WO2016111323A1 - 微多孔膜およびその製造方法 - Google Patents

微多孔膜およびその製造方法 Download PDF

Info

Publication number
WO2016111323A1
WO2016111323A1 PCT/JP2016/050307 JP2016050307W WO2016111323A1 WO 2016111323 A1 WO2016111323 A1 WO 2016111323A1 JP 2016050307 W JP2016050307 W JP 2016050307W WO 2016111323 A1 WO2016111323 A1 WO 2016111323A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
film
membrane according
porosity
microporous
Prior art date
Application number
PCT/JP2016/050307
Other languages
English (en)
French (fr)
Inventor
本田 孝一
泰弘 山本
浩之 前原
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to US15/541,712 priority Critical patent/US20180022004A1/en
Priority to KR1020177021626A priority patent/KR20170102929A/ko
Priority to CN201680005139.2A priority patent/CN107207754A/zh
Priority to EP16735062.8A priority patent/EP3246354A4/en
Publication of WO2016111323A1 publication Critical patent/WO2016111323A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • B29C55/065Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a microporous membrane made of a polypropylene polymer, an electricity storage device obtained therefrom, and a method for producing the microporous membrane.
  • microporous membranes are used as separators for power storage devices such as batteries and capacitors.
  • a microporous membrane for a separator is required to have a basic performance as a separator, in which an electrode can be isolated and has ion conductivity.
  • Polyolefin resins are useful as battery separator materials because they have high chemical resistance and can be made porous by various methods. Moreover, since polyolefin resins are relatively inexpensive among synthetic resins, polyolefin battery separators are also advantageous in reducing battery manufacturing costs.
  • the method for making a polyolefin resin film porous is roughly classified into a wet method and a dry method.
  • a molten mixture of a polyolefin-based resin and a plasticizer, oil, paraffin or the like is developed into a film.
  • components other than the polyolefin are extracted, and the portions where these components exist are voided.
  • the polyolefin resin is molded into a microporous film.
  • the dry method is a method in which a polyolefin resin is molded into a microporous film by stretching a raw material mainly containing a polyolefin resin that does not contain components such as plasticizer, oil, paraffin, and a solvent.
  • Patent Documents 1, 2, and 3 describe that a polyolefin resin is made porous to produce a microporous membrane having a high porosity and that the obtained microporous membrane is used as a battery separator.
  • Patent Document 1 describes that a raw material composed of a mixture of a polyolefin resin and a conjugated diene polymer is processed into a microporous film having a desired porosity by a wet method.
  • Patent Document 2 describes that a mixture of polypropylene and polyethylene is processed into a microporous film having a desired porosity by stretching it in two stages by a dry method.
  • Patent Document 3 describes that a mixture in which a low molecular weight substance is blended with polyolefin is processed into a microporous film having a desired porosity by stretching it in two stages by a dry method.
  • the inventors of the present invention have studied diligently to produce a microporous film having a good porosity by a dry method using an inexpensive polypropylene resin as a raw material without blending with other resins. .
  • a polypropylene resin having a specific melt mass flow rate was used as a raw material, and a microporous membrane having a high porosity was successfully produced by a dry method.
  • the present invention is as follows.
  • (Invention 1) It consists of a polypropylene-based polymer whose melt mass flow rate (measured in accordance with MFR, JIS K6758 (230 ° C., 21.18 N)) is 1.0 g / 10 min or less, and has a porosity of 50%. This is the microporous membrane.
  • Invention 2 The microporous membrane of Invention 1 having a porosity in the range of 50 to 60%.
  • Invention 3 The microporous membrane of Invention 1 or 2 having an air permeability of 200 sec / 100 mL or more.
  • invention 4 The microporous membrane according to any one of Inventions 1 to 3, wherein the air permeability is in the range of 200 to 300 sec / 100 mL.
  • the polypropylene polymer has a melting point in the range of 150 to 170 ° C., and a melt mass flow rate (measured in accordance with MFR, JIS K6758 (230 ° C., 21.18 N)) is 1.0 g / 10
  • Invention 6 The microporous membrane according to any one of Inventions 1 to 5, which is used for a separator of an electricity storage device.
  • invention 7 The microporous membrane of Invention 6, wherein the electricity storage device is a lithium ion battery.
  • (Invention 12) A method for producing a microporous membrane according to any one of Inventions 1 to 11, comprising the following steps.
  • (Process 1) A polypropylene film having a melt mass flow rate (MFR) measured at 230 ° C. and a load of 21.18 N in accordance with JIS K6758 of 1.0 g / 10 min or less is extruded to produce a raw film. The film forming step.
  • (Step 2) A step of heat-treating the raw film obtained in Step 1.
  • (Step 3) A step of stretching the heat-treated raw film obtained in Step 2 at ⁇ 5 to 45 ° C. in the length direction by 1.0 to 1.1 times.
  • Step 4 A step of stretching the stretched film after Step 3 at a temperature lower by 5 to 65 ° C. than the melting point of the polypropylene polymer by 1.5 to 4.0 times in the length direction.
  • Step 5 A step of relaxing the hot-stretched film obtained in Step 4 under heating so that the length becomes 0.7 to 1.0 times.
  • the microporous membrane of the present invention has a high porosity of 50% or more, preferably 50 to 60%. This can be expected to have high ionic conductivity when the microporous membrane of the present invention is used as a separator material.
  • the microporous membrane of the present invention has an air permeability of 200 sec / 100 mL or more, preferably 200 to 300 sec / mL.
  • the number of pores per surface area of the microporous membrane is reflected in the porosity, and the average size of the micropores in the microporous membrane is reflected in the air permeability.
  • the balance between the porosity and the air permeability of the present invention can be expected to have many relatively small micropores formed on the surface of the microporous film of the present invention. From this, the microporous membrane of the present invention can be expected to have relatively stable and uniform material permeability.
  • the microporous membrane of the present invention comprises a polypropylene polymer having a melt mass flow rate (measured in accordance with MFR, JIS K6758 (230 ° C., 21.18N)) of 1.0 g / 10 min or less, and has pores. The rate is 50% or more.
  • the raw material of the microporous membrane of the present invention is a polypropylene polymer, which corresponds to a propylene homopolymer or a copolymer obtained by copolymerizing a comonomer.
  • the polypropylene polymer used in the present invention preferably has a relatively high crystallinity and a melting point in the range of 150 to 170 ° C., more preferably a melting point in the range of 155 to 168 ° C.
  • the comonomer is generally at least one selected from ethylene and an ⁇ -olefin having 4 to 8 carbon atoms.
  • these may be copolymerized with branched olefins having 4 to 8 carbon atoms such as 2-methylpropene, 3-methyl-1-butene, 4-methyl-1-pentene, styrenes and dienes. Good.
  • the content of the comonomer may be in any range as long as the microporous film exhibits desired properties. Preferably, it is 5 parts by weight or less, particularly 2 parts by weight or less with respect to 100 parts by weight of the polymer, which is a range giving a highly crystalline polypropylene polymer.
  • the polypropylene-based polymer has a melt mass flow rate (measured in accordance with MFR, JIS K6758 (230 ° C., 21.18 N)) of 1.0 g / 10 min or less, preferably 0.2 to 0.6. .
  • additives such as a crystal nucleating agent and a filler can be blended.
  • the type and amount of the additive are not limited as long as the porosity is not impaired.
  • the microporous membrane of the present invention is produced by a so-called dry method using the above-described raw materials.
  • the method for producing a microporous membrane of the present invention includes the following steps 1 to 5.
  • Step 1 Film-forming step
  • MFR melt mass flow rate
  • JIS K6758 JIS K6758
  • any of a single screw extruder, a twin screw extruder, and a tandem type extruder can be used.
  • Any die can be used as long as it is used for film forming.
  • the dice for example, various T-type dice can be used.
  • the thickness and shape of the raw film are not particularly limited.
  • the ratio (draft ratio) between the die slip clearance and the raw film thickness is 100 or more, more preferably 150 or more.
  • the thickness of the raw film is 10 to 200 ⁇ m, more preferably 15 to 100 ⁇ m.
  • Process 2 Heat treatment process This is a step of heat-treating the raw film after step 1 is completed.
  • a constant tension in the length direction is applied to the original film at a temperature 5 to 65 ° C., preferably 10 to 25 ° C. lower than the melting point of the polypropylene polymer.
  • the tension is preferably such that the length of the raw film exceeds 1.0 and is 1.1 times or less.
  • the stretching temperature is ⁇ 5 to 45 ° C., preferably 5 to 30 ° C.
  • the draw ratio is 1.0 to 1.1, preferably 1.00 to 1.08, more preferably 1.02 or more and less than 1.05 in the length direction. However, the draw ratio is greater than 1.0.
  • the stretching means is not limited. Known means such as a roll stretching method and a tenter stretching method can be used. The number of stretching stages can be set arbitrarily. One-stage stretching may be performed, and two or more stages of stretching may be performed through a plurality of rolls.
  • the molecules of the polypropylene polymer constituting the raw film are oriented.
  • a stretched film having a lamellar portion with a dense molecular chain and a region (craze) with a loose molecular chain between lamellas is obtained.
  • Step 4 Warm stretching process
  • the stretching temperature is 5 to 65 ° C. lower than the melting point of the polypropylene polymer, preferably 10 to 45 ° C. lower than the melting point of the polypropylene polymer.
  • the draw ratio is 1.5 to 4.5 times in the length direction, preferably 2.0 to 4.0 times.
  • the stretching means is not limited. Known means such as a roll stretching method and a tenter stretching method can be used.
  • the number of stretching stages can be set arbitrarily. One-stage stretching may be performed, and two or more stages of stretching may be performed through a plurality of rolls.
  • the warm drawing step the craze produced in step 3 is stretched and voids are generated.
  • Step 5 Relaxation process
  • the relaxation temperature is slightly higher than the temperature of warm drawing, and is generally 0 to 20 ° C. higher.
  • the degree of relaxation is adjusted so that the length of the stretched film after Step 4 is finally 0.7 to 1.0 times.
  • the “porosity” and “air permeability” of the microporous membrane of the present invention are measured under the following conditions.
  • Air permeability This is the air permeability determined by the Gurley test in an atmosphere of room temperature 23 ° C. ⁇ 2 ° C. and humidity 50% ⁇ 5% based on JIS P8117.
  • the porosity of the microporous membrane of the present invention is 50% or more, preferably 50 to 60%.
  • the air permeability of the microporous membrane of the present invention is 200 sec / 100 mL or more, preferably in the range of 200 to 300 sec / 100 mL.
  • Example 1 (Raw material) A propylene homopolymer having a melt mass flow rate (MFR) of 0.5 g / 10 minutes and a melting point of 165 ° C. measured according to JIS K6758 (230 ° C., 21.18 N) was used as a raw material for the microporous membrane.
  • MFR melt mass flow rate
  • Step 1 The raw material melt-kneaded with a single screw extruder was extruded from a T-die at a draft ratio of 159 to produce a raw film having a thickness of 22 ⁇ m.
  • Step 2 Next, the raw film was heat-treated at 150 ° C.
  • Step 4 The obtained stretched film was warm-stretched 3.0 times in the length direction at 145 ° C. (Step 5) It was relaxed at 150 ° C. so that the length of the obtained stretched film was 0.88 times.
  • the microporous membrane of the present invention having a final thickness of 20 ⁇ m was obtained.
  • the porosity and air permeability of the obtained microporous membrane were measured by the method described above, and the results are shown in Table 1 together with the production conditions.
  • an air permeability meter (Gurley type densometer) manufactured by Toyo Seiki Seisakusho was used.
  • Example 2 (Raw material) A propylene homopolymer having a melt mass flow rate (MFR) of 0.5 g / 10 minutes and a melting point of 165 ° C. measured according to JIS K6758 (230 ° C., 21.18 N) was used as a raw material for the microporous membrane.
  • MFR melt mass flow rate
  • Step 1 The raw material melt-kneaded with a single screw extruder was extruded from a T-die at a draft ratio of 159 to produce a raw film having a thickness of 22 ⁇ m.
  • Step 2 Next, the raw film was heat-treated at 150 ° C.
  • Step 4 The obtained stretched film was warm-stretched 3.0 times in the length direction at 145 ° C. (Step 5) It was relaxed at 150 ° C. so that the length of the obtained stretched film was 0.88 times.
  • the microporous membrane of the present invention having a final thickness of 20 ⁇ m was obtained.
  • the evaluation results are shown in Table 1 together with the production conditions.
  • Step 4 The obtained stretched film was warm-stretched 3.2 times in the length direction at 145 ° C. (Step 5) It was relaxed at 150 ° C. so that the length of the obtained stretched film was 0.88 times. A comparative microporous membrane having a final thickness of 20 ⁇ m was thus obtained. The evaluation results are shown in Table 1 together with the production conditions.
  • Step 4 The obtained stretched film was warm-stretched 3.0 times in the length direction at 128 ° C. (Step 5) It was relaxed at 150 ° C. so that the length of the obtained stretched film was 0.88 times. A comparative microporous membrane having a final thickness of 20 ⁇ m was thus obtained. The evaluation results are shown in Table 1 together with the production conditions.
  • the porosity of the microporous membrane of the present invention obtained in Examples 1 and 2 shows a high value of 54%.
  • the porosity of the microporous membranes of Comparative Examples 1 and 2 does not reach 50%, and the practicality as a battery separator is poor.
  • Examples 1 and 2 are predicted to have a high density of micropores having a relatively small pore diameter as compared with Comparative Examples 1 and 2. Such a micropore shape is also reflected in the air permeability per thickness of the microporous membrane.
  • Examples 1 and 2 are considered to exhibit relatively high ionic conductivity stably.
  • the microporous membrane of the present invention is made of a raw material that has sufficient porosity and does not contain any special additives. Such a microporous membrane of the present invention is useful as a battery separator material that has excellent ionic conductivity and can be produced at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 電池セパレータ材として有用な高空孔率のポリプロピレン系樹脂製微多孔膜を提供すること。JIS K6758に準拠して230℃、荷重21.18Nで測定したメルトマスフローレイト(MFR)が1.0g/10分以下であるポリプロピレン系重合体からなり、空孔率が50%以上である、微多孔膜、及びその製造方法による。

Description

微多孔膜およびその製造方法
 本発明はポリプロピレン系重合体からなる微多孔膜、これから得られる蓄電デバイス、及び上記微多孔膜の製造方法に関する。
 電池やキャパシタなどの蓄電デバイスのセパレータとしては各種の微多孔膜が用いられている。セパレータ用微多孔膜には、まず、電極を隔離でき、イオン伝導性を有するという、セパレータとしての基本的性能が求められる。ポリオレフィン系樹脂は、耐薬剤性が高く、様々な方法で多孔化が可能である点で、電池セパレータの材料として有用である。しかもポリオレフィン系樹脂は合成樹脂の中でも比較的安価であるから、ポリオレフィン製電池セパレータは電池製造コストの削減にも有利である。
 ポリオレフィン系樹脂フィルムの多孔化方法は、湿式法と乾式法に大別される。湿式法では、ポリオレフィン系樹脂と、可塑剤、オイル、パラフィンなどとの溶融混合物をフィルム状に展開する。次に、ポリオレフィン以外の成分を抽出し、これら成分が存在した部分を空隙化する。その結果、ポリオレフィン系樹脂が微多孔膜に成形加工される。乾式法では、可塑剤、オイル、パラフィンなどの成分や溶剤を含まない、ポリオレフィン系樹脂を主体とする原料を延伸することによって、ポリオレフィン系樹脂を微多孔膜に成形加工する方法である。乾式法として、ポリオレフィン系樹脂中のラメラ構造の間隙に空隙を発生させる方法と、原料に添加した無機添加剤とポリオレフィン系樹脂との界面に空隙を発生させる方法とが知られている。
 ポリオレフィン系樹脂を多孔化し、空孔率の高い微多孔膜を製造すること、得られた微多孔膜を電池セパレータとして使用することは、例えば特許文献1、2、3に記載されている。
 特許文献1には、ポリオレフィン系樹脂と共役ジエンポリマーとの混合物からなる原料を、湿式法により所望の空孔率を有する微多孔フィルムに加工することが記載されている。
 特許文献2には、ポリプロピレンとポリエチレンとの混合物を、乾式法により2段階で延伸することによって、所望の空孔率を有する微多孔フィルムに加工することが記載されている。
 特許文献3には、ポリオレフィンに低分子量物質を配合した混合物を、乾式法により2段階で延伸することによって、所望の空孔率を有する微多孔フィルムに加工することが記載されている。
 しかしながら、合成樹脂製微多孔膜の製造方法としては、溶剤を用いない乾式法がコスト面で有利であることから、使用する樹脂の種類や添加物の種類をできるだけ少なくして低コスト化を測る必要があることから、上述の特許文献1、2、3に記載された微多孔膜とその製造方法には、問題点がある。低コストで、空孔率の高い、ポリオレフィン系樹脂からなる微多孔膜には、依然として改善の余地がある。
特開2004-352834号公報 特開2008-248231号公報 特開平8-20660号公報
 そこで本発明の発明者らは、安価なポリプロピレン系樹脂を、他の樹脂とブレンドすることなく原料として用い、乾式法によって、良好な空孔率を有する微多孔膜を製造すべく、鋭意検討した。
 その結果、特定のメルトマスフローレイトを有するポリプロピレン系樹脂を原料として用い、乾式法によって、高い空孔率を有する微多孔膜を製造することに成功した。
 すなわち本発明は以下のものである。
(発明1)メルトマスフローレイト(MFR、JIS K6758(230℃、21.18N)に準拠した条件で測定)が1.0g/10分以下であるポリプロピレン系重合体からなり、空孔率が50%以上である、微多孔膜。
(発明2)空孔率が50~60%の範囲にある、発明1の微多孔膜。
(発明3)通気度が200sec/100mL以上である、発明1または2の微多孔膜。
(発明4)通気度が200~300sec/100mLの範囲にある、発明1~3のいずれかの微多孔膜。
(発明5)ポリプロピレン系重合体が、融点が150~170℃の範囲にあり、メルトマスフローレイト(MFR、JIS K6758(230℃、21.18N)に準拠した条件で測定)が1.0g/10分以下である、任意にエチレン、炭素数4~8のα-オレフィンから選ばれる少なくとも1種を含んでいてもよい、プロピレン主体の重合体である、発明1~4のいずれかの微多孔膜。
(発明6)蓄電デバイスのセパレータに用いられることを特徴とする発明1~5のいずれかの微多孔膜。
(発明7)蓄電デバイスがリチウムイオン電池である、発明6の微多孔膜。
(発明8)蓄電デバイスがキャパシタである、発明6の微多孔膜。
(発明9)発明6の微多孔膜を備える蓄電デバイス。
(発明10)発明7の微多孔膜を備えるリチウムイオン電池。
(発明11)発明8の微多孔膜を備えるキャパシタ。
(発明12)以下の工程を含む、発明1~11のいずれかの微多孔膜の製造方法。
(工程1)JIS K6758に準拠して230℃、荷重21.18Nで測定したメルトマスフローレイト(MFR)が1.0g/10分以下であるポリプロピレン系重合体を押出成形して原反フィルムを製膜する工程。
(工程2)工程1で得られた原反フィルムを熱処理する工程。
(工程3)工程2で得られた熱処理後の原反フィルムを、-5~45℃で、長さ方向に1.0~1.1倍に延伸する工程。
(工程4)工程3を終えた延伸フィルムを、ポリプロピレン系重合体の融点よりも5~65℃低い温度で、長さ方向に1.5~4.0倍に延伸する工程。
(工程5)工程4で得られた温延伸後のフィルムを、加熱下、長さが0.7~1.0倍になるように弛緩させる工程。
 本発明の微多孔膜は、まず、50%以上、好ましくは50~60%という高い空孔率を有する。このことは、本発明の微多孔膜をセパレータ材として用いた場合に高いイオン導電性が期待できる。
 しかも本発明の微多孔膜は200sec/100mL以上、好ましくは200~300sec/mLの通気度を有する。一般に、微多孔膜の表面面積当たりの孔の数は空孔率に反映し、微多孔膜の微孔の平均的な大きさは、通気度に反映する。この意味で、本発明の空孔率と通気度のバランスは、本発明の微多孔膜表面には比較的小さな微孔が多数形成されていると予想できる。このことから、本発明の微多孔膜には比較的安定で均一な物質透過性が期待できる。
 本発明の微多孔膜は、メルトマスフローレイト(MFR、JIS K6758(230℃、21.18N)に準拠した条件で測定)が1.0g/10分以下であるポリプロピレン系重合体からなり、空孔率が50%以上である。
(微多孔膜の原料)
 本発明の微多孔膜の原料は、ポリプロピレン系重合体であって、プロピレンの単独重合体あるいはコモノマーを共重合した共重合体がこれに相当する。本発明で使用するポリプロピレン系重合体としては、結晶性が比較的高い、融点が150~170℃の範囲にあるものが好ましく、融点が155~168℃の範囲にあるものがさらに好ましい。上記コモノマーは、一般的には、エチレンおよび炭素数4~8のα-オレフィンから選ばれる少なくとも1種である。またこれらと共に、2-メチルプロペン、3-メチル-1-ブテン、4-メチル-1-ペンテンなどの炭素数4~8の分岐オレフィン類、スチレン類、ジエン類を共重合したものであってもよい。
 上記コモノマーの含有量は、微多孔膜が所望の性質を示す限り、いかなる範囲にあってもよい。好ましくは、高結晶性ポリプロピレン系重合体を与える範囲である、重合体100重量部に対して5重量部以下、特に2重量部以下が好ましい。
 また上記ポリプロピレン系重合体のメルトマスフローレイト(MFR、JIS K6758(230℃、21.18N)に準拠した条件で測定)が1.0g/10分以下、好ましくは0.2~0.6である。
 本発明の微多孔膜の原料には、結晶核剤や充填剤などの添加剤を配合することができる。添加剤の種類や量は、多孔性を損なわない範囲であれば、制限はない。
(微多孔膜の製造方法)
 本発明の微多孔膜は、上述の原料を用いて、いわゆる乾式法によって製造される。本発明の微多孔膜の製造方法は、以下の工程1~5を含む。
(工程1:製膜工程)
 原料を押出成形して原反フィルムを製膜する工程である。JIS K6758に準拠して230℃、荷重21.18Nで測定したメルトマスフローレイト(MFR)が1.0g/10分以下であるポリプロピレン系重合体を押出機に供給し、ポリプロピレン系重合体をその融点以上の温度で溶融混練し、押出機の先端に取り付けたダイスからポリプロピレン系重合体フィルムを押出す。使用される押出機は限定されない。押出機としては、例えば、単軸押出機、二軸押出機、タンデム型押出機のいずれもが使用可能である。使用されるダイスはフィルム成形に用いられるものであれば、いずれも使用できる。ダイスとしては、例えば、各種T型ダイス使用することができる。原反フィルムの厚みや形状は特に限定されない。好ましくは、ダイスリップクリアランスと原反フィルム厚さの比(ドラフト比)は100以上、さらに好ましくは150以上である。好ましくは、原反フィルムの厚みは10~200μm、さらに好ましくは15~100μmである。
(工程2:熱処理工程)
 工程1を終えた原反フィルムを熱処理する工程である。ポリプロピレン系重合体の融点よりも5~65℃、好ましくは10~25℃低い温度で、原反フィルムに長さ方向の一定の張力を加える。張力は、好ましくは、原反フィルムの長さが1.0倍を超え1.1倍以下となる大きさである。
(工程3:冷延伸工程)
 工程2を終えた熱処理後の原反フィルムを比較的低い温度で延伸する工程である。延伸温度は-5~45℃、好ましくは5~30℃である。延伸倍率は、長さ方向に1.0~1.1、好ましくは1.00~1.08、さらに好ましくは1.02以上1.05未満である。ただし、延伸倍率は1.0倍より大きい。延伸手段は制限されない。ロール延伸法、テンター延伸法などの公知の手段が使用できる。延伸の段数は任意に設定できる。1段延伸でもよく、複数のロールを経て2段以上の延伸を行ってもよい。冷延伸工程で、原反フィルムを構成するポリプロピレン系重合体の分子が配向する。その結果、分子鎖が密なラメラ部と、ラメラ間の分子鎖が疎な領域(クレーズ)とを有する延伸フィルムが得られる。
(工程4:温延伸工程)
 工程3を終えた延伸フィルムを比較的高い温度で延伸する工程である。延伸温度はポリプロピレン系重合体の融点よりも5~65℃低い温度、好ましくはポリプロピレン系重合体の融点よりも10~45℃低い温度である。延伸倍率は、長さ方向に1.5~4.5倍、好ましくは2.0~4.0倍である。延伸手段は制限されない。ロール延伸法、テンター延伸法などの公知の手段が使用できる。延伸の段数は任意に設定できる。1段延伸でもよく、複数のロールを経て2段以上の延伸を行ってもよい。温延伸工程で工程3で生じたクレーズが引き延ばされ、空孔が発生する。
(工程5:弛緩工程)
 工程4を終えた温延伸後のフィルムの収縮を防ぐためにフィルムを弛緩させる工程である。弛緩温度は、温延伸の温度よりもやや高い温度であり、0~20℃高い温度が一般的である。弛緩の度合いは、工程4を終えた延伸フィルムの長さが最終的に0.7~1.0倍になるように調整される。
 本発明の微多孔膜が有する「空孔率」と「通気度」は、以下の条件で測定される。
(空孔率)
 幅50mm×長さ120mmの微多孔膜切片について、以下の計算式により算出した値である。
 空孔率(%)=[1-(切片重量)/(切片面積×樹脂密度×切片厚み)]×100
(通気度)
 JIS P8117に準拠し、室温23℃±2℃、湿度50%±5%の雰囲気における、ガーレー試験によって求めた通気度である。
 本発明の微多孔膜の空孔率は、50%以上、好ましくは50~60%の範囲にある。本発明の微多孔膜の通気度は、200sec/100mL以上、好ましくは200~300sec/100mLの範囲にある。
(実施例1)
 (原料)微多孔膜の原料として、JIS K6758(230℃、21.18N)に従い測定したメルトマスフローレイト(MFR)が0.5g/10分、融点が165℃のプロピレン単独重合体を使用した。(工程1)単軸押出機で溶融混練した原料をドラフト比159でTダイから押出し、厚さ22μmの原反フィルムを製造した。(工程2)次いで、原反フィルムを150℃で熱処理した。(工程3)原反フィルムを30℃で長さ方向に1.03倍に冷延伸した。(工程4)得られた延伸フィルムを145℃で長さ方向に3.0倍に温延伸した。(工程5)得られた延伸フィルムの長さが0.88倍になるように150℃で弛緩させた。こうして最終厚みが20μmの本発明の微多孔膜が得られた。得られた微多孔膜の空孔率と通気度を上述の方法で測定し、その結果を製造条件と共に表1に示す。なお通気度の測定には、東洋精機製作所社製の通気度計(ガーレ式デンソメータ)を用いた。
(実施例2)
 (原料)微多孔膜の原料として、JIS K6758(230℃、21.18N)に従い測定したメルトマスフローレイト(MFR)が0.5g/10分、融点が165℃のプロピレン単独重合体を使用した。(工程1)単軸押出機で溶融混練した原料をドラフト比159でTダイから押出し、厚さ22μmの原反フィルムを製造した。(工程2)次いで、原反フィルムを150℃で熱処理した。(工程3)原反フィルムを30℃で長さ方向に1.04倍に冷延伸した。(工程4)得られた延伸フィルムを145℃で長さ方向に3.0倍に温延伸した。(工程5)得られた延伸フィルムの長さが0.88倍になるように150℃で弛緩させた。こうして最終厚みが20μmの本発明の微多孔膜が得られた。評価結果を製造条件と共に表1に示す。
(比較例1)
 (原料)微多孔膜の原料として、JIS K6758(230℃、21.18N)に従い測定したメルトマスフローレイト(MFR)が2.0g/10分、融点が165℃のプロピレン単独重合体を使用した。(工程1)単軸押出機で溶融混練した原料をドラフト比159でTダイから押出し、厚さ22μmの原反フィルムを製造した。(工程2)次いで、原反フィルムを150℃で熱処理した。(工程3)原反フィルムを30℃で長さ方向に1.07倍に温延伸した。(工程4)得られた延伸フィルムを145℃で長さ方向に3.2倍に温延伸した。(工程5)得られた延伸フィルムの長さが0.88倍になるように150℃で弛緩させた。こうして最終厚みが20μmの比較用の微多孔膜が得られた。評価結果を製造条件と共に表1に示す。
(比較例2)
 (原料)微多孔膜の原料として、JIS K6758(230℃、21.18N)に従い測定したメルトマスフローレイト(MFR)が1.5g/10分、融点が158℃のプロピレン-エチレン共重合体を使用した。(工程1)単軸押出機で溶融混練した原料をドラフト比159でTダイから押出し、厚さ22μmの原反フィルムを製造した。(工程2)次いで、原反フィルムを150℃で熱処理した。(工程3)原反フィルムを30℃で長さ方向に1.04倍に冷延伸した。(工程4)得られた延伸フィルムを128℃で長さ方向に3.0倍に温延伸した。(工程5)得られた延伸フィルムの長さが0.88倍になるように150℃で弛緩させた。こうして最終厚みが20μmの比較用の微多孔膜が得られた。評価結果を製造条件と共に表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1,2で得られた本発明の微多孔膜の空孔率は54%という高い値を示す。これに対して比較例1,2の微多孔膜の空孔率は50%に達せず、電池セパレータとしての実用性に乏しい。空孔率と通気度のバランスからみて、実施例1,2は、比較例1,2に比べて比較的孔径の小さい微孔が高密度に存在していると予測される。このような微孔形態は、微多孔膜の厚み当たりの通気度にも反映している。実施例1,2は比較例1,2に比べ、比較的高いイオン電導性が安定して発揮されると考えられる。
 本発明の微多孔膜は、十分な多孔性を有し、かつ、特別な添加剤を含まない原料からなる。このような本発明の微多孔膜は、優れたイオン電導性を有し、かつ低コストで製造できる電池セパレータの材料として有用である。

Claims (12)

  1.  メルトマスフローレイト(MFR、JIS K6758(230℃、21.18N)に準拠した条件で測定)が1.0g/10分以下であるポリプロピレン系重合体からなり、空孔率が50%以上である、微多孔膜。
  2.  空孔率が50~60%の範囲にある、請求項1に記載の微多孔膜。
  3.  通気度が200sec/100mL以上である、請求項1または2に記載の微多孔膜。
  4.  通気度が200~300sec/100mLの範囲にある、請求項1~3のいずれか1項に記載の微多孔膜。
  5.  ポリプロピレン系重合体が、融点が150~170℃の範囲にあり、メルトマスフローレイト(MFR、JIS K6758(230℃、21.18N)に準拠した条件で測定)が1.0g/10分以下である、任意にエチレン、炭素数4~8のα-オレフィンから選ばれる少なくとも1種を含んでいてもよい、プロピレン主体の重合体である、請求項1~4のいずれか1項に記載の微多孔膜。
  6.  蓄電デバイスのセパレータに用いられることを特徴とする請求項1~5のいずれか1項に記載の微多孔膜。
  7.  蓄電デバイスがリチウムイオン電池である、請求項6に記載の微多孔膜。
  8.  蓄電デバイスがキャパシタである、請求項6に記載の微多孔膜。
  9.  請求項6に記載の微多孔膜を備える蓄電デバイス。
  10.  請求項7に記載の微多孔膜を備えるリチウムイオン電池。
  11.  請求項8に記載の微多孔膜を備えるキャパシタ。
  12.  以下の工程を含む、請求項1~11のいずれか1項に記載の微多孔膜の製造方法。
    (工程1)JIS K6758に準拠して230℃、荷重21.18Nで測定したメルトマスフローレイト(MFR)が1.0g/10分以下であるポリプロピレン系重合体を押出成形して原反フィルムを製膜する工程。
    (工程2)工程1で得られた原反フィルムを熱処理する工程。
    (工程3)工程2で得られた熱処理後の原反フィルムを、-5~45℃で、長さ方向に1.0~1.1倍に延伸する工程。
    (工程4)工程3を終えた延伸フィルムを、ポリプロピレン系重合体の融点よりも5~65℃低い温度で、長さ方向に1.5~4.0倍に延伸する工程。
    (工程5)工程4で得られた温延伸後のフィルムを、加熱下、長さが0.7~1.0倍になるように弛緩させる工程。
PCT/JP2016/050307 2015-01-09 2016-01-07 微多孔膜およびその製造方法 WO2016111323A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/541,712 US20180022004A1 (en) 2015-01-09 2016-01-07 Microporous membrane and production method therefor
KR1020177021626A KR20170102929A (ko) 2015-01-09 2016-01-07 미세 다공막 및 그 제조 방법
CN201680005139.2A CN107207754A (zh) 2015-01-09 2016-01-07 微多孔膜及其制造方法
EP16735062.8A EP3246354A4 (en) 2015-01-09 2016-01-07 Microporous membrane and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015002950A JP6550754B2 (ja) 2015-01-09 2015-01-09 微多孔膜およびその製造方法
JP2015-002950 2015-01-09

Publications (1)

Publication Number Publication Date
WO2016111323A1 true WO2016111323A1 (ja) 2016-07-14

Family

ID=56356009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050307 WO2016111323A1 (ja) 2015-01-09 2016-01-07 微多孔膜およびその製造方法

Country Status (7)

Country Link
US (1) US20180022004A1 (ja)
EP (1) EP3246354A4 (ja)
JP (1) JP6550754B2 (ja)
KR (1) KR20170102929A (ja)
CN (1) CN107207754A (ja)
TW (1) TW201637266A (ja)
WO (1) WO2016111323A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438170A4 (en) * 2016-03-31 2019-11-13 JNC Corporation MICROPOROUS MEMBRANE WITH EXCELLENT LOW TEMPERATURE CHARACTERISTICS AND METHOD FOR PRODUCING THE SAME

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265414A (ja) * 2009-05-15 2010-11-25 Asahi Kasei E-Materials Corp 微多孔性フィルム及びその製造方法並びに電池用セパレータ
JP2012038655A (ja) * 2010-08-10 2012-02-23 Asahi Kasei E-Materials Corp 微多孔性フィルム及び電池用セパレータ
JP2014223812A (ja) * 2007-05-11 2014-12-04 三菱樹脂株式会社 積層多孔性フィルム、電池用セパレータおよび電池
JP2016023255A (ja) * 2014-07-22 2016-02-08 旭化成イーマテリアルズ株式会社 多孔性フィルム捲回物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI397551B (zh) * 2008-07-31 2013-06-01 Asahi Kasei E Materials Corp 微多孔性膜及其製造方法
JP5731762B2 (ja) * 2010-06-10 2015-06-10 旭化成イーマテリアルズ株式会社 微多孔性フィルム及びその製造方法並びに電池用セパレータ
JP5765960B2 (ja) * 2011-02-16 2015-08-19 旭化成イーマテリアルズ株式会社 微多孔性フィルムの製造方法及び電池用セパレータ
JP2013199545A (ja) * 2012-03-23 2013-10-03 Asahi Kasei E-Materials Corp 微多孔性フィルム及び電池用セパレータ
CN102769115B (zh) * 2012-08-02 2015-05-13 常州大学 一种由聚丙烯混合物制备的锂离子电池隔膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014223812A (ja) * 2007-05-11 2014-12-04 三菱樹脂株式会社 積層多孔性フィルム、電池用セパレータおよび電池
JP2010265414A (ja) * 2009-05-15 2010-11-25 Asahi Kasei E-Materials Corp 微多孔性フィルム及びその製造方法並びに電池用セパレータ
JP2012038655A (ja) * 2010-08-10 2012-02-23 Asahi Kasei E-Materials Corp 微多孔性フィルム及び電池用セパレータ
JP2016023255A (ja) * 2014-07-22 2016-02-08 旭化成イーマテリアルズ株式会社 多孔性フィルム捲回物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3246354A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438170A4 (en) * 2016-03-31 2019-11-13 JNC Corporation MICROPOROUS MEMBRANE WITH EXCELLENT LOW TEMPERATURE CHARACTERISTICS AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JP6550754B2 (ja) 2019-07-31
TW201637266A (zh) 2016-10-16
KR20170102929A (ko) 2017-09-12
US20180022004A1 (en) 2018-01-25
EP3246354A1 (en) 2017-11-22
EP3246354A4 (en) 2018-09-19
JP2016128530A (ja) 2016-07-14
CN107207754A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
CN107223147B (zh) 聚烯烃微多孔膜、其制造方法以及电池用隔膜
JP5967589B2 (ja) ポリオレフィン微多孔膜及びその製造方法
JP5128488B2 (ja) 溶融破断特性に優れるポリオレフィン微多孔膜及びその製造方法
WO2017170289A1 (ja) ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池
JP2008214425A (ja) ポリオレフィン微多孔膜の製造方法
KR20160014557A (ko) 폴리프로필렌 미세 다공성막 및 그 제조방법
US20180311930A1 (en) Organic-inorganic composite membrane excellent in smoothness and multi-layer heat resistant separator material using same
JP2010242060A (ja) 多孔性ポリプロピレンフィルムロール
JP6507650B2 (ja) 微多孔膜およびその製造方法
JP2014012857A (ja) 微多孔膜及びその製造方法、並びに非水電解液2次電池用セパレータ
JP2011042805A (ja) ポリオレフィン微多孔膜の製造方法
JP6551343B2 (ja) ポリプロピレン系微多孔膜の製造方法
CN112063006B (zh) 一种聚烯烃微多孔膜及其制备方法
JP5295857B2 (ja) 非水電解液電池用セパレータ及び非水電解液電池
JP6550754B2 (ja) 微多孔膜およびその製造方法
JP6507648B2 (ja) 微多孔膜およびその製造方法
JP6880775B2 (ja) ポリプロピレン系微多孔膜の製造方法
JP6507647B2 (ja) 微多孔膜およびその製造方法
WO2023276468A1 (ja) ポリオレフィン微多孔膜および電池用セパレータ
JP2017119769A (ja) ポリオレフィン微多孔膜とその製造方法、ロール及びポリオレフィン微多孔膜の評価方法
JP2018168316A (ja) ポリプロピレン系微多孔膜の製造方法
JP6507649B2 (ja) 微多孔膜およびその製造方法
JP2019189795A (ja) ポリプロピレン組成物
WO2017170851A1 (ja) 低温特性に優れる微多孔膜およびその製造方法
WO2020179294A1 (ja) ポリオレフィン微多孔膜、電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15541712

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177021626

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016735062

Country of ref document: EP