOの25質量部、ジメチル2,2-アゾビスイソブチレート(和光純薬製:V-601)の0.058質量部を仕込んだ。
 耐圧容器を窒素ガスにて十分置換した後、撹拌しながら60℃に昇温した。撹拌しながら60℃で1時間重合させた後、室温まで冷却して重合を停止した。得られた溶液をメタノール2000質量部に注ぎ、固形物を析出させた。析出固形物をろ別し、充分に乾燥して、共重合体(B7)2.5質量部を得た。共重合体(B7)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は95.5質量%、7MDOに由来する構造単位の含量は4.5質量%であり、7MDOは100%開環重合し、重合体主鎖にエステル構造単位を有していた。重合体(B7)は、重量平均分子量(Mw)が533,000、分子量分布(Mw/Mn)が1.68であった。その他評価結果と併せて結果を表1に示す。
<比較例8>
 (1) 製造例1で得られた多層構造重合体粒子(A)を含むエマルジヨンおよび製造例2で得られた(メタ)アクリル酸エステル系重合体粒子(B)を含むエマルジヨンを、多層構造重合体粒子(A):(メタ)アクリル酸エステル系重合体粒子(B)の重量比が2:1になるようにして混合して混合エマルジヨンをつくり、それを-20℃で2時間かけて凍結した。凍結した混合エマルジヨンをその2倍量の80℃の温水に投入して溶解させてスラリー状にした後、80℃に20分間保持し、次いで脱水し、70℃で乾燥して、粉末状の耐衝撃性改良材を得た。
 (2)懸濁重合により得られたビーズ状のメタクリル酸メチル共重合体[メタクリル酸メチル/アクリル酸メチル=99.3/0.7(重量比)、重量平均分子量89,000]700質量部に対して、上記(1)で得られた耐衝撃性改良材を300質量部の割合でスーパーミキサーを用いて混合して、熱可塑性重合体組成物を調製した。評価結果を表1に示す。また、230℃にて熱プレス成形して、得られた試験片(120mm×50mm×厚さ0.4mm)を室温(23℃)にて手で180度に折り曲げたところ、割れることはなかったが、折れ目が白化した。
 実施例、比較例で得られた重合体、共重合体または重合体組成物を加メタノール分解した。分解後に得られた重合体の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例の共重合体は、2~10質量%の環状ケテンアセタール単量体に由来するエステル構造単位を有し、当該構造単位は開環重合により生じたエステル構造を含有するものであり、重量平均分子量8万以上かつ分子量分布が1.80以上3.80以下であるため、いずれも引張り破断ひずみが大きく、また曲げた際も割れることなく高い延性性能を示す。また全光線透過率が高く、ヘイズが低く、透明性の高いことがわかる。
 比較例1,2の共重合体もしくは重合体は、透明性は高いものの、2~10質量%の環状ケテンアセタール単量体に由来するエステル構造単位を有していないため、引張り破断ひずみが小さく、延性性能を示さず(図1および図2参照)、曲げた際に割れてしまう。また重量平均分子量8万未満である共重合体(比較例3)や、環状ケテンアセタール単量体に由来するエステル構造単位が2質量%未満である共重合体(比較例4)も引張り破断ひずみが小さく、延性性能を示さない。
 共重合体の分子量分布が1.75より小さい場合(比較例7)や3.8より大きい場合(比較例5)も引張り破断ひずみが小さく、延性性能を示さないことがわかる。
 比較例6の共重合体のように環状ケテンアセタール単量体に由来するエステル構造単位が10質量%より多い場合、延性性能は高いものの、ガラス転移温度が低く、引張り弾性率も低い柔らかい材料となってしまう。
 一般的な延性性能を向上させる手法として比較例8のように多層構造重合体粒子を含有させる手法が知られているが、このようなゴムを添加する手法は、透明性が低下し、曲げた際に白化し、鉛筆硬度も低いものとなってしまう。

Claims (7)

  1.  80質量%~98質量%のメタクリル酸エステル単量体に由来する構造単位と、2~10質量%の環状ケテンアセタール単量体に由来するエステル構造単位よりなる共重合体であって、重量平均分子量8万以上、かつ、分子量分布が1.75以上3.80以下の共重合体。
  2.  前記共重合体中の前記エステル構造単位を加メタノール分解後に得られる重合体の分子量分布が2.0以下であることを特徴とする請求項1に記載の共重合体。
  3.  前記メタクリル酸エステル単量体がメタクリル酸メチルである請求項1または2に記載の共重合体。
  4.  請求項1~3のいずれか一項に記載の共重合体を含有する成形体。
  5.  請求項4に記載の成型体からなる導光フィルム。
  6.  請求項4に記載の成型体からなる加飾フィルム。
  7.  請求項4に記載の成型体からなる偏光子保護フィルム。
PCT/JP2015/050241 2014-01-14 2015-01-07 共重合体および成形体 WO2015107954A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167018650A KR102212537B1 (ko) 2014-01-14 2015-01-07 공중합체 및 성형체
CN201580004455.3A CN105916898A (zh) 2014-01-14 2015-01-07 共聚物及成型体
JP2015557799A JP6574138B2 (ja) 2014-01-14 2015-01-07 共重合体および成形体
US15/111,386 US10287380B2 (en) 2014-01-14 2015-01-07 Copolymer, and molded article
EP15737152.7A EP3095800B1 (en) 2014-01-14 2015-01-07 Copolymer, and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-003862 2014-01-14
JP2014003862 2014-01-14

Publications (1)

Publication Number Publication Date
WO2015107954A1 true WO2015107954A1 (ja) 2015-07-23

Family

ID=53542844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050241 WO2015107954A1 (ja) 2014-01-14 2015-01-07 共重合体および成形体

Country Status (7)

Country Link
US (1) US10287380B2 (ja)
EP (1) EP3095800B1 (ja)
JP (1) JP6574138B2 (ja)
KR (1) KR102212537B1 (ja)
CN (1) CN105916898A (ja)
TW (1) TWI639622B (ja)
WO (1) WO2015107954A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210503A (ja) * 2016-05-23 2017-11-30 株式会社クラレ メタクリル酸エステル共重合体および成形体
WO2022224875A1 (ja) * 2021-04-20 2022-10-27 富士フイルム株式会社 積層体、粘着層付き積層体、偏光板および画像表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061448A1 (de) 2022-09-20 2024-03-28 Wacker Chemie Ag Copolymere von zyklischen ketenacetal-monomeren

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936645B2 (ja) 1975-05-06 1984-09-05 三菱レイヨン株式会社 多層構造重合体組成物の製造法
JPH0733824A (ja) * 1993-07-22 1995-02-03 Japan Synthetic Rubber Co Ltd ゴム組成物
JPH11228633A (ja) 1998-02-18 1999-08-24 Nof Corp 分解性共重合体、製造方法および分解性高分子材料
JP2005325262A (ja) * 2004-05-14 2005-11-24 Fuji Xerox Co Ltd 樹脂粒子及びその製造方法、静電荷現像用トナー及びその製造方法、静電荷像現像剤並びに画像形成方法。
WO2010055798A1 (ja) 2008-11-11 2010-05-20 株式会社クラレ 熱可塑性重合体組成物およびそれからなるシート状成形体
US20110160426A1 (en) * 2008-04-14 2011-06-30 Philipps-Universitat Marburg Hydrolytically decomposable ionic copolymers
WO2011089794A1 (ja) 2010-01-19 2011-07-28 住友精化株式会社 紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2012012476A (ja) 2010-06-30 2012-01-19 Sumitomo Seika Chem Co Ltd 合成樹脂用安定化剤、該安定化剤を含有する合成樹脂組成物および樹脂部材
WO2012057079A1 (ja) 2010-10-29 2012-05-03 株式会社クラレ メタクリル樹脂組成物及び樹脂改質剤並びに成形体
WO2012124395A1 (ja) 2011-03-11 2012-09-20 住友精化株式会社 紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2013023461A (ja) 2011-07-20 2013-02-04 Sumitomo Seika Chem Co Ltd 金属錯体、これを含有する紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2013112790A (ja) 2011-11-30 2013-06-10 Sumitomo Seika Chem Co Ltd 高分子錯体、重合性組成物、およびそれらを含有する紫外線吸収部材
JP2013194037A (ja) 2012-03-22 2013-09-30 Sumitomo Seika Chem Co Ltd 銅錯体、これを含有する紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2014062228A (ja) 2012-08-31 2014-04-10 Sumitomo Seika Chem Co Ltd 紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2014088543A (ja) 2012-10-05 2014-05-15 Sumitomo Seika Chem Co Ltd 紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2014088542A (ja) 2012-10-05 2014-05-15 Sumitomo Seika Chem Co Ltd 紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936645A (ja) 1983-07-04 1984-02-28 Ricoh Co Ltd 9,10−ビススチリルアンスラセン誘導体の製造方法
US7420020B2 (en) 2004-05-14 2008-09-02 Fuji Xerox Co., Ltd. Resin particles and producing method thereof, toner for developing electrostatic latent image and producing method thereof, electrostatic latent image developer as well as image forming method
JP4654601B2 (ja) * 2004-05-14 2011-03-23 富士ゼロックス株式会社 樹脂粒子及びその製造方法、静電荷現像用トナー及びその製造方法、静電荷像現像剤並びに画像形成方法。
CN101014635A (zh) * 2004-08-30 2007-08-08 三菱丽阳株式会社 光学用共聚物及由其构成的成形体
JPWO2008143245A1 (ja) 2007-05-21 2010-08-12 東レ株式会社 熱可塑性共重合体の製造方法および熱可塑性共重合体
JP2008291138A (ja) * 2007-05-25 2008-12-04 Mitsubishi Rayon Co Ltd メチルメタクリレート系共重合体の製造方法、及びプラスチック光ファイバの製造方法
CN103396513B (zh) * 2013-07-24 2016-03-02 华南理工大学 一种主链断裂型聚丙烯酸类硅烷酯树脂的制备方法及应用

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936645B2 (ja) 1975-05-06 1984-09-05 三菱レイヨン株式会社 多層構造重合体組成物の製造法
JPH0733824A (ja) * 1993-07-22 1995-02-03 Japan Synthetic Rubber Co Ltd ゴム組成物
JPH11228633A (ja) 1998-02-18 1999-08-24 Nof Corp 分解性共重合体、製造方法および分解性高分子材料
JP2005325262A (ja) * 2004-05-14 2005-11-24 Fuji Xerox Co Ltd 樹脂粒子及びその製造方法、静電荷現像用トナー及びその製造方法、静電荷像現像剤並びに画像形成方法。
US20110160426A1 (en) * 2008-04-14 2011-06-30 Philipps-Universitat Marburg Hydrolytically decomposable ionic copolymers
WO2010055798A1 (ja) 2008-11-11 2010-05-20 株式会社クラレ 熱可塑性重合体組成物およびそれからなるシート状成形体
WO2011089794A1 (ja) 2010-01-19 2011-07-28 住友精化株式会社 紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2012012476A (ja) 2010-06-30 2012-01-19 Sumitomo Seika Chem Co Ltd 合成樹脂用安定化剤、該安定化剤を含有する合成樹脂組成物および樹脂部材
WO2012057079A1 (ja) 2010-10-29 2012-05-03 株式会社クラレ メタクリル樹脂組成物及び樹脂改質剤並びに成形体
WO2012124395A1 (ja) 2011-03-11 2012-09-20 住友精化株式会社 紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2013023461A (ja) 2011-07-20 2013-02-04 Sumitomo Seika Chem Co Ltd 金属錯体、これを含有する紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2013112790A (ja) 2011-11-30 2013-06-10 Sumitomo Seika Chem Co Ltd 高分子錯体、重合性組成物、およびそれらを含有する紫外線吸収部材
JP2013194037A (ja) 2012-03-22 2013-09-30 Sumitomo Seika Chem Co Ltd 銅錯体、これを含有する紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2014062228A (ja) 2012-08-31 2014-04-10 Sumitomo Seika Chem Co Ltd 紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2014088543A (ja) 2012-10-05 2014-05-15 Sumitomo Seika Chem Co Ltd 紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材
JP2014088542A (ja) 2012-10-05 2014-05-15 Sumitomo Seika Chem Co Ltd 紫外線吸収部材用組成物およびこれを用いた紫外線吸収部材

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOLGER WICKEL ET AL.: "Homopolymers and Random Copolymers of 5,6-Benzo-2-methylene-1,3- dioxepane and Methyl Methacrylate: Structural Characterization Using 1D and 2D NMR", MACROMOLECULES, vol. 36, no. 7, 2003, pages 2397 - 2403, XP002535420 *
HYDROGEN ABSTRACTION ABILITY AND INITIATOR EFFICIENCY OF ORGANIC PEROXIDE, April 2003 (2003-04-01)
POLYMER JOURNAL, vol. 39, no. 2, 2007, pages 163 - 174

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210503A (ja) * 2016-05-23 2017-11-30 株式会社クラレ メタクリル酸エステル共重合体および成形体
WO2022224875A1 (ja) * 2021-04-20 2022-10-27 富士フイルム株式会社 積層体、粘着層付き積層体、偏光板および画像表示装置

Also Published As

Publication number Publication date
JPWO2015107954A1 (ja) 2017-03-23
EP3095800A1 (en) 2016-11-23
TWI639622B (zh) 2018-11-01
EP3095800B1 (en) 2018-05-02
US10287380B2 (en) 2019-05-14
JP6574138B2 (ja) 2019-09-11
US20160326288A1 (en) 2016-11-10
KR20160108338A (ko) 2016-09-19
TW201531490A (zh) 2015-08-16
KR102212537B1 (ko) 2021-02-04
CN105916898A (zh) 2016-08-31
EP3095800A4 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6725113B2 (ja) アクリル系フィルム
WO2018021449A1 (ja) メタクリル樹脂組成物とその製造方法、成形体、フィルム、積層フィルム、積層成形体
JP6230589B2 (ja) シート状成形体
JP6574138B2 (ja) 共重合体および成形体
TWI573832B (zh) 甲基丙烯酸樹脂組成物
JP6650359B2 (ja) 耐衝撃性改良剤、熱可塑性樹脂組成物およびフィルム
WO2015115659A1 (ja) 共重合体および成形体
KR102478708B1 (ko) 아크릴계 수지 2 축 연신 필름 및 그 제조 방법
JP6649177B2 (ja) メタクリル酸エステル共重合体および成形体
EP4317209A1 (en) Methacrylic copolymer, methacrylic resin composition and method for producing same, and molded body
WO2019093385A1 (ja) メタクリル共重合体およびその成形品
JP6908629B2 (ja) メタクリル共重合体および成形体
WO2020241822A1 (ja) メタクリル共重合体および成形品
WO2021193521A1 (ja) メタクリル系共重合体、組成物、成形体、フィルム又はシートの製造方法および積層体
JP2019059882A (ja) メタクリル系樹脂組成物、光学フィルム、光学部品
JP2008303281A (ja) 環含有(メタ)アクリル系重合体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557799

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167018650

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15111386

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015737152

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015737152

Country of ref document: EP