WO2016114297A1 - 保冷保温容器 - Google Patents

保冷保温容器 Download PDF

Info

Publication number
WO2016114297A1
WO2016114297A1 PCT/JP2016/050815 JP2016050815W WO2016114297A1 WO 2016114297 A1 WO2016114297 A1 WO 2016114297A1 JP 2016050815 W JP2016050815 W JP 2016050815W WO 2016114297 A1 WO2016114297 A1 WO 2016114297A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
valve
state
temperature
cold
Prior art date
Application number
PCT/JP2016/050815
Other languages
English (en)
French (fr)
Inventor
三浦 忠将
岸本 敦司
裕直 小倉
Original Assignee
株式会社村田製作所
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 国立大学法人 千葉大学 filed Critical 株式会社村田製作所
Priority to JP2016569475A priority Critical patent/JPWO2016114297A1/ja
Publication of WO2016114297A1 publication Critical patent/WO2016114297A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/20External fittings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Definitions

  • the present invention relates to a cold insulation container, and more particularly, to a cold insulation container used for transporting an article in a cold and / or insulated state.
  • the articles are kept cold and / or transported while being kept warm.
  • the goods are kept at a low temperature without interruption.
  • the logistics system that keeps the product is called a cold chain, and the demand for transporting the goods while being kept cold is increasing more and more.
  • a latent heat type first cold storage material or heat storage material in a solidified state is used as an article.
  • a latent heat type second cold storage material or heat storage material arranged adjacently and disposed outside the first cold storage material or heat storage material is the first cold storage material or heat storage.
  • the conventional cold insulation container described above uses the latent heat of the heat storage material, and allows the heat storage material to change its state according to the surrounding environment (especially temperature) to passively cool or keep the article passively. There are only. In such a cold insulated container, the temperature in the container cannot be actively managed, is not efficient, and the temperature in the container deviates from a desired temperature range when the surrounding environment changes rapidly. Can happen.
  • the object of the present invention is to provide a cold insulation container capable of active and efficient temperature management.
  • the present inventors have obtained a novel idea of using a technique for storing and transferring heat in a cold insulation container using a chemical reaction or adsorption / desorption phenomenon of a heat storage material, that is, a heat pump principle.
  • apparatuses using the principle of the heat pump apparatuses as described in Patent Documents 2 to 3, for example, are known. However, these apparatuses are used as they are to store articles even if applied to a cold insulation container. It is not possible to efficiently keep the space cool.
  • the inventors of the present invention have completed the present invention as a result of further intensive studies on the operation and control method of the device for heating or cooling the space.
  • a container wall that defines a space in which articles can be stored;
  • a reaction chamber containing a heat storage material, a condensation evaporation chamber for condensing or evaporating a condensable component generated by an endothermic reaction of the heat storage material, and a reaction chamber so that the condensable component can move between the reaction chamber and the condensation evaporation chamber
  • a device having a communication part for communicating with the condensation evaporation chamber;
  • a valve provided in the communication section;
  • a temperature sensor for detecting the temperature of the space;
  • a controller that controls opening and closing of the valve based on the temperature of the space detected by the temperature sensor, and the device is disposed between the reaction chamber and the condensation evaporation chamber when the valve is in a closed state.
  • the device When in a non-equilibrium state and the valve is switched from the closed state to the open state by the controller, the device shifts from the non-equilibrium state to the equilibrium state between the reaction chamber and the condensation evaporation chamber, and the space A cold insulated container is provided that heats or cools the container.
  • a device for heating or cooling a space in which an article can be stored, a valve, a temperature sensor, and a control unit are used in combination, and the operation of the device is controlled by the temperature sensor. Since it can control by operating a valve through a control part based on the temperature of the detected space, it becomes possible to perform temperature management actively and efficiently.
  • a valve is provided at the communication portion between the reaction chamber and the condensation evaporation chamber, The valve is closed in a non-equilibrium state with the condensing and evaporation chamber, and further, using a temperature sensor that detects the temperature of the space, for example, the temperature of the space falls within a predetermined temperature range according to preset conditions.
  • the controller can change the valve from the closed state to the open state when deviating from this, which causes the device to shift from a non-equilibrium state to an equilibrium state between the reaction chamber and the condensation evaporation chamber.
  • the space can be heated or cooled.
  • Such a cold and warm container of the present invention can be suitably used for transporting an article while being kept cold and / or warm (or kept within a predetermined temperature range), and can also be understood as a temperature control container.
  • the “equilibrium state” means that even if the condensable component can move between the reaction chamber and the condensing evaporation chamber (or even if the valve of the communication section is opened), Means a state that does not move substantially, and therefore, the appearance of heat in and out of the device does not substantially occur, and “non-equilibrium state” means not in such an equilibrium state.
  • a cold insulated container capable of actively and efficiently performing temperature management is provided.
  • This embodiment relates to one aspect in which a device provided in a cold insulation container cools a space in which an article can be stored (that is, it can function as a cooler).
  • a heat and cold container 20 in the present embodiment has a container wall 1 that defines a space 10 in which an article can be stored, and further a device 3 for heating or cooling the space 10.
  • the condensing evaporation chamber of the device 3 cools the space 10
  • a valve 5 a temperature sensor 7, and a control unit 9
  • optionally a heat storage material 11 and / or a heater. You may have.
  • the container wall 1 defines a space 10 in which an article (not shown) can be accommodated.
  • the container wall 1 may be provided with a lid (not shown) that can be opened and closed so that articles can be placed in the space 10 and taken out.
  • the container wall 1 can preferably be composed (at least partly) of a heat insulating material in order to minimize the influence of the external environmental temperature on the space 10. Any appropriate heat insulating material may be used as the heat insulating material, and a material having a thermal conductivity of 0.058 W / (m ⁇ K) or less may be generally used.
  • foamed plastic insulation (bead method polystyrene foam, extrusion polystyrene foam, rigid urethane foam, etc.), inorganic fiber insulation (glass wool, rock wool, etc.), natural material insulation (cellulose fiber, wool insulation, Carbonized cork) can be used.
  • the device 3 for heating or cooling the space 10 includes a reaction chamber 3a containing a heat storage material, a condensation evaporation chamber 3b for condensing or evaporating a condensable component that can be generated by an endothermic reaction of the heat storage material, and a condensable component reacting.
  • a communication portion 3c is provided for connecting the reaction chamber 3a and the condensation evaporation chamber 3b so as to be movable between the chamber 3a and the condensation evaporation chamber 3b.
  • the device 3 having such a configuration can be understood as a heat pump (a chemical heat pump when a chemical heat storage material to be described later is used).
  • the reaction (including physical change) exhibited by the heat storage material can be understood as a driving source of heat transfer by the heat pump, and the condensable component can be understood as a working medium of the heat pump.
  • the device 3 will be described in more detail later in connection with the method for manufacturing and using the cold and warm container.
  • the device 3 can be made of a thermally conductive material at least in a portion thermally coupled to the space 10 so that heat can enter and exit inside and outside the device 3.
  • a thermally conductive material such as metal (copper, alloy, stainless steel, etc.), oxide (alumina, etc.), nitride (aluminum nitride, etc.), carbon, etc.
  • a good conductor of heat can be used.
  • the device 3 is thermally isolated as much as possible between the reaction chamber 3a and the condensing evaporation chamber 3b.
  • the reaction chamber 3a and the condensing evaporation chamber 3b are made of a heat conductive material
  • at least a part of the communication part 3c may be made of a material having a relatively low heat conductivity.
  • the valve 5 is provided in the communication part 3c of the device 3.
  • any appropriate valve may be used as long as the open / close state (opening degree) can be controlled by the control unit 9.
  • the valve 5 may be an electromagnetic valve, an electric valve, or the like. Since a solenoid valve is generally small and lightweight, it is preferable for use in a cold insulated container for transportation.
  • the valve 5 is closed in a state before use so as to maintain the device 3 in a non-equilibrium state between the reaction chamber 3 a and the condensation evaporation chamber 3 b.
  • the non-equilibrium state is a state in which the condensable component is present in the condensation evaporation chamber 3b in a richer state than the reaction chamber 3a as compared with the equilibrium state.
  • the device chamber (reaction chamber or condensing evaporation chamber) is “thermally coupled” to a space so that heat can move between the inside of the device chamber and the space. It means to do.
  • the thermal coupling may be, for example, heat conduction by direct contact, or may be heat conduction by indirect contact using a heat medium (for example, fluid such as liquid or gas) or a heat conductive member. . Conveniently, this can be achieved by exposing at least part of the outer surface of the chamber (made of a thermally conductive material) to the space (which will partially define the space).
  • the condensing and evaporating chamber 3b is arranged in a state of being thermally coupled to the space 10 so as to cool the space 10 (that may function as a cooler).
  • the lower surface of the condensing evaporation chamber 3b is exposed to the space 10, but the present invention is not limited to this.
  • the portion of the condensation evaporation chamber 3b that is not exposed to the space 10 is preferably covered with a heat insulating material. This is not essential for this embodiment.
  • the reaction chamber 3a is arranged as thermally isolated as possible from the space 10.
  • the reaction chamber 3a is covered with the same material as that of the container wall 1.
  • the reaction chamber 3a may be provided outside the container wall 1 ( It may be externally attached to the cold insulation container 20).
  • the temperature sensor 7 is provided so as to detect the temperature of the space 10. Although the temperature sensor 7 can be arranged in the space 10 as shown in the drawing, it is sufficient that at least the detection unit is located in the space 10. As the temperature sensor 7, any appropriate temperature sensor capable of detecting the atmospheric temperature in the space at least in the temperature management range can be used.
  • the controller 9 is electrically connected to the valve 5 and the temperature sensor 7, receives the temperature in the space 10 detected by the temperature sensor 7 as an electrical signal, and controls the opening and closing of the valve 5 based on this. Configured as follows. As long as the controller 9 has such a configuration, the controller 9 can be arranged at an arbitrary position with respect to the cold insulation container 20.
  • the control unit 9 may be a control unit including a processor and a memory (and an input / output interface, if necessary), but is not limited thereto.
  • the cold insulation container 20 of the present embodiment may further include a heat storage material 11 (hereinafter also referred to as a second heat storage material for the purpose of being distinguished from the heat storage material of the device 3).
  • the second heat storage material 11 can be disposed in the space 10 or in the vicinity thereof as illustrated. Any appropriate heat storage material can be used for the second heat storage material 11, but a material that stores heat in advance so as to gradually release the heat can be used.
  • a heater may be used instead of or in addition to the second heat storage material 11. The heater may be controlled by the control unit 9. However, it should be noted that such second heat storage material and / or heater is not essential for the cold insulation container 20.
  • a heat storage material (or heat storage material) is prepared.
  • the heat storage material used for the device 3 may be any material that can reversibly generate a condensable component by an endothermic reaction.
  • heat storage materials include chemical heat storage materials in which the endothermic reaction is a chemical reaction, and adsorption / absorption heat storage materials in which the endothermic reaction is an adsorption or absorption reaction.
  • the condensable component only needs to be condensable in the use temperature range desired for the cold insulation container, and can be selected according to the heat storage material, and is preferably water.
  • the temperature at which the heat storage material can reversibly generate a condensable component by an endothermic reaction may vary depending on other conditions (eg, pressure in the device).
  • hydrates of inorganic compounds and inorganic hydroxides can be used. More specifically, alkaline earth metal compound hydrates and alkaline earth metal hydroxides such as calcium sulfate and calcium chloride hydrates, calcium and magnesium hydroxides, and the like can be given. Also, inorganic compounds capable of forming hydrates (which are understood as precursors of hydrates of inorganic compounds), such as calcium oxide, can be used.
  • calcium sulfate hemihydrate exhibits the following endothermic reaction.
  • Q 1 is known to be about 16.7 kJ / mol, which is a reversible reaction.
  • n can be the number of molecules to be hydrated, specifically 1, 2, 4, 6 and Q 2 is known to be about 30-50 kJ / mol, which is a reversible reaction. It is.
  • the chemical heat storage material is not limited to the above example, and any appropriate chemical heat storage material may be used (for example, it may generate ammonia).
  • a chemical heat storage material can obtain a large heat storage capacity by using a chemical reaction, and can store heat in a wide temperature range.
  • the chemical heat storage material has a relatively high reaction rate, and it is relatively easy to control the timing of heat absorption or heat generation. Therefore, the chemical heat storage material is suitable for opening and closing the valve 5 at a desired timing.
  • zeolite examples include zeolite, silica gel, mesoporous silica, activated carbon and the like (hereinafter also referred to as “zeolite etc.”).
  • zeolite etc. Such an adsorption / absorption heat storage material can be easily handled and can be simplified in structure (for example, it is not necessary to consider corrosion prevention) as compared with a chemical heat storage material.
  • any of these zeolites and the like can adsorb and desorb water, for example, reversibly, and exhibit an endothermic phenomenon upon desorption of water.
  • Z represents the composition of zeolite or the like as a representative, and x can take various values depending on the composition.
  • Q 4 can be, for example, about 30-80 kJ / mol for zeolite, depending on the specific composition.
  • the zeolite is a so-called zeolite structure, that is, a crystalline hydrous aluminosilicate having a network structure in which SiO 4 tetrahedron and AlO 4 tetrahedron share apex oxygen and are connected in three dimensions as a basic skeleton.
  • Zeolites can usually be represented by the general formula: (M 1, M 2 1/2) m (Al m Si n O 2 (m + n)) ⁇ xH 2 O (n ⁇ m)
  • M 1 is a monovalent cation such as Li + , Na + , or K +
  • M 2 is a divalent cation such as Ca 2+ , Mg 2+ , or Ba 2+ .
  • Silica gel is a colloidal silica three-dimensional structure having a pore diameter of several nm to several tens of nm and a specific surface area of 5 to 1000 m 2 / g, and the porous material characteristics can be controlled over a wide range. Moreover, the primary particle surface of silica gel is covered with silanol, and polar molecules (such as water) are selectively adsorbed under the influence of silanol.
  • Mesoporous silica is a substance having uniform and regular pores made of silicon dioxide and having a pore diameter of about 2 to 10 nm.
  • Activated carbon is a “porous carbonaceous substance having pores”, which has a large specific surface area and adsorption capacity.
  • the basic skeleton is a two-dimensional lattice planar structure in which carbon atoms are connected at an angle of 120 °.
  • the two-dimensional lattice is irregularly stacked to form a crystal lattice, and this crystal lattice is randomly connected to be activated carbon.
  • the voids between the crystal lattices are activated carbon pores, and water is adsorbed into the pores. .
  • the heat storage material at least one selected from the group consisting of the above-described chemical heat storage material and adsorption / absorption heat storage material may be used.
  • the parts of the device 3 (for example, a casing and a lid) including the reaction chamber 3a, the condensation evaporation chamber 3b, and the communication portion 3c are made from a predetermined material (for example, a heat conductive material such as metal), and the pressure is reduced (for example, about 1 Pa). ),
  • the heat storage material prepared above is put into the reaction chamber 3a, and the condensation evaporation chamber 3b is appropriately cooled (for example, with liquid nitrogen or the like) in order to prevent diffusion of the condensable component.
  • the condensable component is put into 3b, and the parts of the device 3 are sealed while the valve 5 is installed in the connecting portion 3c.
  • the reaction chamber 3a is heated and taken into the heat storage material in the reaction chamber 3a (more specifically, chemical reaction and / or adsorption)
  • the condensable component (absorbed or the like) is desorbed from the heat storage material and moved to the cooler condensation evaporation chamber 3b.
  • the valve 5 is closed, heating of the reaction chamber 3a is finished, and the temperature is returned to room temperature.
  • the device 3 with the valve 5 obtained above, the container wall 1, the temperature sensor 7, the control unit 9, and the heat storage material 11 (and / or heater) as necessary are assembled as shown in FIG.
  • Commercially available products may be used for the container wall 1, the temperature sensor 7, the controller 9, and the heat storage material 11 (and / or the heater).
  • the second heat storage material 11 has a latent heat type heat storage material, that is, an endothermic material by a state change.
  • Heat storage agent that generates heat is used.
  • the heat storage material 11 for example, an organic substance such as paraffin, an inorganic hydrated salt, a molten salt, or the like may be used.
  • the heater a known heating device can be used.
  • an electric heater or a Peltier heater may be used.
  • an article (not shown) is accommodated in the space 10 of the cold insulation container 20.
  • the article is an object to be kept cold and / or kept warm.
  • Such articles are not particularly limited.
  • articles related to foods and medical treatments specifically, fresh foods and biological drugs (eg, blood products, vaccines, biopharmaceuticals, specimens) , Cells, reagents).
  • biological drugs and the like may have various storage temperature ranges and require strict temperature control, and are suitable for transportation by the cold-insulated container of the present invention.
  • the device 3 of the cold insulation container 20 is in a state where the valve 5 is closed as described above.
  • the control unit 9 is set in advance so as to control opening and closing of the valve 5 in accordance with a temperature management range desired for the article to be accommodated. For example, when it is desired to hold the article at a temperature equal to or lower than U 1 ° C (typically, but not limited to, higher than normal temperature), the temperature detected by the temperature sensor 7 is U 1 ° C.
  • the valve 5 is set to be opened from the closed state when the temperature becomes higher than a predetermined upper threshold temperature lower than that.
  • control of the control unit 9 is turned on, and the article is transported using the cold and warm container 20 while the article is accommodated in the space 10.
  • the control unit 9 controls the valve 5 to shift the valve 5 from the closed state to the open state.
  • the control unit 9 may adjust the opening degree of the valve 5 in accordance with the difference between the detected temperature and the upper threshold temperature, but this is not essential to the present embodiment.
  • the device 3 shifts from the non-equilibrium state to the equilibrium state between the reaction chamber 3a and the condensation evaporation chamber 3b.
  • the non-equilibrium state is a state where the condensable component is present in the condensation evaporation chamber 3b in a richer state than the reaction chamber 3a as compared with the equilibrium state, and the valve 5 is changed from the closed state to the open state.
  • the condensable component in the gas state moves from the condensation evaporation chamber 3b to the reaction chamber 3a through the connecting portion 3c, and the reverse reaction of the endothermic reaction by the heat storage material in the reaction chamber 3a proceeds (more specifically, The endothermic reaction speed is lower than the reverse reaction speed), the condensable component is taken into the heat storage material, and thus the condensable component evaporates in the condensing evaporation chamber 3b (more specifically, evaporation of the condensable component). Speed exceeds the condensation speed).
  • the control unit 9 can control (feedback control) the valve 5 to shift the valve 5 from the open state to the closed state. 10 can be prevented from being unnecessarily cooled.
  • the device 3 shifts from the non-equilibrium state to the equilibrium state between the reaction chamber 3a and the condensation evaporation chamber 3b. It is not simply proportional to the valve opening (ratio at which the valve is opened), but is a complex function depending on the reaction rate, temperature, pressure, etc. at that time. Therefore, these factors may be incorporated into the program, and the opening degree of the valve may be controlled by the control unit 9.
  • the device 3 is operated at a reaction speed determined according to the transportation time depending on the accuracy required for temperature management of the article to be transported, and the temperature of the space 10 is a predetermined temperature.
  • the controller 9 may adjust the amount of heat transfer from the device 3 to the article. More specifically, when the space 10 (more specifically, an article accommodated in the space 10 and so on) is to be cooled, a chamber that generates cold (more specifically, the condensation in the first embodiment). The space 10 can be cooled by increasing the amount of heat transfer from the evaporation chamber 3b, the reaction chamber 3a ′ in the second embodiment, or the condensation evaporation chamber 3b in the fifth embodiment to the space 10.
  • a chamber that generates heat (more specifically, the reaction chamber 3a ′ in the third embodiment,
  • the space 10 can be heated by increasing the amount of heat transfer from the condensation evaporation chamber 3b in the fourth embodiment or the reaction chamber 3a ′) in the fifth embodiment to the space 10.
  • the operation for increasing the amount of heat transfer from the room to the space 10 (and thus the article) may be performed by any appropriate method.
  • the fan may be installed at any appropriate location in the cold insulation container (for example, the space 10 (and thus the space 10). It can be implemented by adjusting the operation of the fan by the control unit 9 by installing it in the rear of the room generating the cold or warm heat with respect to the article).
  • the second heat storage material 11 and / or the heater may be used in combination with the device 3 for cooling the space 10.
  • the second heat storage material 11 in which warm heat is stored in advance is housed in the space 10 together with the articles, and the heat is gradually released from the second heat storage material 11 during transportation to substantially reduce the temperature in the space 10.
  • the temperature is maintained in a constant temperature state (typically, although it may be higher than normal temperature, but is not limited thereto), the temperature of the space 10 is significantly increased due to some factor, and the temperature detected by the temperature sensor 7 is a predetermined upper threshold temperature. When it becomes higher, the space 10 may be cooled by the device 3.
  • the control unit 9 changes the valve 5 from the closed state to the open state, the space 10 is cooled by the device 3, and the temperature detected by the temperature sensor 7 is lower than a predetermined lower threshold temperature of L 1 ° C or higher.
  • the heater may be turned on by the controller 9 and the space 10 may be heated by the heater.
  • the cold insulation container 20 may be used once disposable, or the device 3 may be replaced with an unused device and reused.
  • the used device 3 opens the valve 5, heats the reaction chamber 3 a, desorbs the condensable component taken in the heat storage material in the reaction chamber 3 a from the heat storage material, and condenses at a lower temperature.
  • the valve 5 is closed, and the heating of the reaction chamber 3a is completed. It is possible to reproduce by returning to.
  • the temperature of the space in which the article is stored can be detected by the temperature sensor, and the space can be cooled by the device based on the detected temperature. Management can be performed.
  • a device utilizes the principle of a heat pump, and can adjust the temperature of the space in which the article is accommodated by a low power consumption system in which a valve is opened and closed by a control unit.
  • a control unit in which a valve is opened and closed by a control unit.
  • such devices and valves are relatively light and can be particularly suitable for transportation applications because they can minimize the increase in the weight of the cold and warm container.
  • Embodiment 2 This embodiment relates to another aspect in which a device provided in a cold insulation container cools a space in which an article can be stored (that is, it can function as a cooler).
  • the heat insulating cold container 21 in the present embodiment has a container wall 1 that defines a space 10 in which an article can be stored, and further a device 3 for heating or cooling the space 10.
  • the reaction chamber of the device 3' cools the space 10
  • a valve 5 ' the reaction chamber of the device 3' cools the space 10
  • a temperature sensor 7 the reaction chamber of the device 3' cools the space 10
  • a control unit 9 the control unit 9
  • the heat storage material 11 and / or Heater
  • the device 3 ′ includes a reaction chamber 3a ′ containing a heat storage material, a condensation evaporation chamber 3b ′ for condensing or evaporating a condensable component that can be generated by an endothermic reaction of the heat storage material, and a condensable component condensing and evaporating with the reaction chamber 3a ′.
  • a communication part 3c ′ for connecting the reaction chamber 3a ′ and the condensation evaporation chamber 3b ′ so as to be movable between the chambers 3b ′ is provided.
  • a valve 5 ' is provided in the connecting portion 3c' of the device 3 '.
  • the device 3 ′, the reaction chamber 3a ′, the condensation evaporation chamber 3b ′, the communication unit 3c ′, and the valve 5 ′ are the same as the device 3, the reaction chamber 3a, the condensation evaporation chamber 3b, the communication unit 3c, and the valve 5 described in the first embodiment. Can correspond to.
  • the valve 5 ′ is closed so that the device 3 ′ is maintained in a non-equilibrium state between the reaction chamber 3a ′ and the condensing evaporation chamber 3b ′ in a state before use.
  • the device 3 ′ is different from the device 3 described in the first embodiment in the non-equilibrium state.
  • the non-equilibrium state is a state where the condensable component is present in the reaction chamber 3a 'in a richer state than the condensation evaporation chamber 3b' as compared with the equilibrium state.
  • the reaction chamber 3a ' is arranged in a state of being thermally coupled to the space 10 so as to cool the space 10 (that is, it can function as a cooler).
  • the lower surface of the reaction chamber 3a ' is exposed to the space 10, but the present invention is not limited to this.
  • the portion of the reaction chamber 3 a ′ that is not exposed to the space 10 is preferably covered with a heat insulating material. Although this is covered with the same material as 1, this is not essential for this embodiment.
  • the condensing and evaporating chamber 3 b ′ is arranged in a state of being thermally isolated from the space 10 as much as possible.
  • the condensing and evaporating chamber 3b ′ is covered with the same material as that of the container wall 1.
  • this is not essential for the present embodiment.
  • the condensing and evaporating chamber 3b ′ is disposed outside the container wall 1. It may be provided (externally attached to the cold insulation container 21).
  • the cold insulated container 21 of the present embodiment can be manufactured as follows.
  • a part (for example, a casing and a lid) of the device 3 ′ composed of the reaction chamber 3a ′, the condensation evaporation chamber 3b ′, and the connecting portion 3c ′ is manufactured from a predetermined material (for example, a heat conductive material such as a metal), and the pressure is reduced.
  • a predetermined material for example, a heat conductive material such as a metal
  • the valve 5 ′ of the sealed device 3 ′ obtained above is opened, the condensation evaporation chamber 3b ′ is heated, the condensable components present in the condensation evaporation chamber 3b ′ are evaporated, and a lower temperature is obtained. It is moved to the reaction chamber 3a ′ and reacted with the heat storage material in the reaction chamber 3a ′ (more specifically, chemical reaction and / or adsorption / absorption).
  • the valve 5 ′ is closed, heating of the condensing evaporation chamber 3b ′ is terminated, and the temperature reaches room temperature. return.
  • the device 3 ′ with the valve 5 ′ obtained above, the container wall 1, the temperature sensor 7, the control unit 9, and the heat storage material 11 (and / or heater) as required are shown in FIG. assemble.
  • the cold insulated container 21 of this embodiment can be used as follows when transporting goods.
  • an article (not shown) is accommodated in the space 10 of the cold insulation container 21.
  • the device 3 'of the cold insulation container 21 is in a state in which the valve 5' is closed.
  • the controller 9 is set in advance so as to control the opening / closing of the valve 5 ′ in accordance with the temperature management range desired for the article to be accommodated.
  • control of the control unit 9 is turned on, and the article is transported using the cold insulation container 21 while the article is accommodated in the space 10.
  • the temperature of the space 10 is detected by the temperature sensor 7, and the detected temperature is transmitted to the control unit 9.
  • the control unit 9 controls the valve 5 'to shift the valve 5' from the closed state to the open state.
  • the device 3' shifts from the non-equilibrium state to the equilibrium state between the reaction chamber 3a 'and the condensation evaporation chamber 3b'.
  • the non-equilibrium state is a state in which the condensable component is present in the reaction chamber 3a ′ richer than the condensation evaporation chamber 3b ′ compared to the equilibrium state, and the valve 5 ′ is opened from the closed state.
  • the condensable component in the gaseous state moves from the reaction chamber 3a ′ to the condensing evaporation chamber 3b ′ through the connecting portion 3c ′, and condensation of the condensable component proceeds in the condensing evaporation chamber 3b ′ ( More specifically, the evaporation rate of the condensable component is lower than the condensation rate), and therefore an endothermic reaction by the heat storage material in the reaction chamber 3a ′ proceeds (more specifically, the endothermic reaction rate decreases the reverse reaction rate).
  • the condensable component is desorbed from the heat storage material.
  • the control unit 9 can control (feedback control) the valve 5 ′ to shift the valve 5 ′ from the open state to the closed state.
  • the space 10 can be prevented from being unnecessarily cooled.
  • the second heat storage material 11 and / or the heater may be used in combination with the device 3 ′ for cooling the space 10 as in the first embodiment.
  • the cold insulation container 21 may be used once in a single use, or the device 3 'may be replaced with an unused device and reused.
  • the used device 3 ′ opens the valve 5 ′, heats the condensation evaporation chamber 3b ′, evaporates the condensable components present in the condensation evaporation chamber 3b ′, and moves to the lower temperature reaction chamber 3a ′. Then, it reacts with the heat storage material in the reaction chamber 3a ′ (more specifically, chemical reaction and / or adsorption / absorption), and the condensable component sufficiently moves from the condensation evaporation chamber 3b ′ to the reaction chamber 3a ′.
  • the heat storage material is sufficiently taken in, regeneration is possible by closing the valve 5 ′, ending the heating of the condensing evaporation chamber 3 b ′ and returning it to room temperature.
  • the temperature of the space in which the article is stored can be detected by the temperature sensor, and the space can be cooled by the device based on the detected temperature. Management can be performed.
  • the same effect as that of the cold insulation container of the first embodiment can be obtained by the cold insulation container of the present embodiment.
  • This embodiment relates to one aspect in which a device provided in a cold insulation container heats a space in which an article can be stored (that is, it can function as a heater).
  • the heat insulating cold container 22 in the present embodiment has a container wall 1 that defines a space 10 in which an article can be stored, and further a device 3 for heating or cooling the space 10. '(In this embodiment, the reaction chamber of the device 3' heats the space 10), a valve 5 ', a temperature sensor 7, and a control unit 9, and in some cases, the cold insulator 13 (and / or Cooler).
  • the device 3 ′ includes a reaction chamber 3a ′, a condensing evaporation chamber 3b ′, and a communication unit 3c ′.
  • a valve 5 ′ is connected to the communication unit 3c ′ of the device 3 ′. Is provided.
  • the valve 5 ′ is closed so that the device 3 ′ is maintained in a non-equilibrium state between the reaction chamber 3a ′ and the condensation evaporation chamber 3b ′ in a state before use.
  • the device 3 ′ is different from the device 3 ′ described in the second embodiment in the non-equilibrium state.
  • the non-equilibrium state is a state in which the condensable component is present in the condensation evaporation chamber 3b ′ richer than the reaction chamber 3a ′ in comparison with the equilibrium state. This is the same as the device 3 described above.
  • the reaction chamber 3a ' is arranged in a state of being thermally coupled to the space 10 so as to heat the space 10 (that can function as a heater).
  • the condensing and evaporating chamber 3 b ′ is preferably arranged in a state of being thermally isolated from the space 10 as much as possible. Others may be the same as in the second embodiment.
  • the cold insulation container 22 of the present embodiment may further include a cold insulation material 13.
  • the cold insulating material 13 can be disposed in the space 10 or in the vicinity thereof as illustrated. Any appropriate cold insulation material can be used as the cold insulation material 13, but a material in which cold heat is stored in advance (typically, frozen) can be used so that the cold heat is gradually released.
  • a cooler may be used instead of or in addition to the cold insulation material 13. The cooler may be controlled by the control unit 9. However, it should be noted that such a cold insulation material and / or cooler is not essential for the cold insulation container 22.
  • the cold insulated container 22 of the present embodiment can be manufactured as follows.
  • the device 3 ′ in which the valve 5 ′ is closed in the non-equilibrium state where the condensable component is present in the condensation evaporation chamber 3 b ′ in a rich manner from the reaction chamber 3 a ′ compared to the equilibrium state is described in the first embodiment. It can be obtained in the same manner as the device 3 described above.
  • the cold insulating material 13 for example, water, ethylene glycol, a mixture of water and a superabsorbent polymer, or the like may be used.
  • a known cooling device can be used.
  • a Peltier cooler or the like may be used.
  • the cold insulated container 22 of this embodiment can be used as follows when transporting goods.
  • an article (not shown) is accommodated in the space 10 of the cold insulation container 22.
  • the device 3 ′ of the cold insulation container 22 is in a state in which the valve 5 ′ is closed as described above.
  • the control unit 9 is set in advance so as to control the opening and closing of the valve 5 ′ according to the temperature management range desired for the article to be accommodated. For example, when it is desired to hold the article at a temperature equal to or higher than L 2 ° C. (typically, but not limited to a temperature lower than normal temperature), the temperature detected by the temperature sensor 7 is L 2 ° C.
  • the valve 5 ′ is set to be opened from the closed state when the temperature becomes lower than a predetermined lower threshold temperature higher than that.
  • control of the control unit 9 is turned on, and the article is transported using the cold insulation container 22 while the article is accommodated in the space 10.
  • the control unit 9 controls the valve 5 'to shift the valve 5' from the closed state to the open state. At this time, the control unit 9 may adjust the opening degree of the valve 5 ′ in accordance with the difference between the detected temperature and the lower threshold temperature, but this is not essential to the present embodiment.
  • the device 3' shifts from the non-equilibrium state to the equilibrium state between the reaction chamber 3a 'and the condensation evaporation chamber 3b'.
  • the non-equilibrium state is a state in which the condensable component is present in the condensation evaporation chamber 3b ′ richer than the reaction chamber 3a ′ compared to the equilibrium state, and the valve 5 ′ is opened from the closed state.
  • the condensable component in the gaseous state moves from the condensation evaporation chamber 3b ′ to the reaction chamber 3a ′ through the connecting portion 3c ′, and the reverse reaction of the endothermic reaction by the heat storage material in the reaction chamber 3a ′ proceeds.
  • the endothermic reaction rate is lower than the reverse reaction rate
  • the condensable component is taken into the heat storage material, and thus the condensable component evaporates in the condensing evaporation chamber 3b ′ (more details).
  • the evaporation rate of the condensable component exceeds the condensation rate).
  • the control unit 9 can control (feedback control) the valve 5 ′ to shift the valve 5 ′ from the open state to the closed state.
  • the space 10 can be prevented from being unnecessarily heated.
  • a cold insulator 13 and / or a cooler may be used in combination with the device 3 ′ for heating the space 10.
  • the cold insulating material 13 in which cold heat is stored in advance is housed in the space 10 together with the articles, and the cold heat is gradually released from the cold insulating material 13 during transportation, so that the temperature in the space 10 is substantially constant (typically May be a temperature lower than normal temperature, but is not limited to this, and when the temperature of the space 10 is significantly lowered due to some factor and the temperature detected by the temperature sensor 7 becomes lower than a predetermined lower threshold temperature
  • the space 10 may be heated by the device 3 ′.
  • the control unit 9 changes the valve 5 ′ from the closed state to the open state, the space 10 is heated by the device 3 ′, and the temperature detected by the temperature sensor 7 becomes higher than a predetermined upper limit threshold temperature of U 2 ° C. At this time, the controller 9 may turn on the cooler and cool the space 10 with the cooler.
  • the cold insulation container 22 may be used once in a single use, or the device 3 'may be replaced with an unused device and reused.
  • the used device 3 ′ can be reproduced in the same manner as the device 3 described in the first embodiment.
  • the temperature of the space that accommodates the article can be detected by the temperature sensor, and the space can be heated by the device based on the detected temperature. Management can be performed.
  • the same effect as that of the cold insulation container of the first embodiment can be obtained by the cold insulation container of the present embodiment.
  • This embodiment relates to another aspect in which a device provided in a cold insulation container heats a space in which an article can be stored (that is, it can function as a heater).
  • the thermal insulation container 23 in this embodiment has a container wall 1 that defines a space 10 in which an article can be stored, and further a device 3 for heating or cooling the space 10.
  • the condensing evaporation chamber of the device 3 heats the space 10
  • a valve 5 a temperature sensor 7, and a control unit 9, and in some cases, a cold insulator 13 (and / or a cooler). You may have.
  • the device 3 includes the reaction chamber 3 a, the condensation evaporation chamber 3 b, and the communication unit 3 c as in the device 3 described above in the first embodiment, and the valve 5 is provided in the communication unit 3 c of the device 3.
  • the valve 5 is also closed so that the device 3 is maintained in a non-equilibrium state between the reaction chamber 3a and the condensing evaporation chamber 3b before use.
  • the device 3 is different from the device 3 described in the first embodiment in a non-equilibrium state.
  • the non-equilibrium state is a state in which the condensable component is present in the reaction chamber 3a in a richer state than the condensation evaporation chamber 3b as compared with the equilibrium state. This is the same as the device 3 ′.
  • the condensing and evaporating chamber 3b is arranged in a state of being thermally coupled to the space 10 so as to heat the space 10 (that is, it can function as a heater).
  • the reaction chamber 3a is preferably arranged in a state of being thermally isolated from the space 10 as much as possible. Others may be the same as in the first embodiment.
  • the cold insulated container 23 of the present embodiment can be manufactured as follows.
  • the device 3 in which the valve 5 is closed in the non-equilibrium state where the condensable component is present in the reaction chamber 3a richer than the condensation evaporation chamber 3b as compared with the equilibrium state is the device 3 ′ described in the second embodiment. Can be obtained in the same manner.
  • the device 3 with the valve 5 obtained above, the container wall 1, the temperature sensor 7, the control unit 9, and the cold insulator 13 (and / or the cooler) as needed are assembled as shown in FIG.
  • the cold insulated container 23 of this embodiment can be used as follows when transporting goods.
  • an article (not shown) is accommodated in the space 10 of the cold insulation container 23.
  • the device 3 of the cold insulation container 23 is in a state where the valve 5 is closed as described above.
  • the control unit 9 is set in advance so as to control opening and closing of the valve 5 in accordance with a temperature management range desired for the article to be accommodated.
  • control of the control unit 9 is turned on, and the article is transported using the cold insulation container 23 while the article is accommodated in the space 10.
  • the temperature of the space 10 is detected by the temperature sensor 7, and the detected temperature is transmitted to the control unit 9.
  • the control unit 9 controls the valve 5 to shift the valve 5 from the closed state to the open state.
  • the device 3 shifts from the non-equilibrium state to the equilibrium state between the reaction chamber 3a and the condensation evaporation chamber 3b.
  • the non-equilibrium state is a state in which the condensable component is present in the reaction chamber 3a richer than the condensation evaporation chamber 3b compared to the equilibrium state, and the valve 5 is changed from the closed state to the open state. Then, the condensable component in the gaseous state moves from the reaction chamber 3a to the condensing evaporation chamber 3b through the connecting portion 3c, and condensation of the condensable component proceeds in the condensing evaporation chamber 3b (more specifically, condensable properties).
  • the endothermic reaction by the heat storage material in the reaction chamber 3a proceeds (more specifically, the endothermic reaction speed exceeds the reverse reaction speed), and the condensable component stores heat. Detach from the material.
  • the condensable component condenses in the condensing evaporation chamber 3b, heat is generated in the condensing evaporation chamber 3b and moves to the space 10, thereby heating the space 10 (in other words, from the condensing evaporation chamber 3b). Warm heat is released into the space 10).
  • the control unit 9 can control (feedback control) the valve 5 to shift the valve 5 from the open state to the closed state, thereby 10 can be prevented from being unnecessarily cooled.
  • the device 3 for cooling the space 10 may be used in combination with the cold insulating material 13 and / or the cooler.
  • the cold insulation container 23 may be used once disposable, or the device 3 may be replaced with an unused device and reused.
  • the used device 3 can be reproduced in the same manner as the device 3 ′ described in the second embodiment.
  • the temperature of the space that accommodates the article can be detected by the temperature sensor, and the space can be heated by the device based on the detected temperature. Management can be performed.
  • the same effect as that of the cold insulation container of the first embodiment can be obtained by the cold insulation container of the present embodiment.
  • the first device cools the space in which the article can be stored (in other words, can function as a cooler), and the second device can store the article. It is related with the aspect which heats a simple space (it can function as a heater).
  • the heat insulation and cooling container 24 in the present embodiment has a container wall 1 that defines a space 10 in which an article can be stored, and further a device 3 for heating or cooling the space 10.
  • 3 ′ in this embodiment, the condensation evaporation chamber of device 3 cools space 10 and the reaction chamber of device 3 ′ heats space 10
  • valves 5 and 5 ′ in this embodiment, temperature sensor 7, and control Part 9.
  • the device 3 includes the reaction chamber 3a, the condensing evaporation chamber 3b, and the communication unit 3c, as in the device 3 described above in the first embodiment.
  • the device 3 includes the valve 5 in the communication unit 3c, and is condensable.
  • the valve 5 is closed in a non-equilibrium state where the components are present in the condensation evaporation chamber 3b richer than the reaction chamber 3a compared to the equilibrium state.
  • Other aspects of the device 3 may be the same as in the first embodiment.
  • the device 3 ′ includes a reaction chamber 3a ′, a condensing evaporation chamber 3b ′, and a communication unit 3c ′, and a valve 5 ′ is connected to the communication unit 3c ′ of the device 3 ′. And the valve 5 ′ is closed in a non-equilibrium state where the condensable component is present in the condensation evaporation chamber 3b ′ richer than the reaction chamber 3a ′ compared to the equilibrium state.
  • Others regarding the device 3 ′ may be the same as those in the third embodiment.
  • the cold insulation container 24 of the present embodiment includes a device 3 with a valve 5 obtained in the same manner as the device 3 described in the first embodiment and a valve obtained in the same manner as the device 3 ′ described in the third embodiment.
  • the device 3 ′ with 5 ′, the container wall 1, the temperature sensor 7, and the control unit 9 can be manufactured by assembling as shown in FIG. In the illustrated example, one temperature sensor 7 and one control unit 9 are used. However, as long as the opening and closing of the valves 5 and 5 ′ can be individually (or independently) controlled based on the temperature of the space 10, the temperature is limited. A plurality of sensors and / or controllers may be used.
  • the cold insulated container 24 of this embodiment can be used as follows when transporting goods.
  • an article (not shown) is accommodated in the space 10 of the cold insulation container 24.
  • the devices 3 and 3 ′ of the cold insulation container 24 have the valves 5 and 5 ′ closed, as described above.
  • the control unit 9 is set in advance so as to control opening and closing of the valves 5 and 5 ′ according to a temperature management range desired for the article to be accommodated. For example, when it is desired to hold the article at a temperature of L 3 ° C or higher and U 3 ° C or lower, when the temperature detected by the temperature sensor 7 becomes higher than a predetermined upper threshold temperature of U 3 ° C or lower.
  • the control unit 9 changes the valve 5 from the closed state to the open state and the temperature detected by the temperature sensor 7 is lower than a predetermined lower threshold temperature of L 3 ° C or higher, the control unit 9 closes the valve 5 ′. Set to open from state.
  • control of the control unit 9 is turned on, and the article is transported using the cold insulation container 24 in a state where the article is accommodated in the space 10.
  • the temperature of the space 10 is detected by the temperature sensor 7, and the detected temperature is transmitted to the control unit 9.
  • the control unit 9 controls the valve 5 to shift the valve 5 from the closed state to the open state.
  • the device 3 operates in the same manner as the device 3 described above in the first embodiment, heat is taken from the space 10 and moves to the condensation evaporation chamber 3b, and thereby the space 10 is cooled. As a result, the temperature of the space 10 can be lowered.
  • the control unit 9 can control (feedback control) the valve 5 to shift the valve 5 from the open state to the closed state. 10 can be prevented from being unnecessarily cooled.
  • the control unit 9 controls the valve 5 'to shift the valve 5' from the closed state to the open state. Then, the device 3 ′ operates in the same manner as the device 3 ′ described in the third embodiment, and heat is generated in the reaction chamber 3a ′ and moves to the space 10, whereby the space 10 is heated. . As a result, the temperature of the space 10 can rise.
  • the control unit 9 can control (feedback control) the valve 5 ′ to shift the valve 5 ′ from the open state to the closed state. The space 10 can be prevented from being unnecessarily heated.
  • the cold insulation container 24 may be used once in a single use, or the devices 3 and 3 'may be replaced with unused devices and reused.
  • the used devices 3 and 3 ' can be reproduced in the same manner as the devices 3 and 3' described above in the first and third embodiments.
  • the temperature of the space that accommodates the article is detected by the temperature sensor, and based on this detected temperature, the space is cooled by the first device, and the space is heated by the second device. Therefore, temperature management can be performed actively and efficiently.
  • two devices similar to the devices 3 and 3 ′ described in the first and third embodiments are used in combination, but the device 3 described in the second and fourth embodiments.
  • Two devices similar to 'and 3 may be used in combination.
  • at least one device cools a space in which an article can be stored (to function as a cooler), and at least one device heats a space in which the article can be stored (to function as a heater). ), And any combination of three or more devices may be used.
  • the cold insulated container of the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • a heat storage material capable of reversibly generating a condensable component by an endothermic reaction is used, and the two chambers of the device are called a reaction chamber and a condensation evaporation chamber.
  • the heat storage material only needs to exhibit a reversible endothermic reaction and exothermic reaction and release a mobile component capable of phase change by either of these.
  • the mobile component is typically a condensable component, i.e. a component capable of phase change (condensation and evaporation) between a gas state (gas phase) and a liquid state (liquid phase), but a sublimable component.
  • the chamber corresponding to the condensation evaporation chamber may be referred to as a sublimation chamber and may be understood as a phase change chamber in a broader concept.
  • the cold-insulated container of the present invention can be suitably used for transporting an article while keeping the article cold and / or insulated (or maintained within a predetermined temperature range), for example, transporting an article while keeping the article cold in a cold chain. Is available to do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

保冷保温容器(20)が、物品を収容可能な空間(10)を規定する容器壁(1)と、蓄熱材を収容した反応室(3a)、蓄熱材の吸熱反応によって生じる凝縮性成分を凝縮または蒸発させるための凝縮蒸発室(3b)、凝縮性成分が反応室(3a)と凝縮蒸発室(3b)との間を移動可能なように反応室(3a)と凝縮蒸発室(3b)とを連絡する連絡部(3c)を備えるデバイス(3)と、連絡部(3c)に設けられたバルブ(5)と、空間(10)の温度を検知する温度センサ(7)と、温度センサ(7)により検知された空間(10)の温度に基づいてバルブ(5)の開閉を制御する制御部(9)とを含んで成り、バルブ(5)が閉状態にあるとき、デバイス(3)は反応室(3a)と凝縮蒸発室(3b)との間で非平衡状態にあり、バルブ(5)が制御部(9)により閉状態から開状態にされたときに、デバイス(3)は反応室(3a)と凝縮蒸発室(3b)との間で非平衡状態から平衡状態に向かってシフトし、空間(10)を加熱または冷却する。

Description

保冷保温容器
 本発明は、保冷保温容器に関し、より詳細には、物品を保冷および/または保温した状態で輸送するために用いられる保冷保温容器に関する。
 現在、食品や医薬医療等に関連した分野において、物品の品質をできるだけ保持(または劣化を抑制)するために、物品を保冷および/または保温した状態で輸送することが盛んに行われている。特に、生鮮食品や生物由来の医薬品等の温度(または熱)に対して敏感な物品が生産されてから、輸送され、最終的に使用されるまでの一連の過程で、物品を途切れることなく低温に保つ物流方式は、コールドチェーンと呼ばれ、物品を保冷した状態で輸送することに対する需要は、ますます高まってきている。
 従来の保冷保温容器として、断熱性の箱体の内部に2種以上の蓄冷材または蓄熱材を配置したものであって、凝固状態にある潜熱型の第1の蓄冷材または蓄熱材を物品に隣接して配置し、融解状態にある潜熱型の第2の蓄冷材または蓄熱材を、第1の蓄冷材または蓄熱材の外側に配置したものが知られており、第1の蓄冷材または蓄熱材が0℃を超える凝固・融解温度を有することにより、保冷または保温すべき物品を、0℃を超える任意の温度範囲にて長時間に亘って維持することが可能であるとされている(特許文献1を参照のこと)。
特開2011-51632号公報 国際公開第2014/021262号 特開2012-193870号公報
 上述した従来の保冷保温容器は、蓄熱材の潜熱を利用したものであり、蓄熱材が周囲環境(特に温度)に応じて状態変化するのにまかせて、物品を受動的に保冷または保温しているに過ぎない。かかる保冷保温容器では、容器内の温度を能動的に管理することができず、効率的でなく、また、周囲環境が急激に変化した場合に、容器内の温度が所望の温度範囲から逸脱することが起こり得る。
 本願発明は、能動的かつ効率的に温度管理を行うことが可能な保冷保温容器を提供することを目的とする。
 本発明者らは、保冷保温容器に、蓄熱材の化学反応や吸脱着現象等を利用して熱を蓄熱および移動させる技術、即ち、ヒートポンプの原理を利用するという新規な着想を得た。ヒートポンプの原理を利用した装置としては、例えば特許文献2~3に記載されるような装置が知られているが、これら装置は、そのままでは保冷保温容器に適用しても、物品を収容するための空間を効率的に保冷保温することができない。本発明者らは、かかる空間を加熱または冷却するためのデバイスの動作および制御方法について更なる鋭意検討の結果、本願発明を完成するに至った。
 本発明の1つの要旨によれば、
 物品を収容可能な空間を規定する容器壁と、
 蓄熱材を収容した反応室、蓄熱材の吸熱反応によって生じる凝縮性成分を凝縮または蒸発させるための凝縮蒸発室、凝縮性成分が反応室と凝縮蒸発室との間を移動可能なように反応室と凝縮蒸発室とを連絡する連絡部を備えるデバイスと、
 上記連絡部に設けられたバルブと、
 上記空間の温度を検知する温度センサと、
 上記温度センサにより検知された空間の温度に基づいて上記バルブの開閉を制御する制御部と
を含んで成り、上記バルブが閉状態にあるとき、上記デバイスは反応室と凝縮蒸発室との間で非平衡状態にあり、上記バルブが上記制御部により閉状態から開状態にされたときに、デバイスは反応室と凝縮蒸発室との間で非平衡状態から平衡状態に向かってシフトし、上記空間を加熱または冷却する、保冷保温容器が提供される。
 かかる本発明の保冷保温容器においては、物品を収容可能な空間を加熱または冷却するためのデバイスと、バルブと、温度センサと、制御部とを組み合わせて用いて、デバイスの動作を、温度センサで検知した空間の温度に基づいて制御部を通じてバルブを操作することによって制御できるので、能動的かつ効率的に温度管理を行うことが可能となる。
 より詳細には、本発明の保冷保温容器によれば、物品を収容可能な空間を加熱または冷却するためのデバイスにおいて反応室と凝縮蒸発室との間の連絡部にバルブを設け、反応室と凝縮蒸発室との間で非平衡状態としてバルブを閉状態にし、更に、該空間の温度を検知する温度センサを用いて、予め設定した条件に応じて、例えば該空間の温度が所定の温度範囲から逸脱したときに、制御部によりバルブを閉状態から開状態へと変化させることができ、これにより、デバイスは反応室と凝縮蒸発室との間で非平衡状態から平衡状態に向かってシフトし、上記空間を加熱または冷却することができる。
 かかる本発明の保冷保温容器は、物品を保冷および/または保温(あるいは所定の温度範囲内に維持)した状態で輸送するために好適に利用され得、温度制御容器としても理解され得る。
 なお、本発明において、「平衡状態」とは、反応室と凝縮蒸発室との間で、凝縮性成分が移動可能であっても(または連絡部のバルブを開状態にしても)、見かけ上、実質的に移動せず、従って、デバイスの内外で熱の出入りが見かけ上、実質的に生じない状態を言い、「非平衡状態」とは、かかる平衡状態にないことを意味する。
 本発明によれば、能動的かつ効率的に温度管理を行うことが可能な保冷保温容器が提供される。
本発明の1つの実施形態における保冷保温容器を模式的に示す断面図である。 本発明のもう1つの実施形態における保冷保温容器を模式的に示す断面図である。 本発明の更にもう1つの実施形態における保冷保温容器を模式的に示す断面図である。 本発明の更にもう1つの実施形態における保冷保温容器を模式的に示す断面図である。 本発明の更にもう1つの実施形態における保冷保温容器を模式的に示す断面図である。
 以下、本発明の5つの実施形態における保冷保温容器について図面を参照しつつ詳述するが、本発明はこれら実施形態に限定されない。
(実施形態1)
 本実施形態は、保冷保温容器に設けたデバイスが、物品を収容可能な空間を冷却する(言わばクーラーとして機能し得る)1つの態様に関する。
 図1に模式的に示すように、本実施形態における保温保冷容器20は、物品を収容可能な空間10を規定する容器壁1を有し、更に、空間10を加熱または冷却するためのデバイス3(本実施形態では、デバイス3の凝縮蒸発室が空間10を冷却する)と、バルブ5と、温度センサ7と、制御部9とを有し、場合により、蓄熱材11(および/またはヒーター)を有していてよい。
 容器壁1は、物品(図示せず)を収容可能な空間10を規定するものである。容器壁1には、物品を空間10に配置し、取り出すことが可能なように、開閉可能な蓋(図示せず)が設けられ得る。容器壁1は、好ましくは空間10内への外部環境温度の影響をできるだけ小さくするべく、断熱性材料から(少なくとも部分的に)構成され得る。断熱性材料には、任意の適切な断熱性材料を使用してよく、通常、熱伝導率が0.058W/(m・K)以下の材料が使用され得る。例えば、発泡プラスチック系断熱材(ビーズ法ポリスチレンフォーム、押出法ポリスチレンフォーム、硬質ウレタンフォーム等)、無機繊維系断熱材(グラスウール、ロックウール等)、天然素材系断熱材(セルロースファイバー、羊毛断熱材、炭化コルク)等を使用できる。
 空間10を加熱または冷却するためのデバイス3は、蓄熱材を収容した反応室3a、蓄熱材の吸熱反応によって生じ得る凝縮性成分を凝縮または蒸発させるための凝縮蒸発室3b、凝縮性成分が反応室3aと凝縮蒸発室3bとの間を移動可能なように反応室3aと凝縮蒸発室3bとを連絡する連絡部3cを備える。かかる構成を有するデバイス3は、ヒートポンプ(後述する化学蓄熱材を使用した場合はケミカルヒートポンプ)として理解され得る。蓄熱材の示す反応(物理変化も含む)は、ヒートポンプによる熱の移動の駆動源として理解され得、凝縮性成分は、ヒートポンプの作動媒体として理解され得る。デバイス3については、保冷保温容器の製造方法および使用方法に関連して、より詳細に後述する。
 デバイス3は、デバイス3の内外で熱の出入りが可能なように、少なくとも空間10と熱的に結合される部分において、熱伝導性材料から構成され得る。熱伝導性材料には、任意の適切な熱伝導性材料を使用してよく、例えば金属(銅、合金、ステンレス鋼など)、酸化物(アルミナなど)、窒化物(窒化アルミニウムなど)、カーボンなどの熱の良導体を使用できる。
 本実施形態に必須ではないが、デバイス3は、反応室3aと凝縮蒸発室3bとの間において可能な限り熱的に隔離されていることが好ましい。例えば、反応室3aと凝縮蒸発室3bが熱伝導性材料から構成される場合、連絡部3cの少なくとも一部が、熱伝導率の比較的低い材料から構成されていてよい。
 デバイス3の連絡部3cに、バルブ5が設けられる。バルブ5は、制御部9によりその開閉状態(開度)を制御可能な限り、任意の適切なバルブを使用してよい。例えば、バルブ5は、電磁弁、電動弁などであってよい。電磁弁は、一般的に小さく軽量であるので、輸送用の保冷保温容器に使用するのに好ましい。
 保冷保温容器20は、使用前の状態では、デバイス3を、反応室3aと凝縮蒸発室3bとの間で非平衡状態に維持するように、バルブ5が閉状態とされている。本実施形態においては、非平衡状態は、凝縮性成分が平衡状態に比較して反応室3aより凝縮蒸発室3bにリッチに存在している状態である。
 デバイス3のうち、反応室3aおよび凝縮蒸発室3bは、いずれかが、空間10を加熱または冷却するように、空間10に熱的に結合した状態で配置される。なお、本発明において、デバイスの室(反応室または凝縮蒸発室)が空間に「熱的に結合する」とは、デバイスの当該室の内側と空間との間を熱が移動可能なように構成することを意味する。熱的な結合は、例えば、直接的な接触による熱伝導でもよいし、熱媒(例えば液体や気体等の流体)または熱伝導性部材を利用した間接的な接触による熱伝導であってもよい。簡便には、室の外側面の少なくとも一部(熱伝導性材料から成る)が空間に曝されること(空間を部分的に規定することとなる)により達成され得る。
 反応室3aおよび凝縮蒸発室3bのうち、いずれが加熱機能を発揮し、いずれが冷却機能を発揮するかは、非平衡状態を平衡状態からいずれの側にシフトさせるかによって異なる。上述のように、非平衡状態において、凝縮性成分が平衡状態に比較して反応室3aより凝縮蒸発室3bにリッチに存在する場合、バルブ5を閉状態から開状態にすることにより、凝縮蒸発室3bは冷却機能を発揮し得、反応室3aは加熱機能を発揮し得る。(これとは逆に、非平衡状態において、凝縮性成分が平衡状態に比較して凝縮蒸発室より反応室にリッチに存在する場合、バルブを閉状態から開状態にすることにより、凝縮蒸発室は加熱機能を発揮し得、反応室は冷却機能を発揮し得る。)
 本実施形態においては、凝縮蒸発室3bが、空間10を冷却する(言わばクーラーとして機能し得る)ように、空間10に熱的に結合した状態で配置される。図示する例では、凝縮蒸発室3bの下面が空間10に曝されているが、これに限定されない。デバイス3の空間10に対する冷却効果をできるだけ大きくするために、凝縮蒸発室3bの空間10に曝されていない部分は、断熱性材料で覆われていることが好ましく、図示する例では、容器壁1と同じ材料で覆われているが、このことは本実施形態に必須でない。
 他方、反応室3aは、空間10から可能な限り熱的に隔離された状態で配置されることが好ましい。図示する例では、反応室3aは、容器壁1と同じ材料で覆われているが、このことは本実施形態に必須でなく、例えば、反応室3aを容器壁1の外部に設けても(保冷保温容器20に外付けしても)よい。
 温度センサ7は、空間10の温度を検知するように設けられる。温度センサ7は、図示するように空間10内に配置され得るが、少なくともその検知部が空間10内に位置していればよい。温度センサ7には、少なくとも温度管理範囲において空間内の雰囲気温度を検知可能な任意の適切な温度センサを利用可能である。
 制御部9は、これらバルブ5および温度センサ7に電気的に接続されており、温度センサ7で検知した空間10内の温度を電気信号として受け取り、これに基づいて、バルブ5の開閉を制御するように構成される。制御部9は、かかる構成を有する限り、保冷保温容器20に対して任意の箇所に配置され得る。制御部9は、典型的には、プロセッサ、メモリ(および必要に応じて、入出力インターフェース等)を備える制御ユニットであり得るが、これに限定されない。
 本実施形態の保冷保温容器20は、デバイス3に加えて、蓄熱材11(デバイス3の蓄熱材と区別する趣旨で、以下、第2の蓄熱材とも言う)を更に有していてよい。かかる第2の蓄熱材11は、図示するように空間10の内部またはその近傍に配置され得る。第2の蓄熱材11には、任意の適切な蓄熱材を使用可能であるが、温熱を徐々に放出するように、予め温熱を蓄えたものが使用され得る。第2の蓄熱材11に代えて、または加えて、ヒーターを用いてもよい。ヒーターは、制御部9により制御されていてよい。しかしながら、かかる第2の蓄熱材および/またはヒーターは、保冷保温容器20に必須でないことに留意されたい。
 次に、本実施形態の保冷保温容器20の製造方法について例示的に説明するが、これに限定されるものではない。
 まず、デバイス3を作製するため、蓄熱材(または蓄熱性材料)を準備する。
 デバイス3に用いる蓄熱材は、吸熱反応によって凝縮性成分を可逆的に生じ得るものであればよい。かかる蓄熱材には、上記吸熱反応が化学反応である化学蓄熱材や、上記吸熱反応が吸着または吸収反応である吸着・吸収蓄熱材が含まれる。凝縮性成分は、保冷保温容器に所望される使用温度範囲において凝縮可能であればよく、蓄熱材に応じて選択され得、好ましくは水である。蓄熱材が、吸熱反応によって凝縮性成分を可逆的に生じ得る温度は、他の条件(例えばデバイス内の圧力)によって異なり得る。
 より具体的には、化学蓄熱材としては、無機化合物の水和物および無機水酸化物などが使用され得る。より詳細には、アルカリ土類金属化合物の水和物およびアルカリ土類金属の水酸化物、例えば硫酸カルシウムや塩化カルシウムなどの水和物、カルシウムやマグネシウムの水酸化物などが挙げられる。また、水和物を形成可能な無機化合物(これは無機化合物の水和物の前駆体として理解される)、例えば酸化カルシウムも使用可能である。
 例えば、硫酸カルシウムの半水和物は、以下の吸熱反応を示す。
Figure JPOXMLDOC01-appb-C000001
 式中、Qは、16.7kJ/mol程度であることが知られており、これは、可逆反応である。
 また例えば、塩化カルシウムの水和物は、以下の吸熱反応を示す。
Figure JPOXMLDOC01-appb-C000002
 式中、nは水和する分子数、具体的には1、2、4、6であり得、Qは、30~50kJ/mol程度であることが知られており、これは、可逆反応である。
 しかしながら、化学蓄熱材は、上記の例に限定されず、任意の適切な化学蓄熱材を使用してよい(例えば、アンモニアを発生し得るものであってもよい)。化学蓄熱材は、化学反応を利用して、大きい蓄熱容量を得ることができ、幅広い温度範囲で蓄熱が可能である。また、化学蓄熱材は、反応速度が比較的大きく、吸熱または発熱のタイミング制御を比較的行い易く、よって、バルブ5の開閉を所望のタイミングで実施するのに適する。
 吸着・吸収蓄熱材としては、例えばゼオライト、シリカゲル、メソポーラスシリカ、活性炭など(以下、「ゼオライト等」とも言う)が挙げられる。かかる吸着・吸収蓄熱材は、化学蓄熱材と比べて、取り扱いが容易であり、構成を簡素化できる(例えば、腐食防止を考慮しなくてよい)という効果を奏し得る。
 これらゼオライト等は、いずれも、例えば水を可逆的に吸着および脱着することが可能であり、水の脱着の際に吸熱現象を示す。
Figure JPOXMLDOC01-appb-C000003
 式中、Zは、ゼオライト等の組成を代表して表したものであり、その組成に応じてxは種々の値をとり得る。Qは、具体的な組成にもよるが、例えば、ゼオライトで約30~80kJ/molであり得る。
 ゼオライトとは、いわゆるゼオライト構造、即ち、SiO四面体およびAlO四面体が頂点酸素を共有し3次元に連なった網目状構造を基本骨格として有する結晶性含水アルミノケイ酸塩を言う。ゼオライトは、通常、下記の一般式で表され得る。
 (M,M 1/2(AlSi2(m+n))・xHO (n≧m)
 Mは、Li、Na、K等の1価のカチオンであり、Mは、Ca2+、Mg2+、Ba2+等の2価のカチオンである。
 なかでも、本発明に好適に利用され得るゼオライトとしては、A型ゼオライト(LTA)、X型ゼオライト(FAU)、Y型ゼオライト(FAU)、ベータ型ゼオライト(BEA)、AlPO-5(AFI)などである。
 シリカゲルは、コロイド状シリカの三次元構造体であり、細孔径が数nm~数十nm、比表面積は5~1000m/gと多孔体特性を広範囲に制御できる。また、シリカゲルの一次粒子表面はシラノールに覆われており、シラノールの影響で極性分子(水など)を選択的に吸着する。
 メソポーラスシリカは、二酸化ケイ素を材質として均一で規則的な細孔を持つ物質で、細孔径は約2~10nmのものを言う。
 活性炭は、「細孔を有する多孔質の炭素質物質」で、大きな比表面積と吸着能力を持つ物質を言う。その基本骨格は炭素原子が120°の角度で結ばれた二次元格子の平面構造である。この二次元格子が不規則に積層して結晶格子を形成し、この結晶格子がランダムにつながったものが活性炭であり、結晶格子間の空隙が活性炭細孔であり、細孔に水が吸着する。
 蓄熱材には、上述した化学蓄熱材および吸着・吸収蓄熱材等からなる群から選択される少なくとも1種を使用してよい。
 反応室3a、凝縮蒸発室3b、連絡部3cから成るデバイス3のパーツ(例えば筐体と蓋等)を所定の材料(例えば金属等の熱伝導性材料)から作製し、減圧下(例えば1Pa程度)にて、反応室3aに上記で準備した蓄熱材を入れ、適宜、凝縮性成分の拡散を防止するために凝縮蒸発室3bを(例えば液体窒素等で)十分に冷却しながら、凝縮蒸発室3bに凝縮性成分を入れて、連絡部3cにバルブ5を設置しつつ、デバイス3のパーツを密閉する。
 次に、上記で得られた密閉したデバイス3のバルブ5を開状態として、反応室3aを加熱し、反応室3a内の蓄熱材に取り込まれて(より詳細には、化学反応および/または吸着・吸収等されて)いる凝縮性成分を、蓄熱材から脱離させて、より低温の凝縮蒸発室3bに移動させる。凝縮性成分が蓄熱材から十分に脱離し、反応室3aから凝縮蒸発室3bへ十分に移動したら、バルブ5を閉状態にし、反応室3aの加熱を終了して常温に戻す。
 これにより、凝縮性成分が平衡状態に比較して反応室3aより凝縮蒸発室3bにリッチに存在した非平衡状態にてバルブ5が閉状態とされたデバイス3を得ることができる。
 そして、上記で得たバルブ5付きのデバイス3と、容器壁1、温度センサ7、制御部9、および必要に応じて蓄熱材11(および/またはヒーター)を、図1に示すように組み立てる。容器壁1、温度センサ7、制御部9、蓄熱材11(および/またはヒーター)には、市販のものを使用してよい。
 デバイス3の蓄熱材が吸熱反応によって凝縮性成分を可逆的に生じ得るものであるのに対し、これとは異なり、第2の蓄熱材11には潜熱型の蓄熱材、即ち、状態変化によって吸熱・発熱する蓄熱剤が使用される。かかる蓄熱材11には、例えば、パラフィン等の有機物、無機水和塩、溶融塩などを用いてよい。
 ヒーターには、既知の加熱デバイスを使用することができ、例えば、電気ヒーターや、ペルチェ式ヒーターなどを用いてよい。
 次に、本実施形態の保冷保温容器20の使用方法として、物品を輸送する場合について説明する。
 まず、保冷保温容器20の空間10に物品(図示せず)を収容する。物品は、保冷および/または保温されるべき対象物である。かかる物品は、特に限定されるものではないが、例えば、食品や医薬医療等に関連した物品、具体的には、生鮮食品や生物由来の医薬品等(例えば、血液製剤、ワクチン、バイオ医薬品、検体、細胞、試薬)であってよい。特に、生物由来の医薬品等は、保管温度範囲が様々であり得、なおかつ、厳密な温度管理が求められ、本願発明の保冷保温容器による輸送に好適である。
 保冷保温容器20のデバイス3は、上述のようにバルブ5が閉じた状態とされている。制御部9は、収容する物品に所望される温度管理範囲に応じてバルブ5の開閉を制御するように、予め設定しておく。例えば、物品をU℃(代表的には、常温より高い温度であり得るが、これに限定されない)以下の温度で保持することが所望される場合、温度センサ7の検知温度がU℃またはそれより低い所定の上限閾値温度より高くなったときに、バルブ5を閉状態から開状態にするように設定しておく。
 そして、制御部9の制御をオンにして、物品を空間10に収容した状態で、保冷保温容器20を用いて物品を輸送する。
 輸送の間、温度センサ7で空間10の温度を検知し、検知温度が制御部9に伝送される。温度センサ7の検知温度が所定の上限閾値温度より高くなったとき、制御部9はバルブ5を制御して、バルブ5を閉状態から開状態に移行させる。このとき、制御部9は、検知温度と上限閾値温度との差に応じてバルブ5の開度を調整してもよいが、このことは本実施形態に必須ではない。
 バルブ5が閉状態から開状態にされたとき、デバイス3は反応室3aと凝縮蒸発室3bとの間で非平衡状態から平衡状態に向かってシフトする。本実施形態においては、非平衡状態は、凝縮性成分が平衡状態に比較して反応室3aより凝縮蒸発室3bにリッチに存在している状態であり、バルブ5が閉状態から開状態にされると、気体状態の凝縮性成分が凝縮蒸発室3bから連絡部3cを通って反応室3aへと移動し、反応室3aの蓄熱材による吸熱反応の逆反応が進行し(より詳細には、吸熱反応の速度が逆反応の速度を下回り)、凝縮性成分が蓄熱材に取り込まれ、このため、凝縮蒸発室3bで凝縮性成分の蒸発が進行する(より詳細には、凝縮性成分の蒸発速度が凝縮速度を上回る)。凝縮蒸発室3bで凝縮性成分が蒸発する際に、空間10から熱が奪われて凝縮蒸発室3bへ移動し、これにより、空間10が冷却される(換言すれば、凝縮蒸発室3bから空間10に冷熱が放出される)。
 この結果、空間10の温度が低下し得る。温度センサ7の検知温度が所定の上限閾値温度以下になったとき、制御部9はバルブ5を制御(フィードバック制御)して、バルブ5を開状態から閉状態に移行させ得、これにより、空間10が不必要に冷却されることを防止できる。
 なお、バルブ5が閉状態から開状態にされたとき、デバイス3は反応室3aと凝縮蒸発室3bとの間で非平衡状態から平衡状態に向かってシフトするが、このときの化学反応熱量は単純にバルブの開度(バルブを開けた割合)のみには比例せず、そのときの反応率、温度、圧力等に依存する複雑な関数となる。よって、これらの因子をプログラムに組み込んで、制御部9によりバルブの開度を制御するようにしてもよい。
 しかしながら、かかるバルブ制御は複雑であるため、輸送する物品の温度管理に求められる精度によっては、運搬時間に応じて決めた反応速度でデバイス3を作動させておき、空間10の温度が所定の温度範囲から逸脱したときに、制御部9により、デバイス3から物品への伝熱量を調整するようにしてよい。より具体的には、空間10(より詳細には、その内部に収容される物品、以下も同様)を冷却すべき場合、冷熱を生成している室(より詳細には、実施形態1における凝縮蒸発室3b、実施形態2における反応室3a’、または実施形態5における凝縮蒸発室3b)から空間10への伝熱量を増やすことによって、空間10を冷却することができる。あるいは、空間10(より詳細には、その内部に収容される物品、以下も同様)を加熱すべき場合、温熱を生成している室(より詳細には、実施形態3における反応室3a’、実施形態4における凝縮蒸発室3b、または実施形態5における反応室3a’)から空間10への伝熱量を増やすことによって、空間10を加熱することができる。かかる室から空間10(ひいては物品)への伝熱量を増やす操作は、任意の適切な方法によって実施してよく、例えば、ファンを保冷保温容器内の任意の適切な箇所(例えば、空間10(ひいては物品)に対して、冷熱または温熱を生成している室の後方)に設置し、制御部9によりファンの動作を調節することにより実施し得る。
 また、本実施形態に必須ではないが、空間10を冷却するためのデバイス3に、第2の蓄熱材11および/またはヒーターを組み合わせて使用してもよい。例えば、予め温熱を蓄えた第2の蓄熱材11を物品と共に空間10に収容し、輸送の間、第2の蓄熱材11から温熱を徐々に放出して、空間10内の温度を実質的に恒温状態(代表的には、常温より高い温度であり得るが、これに限定されない)に保持し、何らかの要因により空間10の温度が著しく上昇し、温度センサ7の検知温度が所定の上限閾値温度より高くなったときに、デバイス3で空間10を冷却してよい。また例えば、物品をL℃以上かつU℃以下の温度で保持することが所望される場合、温度センサ7の検知温度がU℃またはそれより低い所定の上限閾値温度より高くなったときに、制御部9によりバルブ5を閉状態から開状態にして、空間10をデバイス3で冷却し、温度センサ7の検知温度がL℃またはそれより高い所定の下限閾値温度より低くなったときに、制御部9によりヒーターをオンにして、空間10をヒーターで加熱してもよい。
 輸送後、保冷保温容器20の空間10から物品が取り出される。保冷保温容器20は、1回使い捨てで使用してよく、あるいは、デバイス3を未使用のデバイスと取り替えて再使用してもよい。使用済みのデバイス3は、バルブ5を開状態として、反応室3aを加熱し、反応室3a内の蓄熱材に取り込まれている凝縮性成分を、蓄熱材から脱離させて、より低温の凝縮蒸発室3bに移動させ、凝縮性成分が蓄熱材から十分に脱離し、反応室3aから凝縮蒸発室3bへ十分に移動したら、バルブ5を閉状態にし、反応室3aの加熱を終了して常温に戻すことにより、再生が可能である。
 本実施形態の保冷保温容器によれば、物品を収容する空間の温度を温度センサで検知し、この検知温度に基づいて、デバイスにより空間を冷却することができるので、能動的かつ効率的に温度管理を行うことができる。かかるデバイスは、ヒートポンプの原理を利用しており、制御部によるバルブの開閉という低消費電力のシステムで、物品を収容する空間の温度を調節することができる。更に、かかるデバイスおよびバルブ等は比較的軽量であり、保冷保温容器の重量増加を最低限に抑えられることから、輸送用途に特に適する。
(実施形態2)
 本実施形態は、保冷保温容器に設けたデバイスが、物品を収容可能な空間を冷却する(言わばクーラーとして機能し得る)もう1つの態様に関する。
 図2に模式的に示すように、本実施形態における保温保冷容器21は、物品を収容可能な空間10を規定する容器壁1を有し、更に、空間10を加熱または冷却するためのデバイス3’(本実施形態では、デバイス3’の反応室が空間10を冷却する)と、バルブ5’と、温度センサ7と、制御部9とを有し、場合により、蓄熱材11(および/またはヒーター)を有していてよい。以下、先の実施形態と異なる点を中心に説明し、特に説明のない限り、先の実施形態と同様の説明が当て嵌まり得る(後続の実施形態も同様とする)。
 デバイス3’は、蓄熱材を収容した反応室3a’、蓄熱材の吸熱反応によって生じ得る凝縮性成分を凝縮または蒸発させるための凝縮蒸発室3b’、凝縮性成分が反応室3a’と凝縮蒸発室3b’との間を移動可能なように反応室3a’と凝縮蒸発室3b’とを連絡する連絡部3c’を備える。デバイス3’の連絡部3c’に、バルブ5’が設けられる。デバイス3’、反応室3a’、凝縮蒸発室3b’、連絡部3c’、バルブ5’は、実施形態1にて上述したデバイス3、反応室3a、凝縮蒸発室3b、連絡部3c、バルブ5に対応し得る。
 本実施形態における保冷保温容器21も、使用前の状態では、デバイス3’を、反応室3a’と凝縮蒸発室3b’との間で非平衡状態に維持するように、バルブ5’が閉状態とされているが、デバイス3’は、実施形態1にて上述したデバイス3と、非平衡状態が異なる。本実施形態においては、非平衡状態は、凝縮性成分が平衡状態に比較して凝縮蒸発室3b’より反応室3a’にリッチに存在している状態である。
 また、本実施形態においては、反応室3a’が、空間10を冷却する(言わばクーラーとして機能し得る)ように、空間10に熱的に結合した状態で配置される。図示する例では、反応室3a’の下面が空間10に曝されているが、これに限定されない。デバイス3’の空間10に対する冷却効果をできるだけ大きくするために、反応室3a’の空間10に曝されていない部分は、断熱性材料で覆われていることが好ましく、図示する例では、容器壁1と同じ材料で覆われているが、このことは本実施形態に必須でない。
 他方、凝縮蒸発室3b’は、空間10から可能な限り熱的に隔離された状態で配置されることが好ましい。図示する例では、凝縮蒸発室3b’は、容器壁1と同じ材料で覆われているが、このことは本実施形態に必須でなく、例えば、凝縮蒸発室3b’を容器壁1の外部に設けても(保冷保温容器21に外付けしても)よい。
 本実施形態の保冷保温容器21は、以下のようにして製造することができる。
 反応室3a’、凝縮蒸発室3b’、連絡部3c’から成るデバイス3’のパーツ(例えば筐体と蓋等)を所定の材料(例えば金属等の熱伝導性材料)から作製し、減圧下(例えば1Pa程度)にて、反応室3a’に準備した蓄熱材を入れ、適宜、凝縮性成分の拡散を防止するために凝縮蒸発室3b’を(例えば液体窒素等で)十分に冷却しながら、凝縮蒸発室3b’に凝縮性成分を入れて、連絡部3c’にバルブ5’を設置しつつ、デバイス3’のパーツを密閉する。
 次に、上記で得られた密閉したデバイス3’のバルブ5’を開状態として、凝縮蒸発室3b’を加熱し、凝縮蒸発室3b’に存在する凝縮性成分を蒸発させて、より低温の反応室3a’に移動させ、反応室3a’内の蓄熱材と反応(より詳細には、化学反応および/または吸着・吸収等)させる。凝縮性成分が凝縮蒸発室3b’から反応室3a’へ十分に移動し、蓄熱材に十分に取り込まれたら、バルブ5’を閉状態にし、凝縮蒸発室3b’の加熱を終了して常温に戻す。
 これにより、凝縮性成分が平衡状態に比較して凝縮蒸発室3b’より反応室3a’にリッチに存在した非平衡状態にてバルブ5’が閉状態とされたデバイス3’を得ることができる。
 そして、上記で得たバルブ5’付きのデバイス3’と、容器壁1、温度センサ7、制御部9、および必要に応じて蓄熱材11(および/またはヒーター)を、図2に示すように組み立てる。
 本実施形態の保冷保温容器21は、物品を輸送する場合、以下のようにして使用され得る。
 まず、保冷保温容器21の空間10に物品(図示せず)を収容する。保冷保温容器21のデバイス3’は、上述のようにバルブ5’が閉じた状態とされている。制御部9は、収容する物品に所望される温度管理範囲に応じてバルブ5’の開閉を制御するように、予め設定しておく。
 そして、制御部9の制御をオンにして、物品を空間10に収容した状態で、保冷保温容器21を用いて物品を輸送する。
 輸送の間、温度センサ7で空間10の温度を検知し、検知温度が制御部9に伝送される。温度センサ7の検知温度が所定の上限閾値温度より高くなったとき、制御部9はバルブ5’を制御して、バルブ5’を閉状態から開状態に移行させる。
 バルブ5’が閉状態から開状態にされたとき、デバイス3’は反応室3a’と凝縮蒸発室3b’との間で非平衡状態から平衡状態に向かってシフトする。本実施形態においては、非平衡状態は、凝縮性成分が平衡状態に比較して凝縮蒸発室3b’より反応室3a’にリッチに存在している状態であり、バルブ5’が閉状態から開状態にされると、気体状態の凝縮性成分が反応室3a’から連絡部3c’を通って凝縮蒸発室3b’へと移動し、凝縮蒸発室3b’で凝縮性成分の凝縮が進行し(より詳細には、凝縮性成分の蒸発速度が凝縮速度を下回り)、このため、反応室3a’の蓄熱材による吸熱反応が進行し(より詳細には、吸熱反応の速度が逆反応の速度を上回る)、凝縮性成分が蓄熱材から脱離する。反応室3a’で凝縮性成分が蓄熱材から脱離する際に、空間10から熱が奪われて反応室3a’へ移動し、これにより、空間10が冷却される(換言すれば、凝縮蒸発室3b’から空間10に冷熱が放出される)。
 この結果、空間10の温度が低下し得る。温度センサ7の検知温度が所定の上限閾値温度以下になったとき、制御部9はバルブ5’を制御(フィードバック制御)して、バルブ5’を開状態から閉状態に移行させ得、これにより、空間10が不必要に冷却されることを防止できる。
 本実施形態に必須ではないが、実施形態1と同様に、空間10を冷却するためのデバイス3’に、第2の蓄熱材11および/またはヒーターを組み合わせて使用してもよい。
 輸送後、保冷保温容器21の空間10から物品が取り出される。保冷保温容器21は、1回使い捨てで使用してよく、あるいは、デバイス3’を未使用のデバイスと取り替えて再使用してもよい。使用済みのデバイス3’は、バルブ5’を開状態として、凝縮蒸発室3b’を加熱し、凝縮蒸発室3b’に存在する凝縮性成分を蒸発させて、より低温の反応室3a’に移動させて、反応室3a’内の蓄熱材と反応(より詳細には、化学反応および/または吸着・吸収等)させ、凝縮性成分が凝縮蒸発室3b’から反応室3a’へ十分に移動し、蓄熱材に十分に取り込まれたら、バルブ5’を閉状態にし、凝縮蒸発室3b’の加熱を終了して常温に戻すことにより、再生が可能である。
 本実施形態の保冷保温容器によれば、物品を収容する空間の温度を温度センサで検知し、この検知温度に基づいて、デバイスにより空間を冷却することができるので、能動的かつ効率的に温度管理を行うことができる。かかる本実施形態の保冷保温容器によっても、実施形態1の保冷保温容器と同様の効果を得ることができる。
(実施形態3)
 本実施形態は、保冷保温容器に設けたデバイスが、物品を収容可能な空間を加熱する(言わばヒーターとして機能し得る)1つの態様に関する。
 図3に模式的に示すように、本実施形態における保温保冷容器22は、物品を収容可能な空間10を規定する容器壁1を有し、更に、空間10を加熱または冷却するためのデバイス3’(本実施形態では、デバイス3’の反応室が空間10を加熱する)と、バルブ5’と、温度センサ7と、制御部9とを有し、場合により、保冷材13(および/またはクーラー)を有していてよい。
 デバイス3’は、実施形態2にて上述したデバイス3’と同様に、反応室3a’、凝縮蒸発室3b’、連絡部3c’を備え、デバイス3’の連絡部3c’に、バルブ5’が設けられる。
 本実施形態における保冷保温容器22も、使用前の状態では、デバイス3’を、反応室3a’と凝縮蒸発室3b’との間で非平衡状態に維持するように、バルブ5’が閉状態とされているが、デバイス3’は、実施形態2にて上述したデバイス3’と、非平衡状態が異なる。本実施形態においては、非平衡状態は、凝縮性成分が平衡状態に比較して反応室3a’より凝縮蒸発室3b’にリッチに存在している状態であり、この点において、実施形態1にて上述したデバイス3と同様である。
 また、本実施形態においては、反応室3a’が、空間10を加熱する(言わばヒーターとして機能し得る)ように、空間10に熱的に結合した状態で配置される。他方、凝縮蒸発室3b’は、空間10から可能な限り熱的に隔離された状態で配置されることが好ましい。その他、実施形態2と同様であり得る。
 本実施形態の保冷保温容器22は、デバイス3’に加えて、保冷材13を更に有していてよい。かかる保冷材13は、図示するように空間10の内部またはその近傍に配置され得る。保冷材13には、任意の適切な保冷材を使用可能であるが、冷熱を徐々に放出するように、予め冷熱を蓄えたもの(代表的には冷凍されたもの)が使用され得る。保冷材13に代えて、または加えて、クーラーを用いてもよい。クーラーは、制御部9により制御されていてよい。しかしながら、かかる保冷材および/またはクーラーは、保冷保温容器22に必須でないことに留意されたい。
 本実施形態の保冷保温容器22は、以下のようにして製造することができる。
 凝縮性成分が平衡状態に比較して反応室3a’より凝縮蒸発室3b’にリッチに存在した非平衡状態にてバルブ5’が閉状態とされたデバイス3’は、実施形態1にて上述したデバイス3と同様にして得ることができる。
 そして、上記で得たバルブ5’付きのデバイス3’と、容器壁1、温度センサ7、制御部9、および必要に応じて保冷材13(および/またはクーラー)を、図3に示すように組み立てる。
 保冷材13には、例えば、水、エチレングリコール、水と高吸水性ポリマーとの混合物などを用いてよい。
 クーラーには、既知の冷却デバイスを使用することができ、例えば、ペルチェ式クーラーなどを用いてよい。
 本実施形態の保冷保温容器22は、物品を輸送する場合、以下のようにして使用され得る。
 まず、保冷保温容器22の空間10に物品(図示せず)を収容する。保冷保温容器22のデバイス3’は、上述のようにバルブ5’が閉じた状態とされている。制御部9は、収容する物品に所望される温度管理範囲に応じてバルブ5’の開閉を制御するように、予め設定しておく。例えば、物品をL℃(代表的には、常温より低い温度であり得るが、これに限定されない)以上の温度で保持することが所望される場合、温度センサ7の検知温度がL℃またはそれより高い所定の下限閾値温度より低くなったときに、バルブ5’を閉状態から開状態にするように設定しておく。
 そして、制御部9の制御をオンにして、物品を空間10に収容した状態で、保冷保温容器22を用いて物品を輸送する。
 輸送の間、温度センサ7で空間10の温度を検知し、検知温度が制御部9に伝送される。温度センサ7の検知温度が所定の下限閾値温度より低くなったとき、制御部9はバルブ5’を制御して、バルブ5’を閉状態から開状態に移行させる。このとき、制御部9は、検知温度と下限閾値温度との差に応じてバルブ5’の開度を調整してもよいが、このことは本実施形態に必須ではない。
 バルブ5’が閉状態から開状態にされたとき、デバイス3’は反応室3a’と凝縮蒸発室3b’との間で非平衡状態から平衡状態に向かってシフトする。本実施形態においては、非平衡状態は、凝縮性成分が平衡状態に比較して反応室3a’より凝縮蒸発室3b’にリッチに存在している状態であり、バルブ5’が閉状態から開状態にされると、気体状態の凝縮性成分が凝縮蒸発室3b’から連絡部3c’を通って反応室3a’へと移動し、反応室3a’の蓄熱材による吸熱反応の逆反応が進行し(より詳細には、吸熱反応の速度が逆反応の速度を下回り)、凝縮性成分が蓄熱材に取り込まれ、このため、凝縮蒸発室3b’で凝縮性成分の蒸発が進行する(より詳細には、凝縮性成分の蒸発速度が凝縮速度を上回る)。反応室3a’で凝縮性成分が蓄熱材に取り込まれる際に、反応室3a’にて熱が発生して空間10へ移動し、これにより、空間10が加熱される(換言すれば、反応室3a’から空間10に温熱が放出される)。
 この結果、空間10の温度が上昇し得る。温度センサ7の検知温度が所定の下限閾値温度以上になったとき、制御部9はバルブ5’を制御(フィードバック制御)して、バルブ5’を開状態から閉状態に移行させ得、これにより、空間10が不必要に加熱されることを防止できる。
 本実施形態に必須ではないが、空間10を加熱するためのデバイス3’に、保冷材13および/またはクーラーを組み合わせて使用してもよい。例えば、予め冷熱を蓄えた保冷材13を物品と共に空間10に収容し、輸送の間、保冷材13から冷熱を徐々に放出して、空間10内の温度を実質的に恒温状態(代表的には、常温より低い温度であり得るが、これに限定されない)に保持し、何らかの要因により空間10の温度が著しく低下し、温度センサ7の検知温度が所定の下限閾値温度より低くなったときに、デバイス3’で空間10を加熱してよい。また例えば、物品をL℃以上かつU℃以下の温度で保持することが所望される場合、温度センサ7の検知温度がL℃またはそれより高い所定の下限閾値温度より低くなったときに、制御部9によりバルブ5’を閉状態から開状態にして、空間10をデバイス3’で加熱し、温度センサ7の検知温度がU℃またはそれより低い所定の上限閾値温度より高くなったときに、制御部9によりクーラーをオンにして、空間10をクーラーで冷却してもよい。
 輸送後、保冷保温容器22の空間10から物品が取り出される。保冷保温容器22は、1回使い捨てで使用してよく、あるいは、デバイス3’を未使用のデバイスと取り替えて再使用してもよい。使用済みのデバイス3’は、実施形態1にて上述したデバイス3と同様にして、再生が可能である。
 本実施形態の保冷保温容器によれば、物品を収容する空間の温度を温度センサで検知し、この検知温度に基づいて、デバイスにより空間を加熱することができるので、能動的かつ効率的に温度管理を行うことができる。かかる本実施形態の保冷保温容器によっても、実施形態1の保冷保温容器と同様の効果を得ることができる。
(実施形態4)
 本実施形態は、保冷保温容器に設けたデバイスが、物品を収容可能な空間を加熱する(言わばヒーターとして機能し得る)もう1つの態様に関する。
 図4に模式的に示すように、本実施形態における保温保冷容器23は、物品を収容可能な空間10を規定する容器壁1を有し、更に、空間10を加熱または冷却するためのデバイス3(本実施形態では、デバイス3の凝縮蒸発室が空間10を加熱する)と、バルブ5と、温度センサ7と、制御部9とを有し、場合により、保冷材13(および/またはクーラー)を有していてよい。
 デバイス3は、実施形態1にて上述したデバイス3と同様に、反応室3a、凝縮蒸発室3b、連絡部3cを備え、デバイス3の連絡部3cに、バルブ5が設けられる。
 本実施形態における保冷保温容器23も、使用前の状態では、デバイス3を、反応室3aと凝縮蒸発室3bとの間で非平衡状態に維持するように、バルブ5が閉状態とされているが、デバイス3は、実施形態1にて上述したデバイス3と、非平衡状態が異なる。本実施形態においては、非平衡状態は、凝縮性成分が平衡状態に比較して凝縮蒸発室3bより反応室3aにリッチに存在している状態であり、この点において、実施形態2にて上述したデバイス3’と同様である。
 また、本実施形態においては、凝縮蒸発室3bが、空間10を加熱する(言わばヒーターとして機能し得る)ように、空間10に熱的に結合した状態で配置される。他方、反応室3aは、空間10から可能な限り熱的に隔離された状態で配置されることが好ましい。その他、実施形態1と同様であり得る。
 本実施形態の保冷保温容器23は、以下のようにして製造することができる。
 凝縮性成分が平衡状態に比較して凝縮蒸発室3bより反応室3aにリッチに存在した非平衡状態にてバルブ5が閉状態とされたデバイス3は、実施形態2にて上述したデバイス3’と同様にして得ることができる。
 そして、上記で得たバルブ5付きのデバイス3と、容器壁1、温度センサ7、制御部9、および必要に応じて保冷材13(および/またはクーラー)を、図4に示すように組み立てる。
 本実施形態の保冷保温容器23は、物品を輸送する場合、以下のようにして使用され得る。
 まず、保冷保温容器23の空間10に物品(図示せず)を収容する。保冷保温容器23のデバイス3は、上述のようにバルブ5が閉じた状態とされている。制御部9は、収容する物品に所望される温度管理範囲に応じてバルブ5の開閉を制御するように、予め設定しておく。
 そして、制御部9の制御をオンにして、物品を空間10に収容した状態で、保冷保温容器23を用いて物品を輸送する。
 輸送の間、温度センサ7で空間10の温度を検知し、検知温度が制御部9に伝送される。温度センサ7の検知温度が所定の下限閾値温度より低くなったとき、制御部9はバルブ5を制御して、バルブ5を閉状態から開状態に移行させる。
 バルブ5が閉状態から開状態にされたとき、デバイス3は反応室3aと凝縮蒸発室3bとの間で非平衡状態から平衡状態に向かってシフトする。本実施形態においては、非平衡状態は、凝縮性成分が平衡状態に比較して凝縮蒸発室3bより反応室3aにリッチに存在している状態であり、バルブ5が閉状態から開状態にされると、気体状態の凝縮性成分が反応室3aから連絡部3cを通って凝縮蒸発室3bへと移動し、凝縮蒸発室3bで凝縮性成分の凝縮が進行し(より詳細には、凝縮性成分の蒸発速度が凝縮速度を下回り)、このため、反応室3aの蓄熱材による吸熱反応が進行し(より詳細には、吸熱反応の速度が逆反応の速度を上回る)、凝縮性成分が蓄熱材から脱離する。凝縮蒸発室3bで凝縮性成分が凝縮する際に、凝縮蒸発室3bにて熱が発生して空間10へ移動し、これにより、空間10が加熱される(換言すれば、凝縮蒸発室3bから空間10に温熱が放出される)。
 この結果、空間10の温度が上昇し得る。温度センサ7の検知温度が所定の下限閾値温度以上になったとき、制御部9はバルブ5を制御(フィードバック制御)して、バルブ5を開状態から閉状態に移行させ得、これにより、空間10が不必要に冷却されることを防止できる。
 本実施形態に必須ではないが、実施形態3と同様に、空間10を冷却するためのデバイス3に、保冷材13および/またはクーラーを組み合わせて使用してもよい。
 輸送後、保冷保温容器23の空間10から物品が取り出される。保冷保温容器23は、1回使い捨てで使用してよく、あるいは、デバイス3を未使用のデバイスと取り替えて再使用してもよい。使用済みのデバイス3は、実施形態2にて上述したデバイス3’と同様にして、再生が可能である。
 本実施形態の保冷保温容器によれば、物品を収容する空間の温度を温度センサで検知し、この検知温度に基づいて、デバイスにより空間を加熱することができるので、能動的かつ効率的に温度管理を行うことができる。かかる本実施形態の保冷保温容器によっても、実施形態1の保冷保温容器と同様の効果を得ることができる。
(実施形態5)
 本実施形態は、保冷保温容器に2個のデバイスを設け、第1のデバイスが、物品を収容可能な空間を冷却し(言わばクーラーとして機能し得)、第2のデバイスが、物品を収容可能な空間を加熱する(言わばヒーターとして機能し得る)態様に関する。
 図5に模式的に示すように、本実施形態における保温保冷容器24は、物品を収容可能な空間10を規定する容器壁1を有し、更に、空間10を加熱または冷却するためのデバイス3および3’(本実施形態では、デバイス3の凝縮蒸発室が空間10を冷却し、デバイス3’の反応室が空間10を加熱する)と、バルブ5および5’と、温度センサ7と、制御部9とを有する。
 デバイス3は、実施形態1にて上述したデバイス3と同様に、反応室3a、凝縮蒸発室3b、連絡部3cを備え、デバイス3の連絡部3cに、バルブ5が設けられ、かつ、凝縮性成分が平衡状態に比較して反応室3aより凝縮蒸発室3bにリッチに存在した非平衡状態で、バルブ5が閉状態とされている。デバイス3に関して、その他も実施形態1と同様であり得る。
 デバイス3’は、実施形態3にて上述したデバイス3’と同様に、反応室3a’、凝縮蒸発室3b’、連絡部3c’を備え、デバイス3’の連絡部3c’に、バルブ5’が設けられ、かつ、凝縮性成分が平衡状態に比較して反応室3a’より凝縮蒸発室3b’にリッチに存在した非平衡状態で、バルブ5’が閉状態とされている。デバイス3’に関して、その他も実施形態3と同様であり得る。
 本実施形態の保冷保温容器24は、実施形態1にて上述したデバイス3と同様にして得られるバルブ5付きのデバイス3と、実施形態3にて上述したデバイス3’と同様にして得られるバルブ5’付きのデバイス3’と、容器壁1、温度センサ7、制御部9を、図5に示すように組み立てることにより、製造することができる。図示する例では、1つの温度センサ7および1つの制御部9を用いているが、空間10の温度に基づいてバルブ5および5’の開閉を個々に(または独立して)制御できる限り、温度センサおよび/または制御部を複数用いてもよい。
 本実施形態の保冷保温容器24は、物品を輸送する場合、以下のようにして使用され得る。
 まず、保冷保温容器24の空間10に物品(図示せず)を収容する。保冷保温容器24のデバイス3および3’は、上述のようにそれぞれバルブ5および5’が閉じた状態とされている。制御部9は、収容する物品に所望される温度管理範囲に応じてバルブ5および5’の開閉を制御するように、予め設定しておく。例えば、物品をL℃以上かつU℃以下の温度で保持することが所望される場合、温度センサ7の検知温度がU℃またはそれより低い所定の上限閾値温度より高くなったときに、制御部9によりバルブ5を閉状態から開状態にし、温度センサ7の検知温度がL℃またはそれより高い所定の下限閾値温度より低くなったときに、制御部9によりバルブ5’を閉状態から開状態にするように設定しておく。
 そして、制御部9の制御をオンにして、物品を空間10に収容した状態で、保冷保温容器24を用いて物品を輸送する。
 輸送の間、温度センサ7で空間10の温度を検知し、検知温度が制御部9に伝送される。温度センサ7の検知温度が所定の上限閾値温度より高くなったとき、制御部9はバルブ5を制御して、バルブ5を閉状態から開状態に移行させる。すると、デバイス3は、実施形態1にて上述したデバイス3と同様に動作して、空間10から熱が奪われて凝縮蒸発室3bへ移動し、これにより、空間10が冷却される。この結果、空間10の温度が低下し得る。温度センサ7の検知温度が所定の上限閾値温度以下になったとき、制御部9はバルブ5を制御(フィードバック制御)して、バルブ5を開状態から閉状態に移行させ得、これにより、空間10が不必要に冷却されることを防止できる。
 他方、温度センサ7の検知温度が所定の下限閾値温度より低くなったとき、制御部9はバルブ5’を制御して、バルブ5’を閉状態から開状態に移行させる。すると、デバイス3’は、実施形態3にて上述したデバイス3’と同様に動作して、反応室3a’にて熱が発生して空間10へ移動し、これにより、空間10が加熱される。この結果、空間10の温度が上昇し得る。温度センサ7の検知温度が所定の下限閾値温度以上になったとき、制御部9はバルブ5’を制御(フィードバック制御)して、バルブ5’を開状態から閉状態に移行させ得、これにより、空間10が不必要に加熱されることを防止できる。
 輸送後、保冷保温容器24の空間10から物品が取り出される。保冷保温容器24は、1回使い捨てで使用してよく、あるいは、デバイス3および3’を未使用のデバイスと取り替えて再使用してもよい。使用済みのデバイス3および3’は、実施形態1および3にてそれぞれ上述したデバイス3および3’と同様にして、再生が可能である。
 本実施形態の保冷保温容器によれば、物品を収容する空間の温度を温度センサで検知し、この検知温度に基づいて、第1のデバイスにより空間を冷却し、第2のデバイスにより空間を加熱することができるので、能動的かつ効率的に温度管理を行うことができる。
 なお、本実施形態においては、実施形態1および3にてそれぞれ上述したデバイス3および3’と同様の2個のデバイスを組み合わせて用いているが、実施形態2および4にてそれぞれ上述したデバイス3’および3と同様の2個のデバイスを組み合わせて用いてもよい。また、少なくとも1個のデバイスが、物品を収容可能な空間を冷却し(言わばクーラーとして機能し得)、少なくとも1個のデバイスが、物品を収容可能な空間を加熱する(言わばヒーターとして機能し得る)ものであればよく、3個以上のデバイスを組み合わせて用いてもよい。
 本発明の保冷保温容器は、上述した実施形態に限定されず、種々の改変が可能である。例えば、上記実施形態では、吸熱反応によって凝縮性成分を可逆的に生じ得る蓄熱材を用いるものとし、デバイスの2つの室を反応室と凝縮蒸発室と呼ぶものとしたが、ヒートポンプの原理上は、蓄熱材は、互いに可逆な吸熱反応および発熱反応を示し、これらのいずれかによって相変化可能な移動性成分を放出するものであればよい。移動性成分は、典型的には、凝縮性成分、即ち、気体状態(気相)と液体状態(液相)との間で相変化(凝縮および蒸発)可能な成分であるが、昇華性成分、即ち、気体状態(気相)と固体状態(固相)との間で相変化(昇華)可能な成分であってもよい。この場合、凝縮蒸発室に対応する室は、昇華室と呼ばれ得、より広範な概念においては相変化室として理解され得る。
 本発明の保冷保温容器は、物品を保冷および/または保温(あるいは所定の温度範囲内に維持)した状態で輸送するために好適に利用され得、例えば、コールドチェーンにおいて物品を保冷した状態で輸送するために利用可能である。
 本願は、2015年1月15日付けで出願された特願2015-6075に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。
  1 容器壁
  3、3’ デバイス
  3a、3a’ 反応室
  3b、3b’ 凝縮蒸発室
  3c、3c’ 連絡部
  5、5’ バルブ
  7 温度センサ
  9 制御部
  10 空間
  11 蓄熱材(および/またはヒーター)
  13 保冷材(および/またはクーラー)
  20、21、22、23、24 保冷保温容器

Claims (10)

  1.  物品を収容可能な空間を規定する容器壁と、
     蓄熱材を収容した反応室、蓄熱材の吸熱反応によって生じ得る凝縮性成分を凝縮または蒸発させるための凝縮蒸発室、凝縮性成分が反応室と凝縮蒸発室との間を移動可能なように反応室と凝縮蒸発室とを連絡する連絡部を備えるデバイスと、
     前記連絡部に設けられたバルブと、
     前記空間の温度を検知する温度センサと、
     前記温度センサにより検知された空間の温度に基づいて前記バルブの開閉を制御する制御部と
    を含んで成り、前記バルブが閉状態にあるとき、前記デバイスは反応室と凝縮蒸発室との間で非平衡状態にあり、前記バルブが前記制御部により閉状態から開状態にされたときに、デバイスは反応室と凝縮蒸発室との間で非平衡状態から平衡状態に向かってシフトし、前記空間を加熱または冷却する、保冷保温容器。
  2.  前記空間の内部またはその近傍に配置された蓄熱材および/またはヒーターを更に含んで成り、
     前記バルブが前記制御部により閉状態から開状態にされたときに、デバイスは前記空間を冷却する、請求項1に記載の保冷保温容器。
  3.  前記デバイスの凝縮蒸発室が、前記空間に熱的に結合した状態で配置され、前記バルブが前記制御部により閉状態から開状態にされたときに、該空間から該凝縮蒸発室へ熱が移動して、該空間が冷却される、請求項1または2に記載の保冷保温容器。
  4.  前記デバイスの反応室が、前記空間に熱的に結合した状態で配置され、前記バルブが前記制御部により閉状態から開状態にされたときに、該空間から該反応室へ熱が移動して、該空間が冷却される、請求項1または2に記載の保冷保温容器。
  5.  前記空間の内部またはその近傍に配置された保冷材および/またはクーラーを更に含んで成り、
     前記バルブが前記制御部により閉状態から開状態にされたときに、デバイスは前記空間を加熱する、請求項1に記載の保冷保温容器。
  6.  前記デバイスの反応室が、前記空間に熱的に結合した状態で配置され、前記バルブが前記制御部により閉状態から開状態にされたときに、該反応室から該空間へ熱が移動して、該空間が加熱される、請求項1または5に記載の保冷保温容器。
  7.  前記デバイスの凝縮蒸発室が、前記空間に熱的に結合した状態で配置され、前記バルブが前記制御部により閉状態から開状態にされたときに、該凝縮蒸発室から該空間へ熱が移動して、該空間が加熱される、請求項1または5に記載の保冷保温容器。
  8.  前記デバイスを少なくとも2個有し、それぞれのデバイスの連絡部にバルブが設けられ、前記制御部は、前記温度センサにより検知された空間の温度に基づいて各バルブの開閉を個々に制御し、少なくとも1個のデバイスは、該デバイスの連絡部に設けられたバルブが前記制御部により閉状態から開状態にされたときに、前記空間を冷却し、他のデバイスは、該デバイスの連絡部に設けられたバルブが前記制御部により閉状態から開状態にされたときに、前記空間を加熱する、請求項1~7のいずれかに記載の保冷保温容器。
  9.  凝縮性成分が水である、請求項1~8のいずれかに記載の保冷保温容器。
  10.  物品を輸送するために用いられる、請求項1~9のいずれかに記載の保冷保温容器。
PCT/JP2016/050815 2015-01-15 2016-01-13 保冷保温容器 WO2016114297A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016569475A JPWO2016114297A1 (ja) 2015-01-15 2016-01-13 保冷保温容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-006075 2015-01-15
JP2015006075 2015-01-15

Publications (1)

Publication Number Publication Date
WO2016114297A1 true WO2016114297A1 (ja) 2016-07-21

Family

ID=56405838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050815 WO2016114297A1 (ja) 2015-01-15 2016-01-13 保冷保温容器

Country Status (2)

Country Link
JP (1) JPWO2016114297A1 (ja)
WO (1) WO2016114297A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110641848A (zh) * 2019-10-28 2020-01-03 南京工业大学 一种应用双层相变材料和自然冷源的果蔬储藏集装箱
CN112573013A (zh) * 2020-11-26 2021-03-30 南方医科大学南方医院 一种保存装置
JP7036967B1 (ja) 2021-03-08 2022-03-15 ナラサキスタックス株式会社 コンテナ及び調湿装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112572958B (zh) * 2020-11-26 2022-08-12 南方医科大学南方医院 一种储存箱
CN112623509A (zh) * 2020-12-04 2021-04-09 郑永华 一种疫苗冷藏箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190369A (ja) * 1986-02-14 1987-08-20 三菱電機株式会社 コンテナ用空気調和装置
JP3038119U (ja) * 1996-11-22 1997-06-06 株式会社ジャムテクス 物流冷凍室内設置用調温型簡易保冷ボックス
JP3044265U (ja) * 1997-06-10 1997-12-16 株式会社名和電機 料理配送用コンテナ
JP2001199479A (ja) * 2000-01-17 2001-07-24 Sankyu Inc スタブ付き中継器輸送用保冷箱
JP2013525742A (ja) * 2010-05-04 2013-06-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 極低温装置の運搬及び保管のための改善された方法及び装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4203218B2 (ja) * 2000-10-31 2008-12-24 ヤマト運輸株式会社 集配用車両
JP4655859B2 (ja) * 2005-10-07 2011-03-23 トヨタ車体株式会社 車両の荷室構造
JP2010043825A (ja) * 2008-03-14 2010-02-25 Panasonic Corp 冷蔵庫
JP5511494B2 (ja) * 2010-05-10 2014-06-04 株式会社豊田中央研究所 車両用化学蓄熱システム
JP2012172906A (ja) * 2011-02-21 2012-09-10 Tetsuo Ninomiya 冷却機器付き断熱容器とその断熱容器を搭載した自動車
JP2013108633A (ja) * 2011-11-17 2013-06-06 Isuzu Shatai Kk 保冷車
JP6128659B2 (ja) * 2012-08-03 2017-05-17 国立大学法人 千葉大学 電子機器
JP6200782B2 (ja) * 2013-03-21 2017-09-20 株式会社デンソー 化学蓄熱装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190369A (ja) * 1986-02-14 1987-08-20 三菱電機株式会社 コンテナ用空気調和装置
JP3038119U (ja) * 1996-11-22 1997-06-06 株式会社ジャムテクス 物流冷凍室内設置用調温型簡易保冷ボックス
JP3044265U (ja) * 1997-06-10 1997-12-16 株式会社名和電機 料理配送用コンテナ
JP2001199479A (ja) * 2000-01-17 2001-07-24 Sankyu Inc スタブ付き中継器輸送用保冷箱
JP2013525742A (ja) * 2010-05-04 2013-06-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 極低温装置の運搬及び保管のための改善された方法及び装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110641848A (zh) * 2019-10-28 2020-01-03 南京工业大学 一种应用双层相变材料和自然冷源的果蔬储藏集装箱
CN110641848B (zh) * 2019-10-28 2024-04-30 南京工业大学 一种应用双层相变材料和自然冷源的果蔬储藏集装箱
CN112573013A (zh) * 2020-11-26 2021-03-30 南方医科大学南方医院 一种保存装置
JP7036967B1 (ja) 2021-03-08 2022-03-15 ナラサキスタックス株式会社 コンテナ及び調湿装置
JP2022136532A (ja) * 2021-03-08 2022-09-21 ナラサキスタックス株式会社 コンテナ及び調湿装置

Also Published As

Publication number Publication date
JPWO2016114297A1 (ja) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2016114297A1 (ja) 保冷保温容器
Schnabel et al. Adsorption kinetics of zeolite coatings directly crystallized on metal supports for heat pump applications (adsorption kinetics of zeolite coatings)
JP6369997B2 (ja) 電子機器
US5048301A (en) Vacuum insulated sorbent driven refrigeration device
JP4931880B2 (ja) 蓄冷パネルおよびこれを備えた冷凍・冷蔵装置
JP2004529309A5 (ja)
JP7448908B2 (ja) 熱調節システム
JP2004238051A (ja) 搬送容器
KR101847361B1 (ko) 기체 흡착재, 및 기체 흡착재를 구비한 진공 단열재
US20040211215A1 (en) Cooling container with an adsorption cooling apparatus
JP2013025163A (ja) 顕微鏡用クライオスタット装置
JP6372126B2 (ja) 熱輸送装置
US11920832B2 (en) Transport container
JP2017053556A (ja) 膨張タンク、蓄熱システム及びヒートポンプ
EP2937659B1 (en) Heat transport apparatus
US20220034574A1 (en) Transport container
Beruto et al. Thermodynamics of two, two-dimensional phases formed by carbon dioxide chemisorption on magnesium oxide
JP2017089931A (ja) 冷却装置
JPS6380168A (ja) 冷却方法
JP2017089933A (ja) 冷蔵庫
JP2010120673A (ja) 保冷・保温用通い箱及び貯蔵箱及び該箱による被保冷体又は被保温体の保冷又は保温方法
ES2304344T3 (es) Preparacion de materiales refrigerantes.
US10508837B2 (en) Method of bringing to temperature and holding at temperature the interior of a thermally insulated enclosure with no continuous supply of energy and the associated device
Kirov et al. Auto-freeze drying by zeolites
JP2019156458A (ja) 保温搬送容器および搬送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737368

Country of ref document: EP

Kind code of ref document: A1