WO2015115659A1 - 共重合体および成形体 - Google Patents

共重合体および成形体 Download PDF

Info

Publication number
WO2015115659A1
WO2015115659A1 PCT/JP2015/052930 JP2015052930W WO2015115659A1 WO 2015115659 A1 WO2015115659 A1 WO 2015115659A1 JP 2015052930 W JP2015052930 W JP 2015052930W WO 2015115659 A1 WO2015115659 A1 WO 2015115659A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
mass
parts
methylene
polymerization
Prior art date
Application number
PCT/JP2015/052930
Other languages
English (en)
French (fr)
Inventor
淳裕 中原
隆司 福本
啓之 小西
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to US15/116,144 priority Critical patent/US20170174802A1/en
Priority to JP2015560074A priority patent/JPWO2015115659A1/ja
Publication of WO2015115659A1 publication Critical patent/WO2015115659A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to a copolymer having high heat resistance, low water absorption, being hardly thermally decomposed and having a high elastic modulus, and a molded article containing such a copolymer.
  • methacrylic resin Since methacrylic resin has high transparency, it is useful as a material for molded articles used for optical members, lighting members, signboard members, decorative members, and the like. However, the methacrylic resin as the material of the molded body generally has a low glass transition temperature of about 110 ° C. Therefore, the molded body made of the methacrylic resin is easily deformed by heat.
  • a highly heat-resistant copolymer can be obtained by polymerizing or copolymerizing ⁇ -methylene- ⁇ -butyrolactone (Patent Documents 1 and 2 and Non-Patent Document 1).
  • a polymer of ⁇ -methylene- ⁇ -butyrolactone alone has a glass transition temperature of 200 ° C. or less, which is not sufficient.
  • the obtained (co) polymer has high water absorption.
  • the copolymer which has a high glass transition temperature is obtained by using the monomer of patent document 3, this also had the subject that water absorption is high.
  • An appropriate amount of a polymerizable monomer that imparts heat resistance is used to suppress brittleness and coloring problems, while exhibiting extremely excellent heat resistance, low water absorption, difficult to thermally decompose, and high elastic modulus.
  • the object is to provide a polymer.
  • a copolymer comprising a structural unit derived from a monomer represented by the following formula (1) and a structural unit derived from another monomer (A).
  • ring Z 1 represents a ring structure having 3 to 10 carbon atoms which may have an oxygen atom at an arbitrary position formed with two carbon atoms on ⁇ -butyrolactone.
  • R 1 represents Represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the copolymer of the present invention has high heat resistance, low water absorption, and is hardly thermally decomposed.
  • a molded article having high transparency and good dimensional stability can be obtained from the copolymer of the present invention.
  • the copolymer of the present invention is characterized by containing a structural unit derived from the monomer represented by the formula (1).
  • the monomer represented by the formula (1) has another ring structure containing two carbons in the 5-membered ring of ⁇ -methylene- ⁇ -butyrolactone, so that the resulting copolymer has high heat resistance. As well as lower water absorption than ⁇ -methylene- ⁇ -butyrolactone.
  • the carbon constituting the ring structure of Z 1 adjacent to oxygen in the 5-membered ring of ⁇ -methylene- ⁇ -butyrolactone is a secondary carbon, the thermal decomposition resistance does not decrease. When this carbon is tertiary carbon, the heat decomposability of the resulting copolymer is lowered, and the molding temperature is limited.
  • ring Z 1 represents a ring structure having 3 to 10 carbon atoms which may have an oxygen atom at an arbitrary position formed with two carbon atoms on ⁇ -butyrolactone.
  • R 1 represents Represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the copolymer of the present invention preferably contains 5 to 99% by mass of the monomer represented by the formula (1), more preferably 8 to 80% by mass, and more preferably 12 to 70% by mass. It is particularly preferable to contain it by mass%.
  • Specific examples of the monomer represented by the formula (1) include hexahydro-3-methylene-2H-cyclopenta [b] furan-2-one, hexahydro-3-methylene-2 (3H) -benzofuranone, octahydro- 3-methylene-2H-cyclohepta [b] furan-2-one, octahydro-3-methylene-cycloocta [b] furan-2 (3H) -one, hexahydro-3-methylene-4,7-methanobenzofuran-2 ( 3H) -one, 4-methylene-2,7-dioxabicyclo [3.3.0] octane-3-one, 4-methylene-3-oxatetracyclo [7.
  • the other monomer copolymerized with the monomer represented by the formula (1) (hereinafter sometimes referred to as “other monomer (A)”) is represented by the formula (1).
  • the copolymer of the present invention contains a structural unit derived from the other monomer (A), it is preferably contained in an amount of 1% to 95% by weight, more preferably 20% to 90% by weight. Is more preferable, and it is particularly preferable to contain 30% by mass to 88% by mass.
  • the content of the other monomer (A) is decreased and the content of the monomer represented by the formula (1) is increased, the copolymer of the present invention tends to have extremely high heat resistance. .
  • the content of the other monomer (A) may be appropriately designed according to the desired physical properties of the copolymer.
  • Other monomers (A) include vinyl aromatic hydrocarbons such as styrene, ⁇ -methylstyrene, p-methylstyrene, and m-methylstyrene; vinylcyclohexane, vinylcyclopentane, vinylcyclohexene, vinylcycloheptane, vinyl Vinyl alicyclic hydrocarbons such as cycloheptene and vinyl norbornene; ethylenically unsaturated carboxylic acids such as maleic anhydride, maleic acid and itaconic acid; olefins such as ethylene, propylene, 1-butene, isobutylene and 1-octene; Conjugated dienes such as butadiene, isoprene, and myrcene; acrylamide, methacrylamide, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl ketone, vinyl chloride, vinylidene chloride, vinylidene fluoride; methyl methacryl
  • methacrylic acid esters are preferable from the viewpoint of good copolymerizability with the monomer represented by the formula (1) and excellent transparency and heat resistance of the copolymer. More preferred are methacrylic acid alkyl esters, specifically methyl methacrylate is most preferred.
  • the weight average molecular weight of the copolymer of the present invention is preferably 40,000 to 300,000, more preferably 60,000 to 250,000, and particularly preferably 80,000 to 200,000. If the weight average molecular weight is too low, the strength decreases. If the weight average molecular weight is too high, molding becomes difficult.
  • the copolymer of the present invention has a weight average molecular weight / number average molecular weight ratio (hereinafter, this ratio is referred to as “molecular weight distribution”), preferably 1.01 to 3.0, more preferably 1.05 to 2.5, more preferably 1.10 to 2.2. When the molecular weight distribution is in such a range, a copolymer having good moldability can be obtained.
  • the weight average molecular weight and molecular weight distribution are values in terms of standard polystyrene measured by GPC (gel permeation chromatography). Such weight average molecular weight and molecular weight distribution can be controlled by adjusting the types and amounts of the polymerization initiator and the chain transfer agent during the polymerization reaction.
  • the glass transition temperature of the copolymer of the present invention is preferably 120 to 350 ° C., more preferably 130 to 250 ° C. If the glass transition temperature is too low, the heat resistance of the copolymer is insufficient, and the usable applications are limited. If the glass transition temperature is too high, the copolymer is brittle and easily cracked.
  • the glass transition temperature is a value measured in accordance with JIS K7121. That is, the copolymer of the present invention was heated once to 270 ° C., then cooled to room temperature, and then DSC curve was measured by differential scanning calorimetry under the condition of increasing the temperature from room temperature to 270 ° C. at 10 ° C./min. And the midpoint glass transition temperature obtained from the DSC curve measured at the second temperature rise was defined as the glass transition temperature of the present invention.
  • the method for producing the copolymer of the present invention There is no particular limitation on the method for producing the copolymer of the present invention. Usually, from the viewpoint of productivity, a radical polymerization method is employed to produce a copolymer by adjusting the polymerization temperature, polymerization time, type and amount of chain transfer agent, type and amount of polymerization initiator, etc. The method is preferred. In addition, since the monomer represented by the formula (1) can be anionically polymerized, an anionic polymerization method should be employed when obtaining a block copolymer or a highly stereoregular copolymer. Is also possible.
  • the radical polymerization method for producing the copolymer of the present invention is preferably carried out in the absence of a solvent or in a solvent, and preferably in the absence of a solvent from the viewpoint that a copolymer having a low impurity concentration can be obtained.
  • the polymerization reaction is preferably performed with the dissolved oxygen content of the polymerization reaction raw material being lowered.
  • the polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen gas.
  • the polymerization initiator used in the radical polymerization method for producing the copolymer of the present invention is not particularly limited as long as it generates a reactive radical.
  • t-hexyl peroxyisopropyl monocarbonate t-hexyl peroxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutyl peroxy 2-ethylhexanoate, t-butyl peroxypivalate T-hexylperoxypivalate, t-butylperoxyneodecanoate, t-hexylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1 , 1-bis (t-hexylperoxy) cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, 2,2′-azobis (2-methylpropionitrile), 2, 2
  • t-hexylperoxy 2-ethylhexanoate 1,1-bis (t-hexylperoxy) cyclohexane, and dimethyl 2,2'-azobis (2-methylpropionate) are preferable.
  • the 1-hour half-life temperature of such a polymerization initiator is preferably 60 to 140 ° C, more preferably 80 to 120 ° C.
  • the polymerization initiator used for the production of the copolymer preferably has a hydrogen abstraction ability of 20% or less, more preferably 10% or less, and even more preferably 5% or less.
  • Such polymerization initiators can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is preferably 0.0001 to 0.02 parts by mass, more preferably 0.001 to 0.01 parts by mass, and still more preferably 100 parts by mass of the monomer subjected to the polymerization reaction. Is 0.005 to 0.007 parts by mass.
  • the hydrogen abstraction ability can be known from the technical data of the polymerization initiator manufacturer (for example, Nippon Oil & Fats Co., Ltd. technical document “Hydrogen abstraction capacity and initiator efficiency of organic peroxide” (created in April 2003)). . Further, it can be measured by a radical trapping method using ⁇ -methylstyrene dimer, that is, ⁇ -methylstyrene dimer trapping method. The measurement is generally performed as follows. First, the polymerization initiator is cleaved in the presence of ⁇ -methylstyrene dimer as a radical trapping agent to generate radical fragments.
  • radical fragments having a low hydrogen abstraction ability are added to and trapped by the double bond of ⁇ -methylstyrene dimer.
  • a radical fragment having a high hydrogen abstraction capacity abstracts hydrogen from cyclohexane to generate a cyclohexyl radical, and the cyclohexyl radical is added to and trapped by a double bond of ⁇ -methylstyrene dimer to generate a cyclohexane trapping product. Therefore, the ratio (mole fraction) of radical fragments having a high hydrogen abstraction capacity with respect to the theoretical radical fragment generation amount, which is obtained by quantifying cyclohexane or cyclohexane-trapped product, is defined as the hydrogen abstraction capacity.
  • the chain transfer agent used when the radical polymerization method is selected for the production of the copolymer of the present invention includes n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, , 6-hexanedithiol, ethylene glycol bisthiopropionate, butanediol bisthioglycolate, butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris- ( ⁇ -thiopropionate) and alkyl mercaptans such as pentaerythritol tetrakisthiopropionate.
  • monofunctional alkyl mercaptans such as n-octyl mercaptan and n-dode
  • the amount of the chain transfer agent used is preferably 0.1 to 1 part by weight, more preferably 0.15 to 0.8 part by weight, and still more preferably 0 to 100 parts by weight of the monomer to be subjected to the polymerization reaction. .2 to 0.6 parts by mass, most preferably 0.2 to 0.5 parts by mass.
  • the amount of the chain transfer agent used is preferably 2500 to 10000 parts by mass, more preferably 3000 to 9000 parts by mass, and further preferably 3500 to 6000 parts by mass with respect to 100 parts by mass of the polymerization initiator.
  • the amount of the chain transfer agent used is in the above range, the molecular weight of the resulting copolymer can be controlled, so that the resulting copolymer can have good moldability and high mechanical strength.
  • a solvent is not limited as long as it can dissolve the monomer and the copolymer, but an aromatic such as benzene, toluene, ethylbenzene, etc. Group hydrocarbons are preferred. These solvents can be used alone or in combination of two or more.
  • the usage-amount of a solvent can be suitably set from a viewpoint of the viscosity and productivity of a reaction liquid.
  • the amount of the solvent used is, for example, preferably 100 parts by mass or less, more preferably 90 parts by mass or less with respect to 100 parts by mass of the polymerization reaction raw material.
  • the temperature during the polymerization reaction is preferably 100 to 200 ° C., more preferably 110 to 180 ° C.
  • productivity tends to be improved due to an improvement in the polymerization rate, a decrease in the viscosity of the polymerization solution, and the like.
  • polymerization temperature is 200 degrees C or less, control of a superposition
  • the polymerization reaction time is preferably 0.5 to 4 hours, more preferably 1.5 to 3.5 hours, and further preferably 1.5 to 3 hours.
  • the polymerization reaction time is an average residence time in the reactor.
  • the radical polymerization may be performed using a batch reactor, but it is preferably performed using a continuous flow reactor from the viewpoint of productivity.
  • a polymerization reaction raw material (monomer (monomer represented by the formula (1), other monomer (A) [other monomer (A) Specifically, a methacrylic acid alkyl ester is preferred])
  • a mixed solution containing a polymerization initiator, a chain transfer agent, and the like is supplied to the reactor at a constant flow rate, which corresponds to the supply amount.
  • the liquid in the reactor is withdrawn at the flow rate.
  • a tubular reactor that can be in a state close to plug flow and / or a tank reactor that can be in a state close to complete mixing can be used.
  • continuous flow polymerization may be performed in one reactor, or continuous flow polymerization may be performed by connecting two or more reactors.
  • the amount of liquid in the tank reactor during the polymerization reaction is preferably 1/4 to 3/4, more preferably 1/3 to 2/3 with respect to the volume of the tank reactor.
  • the reactor is usually equipped with a stirring device. Examples of the stirring device include a static stirring device and a dynamic stirring device.
  • Examples of the dynamic agitation device include a Max blend type agitation device, an agitation device having a grid-like blade rotating around a vertical rotation shaft disposed in the center, a propeller type agitation device, and a screw type agitation device.
  • a Max blend type stirring apparatus is preferably used from the point of uniform mixing property.
  • the polymerization conversion rate is preferably 50 to 100% by mass, more preferably 70 when suspension polymerization is performed using a batch reactor. ⁇ 99% by mass.
  • a continuous flow tank reactor it is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and still more preferably 35 to 65% by mass.
  • the polymerization conversion rate is 20% by mass or more, the remaining unreacted monomer can be easily removed, and the appearance of the molded body made of the copolymer tends to be good.
  • the polymerization conversion rate is 70% by mass or less, the viscosity of the polymerization solution is lowered and productivity tends to be improved.
  • the removal method is not particularly limited, but heating devolatilization is preferable.
  • the devolatilization method include an equilibrium flash method and an adiabatic flash method.
  • the devolatilization temperature by the adiabatic flash method is preferably 200 to 280 ° C, more preferably 220 to 260 ° C.
  • the time for heating the resin by the adiabatic flash method is preferably 0.3 to 5 minutes, more preferably 0.4 to 3 minutes, and further preferably 0.5 to 2 minutes. When devolatilized in such a temperature range and heating time, a copolymer with little coloring is easily obtained.
  • the removed unreacted monomer can be recovered and used again for the polymerization reaction. Since the yellow index of the recovered monomer may be high due to heat applied during the recovery operation, etc., the recovered monomer should be purified by an appropriate method to reduce the yellow index. Is preferred.
  • another copolymer may be mixed with the copolymer of the present invention within a range not impairing the effects of the present invention.
  • examples of such other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, and high impact polystyrene.
  • the molded product of the present invention preferably contains 80% by mass or more of the copolymer of the present invention, more preferably 90% by mass or more.
  • the manufacturing method of the molded object of this invention is not specifically limited.
  • the copolymer of the present invention or a molding material containing the copolymer of the present invention is, for example, a T-die method (lamination method, coextrusion method, etc.), an inflation method (coextrusion method, etc.), a compression molding method, a blow molding.
  • a melt molding method such as a method, a calendar molding method, a vacuum molding method, and an injection molding method (insert method, two-color method, press method, core back method, sandwich method, etc.) and a solution casting method.
  • the T die method, the inflation method, or the injection molding method is preferable from the viewpoint of high productivity and cost.
  • the copolymer of the present invention can be in the form of pellets or the like in order to enhance convenience during storage, transportation or molding.
  • the molding may be performed a plurality of times.
  • the pellet-shaped molded body can be further molded to obtain a molded body having a desired shape.
  • an antioxidant if necessary, an antioxidant, a thermal degradation inhibitor, an ultraviolet absorber, a light stabilizer, a lubricant, a release agent, a polymer processing aid, an antistatic agent, a flame retardant, Various additives such as dyes and pigments, light diffusing agents, organic dyes, matting agents, and phosphors may be added.
  • the blending amount of such various additives is preferably 7% by mass or less, more preferably 5% by mass or less, and further preferably 4% by mass or less with respect to the copolymer of the present invention.
  • Various additives may be added to the polymerization reaction solution when the copolymer is produced, may be added to the copolymer produced by the polymerization reaction, or may be added during the production of the molded article. Also good.
  • the antioxidant alone has an effect of preventing oxidative deterioration of the resin in the presence of oxygen.
  • examples thereof include phosphorus antioxidants, hindered phenol antioxidants, and thioether antioxidants. These antioxidants may be used alone or in combination of two or more.
  • a phosphorus-based antioxidant and a hindered phenol-based antioxidant are preferable, and a combination of a phosphorus-based antioxidant and a hindered phenol-based antioxidant is more preferable.
  • the amount of phosphorus antioxidant used is 1: 5 to 2: 1 is preferable, and 1: 2 to 1: 1 is more preferable.
  • Examples of phosphorus antioxidants include 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (manufactured by ADEKA; trade name: ADK STAB HP-10), tris (2,4-dit -Butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168), 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa3 9-diphosphaspiro [5.5] undecane (manufactured by ADEKA; trade name: ADK STAB PEP-36) is preferable.
  • pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANOX 1010), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANOX1076) is preferred.
  • the thermal degradation inhibitor can prevent thermal degradation of the resin by scavenging polymer radicals generated when exposed to high heat in a substantially oxygen-free state.
  • the thermal degradation inhibitor include 2-t-butyl-6- (3′-t-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilizer GM), 2,4-di-t-amyl-6- (3 ′, 5′-di-t-amyl-2′-hydroxy- ⁇ -methylbenzyl) phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumitizer GS) preferable.
  • the ultraviolet absorber is a compound having an ability to absorb ultraviolet rays, and is mainly said to have a function of converting light energy into heat energy.
  • Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, formamidines, and the like. These may be used alone or in combination of two or more.
  • Benzotriazoles are preferable as ultraviolet absorbers used when the film of the present invention is applied to optical applications because it has a high effect of suppressing deterioration of optical properties such as coloring due to ultraviolet irradiation.
  • benzotriazoles include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H- Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234), 2,2′-methylenebis [6- (2H-benzotriazole-2) -Yl) -4-t-octylphenol] (manufactured by ADEKA; LA-31), 2- (5-octylthio-2H-benzotriazol-2-yl) -6-tert-butyl-4
  • an ultraviolet absorber for triazines 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA; LA-F70) Further, hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; TINUVIN477 and TINUVIN460), 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5- A triazine etc. can be mentioned.
  • the light stabilizer is a compound that is said to have a function of capturing radicals generated mainly by oxidation by light.
  • Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
  • lubricant examples include stearic acid, behenic acid, stearamide acid, methylene bisstearamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, and hardened oil.
  • the release agent examples include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride.
  • higher alcohols and glycerin fatty acid monoester are used in combination, the ratio is not particularly limited, but the amount of higher alcohol used: the amount of glycerin fatty acid monoester is 2.5: 1 to 3. 5: 1 is preferable, and 2.8: 1 to 3.2: 1 is more preferable.
  • polymer particles having a particle diameter of 0.05 to 0.5 ⁇ m which can be usually produced by an emulsion polymerization method, are used.
  • the polymer particles may be single layer particles composed of polymers having a single composition ratio and single intrinsic viscosity, or multilayer particles composed of two or more kinds of polymers having different composition ratios or intrinsic viscosities. May be.
  • particles having a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferable.
  • the polymer processing aid preferably has an intrinsic viscosity of 3 to 6 dl / g. If the intrinsic viscosity is too small, the effect of improving moldability tends to be low. If the intrinsic viscosity is too large, the molding processability of the copolymer tends to be lowered.
  • organic dye a compound having a function of converting ultraviolet light into visible light is preferably used.
  • Examples of the light diffusing agent and matting agent include glass fine particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, barium sulfate and the like.
  • Fluorescent substances include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent brighteners, fluorescent bleaches, and the like.
  • a film which is one form of the molded body of the present invention can be produced by a solution casting method, a melt casting method, an extrusion molding method, an inflation molding method, a blow molding method, or the like.
  • the extrusion molding method is preferred from the viewpoint that a film having excellent transparency, improved toughness, excellent handleability, and excellent balance between toughness, surface hardness and rigidity can be obtained.
  • the temperature of the copolymer discharged from the extruder is preferably set to 160 to 270 ° C, more preferably 220 to 260 ° C.
  • the copolymer of the present invention or the molding material comprising the copolymer of the present invention is melted in the molten state.
  • a method comprising extruding from a die and then forming it by sandwiching it between two or more mirror rolls or belts is preferred.
  • the mirror roll or mirror belt is preferably made of metal.
  • the linear pressure between the pair of mirror rolls or the mirror belt is preferably 10 N / mm or more, more preferably 30 N / mm or more.
  • the surface temperature of the mirror roll or the mirror belt is preferably 130 ° C. or less.
  • the pair of mirror rolls or mirror belts preferably have at least one surface temperature of 60 ° C. or higher.
  • the copolymer of the present invention discharged from an extruder or the molding material comprising the copolymer of the present invention can be cooled at a faster rate than natural cooling, and surface smoothness can be achieved. It is easy to produce a film with excellent haze and low haze.
  • the thickness of the unstretched film obtained by extrusion molding is preferably 10 to 300 ⁇ m.
  • the haze of the film is preferably 0.5% or less, more preferably 0.3% or less at a thickness of 100 ⁇ m.
  • the copolymer of the present invention formed into a film may be subjected to stretching treatment.
  • the stretching process increases the mechanical strength, and a film that is difficult to crack can be obtained.
  • the stretching method is not particularly limited, and examples thereof include a simultaneous biaxial stretching method, a sequential biaxial stretching method, and a tuber stretching method. From the viewpoint that a film having high strength that can be stretched uniformly is obtained, the lower limit of the temperature during stretching is 10 ° C. higher than the glass transition temperature of the copolymer, and the upper limit of the temperature during stretching is the glass transition of the copolymer. The temperature is 40 ° C. higher than the temperature. Stretching is usually performed at 100 to 5000% / min. A film with less heat shrinkage can be obtained by heat setting after stretching.
  • the thickness of the stretched film is preferably 10 to 200 ⁇ m.
  • the film which is one form of the molded body of the present invention has high transparency and heat resistance, it is suitable for optical applications.
  • Polarizer protective film, liquid crystal protective plate, surface material of portable information terminal, portable information terminal The display window protective film, the light guide film, and the front plate of various displays are particularly suitable.
  • Tetrahydrofuran was used as the eluent, and TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 were connected in series as the column.
  • HLC-8320 product number manufactured by Tosoh Corporation equipped with a differential refractive index detector (RI detector) was used.
  • RI detector differential refractive index detector
  • a sample solution was prepared by dissolving 4 mg of the polymer or copolymer to be measured in 5 ml of tetrahydrofuran.
  • the column oven temperature was set to 40 ° C., 20 ⁇ l of sample solution was injected at an eluent flow rate of 0.35 ml / min, and the chromatogram was measured.
  • Ten standard polystyrenes having a molecular weight in the range of 400 to 5000000 were measured by GPC, and a calibration curve showing the relationship between retention time and molecular weight was prepared. Based on this calibration curve, the weight average molecular weight (Mw) and the number average molecular weight (Mn) were determined, and the molecular weight distribution (Mw / Mn) was determined.
  • Glass-transition temperature In accordance with JIS K7121, the polymer or copolymer was heated once to 270 ° C. using a differential scanning calorimeter (manufactured by Shimadzu Corporation, DSC-50 (product number)), and then cooled to room temperature. Thereafter, the DSC curve was measured under the condition of increasing the temperature from room temperature to 270 ° C. at 10 ° C./min. The midpoint glass transition temperature obtained from the DSC curve measured at the second temperature rise was defined as the glass transition temperature in the present invention.
  • Total light transmittance The polymer or copolymer was hot press molded to obtain a test piece (A) of 50 mm ⁇ 50 mm ⁇ 3.2 mm thickness.
  • the total light transmittance of the test piece (A) was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K7361-1.
  • test piece (B) The polymer or copolymer was subjected to hot press molding to obtain a test piece (B) having a size of 80 mm ⁇ 10 mm ⁇ 4.0 mm in thickness.
  • an autograph manufactured by Shimadzu Corporation was used to perform three-point bending at 23 ° C., and the elastic modulus was measured.
  • test piece (A) The polymer or copolymer was hot press molded to obtain a test piece (A) of 50 mm ⁇ 50 mm ⁇ 3.2 mm thickness.
  • the pencil hardness of the obtained test piece (A) was measured according to JIS K5600-5-4 with a 0.75 kg load.
  • Carbon monoxide was introduced from the gas introduction tube and pressurized to 0.8 MPa. While continuing the pressurization with carbon monoxide, the mixture was heated and stirred at 75 ° C. for 15 hours. After cooling to 25 ° C., carbon monoxide was exhausted from the gas exhaust pipe. To the obtained reaction mixture, 1.7 L of water and 5 L of ethyl acetate were added, followed by filtration using celite. The filtrate was separated, and the resulting aerobic layer was concentrated under reduced pressure.
  • Example 1 The inside of the pressure vessel equipped with a stirrer that was sufficiently dried was purged with nitrogen. The pressure vessel was charged with 47.4 parts by weight of methyl methacrylate, 12 parts by weight of MCHBL obtained in Synthesis Example 4, and 0.0825 parts by weight of n-octyl mercaptan with respect to 15 parts by weight of toluene. . After sufficiently replacing the pressure vessel with nitrogen gas, the temperature was raised to 140 ° C. while stirring. A total amount of 0.00188 parts by mass of di-t-butyl peroxide (manufactured by NOF Corporation: Perbutyl D) dissolved in 1 part by mass of toluene was added to the pressure vessel, and polymerization was started.
  • di-t-butyl peroxide manufactured by NOF Corporation: Perbutyl D
  • the copolymer (A1) had a weight average molecular weight (Mw) of 204,000 and a molecular weight distribution (Mw / Mn) of 2.27. Other evaluation results are shown in Table 1.
  • Example 2 The pressure vessel was charged with 29.4 parts by mass of methyl methacrylate, 30 parts by mass of MCHBL obtained in Synthesis Example 4, and 0.0375 parts by mass of n-octyl mercaptan with respect to 15 parts by mass of toluene. Except that, 23 parts by mass of the copolymer (A2) was obtained in the same manner as in Example 1. As a result of measuring 1 H-NMR of the copolymer (A2), the content of structural units derived from methyl methacrylate was 57.5% by mass, and the content of structural units derived from MCHBL was 42.5% by mass. .
  • the copolymer (A2) had a weight average molecular weight (Mw) of 222,000 and a molecular weight distribution (Mw / Mn) of 2.33. Other evaluation results are shown in Table 1.
  • Example 3 The pressure vessel was charged with 17.4 parts by weight of methyl methacrylate, 42 parts by weight of MCHBL obtained in Synthesis Example 4, and 0.0825 parts by weight of n-octyl mercaptan with respect to 15 parts by weight of toluene. Except that, 28 parts by mass of the copolymer (A3) was obtained in the same manner as in Example 1. When 1 H-NMR of the copolymer (A3) was measured, the content of structural units derived from methyl methacrylate was 36.4% by mass, and the content of structural units derived from MCHBL was 63.6% by mass. . The copolymer (A3) had a weight average molecular weight (Mw) of 171,000 and a molecular weight distribution (Mw / Mn) of 2.39. Other evaluation results are shown in Table 1.
  • Example 4 The pressure vessel was charged with 42 parts by mass of methyl methacrylate, 7.5 parts by mass of MCHBL obtained in Synthesis Example 4, and 0.040 parts by mass of n-octyl mercaptan with respect to 50 parts by mass of toluene. Except that, 21 parts by mass of the copolymer (A4) was obtained in the same manner as in Example 1. As a result of measuring 1 H-NMR of the copolymer (A4), the content of structural units derived from methyl methacrylate was 83.5% by mass, and the content of structural units derived from MCHBL was 16.5% by mass. .
  • the copolymer (A4) had a weight average molecular weight (Mw) of 120,000 and a molecular weight distribution (Mw / Mn) of 1.91. Other evaluation results are shown in Table 1.
  • Example 5 24 parts by mass of the copolymer (A5) was obtained in the same manner as in Example 1 except that MCPBL obtained in Synthesis Example 3 was used instead of MCHBL.
  • MCPBL obtained in Synthesis Example 3
  • MCPBL molecular weight distribution
  • Example 6 19 parts by mass of the copolymer (A6) was obtained in the same manner as in Example 2 except that MCPBL obtained in Synthesis Example 3 was used instead of MCHBL.
  • MCPBL obtained in Synthesis Example 3
  • the copolymer (A6) had a weight average molecular weight (Mw) of 276,000 and a molecular weight distribution (Mw / Mn) of 2.19.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 7 The inside of the pressure vessel equipped with a stirrer that was sufficiently dried was purged with nitrogen.
  • the pressure vessel was charged with 47.4 parts by mass of styrene and 12 parts by mass of MCHBL obtained in Synthesis Example 4 with respect to 15 parts by mass of toluene.
  • the temperature was raised to 130 ° C. with stirring.
  • a total amount of 0.0021 parts by mass of di-t-butyl peroxide (manufactured by NOF Corporation: Perbutyl D) dissolved in 1 part by mass of toluene was added to the pressure vessel, and polymerization was started. After 3 hours from the start of polymerization, the polymerization was stopped by cooling to room temperature.
  • the copolymer (A7) had a weight average molecular weight (Mw) of 111,100 and a molecular weight distribution (Mw / Mn) of 2.13. Other evaluation results are shown in Table 1.
  • Example 8> In the same manner as in Example 7, except that 29.4 parts by mass of styrene and 30 parts by mass of MCHBL obtained in Synthesis Example 4 were added to 15 parts by mass of toluene in the pressure vessel. A8) 17 parts by mass were obtained.
  • 1 H-NMR of the copolymer (A8) was measured, the content of structural units derived from styrene was 37.0% by mass, and the content of structural units derived from MCHBL was 63.0% by mass.
  • the copolymer (A8) had a weight average molecular weight (Mw) of 143,500 and a molecular weight distribution (Mw / Mn) of 2.06. Other evaluation results are shown in Table 1.
  • Example 2 except that 69.3 parts by mass of methyl methacrylate and 0.084 parts by mass of n-octyl mercaptan were added to 17.5 parts by mass of toluene in the pressure vessel, and MCHBL was not added. Thus, 33 parts by mass of the copolymer (B1) was obtained.
  • the copolymer (B1) had a weight average molecular weight (Mw) of 176,000 and a molecular weight distribution (Mw / Mn) of 2.02. Other evaluation results are shown in Table 1.
  • MBL ⁇ -methylene- ⁇ -butyrolactone
  • the copolymer (B2) had a weight average molecular weight (Mw) of 544,000 and a molecular weight distribution (Mw / Mn) of 2.50. Since copolymer (B2) was not dissolved in THF, it was dissolved in DMF solvent, and Mw and Mw / Mn were measured by GPC of DMF solvent. Other evaluation results are shown in Table 1.
  • Example 9 The inside of the pressure vessel equipped with a stirrer that was sufficiently dried was purged with nitrogen.
  • 29.7 g (17 mmol) of a toluene solution of di-t-butyl-4-methylphenoxy) aluminum and a solution of sec-butyllithium having a concentration of 1.3 M (solvent: cyclohexane 95 mass%, n-hexane mass 5%) 4.5 g (5.7 mmol) was charged.
  • the copolymer (A9) had a weight average molecular weight (Mw) of 4,800 and a molecular weight distribution (Mw / Mn) of 1.31. Other evaluation results are shown in Table 2.
  • any copolymer containing a structural unit derived from the monomer represented by Formula (1) has high heat resistance. From Example 2 and Comparative Example 2, it can be seen that not only the heat resistance is high but also the water absorption is low as compared with a conventionally known copolymer obtained by copolymerizing MBL. From the examples, it can be seen that the monomer represented by the formula (1) has good copolymerizability with MMA and styrene. From the examples, the monomer represented by the formula (1) can be used not only for radical polymerization but also for anionic polymerization, so various production methods can be selected depending on the type of copolymer desired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

下記式(1)で表される単量体に由来する構造単位と、その他の単量体(A)に由来する構造単位よりなる共重合体。(式(1)中、Z1環はγ-ブチロラクトン上の2つの炭素原子とともに形成する任意の位置に酸素原子を有していても良い炭素数3~10の環構造を表す。R1は水素原子または炭素数1~10のアルキル基を表す。)

Description

共重合体および成形体
 本発明は、高い耐熱性を有し、吸水性が低く、熱分解し難く、弾性率の高い共重合体、およびかかる共重合体を含有する成形体に関する。
 メタクリル樹脂は、高い透明性を有するので、光学部材、照明部材、看板部材、装飾部材等に用いる成形体の材料として有用である。しかしながら、成形体の材料としてのメタクリル樹脂は、一般に、ガラス転移温度が約110℃と低い。そのため、該メタクリル樹脂からなる成形体は熱によって変形しやすい。
 メタクリル樹脂に耐熱性を付与するために、効果的な共重合成分となる重合性単量体が数多く開発されている。しかしながら、従来使用されてきた重合性単量体は、十分な耐熱性を得るためにはその使用量を多くする必要があった。そのため、それら重合性単量体を用いて得られた共重合体のその多くは、耐熱性を得た代わりに脆くなる、着色する等の様々な問題を抱えていた。したがって、脆さや着色の問題を生じないように、より少ない使用量で優れた耐熱性を付与することができる重合性単量体が渇望されていた。
 例えば、α-メチレン-γ-ブチロラクトンを重合もしくは共重合することで高い耐熱性の共重合体を得ることが可能である(特許文献1、2および非特許文献1)。しかし、α-メチレン-γ-ブチロラクトン単独の重合体は、ガラス転移温度が200℃以下であり、十分とは言えない。また、得られる(共)重合体は、吸水性の高いものとなってしまう。また、特許文献3に記載の単量体を用いることで高いガラス転移温度を有する共重合体が得られるものの、こちらも吸水性が高いといった課題を有していた。
WO2006-025360号 特許第3649477号 特開2013-227496号
Macromolecules, 1979,12,546-551
 耐熱性を付与する重合性単量体を適量用いて、脆さ、着色の問題を抑制しつつ、極めて優れた耐熱性を示し、かつ吸水性が低く、熱分解し難く、弾性率の高い共重合体を提供することを目的とする。
 本発明によれば前記目的は、以下の態様により達成される。
 [1];下記式(1)で表される単量体に由来する構造単位と、その他の単量体(A)に由来する構造単位よりなる共重合体。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、Z1環はγ-ブチロラクトン上の2つの炭素原子とともに形成する任意の位置に酸素原子を有していても良い炭素数3~10の環構造を表す。R1は水素原子または炭素数1~10のアルキル基を表す。)
[2];その他の単量体(A)が少なくともメタクリル酸エステルを含有する[2]に記載の共重合体。
[3];式(1)で表される単量体に由来する構造単位を12~70質量%含有する[1]または[2]に記載の共重合体。
[4];[1]~[3]のいずれかに記載の共重合体を含有する成形体。
 本発明の共重合体は、高い耐熱性を有し、吸水性が低く、熱分解し難いものである。本発明の共重合体から透明性が高く、寸法安定性が良い成形体を得ることができる。
 本発明の共重合体は、式(1)で表される単量体に由来する構造単位を含有することが特徴である。式(1)で表される単量体は、α-メチレン-γ-ブチロラクトンの5員環中の2つの炭素を含むもう1つの環構造を有することで、得られる共重合体に高い耐熱性を与えるだけでなく、α-メチレン-γ-ブチロラクトンより低吸水性化することができる。またα-メチレン-γ-ブチロラクトンの5員環中の酸素に隣接し、Zの環構造を構成する炭素が2級炭素であることで、耐熱分解性が低下しない。この炭素が3級炭素であると、得られる共重合体の耐熱分解性が低下してしまい、成形温度が制限されてしまう。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Z1環はγ-ブチロラクトン上の2つの炭素原子とともに形成する任意の位置に酸素原子を有していても良い炭素数3~10の環構造を表す。R1は水素原子または炭素数1~10のアルキル基を表す。)
 本発明の共重合体は、式(1)で表される単量体を5~99質量%含有することが好ましく、8質量%~80質量%含有することがより好ましく、12質量%~70質量%含有することが特に好ましい。式(1)で表される単量体の具体例としては、ヘキサヒドロ-3-メチレン-2H-シクロペンタ[b]フラン-2-オン、ヘキサヒドロ-3-メチレン-2(3H)-ベンゾフラノン、オクタヒドロ-3-メチレン-2H-シクロヘプタ[b]フラン-2-オン、オクタヒドロ-3-メチレン-シクロオクタ[b]フラン-2(3H)-オン、ヘキサヒドロ-3-メチレン-4,7-メタノベンゾフラン-2(3H)-オン、4-メチレン-2,7-ジオキサビシクロ[3.3.0]オクタン-3-オン、4-メチレン-3-オキサテトラシクロ[7.3.16,12.07,11]-3-オン、4-メチレン-2,6-ジオキサビシクロ[3.3.0]オクタン-3,7-ジオン等が挙げられる。これらの中で、安価に製造でき、重合性が良好であるという点から、ヘキサヒドロ-3-メチレン-2H-シクロペンタ[b]フラン-2-オン、ヘキサヒドロ-3-メチレン-2(3H)-ベンゾフラノン、4-メチレン-3-オキサテトラシクロ[7.3.16,12.07,11]-3-オンが好ましく、ヘキサヒドロ-3-メチレン-2(3H)-ベンゾフラノンが最も好ましい。
 式(1)で表される単量体と共重合されるその他の単量体(以下「その他の単量体(A)」と言うことがある)としては、式(1)で表される単量体と共重合可能なものであれば特に限定されない。本発明の共重合体中にその他の単量体(A)に由来する構造単位を含有する場合は、1質量%~95質量%含有することが好ましく、20質量%~90質量%含有することがより好ましく、30質量%~88質量%含有することが特に好ましい。
 その他の単量体(A)の含有量を少なくし、式(1)で表される単量体の含有量を多くした場合、本発明の共重合体は極めて高い耐熱性を有する傾向となる。その他の単量体(A)の含有量は求める共重合体の物性によって適宜設計すれば良い。
 その他の単量体(A)としては、スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレンなどのビニル芳香族炭化水素;ビニルシクロヘキサン、ビニルシクロペンタン、ビニルシクロヘキセン、ビニルシクロヘプタン、ビニルシクロヘプセン、ビニルノルボルネンなどのビニル脂環式炭化水素;無水マレイン酸、マレイン酸、イタコン酸などのエチレン性不飽和カルボン酸;エチレン、プロピレン、1-ブテン、イソブチレン、1-オクテンなどのオレフィン;ブタジエン、イソプレン、ミルセンなどの共役ジエン;アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリル、酢酸ビニル、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデン;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなどのメタクリル酸アルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸シクロへキシル、メタクリル酸2-イソボルニル、メタクリル酸8-トリシクロ[5.2.1.02,6]デカニル、メタクリル酸2-ノルボルニル、メタクリル酸2-アダマンチルなどのメタクリル酸シクロアルキルエステル;(メタクリル酸アルキルエステルおよびメタクリル酸アリールエステルおよびメタクリル酸シクロアルキルエステルを総称してメタクリル酸エステルと表現する);アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸s-ブチル、アクリル酸t-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-へキシル、アクリル酸2-エチルへキシル、アクリル酸ペンタデシル、アクリル酸ドデシルなどのアクリル酸アルキルエステル;アクリル酸2-ヒドロキシエチル、アクリル酸2-エトキシエチル、アクリル酸グリシジル、アクリル酸アリル、アクリル酸ベンジルなどのアクリル酸誘導体;α-メチレン-γ-ブチロラクトン、α-メチレン-4-メチル-γ- ブチロラクトン、α-メチレン-4-エチル-γ-ブチロラクトン、α-メチレン-4-t-ブチル-γ-ブチロラクトン、α-メチレン-4-ウンデシル-γ-ブチロラクトン、α-メチレン-4,4-ジメチル-γ-ブチロラクトン、α-メチレン-4-メチル-4 -エチル-γ-ブチロラクトン、α-メチレン-4,4-ジエチル-γ-ブチロラクトン、α-メチレン-4 ,4-ジイソプロピル-γ-ブチロラクトン、α-メチレン-4-フェニル-γ-ブチロラクトン、α-メチレン-4-フェニル-4-メチル-γ-ブチロラクトン、α-メチレン-4,4-ジフェニル-γ-ブチロラクトン、α-メチレン-4-シクロヘキシル-γ-ブチロラクトン、α-メチレン-4-トリフルオロメチル-γ-ブチロラクトン、α-メチレン-4-パーフルオロエチル-γ-ブチロラクトン、α-メチレン-4,4-ジトリフルオロメチル-γ-ブチロラクトンなどの本発明に用いる式(1)以外のα-メチレン-γ-ブチロラクトン誘導体;2-ビニルフラン、2-イソプロペニルフラン、2-ビニルベンゾフラン、2-イソプロペニルベンゾフラン、2-ビニルジベンゾフラン、2-ビニルチオフェン、2-イソプロペニルチオフェン、2-ビニルジベンゾチオフェン、2-ビニルピロール、N-ビニルインドール、N-ビニルカルバゾール、2-ビニルオキサゾール、2-イソプロペニルオキサゾール、2-ビニルベンゾオキサゾール、3-ビニルイソオキサゾール、3-イソプロペニルイソオキサゾール、2-ビニルチアゾール、2-ビニルイミダゾール、4(5)-ビニルイミダゾール、N-ビニルイミダゾール、N-ビニルイミダゾリン、2-ビニルベンズイミダゾール、5(6)-ビニルベンズイミダゾール、5-イソプロペニルピラゾール、2-イソプロペニル1,3,4-オキサジアゾール、ビニルテトラゾール、2-ビニルピリジン、4-ビニルピリジン、2-イソプロペニルピリジン、3-ビニルピリジン、3-イソプロペニルピリジン、2-ビニルキノリン、2-イソプロペニルキノリン、4-ビニルキノリン、4-ビニルピリミジン、2,4-ジメチル-6-ビニル-S-トリアジン、3-メチリデンジヒドロフラン-2(3H)-オン、4-メチル-3-メチリデンジヒドロフラン-2(3H)-オン、4-デシル-3-メチリデンジヒドロフラン-2(3H)-オンなどのエチレン性不飽和ヘテロ環式化合物;ジメチルメタクリロイルオキシメチルホスフェート、2-メタクリロイルオキシ-1-メチルエチルホスフェートなどのエチレン性不飽和基を有するリン酸エステルなどが挙げられる。これらの中で、式(1)で表される単量体との共重合性が良好である点や、共重合体の透明性、耐熱性が優れるという点から、メタクリル酸エステルが好ましく、中でもメタクリル酸アルキルエステルがより好ましく、具体的にはメタクリル酸メチルが最も好ましい。
 本発明の共重合体の重量平均分子量は、好ましくは4万~30万、より好ましくは6万~25万、特に好ましくは8万~20万である。重量平均分子量が低すぎると強度が小さくなる。重量平均分子量が高すぎると、成形が困難になってしまう。
 本発明の共重合体は、重量平均分子量/数平均分子量の比(以下、この比を「分子量分布」と称する。)が、好ましくは1.01~3.0、より好ましくは1.05~2.5、さらに好ましくは1.10~2.2である。分子量分布がこのような範囲にあると、成形性が良好な共重合体が得られる。重量平均分子量および分子量分布は、GPC(ゲルパーミエーションクロマトグラフィ)で測定した標準ポリスチレン換算の値である。
 かかる重量平均分子量および分子量分布は、重合反応時の重合開始剤および連鎖移動剤の種類や量などを調整することによって制御できる。
 本発明の共重合体は、ガラス転移温度が、好ましくは120~350℃、より好ましくは130~250℃である。ガラス転移温度が低すぎると共重合体の耐熱性が不足し、使用できる用途が限定されてしまう。ガラス転移温度が高すぎると共重合体が脆く割れ易くなってしまう。なおガラス転移温度はJIS K7121に準拠して測定した値である。すなわち、本発明の共重合体を270℃まで一度昇温し、次いで室温まで冷却し、その後室温から270℃までを10℃/分で昇温させる条件にて示差走査熱量測定法にてDSC曲線を測定し、2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明のガラス転移温度とした。
 本発明の共重合体の製造方法に特に制限はない。通常、生産性の観点から、ラジカル重合法を採用して、重合温度、重合時間、連鎖移動剤の種類や量、重合開始剤の種類や量などを調整することによって、共重合体を製造する方法が好ましい。また、式(1)で表される単量体は、アニオン重合も可能であるため、ブロック共重合体や立体規則性の高い共重合体を得たい場合には、アニオン重合法を採用することも可能である。
 本発明の共重合体の製造のためのラジカル重合法においては、無溶媒または溶媒中で行うことが好ましく、低不純物濃度の共重合体が得られるという観点から無溶媒で行うことが好ましい。成形体にシルバーや着色が発生するのを抑制する観点から、重合反応は重合反応原料の溶存酸素量を低くして行うことが好ましい。また、重合反応は、窒素ガスなどの不活性ガス雰囲気中で行うことが好ましい。
 本発明の共重合体の製造のためのラジカル重合法において用いられる重合開始剤は、反応性ラジカルを発生するものであれば特に限定されない。例えば、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエ-ト、t-ヘキシルパーオキシネオデカノエ-ト、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ベンゾイルパーオキシド、3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)などが挙げられる。これらのうち、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ジメチル2,2’-アゾビス(2-メチルプロピオネート)が好ましい。
 かかる重合開始剤の1時間半減期温度は好ましくは60~140℃、より好ましくは80~120℃である。また、共重合体の製造のために用いられる重合開始剤は、水素引抜き能が好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下である。このような重合開始剤は1種を単独でまたは2種以上を組み合わせて用いることができる。重合開始剤の使用量は、重合反応に供される単量体100質量部に対して好ましくは0.0001~0.02質量部、より好ましくは0.001~0.01質量部、さらに好ましくは0.005~0.007質量部である。
 なお、水素引抜き能は重合開始剤製造業者の技術資料(例えば日本油脂株式会社技術資料「有機過酸化物の水素引抜き能と開始剤効率」(2003年4月作成))などによって知ることができる。また、α-メチルスチレンダイマーを使用したラジカルトラッピング法、即ちα-メチルスチレンダイマートラッピング法によって測定することができる。当該測定は、一般に、次のようにして行われる。まず、ラジカルトラッピング剤としてのα-メチルスチレンダイマーの共存下で重合開始剤を開裂させてラジカル断片を生成させる。生成したラジカル断片のうち、水素引抜き能が低いラジカル断片はα-メチルスチレンダイマーの二重結合に付加して捕捉される。一方、水素引抜き能が高いラジカル断片はシクロヘキサンから水素を引き抜き、シクロヘキシルラジカルを発生させ、該シクロヘキシルラジカルがα-メチルスチレンダイマーの二重結合に付加して捕捉され、シクロヘキサン捕捉生成物を生成する。そこで、シクロヘキサン、またはシクロヘキサン捕捉生成物を定量することで求められる、理論的なラジカル断片発生量に対する水素引抜き能が高いラジカル断片の割合(モル分率)を水素引抜き能とする。
 本発明の共重合体の製造のためにラジカル重合法を選択した場合に用いられる連鎖移動剤としては、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス-(β-チオプロピオネート)、ペンタエリスリトールテトラキスチオプロピオネートなどのアルキルメルカプタン類などが挙げられる。これらのうちn-オクチルメルカプタン、n-ドデシルメルカプタンなどの単官能アルキルメルカプタンが好ましい。これら連鎖移動剤は1種を単独で、または2種以上を組み合わせて用いることができる。
 かかる連鎖移動剤の使用量は重合反応に供される単量体100質量部に対して好ましくは0.1~1質量部、より好ましくは0.15~0.8質量部、さらに好ましくは0.2~0.6質量部、最も好ましくは0.2~0.5質量部である。また、該連鎖移動剤の使用量は、重合開始剤100質量部に対して好ましくは2500~10000質量部、より好ましくは3000~9000質量部、さらに好ましくは3500~6000質量部である。連鎖移動剤の使用量を上記範囲にすると、得られる共重合体の分子量を制御できるため、得られる共重合体に良好な成形加工性と高い力学強度を持たせることができる。
 本発明の共重合体の製造のためにラジカル重合法を選択した場合において溶媒を用いる場合、単量体および共重合体を溶解できるものであれば制限されないが、ベンゼン、トルエン、エチルベンゼンなどの芳香族炭化水素が好ましい。これらの溶媒は1種を単独でまたは2種以上を組み合わせて用いることができる。溶媒の使用量は、反応液の粘度と生産性との観点から適宜設定できる。溶媒の使用量は、例えば、重合反応原料100質量部に対して好ましくは100質量部以下、より好ましくは90質量部以下である。
 本発明の共重合体の製造のためにラジカル重合法を選択した場合において重合反応時の温度は好ましくは100~200℃、より好ましくは110~180℃である。重合温度が100℃以上であることで、重合速度の向上、重合液の低粘度化などに起因して生産性が向上する傾向となる。また重合温度が200℃以下であることで、重合速度の制御が容易になり、さらに副生成物の生成が抑制されるので本発明の共重合体の着色を抑制できる。重合反応の時間は好ましくは0.5~4時間、より好ましくは1.5~3.5時間、さらに好ましくは1.5~3時間である。なお、連続流通式反応装置の場合は、かかる重合反応の時間は反応器における平均滞留時間である。重合反応時の温度および重合反応の時間が上記範囲にあると、透明性に優れた共重合体を高効率で生産できる。
 ラジカル重合は回分式反応装置を用いて行ってもよいが、生産性の観点から連続流通式反応装置を用いて行うことが好ましい。連続流通式反応では、例えば窒素雰囲気下などで重合反応原料(単量体(式(1)で表される単量体、その他の単量体(A)〔その他の単量体(A)として具体的にはメタクリル酸アルキルエステルが好適〕を意味する)、重合開始剤、連鎖移動剤などを含む混合液)を調製し、それを反応器に一定流量で供給し、該供給量に相当する流量で反応器内の液を抜き出す。反応器として、栓流に近い状態にすることができる管型反応器および/または完全混合に近い状態にすることができる槽型反応器を用いることができる。また、1基の反応器で連続流通式の重合を行ってもよいし、2基以上の反応器を繋いで連続流通式の重合を行ってもよい。
 本発明においては少なくとも1基は連続流通式の槽型反応器を採用することが好ましい。重合反応時における槽型反応器内の液量は、槽型反応器の容積に対して好ましくは1/4~3/4、より好ましくは1/3~2/3である。反応器には通常、撹拌装置が取り付けられている。撹拌装置としては静的撹拌装置、動的撹拌装置が挙げられる。動的撹拌装置としては、マックスブレンド式撹拌装置、中央に配した縦型回転軸の回りを回転する格子状の翼を有する撹拌装置、プロペラ式撹拌装置、スクリュー式撹拌装置などが挙げられる。これらのうちでマックスブレンド式撹拌装置が均一混合性の点から好ましく用いられる。
 本発明の共重合体の製造のためにラジカル重合法を選択した場合における重合転化率は、回分式反応装置を用いて懸濁重合する場合は、好ましくは50~100質量%、より好ましくは70~99質量%である。
 また、連続流通式の槽型反応器を用いる場合は、好ましくは20~80質量%、より好ましくは30~70質量%、さらに好ましくは35~65質量%である。重合転化率が20質量%以上であることで残存する未反応単量体の除去が容易となり、共重合体からなる成形体の外観が良好となる傾向がある。重合転化率が70質量%以下であることで、重合液の粘度が低くなり生産性が向上する傾向となる。
 重合終了後、必要に応じて、未反応単量体等の揮発分を除去する。除去方法は特に制限されないが、加熱脱揮が好ましい。脱揮法としては、平衡フラッシュ方式や断熱フラッシュ方式が挙げられる。断熱フラッシュ方式による脱揮温度は、好ましくは200~280℃、より好ましくは220~260℃である。断熱フラッシュ方式で樹脂を加熱する時間は、好ましくは0.3~5分、より好ましくは0.4~3分、さらに好ましくは0.5~2分である。このような温度範囲および加熱時間で脱揮させると、着色の少ない共重合体を得やすい。除去した未反応単量体は、回収して、再び重合反応に使用することができる。回収された単量体のイエロインデックスは回収操作時などに加えられる熱によって高くなっていることがあるので、回収された単量体は、適切な方法で精製して、イエロインデックスを小さくすることが好ましい。
 本発明の成形体の製造においては、本発明の効果を損なわない範囲で、本発明の共重合体に他の重合体を混合して成形してもよい。かかる他の重合体としては、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、ポリノルボルネンなどのポリオレフィン樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂などのスチレン系樹脂;メチルメタクリレート系重合体、メチルメタクリレート-スチレン共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマーなどのポリアミド;ポリカーボネート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、ポリフッ化ビニリデン、ポリウレタン、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、シリコーン変性樹脂;アクリルゴム、アクリル系熱可塑性エラストマー、シリコーンゴム;SEPS、SEBS、SISなどのスチレン系熱可塑性エラストマー;IR、EPR、EPDMなどのオレフィン系ゴムなどが挙げられる。
 本発明の成形体は本発明の共重合体を80質量%以上含有するのが好ましく、90質量%以上含有するのがより好ましい。本発明の成形体の製造法は特に限定されない。本発明の共重合体または本発明の共重合体を含む成形用材料を、例えば、Tダイ法(ラミネート法、共押出法など)、インフレーション法(共押出法など)、圧縮成形法、ブロー成形法、カレンダー成形法、真空成形法、射出成形法(インサート法、二色法、プレス法、コアバック法、サンドイッチ法など)などの溶融成形法ならびに溶液キャスト法などで成形する方法が挙げられる。これらのうち、生産性の高さ、コストなどの点から、Tダイ法、インフレーション法または射出成形法が好ましい。
 本発明の共重合体は、保存、運搬、または成形時の利便性を高めるために、ペレットなどの形態にすることができる。また、本発明の成形体を得るにあたり、成形は、複数回行なってもよい。例えば、本発明の共重合体を成形してペレット状の成形体を得た後、かかるペレット状の成形体をさらに成形して所望の形状の成形体とすることができる。
 本発明の共重合体においては、必要に応じて、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、および蛍光体などの各種の添加剤を加えても良い。このような各種の添加剤の配合量は、本発明の共重合体に対して、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。
 各種の添加剤は、共重合体を製造する際の重合反応液に添加してもよいし、重合反応により製造された共重合体に添加してもよいし、成形体の製造時に添加しても良い。
 酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤などが挙げられる。これらの酸化防止剤は1種を単独で用いても、2種以上を併用してもよい。中でも、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤やヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との併用がより好ましい。
 リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを併用する場合、リン系酸化防止剤の使用量:ヒンダードフェノール系酸化防止剤の使用量は、質量比で、1:5~2:1が好ましく、1:2~1:1がより好ましい。
 リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト(ADEKA社製;商品名:アデカスタブHP-10)、トリス(2,4-ジt-ブチルフェニル)ホスファイト(BASF社製;商品名:IRGAFOS168)、3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサー3,9-ジホスファスピロ[5.5]ウンデカン(ADEKA社製;商品名:アデカスタブPEP-36)などが好ましい。
 ヒンダードフェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(BASF社製;商品名IRGANOX1010)、オクタデシル-3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオネート(BASF社製;商品名IRGANOX1076)などが好ましい。
 熱劣化防止剤は、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。
 該熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学社製;商品名スミライザーGM)、2,4-ジ-t-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学社製;商品名スミライザーGS)などが好ましい。
 紫外線吸収剤は、紫外線を吸収する能力を有する化合物であり、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる。
 紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類などが挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。
 ベンゾトリアゾール類は紫外線被照による着色などの光学特性低下を抑制する効果が高いので、本発明のフィルムを光学用途に適用する場合に用いる紫外線吸収剤として好ましい。ベンゾトリアゾール類としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名TINUVIN234)、2,2‘-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール](ADEKA社製;LA-31)、2-(5-オクチルチオ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-4-メチルフェノールなどが好ましい。
 また、トリアジン類の紫外線吸収剤としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(ADEKA社製;LA-F70)や、その類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;TINUVIN477やTINUVIN460)、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジンなどを挙げることができる。
 さらに380~400nmの波長の光を特に効果的に吸収したい場合は、国際公開第2011/089794号、国際公開第2012/124395号、特開2012-012476号公報、特開2013-023461号公報、特開2013-112790号公報、特開2013-194037号公報、特開2014-62228号公報、特開2014-88542号公報、および特開2014-88543号公報等に開示される複素環構造の配位子を有する金属錯体を紫外線吸収剤として用いることが好ましい。
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好適な光安定剤としては、2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物などのヒンダードアミン類が挙げられる。
 滑剤としては、例えば、ステアリン酸、ベヘニン酸、ステアロアミド酸、メチレンビスステアロアミド、ヒドロキシステアリン酸トリグリセリド、パラフィンワックス、ケトンワックス、オクチルアルコール、硬化油などが挙げられる。
 離型剤としては、セチルアルコール、ステアリルアルコールなどの高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライドなどのグリセリン高級脂肪酸エステルなどが挙げられる。本発明においては、離型剤として、高級アルコール類とグリセリン脂肪酸モノエステルとを併用することが好ましい。高級アルコール類とグリセリン脂肪酸モノエステルとを併用する場合、その割合は特に制限されないが、高級アルコール類の使用量:グリセリン脂肪酸モノエステルの使用量は、質量比で、2.5:1~3.5:1が好ましく、2.8:1~3.2:1がより好ましい。
 高分子加工助剤としては、通常、乳化重合法によって製造できる、0.05~0.5μmの粒子径を有する重合体粒子を用いる。該重合体粒子は、単一組成比および単一極限粘度の重合体からなる単層粒子であってもよいし、また組成比または極限粘度の異なる2種以上の重合体からなる多層粒子であってもよい。この中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましいものとして挙げられる。高分子加工助剤は、極限粘度が3~6dl/gであることが好ましい。極限粘度が小さすぎると成形性の改善効果が低い傾向がある。極限粘度が大きすぎると共重合体の成形加工性の低下を招く傾向がある。
 有機色素としては、紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。
 光拡散剤や艶消し剤としては、ガラス微粒子、ポリシロキサン系架橋微粒子、架橋ポリマー微粒子、タルク、炭酸カルシウム、硫酸バリウムなどが挙げられる。
 蛍光体としては、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤などが挙げられる。
 本発明の成形体の一形態であるフィルムは、溶液キャスト法、溶融流延法、押出成形法、インフレーション成形法、ブロー成形法などによって製造することができる。これらのうち、透明性に優れ、改善された靭性を持ち、取扱い性に優れ、靭性と表面硬度および剛性とのバランスに優れたフィルムを得ることができるという観点から、押出成形法が好ましい。押出機から吐出される共重合体の温度は好ましくは160~270℃、より好ましくは220~260℃に設定する。
 押出成形法のうち、良好な表面平滑性、良好な鏡面光沢、低ヘイズのフィルムが得られるという観点から、本発明の共重合体または本発明の共重合体からなる成形材料を溶融状態でTダイから押出し、次いでそれを二つ以上の鏡面ロールまたは鏡面ベルトで挟持して成形することを含む方法が好ましい。鏡面ロールまたは鏡面ベルトは金属製であることが好ましい。一対の鏡面ロールまたは鏡面ベルトの間の線圧は好ましくは10N/mm以上、より好ましくは30N/mm以上である。
 また、鏡面ロールまたは鏡面ベルトの表面温度は共に130℃以下であることが好ましい。また、一対の鏡面ロール若しくは鏡面ベルトは、少なくとも一方の表面温度が60℃以上であることが好ましい。このような表面温度に設定すると、押出機から吐出される本発明の共重合体または本発明の共重合体からなる成形材料を自然放冷よりも速い速度で冷却することができ、表面平滑性に優れ且つヘイズの低いフィルムを製造し易い。押出成形で得られる未延伸フィルムの厚さは、10~300μmであることが好ましい。フィルムのヘイズは、厚さ100μmにおいて、好ましくは0.5%以下、より好ましくは0.3%以下である。
 フィルム状に成形された本発明の共重合体に、延伸処理を施してもよい。延伸処理によって機械的強度が高まり、ひび割れし難いフィルムを得ることができる。延伸方法は特に限定されず、同時二軸延伸法、逐次二軸延伸法、チュブラー延伸法などが挙げられる。均一に延伸でき高い強度のフィルムが得られるという観点から、延伸時の温度の下限は共重合体のガラス転移温度より10℃高い温度であり、延伸時の温度の上限は共重合体のガラス転移温度より40℃高い温度である。延伸は通常100~5000%/分で行われる。延伸の後、熱固定を行うことによって、熱収縮の少ないフィルムを得ることができる。延伸後のフィルムの厚さは10~200μmであることが好ましい。
 本発明の成形体の一形態であるフィルムは、透明性、耐熱性が高いため、光学用途に好適であり、偏光子保護フィルム、液晶保護板、携帯型情報端末の表面材、携帯型情報端末の表示窓保護フィルム、導光フィルム、各種ディスプレイの前面板用途に特に好適である。
 以下、実施例および比較例によって本発明をより具体的に説明するが、本発明は下記実施例に限定されない。なお、物性値等の測定は以下の方法によって実施した。
(重量平均分子量、数平均分子量、分子量分布)
 溶離液としてテトラヒドロフラン、カラムとして東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いた。GPC装置として、示差屈折率検出器(RI検出器)を備えた東ソー株式会社製のHLC-8320(品番)を使用した。測定対象である重合体または共重合体4mgをテトラヒドロフラン5mlに溶解させて試料溶液を作製した。カラムオーブンの温度を40℃に設定し、溶離液流量0.35ml/分で、試料溶液20μlを注入して、クロマトグラムを測定した。分子量が400~5000000の範囲内にある標準ポリスチレン10点をGPCで測定し、保持時間と分子量との関係を示す検量線を作成した。この検量線に基づいて重量平均分子量(Mw)および数平均分子量(Mn)を決定し、また分子量分布(Mw/Mn)を求めた。
(ガラス転移温度)
 重合体または共重合体を、JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、270℃まで一度昇温し、次いで室温まで冷却し、その後、室温から270℃までを10℃/分で昇温させる条件にてDSC曲線を測定した。2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。
(全光線透過率)
 重合体または共重合体を熱プレス成形して、50mm×50mm×厚さ3.2mmの試験片(A)を得た。JIS K7361-1に準じて、ヘイズメータ(村上色彩研究所製、HM-150)を用いて試験片(A)の全光線透過率を測定した。
H-NMR測定)
 合成例で合成した化合物の構造確認や、実施例や比較例の共重合体中の共重合組成は、H-NMRにて実施した。H-NMRスペクトルは、核磁気共鳴装置(Bruker社製 ULTRA SHIELD 400 PLUS)を用いて、試料10mgに対して溶媒として重水素化クロロホルム1mLを用い、室温、積算回数64回の条件にて、測定した。
(曲げ弾性率)
 重合体または共重合体を熱プレス成形して、80mm×10mm×厚さ4.0mmの試験片(B)を得た。試験片(B)を用いてJIS K7171に準じて、オートグラフ(株式会社島津製作所製)を使用して、23℃における3点曲げを実施し、弾性率を測定した。
(飽和吸水率)
 重合体または共重合体を熱プレス成形して、80mm×10mm×厚さ4.0mmの試験片(B)を得た。試験片(B)を、50℃、667Pa(5mmHg)の環境下において3日間、乾燥させて、絶乾試験片を得た。絶乾試験片の質量W0を測定した。その後、絶乾試験片を温度23℃の水の中に浸漬させ2ヶ月間放置した。水から引き上げ後、試験片の質量W1を測定した。下式により飽和吸水率(%)を算出した。
   飽和吸水率={(W1-W0)/W0}×100
(鉛筆硬度)
 重合体または共重合体を熱プレス成形して、50mm×50mm×厚さ3.2mmの試験片(A)を得た。得られた試験片(A)の鉛筆硬度測定は、JIS K5600-5-4に準拠し、0.75Kg荷重で測定した。
(熱分解温度)
 窒素雰囲気下、JIS-K-7120に準じて10℃/分の昇温速度で重合体または共重合体の熱質量分析(TG)を行った。250℃での重量を原点とし、1%重量減少する温度を熱分解温度とした。測定装置として、島津製作所製のTGA-50(品番)を用いた。
<合成例1>
2-エチニルシクロペンタノール(i)の合成
 温度計、攪拌装置、滴下ロートおよび窒素導入管を設置した10L四つ口フラスコにリチウムアセチリド・エチレンジアミン錯体163g(1.80mol)を仕込んだ後、滴下ロートより、ジメチルスルホキシド5Lを投入した。次いで、シクロペンテンオキシド126g(1.50mol)を内温40℃以下が維持できる速度で滴下した。滴下終了後、内温を75℃に昇温した後、4時間加熱攪拌した。該反応液を25℃に冷却した後、滴下ロートより飽和塩化アンモニウム水溶液0.5Lおよび飽和食塩水2Lを添加した。得られた混合液を2Lのジイソプロピルエーテルで2回抽出した後、有機層を減圧下濃縮した。この濃縮液をシリカゲルカラムクロマトグラフィー精製することによって、2-エチニルシクロペンタノール107g(0.98mol)を得た{収率65%}。
Figure JPOXMLDOC01-appb-C000004
 得られた精製物(2-エチニルシクロペンタノール)のH-NMRを測定したところ、H-NMRチャートは以下の通りであった。
 H-NMR(400MHz、CDCl、TMS、ppm)δ:4.0-4.4(1H,m)、3.1(1H,s)、2.4-2.8(1H,m)、2.1(1H,d,J=2.6Hz)、1.4-2.3(6H,m)
<合成例2>
2-エチニルシクロヘキサノール(ii)の合成
 シクロペンテンオキシド126g(1.50mol)のかわりにシクロヘキセンオキシド147g(1.50mol)を用いる以外は合成例1と同様の反応操作を実施し、2-エチニルシクロヘキサノール130g(1.05mol)を得た{収率70%}。
Figure JPOXMLDOC01-appb-C000005
 得られた精製物(2-エチニルシクロヘキサノール)のH-NMRを測定したところ、H-NMRチャートは以下の通りであった。
 H-NMR(400MHz、CDCl、TMS、ppm)δ:3.48-3.42(1H,m)、2.28(1H,s)、2.23-2.15(1H,m)、2.14(1H,d,J=2.4Hz)、2.03-1.11(8H,m)
<合成例3>
ヘキサヒドロ-3-メチレン-2H-シクロペンタ[b]フラン-2-オン(iii)の合成
 攪拌装置、温度計、ガス導入管および排出管を設置した5000mlのオートクレーブに合成例1で得た2-エチニルシクロペンタノール63.3g(575mmol)、アセトニトリル2500ml、塩化パラジウム39.3g(222mmol)、塩化スズ(II)41.8g(221mmol)およびトリ-n-ブチルホスフィン90.3g(446mmol)を仕込んだ。ガス導入管より一酸化炭素を導入して0.8MPaまで加圧した。一酸化炭素による加圧を継続したまま、15時間、75℃で加熱攪拌した。25℃まで冷却した後に、ガス排出管より一酸化炭素を排気した。得られた反応混合物に水1.7Lおよび酢酸エチル5Lを添加した後、セライトを用いてろ過した。このろ液を分液し、得られた有気層を減圧下に濃縮した。この濃縮液をシリカゲルカラムクロマトグラフィーを用いて精製し、ヘキサヒドロ-3-メチレン-2H-シクロペンタ[b]フラン-2-オン(以下MCPBL)27.0g(196mmol)を得た{収率34%}。
Figure JPOXMLDOC01-appb-C000006
 得られた精製物(ヘキサヒドロ-3-メチレン-2H-シクロペンタ[b]フラン-2-オン)のH-NMRを測定したところ、H-NMRチャートは以下の通りであった。
 H-NMR(400MHz、CDCl、TMS、ppm)δ:6.05(1H,d,J=3Hz)、5.45(1H,d,J=4Hz)、3.71(1H,m)、2.62(1H,m)、2.42-1.20(6H,m)
<合成例4>
ヘキサヒドロ-3-メチレン-2(3H)-ベンゾフラノン(iv)
 2-エチニルシクロペンタノール63.3g(575mmol)のかわりに合成例2で得られた2-エチニルシクロヘキサノール71.4g(575mmol)を用いる以外は、合成例3と同様の操作を実施し、ヘキサヒドロ-3-メチレン-2(3H)-ベンゾフラノン(以下MCHBL)33.3g(219mmol)を得た{収率38%}。
Figure JPOXMLDOC01-appb-C000007
 得られた精製物(ヘキサヒドロ-3-メチレン-2(3H)-ベンゾフラノン)のH-NMRを測定したところ、H-NMRチャートは以下の通りであった。
 H-NMR(400MHz、CDCl、TMS、ppm)δ:6.06(1H,d,J=3Hz)、5.39(1H,d,J=3Hz)、3.72(1H,m)、2.45(1H,m)、2.41-1.33(8H,m)
<実施例1>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器に、トルエンの15質量部に対して、メタクリル酸メチルの47.4質量部、合成例4で得られたMCHBLの12質量部、n-オクチルメルカプタンの0.0825質量部を仕込んだ。
 耐圧容器を窒素ガスにて十分置換した後、撹拌しながら140℃に昇温した。トルエンの1質量部に溶解させたジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.00188質量部の全量を該耐圧容器に添加し、重合を開始した。重合開始から4時間後に室温まで冷却して重合を停止した。得られた溶液にトルエンの50質量部を添加して希釈した後に、メタノール4000質量部に注ぎ、固形物を析出させた。析出固形物をろ別し、充分に乾燥して、共重合体(A1)26質量部を得た。共重合体(A1)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は85.9質量%、MCHBLに由来する構造単位の含量は14.1質量%であった。共重合体(A1)は、重量平均分子量(Mw)が204,000、分子量分布(Mw/Mn)が2.27であった。その他評価結果を表1に示す。
<実施例2>
 該耐圧容器に、トルエンの15質量部に対して、メタクリル酸メチルの29.4質量部、合成例4で得られたMCHBLの30質量部、n-オクチルメルカプタンの0.0375質量部を仕込んだ以外は実施例1と同様にして共重合体(A2)23質量部を得た。共重合体(A2)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は57.5質量%、MCHBLに由来する構造単位の含量は42.5質量%であった。共重合体(A2)は、重量平均分子量(Mw)が222,000、分子量分布(Mw/Mn)が2.33であった。その他評価結果を表1に示す。
<実施例3>
 該耐圧容器に、トルエンの15質量部に対して、メタクリル酸メチルの17.4質量部、合成例4で得られたMCHBLの42質量部、n-オクチルメルカプタンの0.0825質量部を仕込んだ以外は実施例1と同様にして共重合体(A3)28質量部を得た。共重合体(A3)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は36.4質量%、MCHBLに由来する構造単位の含量は63.6質量%であった。共重合体(A3)は、重量平均分子量(Mw)が171,000、分子量分布(Mw/Mn)が2.39であった。その他評価結果を表1に示す。
<実施例4>
 該耐圧容器に、トルエンの50質量部に対して、メタクリル酸メチルの42質量部、合成例4で得られたMCHBLの7.5質量部、n-オクチルメルカプタンの0.040質量部を仕込んだ以外は実施例1と同様にして共重合体(A4)21質量部を得た。共重合体(A4)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は83.5質量%、MCHBLに由来する構造単位の含量は16.5質量%であった。共重合体(A4)は、重量平均分子量(Mw)が120,000、分子量分布(Mw/Mn)が1.91であった。その他評価結果を表1に示す。
<実施例5>
 MCHBLの替わりに合成例3で得られたMCPBLを仕込んだ以外は、実施例1と同様にして共重合体(A5)24質量部を得た。共重合体(A5)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は84.7質量%、MCPBLに由来する構造単位の含量は15.3質量%であった。共重合体(A5)は、重量平均分子量(Mw)が220,000、分子量分布(Mw/Mn)が2.21であった。その他評価結果を表1に示す。
<実施例6>
 MCHBLの替わりに合成例3で得られたMCPBLを仕込んだ以外は、実施例2と同様にして共重合体(A6)19質量部を得た。共重合体(A6)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は55.2質量%、MCPBLに由来する構造単位の含量は44.8質量%であった。共重合体(A6)は、重量平均分子量(Mw)が276,000、分子量分布(Mw/Mn)が2.19であった。その他評価結果を表1に示す。
<実施例7> 
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器にトルエンの15質量部に対して、スチレンの47.4質量部、合成例4で得られたMCHBLの12質量部を仕込んだ。
 耐圧容器を窒素ガスにて十分置換した後、撹拌しながら130℃に昇温した。トルエン1質量部に溶解させたジ-t-ブチルパーオキサイド(日本油脂製:パーブチルD)の0.0021質量部の全量を該耐圧容器に添加し重合を開始した。重合開始から3時間後に室温まで冷却して重合を停止した。得られた溶液にトルエンの50質量部を添加して希釈した後に、メタノール4000質量部に注ぎ、固形物を析出させた。析出固形物をろ別し、充分に乾燥して、共重合体(A7)15質量部を得た。共重合体(A7)の1H-NMRを測定したところ、スチレンに由来する構造単位の含量は66.3質量%、MCHBLに由来する構造単位の含量は33.7質量%であった。共重合体(A7)は、重量平均分子量(Mw)が111,100、分子量分布(Mw/Mn)が2.13であった。その他評価結果を表1に示す。
<実施例8>
 該耐圧容器にトルエンの15質量部に対して、スチレンの29.4質量部、合成例4で得られたMCHBLの30質量部を仕込んだ以外は実施例7と同様にして、共重合体(A8)17質量部を得た。共重合体(A8)の1H-NMRを測定したところ、スチレンに由来する構造単位の含量は37.0質量%、MCHBLに由来する構造単位の含量は63.0質量%であった。共重合体(A8)は、重量平均分子量(Mw)が143,500、分子量分布(Mw/Mn)が2.06であった。その他評価結果を表1に示す。
<比較例1>
 該耐圧容器にトルエンの17.5質量部に対して、メタクリル酸メチルの69.3質量部、n-オクチルメルカプタンの0.084質量部を仕込み、MCHBLを仕込まなかった以外は実施例2と同様にして共重合体(B1)33質量部を得た。共重合体(B1)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は100質量%であった。共重合体(B1)は、重量平均分子量(Mw)が176,000、分子量分布(Mw/Mn)が2.02であった。その他評価結果を表1に示す。
<比較例2>
 MCHBLの替わりにα-メチレン-γ-ブチロラクトン(東京化成工業社製)(以下MBLと略す)を仕込んだ以外は、実施例2と同様にして共重合体(B2)23質量部を得た。共重合体(B2)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は41.7質量%、MBLに由来する構造単位の含量は58.3質量%であった。共重合体(B2)は、重量平均分子量(Mw)が544,000、分子量分布(Mw/Mn)が2.50であった。なお、共重合体(B2)はTHFに溶解しないため、DMF溶媒に溶解し、DMF溶媒のGPCにてMwおよびMw/Mnを測定した。その他評価結果を表1に示す。
<実施例9>
 充分乾燥させた撹拌装置付き耐圧容器内を窒素置換した。該耐圧容器に、室温下にて、トルエン100g、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン1.4g(6.0mmol)、濃度0.45Mのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムのトルエン溶液29.7g(17mmol)、および濃度1.3Mのsec-ブチルリチウムの溶液(溶媒:シクロヘキサン95質量%、n-ヘキサン質量5%)4.5g(5.7mmol)を仕込んだ。撹拌しながら、これに、20℃にて、蒸留精製したメタクリル酸メチル10gと合成例4で得られたMCHBL10gの混合物を30分間かけて滴下した。滴下終了後、20℃で90分間撹拌した。
 得られた溶液にトルエン100gを加えて希釈した。次いで、該希釈液をメタノール2kgに注ぎ入れ、固形物を析出させた。析出固形物をろ別し、充分に乾燥して、共重合体(A9)16質量部を得た。共重合体(A9)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は60.6質量%、MCHBLに由来する構造単位の含量は39.4質量%であった。共重合体(A9)は、重量平均分子量(Mw)が4,800、分子量分布(Mw/Mn)が1.31であった。その他評価結果を表2に示す。
<比較例3>
 メタクリル酸メチル10gと合成例4で得られたMCHBL10gの混合物の替わりに、メタクリル酸メチル20gを用いた以外は実施例9と同様にして重合体(B3)17質量部を得た。重合体(B3)の1H-NMRを測定したところ、メタクリル酸メチルに由来する構造単位の含量は100質量%であった。重合体(B3)は、重量平均分子量(Mw)が4,000、分子量分布(Mw/Mn)が1.28であった。その他評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表1から分かるように、式(1)で表される単量体に由来する構造単位を含有する共重合体は、いずれも耐熱性が高いことがわかる。実施例2と比較例2から、従来から知られているMBLを共重合した共重合体に比して、耐熱性が高いだけでなく、吸水率も低いことがわかる。
 実施例から式(1)で表される単量体は、MMAやスチレンとの共重合性がよいことがわかる。
 実施例から式(1)で表される単量体は、ラジカル重合だけでなく、アニオン重合も可能であるため、欲しい共重合体の種類に応じた様々な製造方法を選択することができる。

Claims (4)

  1.  下記式(1)で表される単量体に由来する構造単位と、その他の単量体(A)に由来する構造単位よりなる共重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Z1環はγ-ブチロラクトン上の2つの炭素原子とともに形成する任意の位置に酸素原子を有していても良い炭素数3~10の環構造を表す。R1は水素原子または炭素数1~10のアルキル基を表す。)
  2.  その他の単量体(A)が少なくともメタクリル酸エステルを含有する請求項1に記載の共重合体。
  3.  式(1)で表される単量体に由来する構造単位を12~70質量%含有する請求項1または2に記載の共重合体。
  4.  請求項1~3のいずれか一項に記載の共重合体を含有する成形体。
PCT/JP2015/052930 2014-02-03 2015-02-03 共重合体および成形体 WO2015115659A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/116,144 US20170174802A1 (en) 2014-02-03 2015-02-03 Copolymer and molded article
JP2015560074A JPWO2015115659A1 (ja) 2014-02-03 2015-02-03 共重合体および成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014018434 2014-02-03
JP2014-018434 2014-02-03

Publications (1)

Publication Number Publication Date
WO2015115659A1 true WO2015115659A1 (ja) 2015-08-06

Family

ID=53757224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052930 WO2015115659A1 (ja) 2014-02-03 2015-02-03 共重合体および成形体

Country Status (4)

Country Link
US (1) US20170174802A1 (ja)
JP (1) JPWO2015115659A1 (ja)
TW (1) TW201538543A (ja)
WO (1) WO2015115659A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179103A (ja) * 2016-03-30 2017-10-05 株式会社クラレ 変性メタクリル樹脂および成形体
JP2017210503A (ja) * 2016-05-23 2017-11-30 株式会社クラレ メタクリル酸エステル共重合体および成形体
JPWO2021033768A1 (ja) * 2019-08-22 2021-02-25

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639398B2 (en) 2019-12-30 2023-05-02 Rohm And Haas Electronic Materials Llc Photosensitive bismaleimide composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231648A (ja) * 1995-01-17 1996-09-10 Degussa Ag キャスティングガラスの製造のため又は熱形状安定性の成形体の製造のための成形材料用のコポリマーの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116331A (ja) * 1992-10-07 1994-04-26 Toray Ind Inc 透明耐熱樹脂材料および光学用成形体
US7465498B2 (en) * 2005-11-30 2008-12-16 Sabic Innovative Plastics Ip B.V. Tulipalin copolymers
JP5496656B2 (ja) * 2006-05-23 2014-05-21 アルケマ フランス 多層共押出方法
JP5652401B2 (ja) * 2009-10-13 2015-01-14 コニカミノルタ株式会社 光学フィルム
WO2012029304A1 (ja) * 2010-08-31 2012-03-08 株式会社クラレ 重合体組成物および成形品

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231648A (ja) * 1995-01-17 1996-09-10 Degussa Ag キャスティングガラスの製造のため又は熱形状安定性の成形体の製造のための成形材料用のコポリマーの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179103A (ja) * 2016-03-30 2017-10-05 株式会社クラレ 変性メタクリル樹脂および成形体
JP2017210503A (ja) * 2016-05-23 2017-11-30 株式会社クラレ メタクリル酸エステル共重合体および成形体
JPWO2021033768A1 (ja) * 2019-08-22 2021-02-25
JP7474771B2 (ja) 2019-08-22 2024-04-25 株式会社日本触媒 共重合体及びその製造方法、共重合体混合物、ドープ樹脂組成物、並びに樹脂成形体及びその製造方法

Also Published As

Publication number Publication date
JPWO2015115659A1 (ja) 2017-03-23
TW201538543A (zh) 2015-10-16
US20170174802A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6247373B1 (ja) メタクリル系樹脂組成物、光学フィルム、光学部品
JP6230589B2 (ja) シート状成形体
WO2015115659A1 (ja) 共重合体および成形体
TWI573832B (zh) 甲基丙烯酸樹脂組成物
CN110352212B (zh) 丙烯酸类树脂双轴拉伸膜及其制造方法
JP6574138B2 (ja) 共重合体および成形体
CN117321092A (zh) 甲基丙烯酸类共聚物、甲基丙烯酸类树脂组合物及其制备方法和成形体
JP6649177B2 (ja) メタクリル酸エステル共重合体および成形体
JP5308891B2 (ja) アクリル系重合体とその製造方法ならびにアクリル樹脂組成物、位相差フィルムおよび画像表示装置
WO2019093385A1 (ja) メタクリル共重合体およびその成形品
JP6908629B2 (ja) メタクリル共重合体および成形体
WO2022196827A1 (ja) メタクリル系共重合体およびその製造方法
WO2021193521A1 (ja) メタクリル系共重合体、組成物、成形体、フィルム又はシートの製造方法および積層体
JP2019059882A (ja) メタクリル系樹脂組成物、光学フィルム、光学部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560074

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15116144

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743567

Country of ref document: EP

Kind code of ref document: A1