WO2016111300A1 - 感放射線性組成物及びパターン形成方法 - Google Patents

感放射線性組成物及びパターン形成方法 Download PDF

Info

Publication number
WO2016111300A1
WO2016111300A1 PCT/JP2016/050164 JP2016050164W WO2016111300A1 WO 2016111300 A1 WO2016111300 A1 WO 2016111300A1 JP 2016050164 W JP2016050164 W JP 2016050164W WO 2016111300 A1 WO2016111300 A1 WO 2016111300A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
radiation
group
sensitive composition
pka
Prior art date
Application number
PCT/JP2016/050164
Other languages
English (en)
French (fr)
Inventor
宗大 白谷
岳彦 成岡
恭志 中川
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to EP16735039.6A priority Critical patent/EP3244262A4/en
Priority to KR1020177015766A priority patent/KR20170103762A/ko
Priority to JP2016568728A priority patent/JP6666564B2/ja
Publication of WO2016111300A1 publication Critical patent/WO2016111300A1/ja
Priority to US15/642,908 priority patent/US20170299962A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • G03F7/2006Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light using coherent light; using polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions

Definitions

  • the present invention relates to a radiation-sensitive composition and a pattern forming method.
  • Radiation sensitive compositions used for microfabrication by lithography are exposed to irradiated parts such as deep ultraviolet rays such as ArF excimer laser light and KrF excimer laser light, electromagnetic waves such as extreme ultraviolet rays (EUV), and charged particle beams such as electron beams.
  • An acid is generated in the substrate, and a chemical reaction using the acid as a catalyst causes a difference in the dissolution rate of the exposed portion and the unexposed portion in the developer, thereby forming a pattern on the substrate.
  • Such a radiation-sensitive composition is required to improve resist performance as the processing technique becomes finer.
  • the types and molecular structures of polymers, acid generators and other components used in the composition have been studied, and further their combinations have been studied in detail (Japanese Patent Application Laid-Open No. 11-125907, special features). (See Kaihei 8-146610 and JP-A 2000-298347).
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a radiation-sensitive composition and a pattern forming method capable of forming a pattern with high sensitivity and excellent nano edge roughness.
  • the invention made in order to solve the above-mentioned problems is based on an organic acid (hereinafter also referred to as “[A] organic acid”) and a metal oxide (hereinafter also referred to as “[B] particle”). And an acid generator that generates an acid upon irradiation with radiation (hereinafter also referred to as “[C] acid generator”), wherein the [C] acid generator is at least one of the following (i) and (ii): It is a radiation-sensitive resin composition that satisfies one.
  • the logarithmic value pKa of the reciprocal of the acid dissociation constant Ka of the acid generated from the [C] acid generator is smaller than the pKa of the [A] organic acid, and the van der Waals volume of the acid is 2.1 ⁇ . is 10 -28 m 3 or more
  • the [C] acid generator has a plurality of groups capable of generating an acid, and logarithm pKa of the reciprocal of the acid dissociation constant Ka of the acid is the pKa of the organic acid small
  • Another invention made to solve the above-mentioned problems comprises a step of forming a film, a step of exposing the film, and a step of developing the exposed film, and the film is made of the radiation-sensitive composition. This is a pattern forming method to be formed.
  • van der Waals volume refers to the volume of a region occupied by van der Waals spheres based on the van der Waals radius of atoms constituting the acid generated from the acid generator.
  • WinMOPAC Flujitsu Ltd. , Ver. 3.9.0
  • Total solid content in the radiation-sensitive composition refers to the sum of components other than the solvent.
  • high sensitivity and nano edge roughness can be obtained by combining a particle mainly composed of an organic acid and a metal oxide with an acid generator that generates a specific acid. Can be formed. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.
  • the radiation-sensitive composition contains [A] an organic acid, [B] particles, and a [C] acid generator.
  • the said radiation sensitive composition may contain a [D] solvent as a suitable component, and may contain the other arbitrary components in the range which does not impair the effect of this invention.
  • the radiation-sensitive composition contains [A] organic acid, [B] particles, and [C] acid generator, thereby forming a pattern with high sensitivity and excellent nano edge roughness.
  • the [A] organic acid is present around the [B] particle due to the interaction with the metal atom or oxygen atom of the metal oxide of the [B] particle, As a result, [B] particles are considered to have high dispersibility in the solvent.
  • an acid hereinafter also referred to as “acid (I)” is generated from the [C] acid generator by irradiation with radiation. Since this acid (I) has a pKa smaller than that of the [A] organic acid, the [A] organic acid present around the [B] particle is substituted, and the acid (I) is present around the [B] particle. Changes to something that exists.
  • the [B] particles have a low pKa of the acid (I), so that the dispersibility in the organic solvent is reduced, and the van der Waals volume of the acid (I) is set to the above specific value or more.
  • the acid (I) has a plurality of acid groups, the dispersibility in an organic solvent can be further greatly reduced. Therefore, the sensitivity of the radiation sensitive composition can be further increased.
  • the van der Waals volume of the acid (I) is set to the above specific value or the acid (I) has a plurality of acid groups to form a chelate with the [B] particles, or a plurality of [B] particles.
  • An organic acid is an organic compound that exhibits acidity.
  • Organic compound refers to a compound having at least one carbon atom.
  • the upper limit of the pKa of the organic acid is preferably 7, more preferably 6, more preferably 5.5, and particularly preferably 5.
  • the lower limit of the pKa is preferably 0, more preferably 1, more preferably 1.5, and particularly preferably 3.
  • the pKa of the [A] organic acid refers to the first acid dissociation constant, that is, the logarithmic value of the dissociation constant with respect to the dissociation of the first proton.
  • the organic acid may be a low molecular compound or a high molecular compound, but a low molecular compound is preferred from the viewpoint of further weakening the interaction between the [A] organic acid and [B] particles.
  • the upper limit of the molecular weight of the organic acid is preferably 1,000, more preferably 500, still more preferably 400, and particularly preferably 300.
  • the lower limit of the molecular weight is preferably 50.
  • the dispersibility of [B] particles can be adjusted more appropriately. As a result, the sensitivity and nanoedge roughness performance of the radiation-sensitive composition can be further improved. Can be increased.
  • organic acid examples include carboxylic acid, sulfonic acid, sulfinic acid, organic phosphinic acid, organic phosphonic acid, phenol, enol, thiol, acid imide, oxime, and sulfonamide.
  • carboxylic acid examples include formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, 2-ethylhexanoic acid, oleic acid, acrylic acid, methacrylic acid, trans -2,3-dimethylacrylic acid, stearic acid, linoleic acid, linolenic acid, arachidonic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, pentafluoropropionic acid, Monocarboxylic acids such as gallic acid and shikimic acid; Dicarboxylic acids such as oxalic acid, malonic acid, maleic acid, methylmalonic acid, fumaric acid,
  • sulfonic acid examples include benzenesulfonic acid and p-toluenesulfonic acid.
  • sulfinic acid examples include benzenesulfinic acid and p-toluenesulfinic acid.
  • organic phosphinic acid examples include diethylphosphinic acid, methylphenylphosphinic acid, diphenylphosphinic acid and the like.
  • organic phosphonic acid examples include methylphosphonic acid, ethylphosphonic acid, t-butylphosphonic acid, cyclohexylphosphonic acid, and phenylphosphonic acid.
  • phenol examples include monohydric phenols such as phenol, cresol, 2,6-xylenol, and naphthol; Dihydric phenols such as catechol, resorcinol, hydroquinone, 1,2-naphthalenediol; And trivalent or higher phenols such as pyrogallol and 2,3,6-naphthalenetriol.
  • monohydric phenols such as phenol, cresol, 2,6-xylenol, and naphthol
  • Dihydric phenols such as catechol, resorcinol, hydroquinone, 1,2-naphthalenediol
  • trivalent or higher phenols such as pyrogallol and 2,3,6-naphthalenetriol.
  • enols examples include 2-hydroxy-3-methyl-2-butene and 3-hydroxy-4-methyl-3-hexene.
  • Examples of the thiol include mercaptoethanol and mercaptopropanol.
  • the acid imide examples include carboxylic acid imides such as maleimide and succinimide; Examples thereof include sulfonic acid imides such as di (trifluoromethanesulfonic acid) imide and di (pentafluoroethanesulfonic acid) imide.
  • oximes include aldoximes such as benzaldoxime and salicylaldoxime; Examples thereof include ketoximes such as diethyl ketoxime, methyl ethyl ketoxime, and cyclohexanone oxime.
  • sulfonamides include methylsulfonamide, ethylsulfonamide, benzenesulfonamide, and toluenesulfonamide.
  • the organic acid is preferably a carboxylic acid, more preferably a monocarboxylic acid or a dicarboxylic acid, and more preferably methacrylic acid, acetic acid, trans-2, from the viewpoint of further improving the sensitivity and nanoedge roughness performance of the radiation-sensitive composition. More preferred are 3,3-dimethylacrylic acid and maleic acid.
  • the lower limit of the content of the organic acid is preferably 1% by mass, more preferably 5% by mass, and still more preferably 10% by mass with respect to the total solid content in the radiation-sensitive composition.
  • As an upper limit of the said content 90 mass% is preferable, 70 mass% is more preferable, and 50 mass% is further more preferable.
  • the radiation-sensitive composition may contain only one kind of [A] organic acid, or may contain two or more kinds.
  • the particles are particles mainly composed of a metal oxide.
  • Metal oxide refers to a compound containing a metal atom and an oxygen atom.
  • the “main component” means a substance having the highest content rate among substances constituting the particles, preferably a content rate of 50% by mass or more, more preferably 60% by mass or more. Since the [B] particles contain a metal oxide as a main component, they can absorb radiation and generate secondary electrons, and the [C] acid generator is decomposed by the action of the secondary electrons and the acid ( Since I) can be generated, as a result, the sensitivity of the radiation-sensitive composition can be increased. Moreover, since [B] particle
  • the metal elements constituting the metal oxide are Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 12. , Group 13 and Group 14 metal elements. Among these, from the viewpoint of further promoting the generation of secondary electrons of the [B] particles and increasing the etching resistance of the formed film, the groups 4 to 6, the groups 8 to 10, and the group 13 are used. Group 4 and Group 14 metal elements are preferred, Group 4 to Group 6 metal elements are more preferred, and Group 4 metal elements are more preferred.
  • zirconium, hafnium, nickel, cobalt, tin, indium, titanium, ruthenium are used from the viewpoint of further promoting the generation of secondary electrons of the [B] particles and increasing the etching resistance of the formed film. Tantalum, tungsten and combinations thereof are preferred, and titanium, zirconium and hafnium are more preferred.
  • the metal oxide may contain, for example, a carbon atom, a hydrogen atom, a nitrogen atom, a phosphorus atom, a sulfur atom, a halogen atom and the like other than the metal atom and the oxygen atom.
  • the lower limit of the total content of metal atoms and oxygen atoms in the metal oxide is preferably 30% by mass, more preferably 50% by mass, still more preferably 70% by mass, and particularly preferably 90% by mass.
  • the upper limit of the total content is usually 100% by mass, preferably 99.9% by mass.
  • the upper limit of the hydrodynamic radius by dynamic light scattering analysis of particles is preferably 20 nm, more preferably 17 nm, still more preferably 14 nm, and particularly preferably 10 nm.
  • the lower limit of the hydrodynamic radius is preferably 0.01 nm, more preferably 0.1 nm, still more preferably 0.5 nm, and particularly preferably 1 nm.
  • [B] By setting the hydrodynamic radius by dynamic light scattering analysis of particles within the above range, [B] generation of secondary electrons by the particles can be further promoted, and as a result, the radiation-sensitive composition The sensitivity and the nano edge roughness performance can be further improved.
  • the hydrodynamic radius by dynamic light scattering analysis can be obtained by measurement (DLS measurement) using, for example, a light scattering measurement device (“ALV-5000” of ALV, Germany).
  • the lower limit of the content of the particles is preferably 10 parts by weight, more preferably 50 parts by weight, further preferably 80 parts by weight, and particularly preferably 100 parts by weight with respect to 100 parts by weight of the organic acid [A].
  • 1,000 mass parts is preferable, 800 mass parts is more preferable, 700 mass parts is further more preferable, 650 mass parts is especially preferable.
  • the lower limit of the content of [B] particles is preferably 10% by mass, more preferably 30% by mass, and still more preferably 40% by mass with respect to the total solid content in the radiation-sensitive composition.
  • As an upper limit of the said content 95 mass% is preferable, 85 mass% is more preferable, and 80 mass% is further more preferable.
  • the radiation-sensitive composition may contain only one type of [B] particles, or two or more types.
  • the [B] particles can be synthesized using, for example, the [a] metal-containing compound described later.
  • [a] a method of hydrolytic condensation reaction of the metal-containing compound, [a] a ligand of the metal-containing compound, etc. Can be obtained by, for example, an exchange reaction method.
  • “Hydrolysis condensation reaction” means that [a] a hydrolyzable group of a metal-containing compound is hydrolyzed by the action of water to be converted to —OH, and water molecules are eliminated from the two —OH produced. A reaction that forms a condensation to form —O—.
  • the metal-containing compound includes a metal compound (I) having a hydrolyzable group, a hydrolyzate of the metal compound (I) having a hydrolyzable group, and a hydrolysis of the metal compound (I) having a hydrolyzable group. It is a condensate or a combination thereof.
  • hydrolyzable group examples include a halogen atom, an alkoxy group, and a carboxylate group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, and an i-propoxybutoxy group.
  • carboxylate group examples include a formate group, an acetate group, a propionate group, a butyrate group, a stearate group, a benzoate group, an oxalate group, and a (meth) acrylate group.
  • an alkoxy group and a carboxylate group are preferable, and an isopropoxy group, a butoxy group and a stearate group are more preferable.
  • the metal compound (I) can be used alone or in combination of two or more.
  • the metal compound (I) is a metal other than a metal having a hydrolyzable group within the range not impairing the effects of the present invention. It may be hydrolyzed and condensed with a compound containing a metalloid element. Accordingly, the hydrolysis condensate of the metal compound (I) may contain a metalloid element as long as the effects of the present invention are not impaired. Examples of the metalloid element include a boron atom and a silicon atom.
  • the upper limit of the content of the metalloid element is preferably 50 atomic%, more preferably 30 atomic%, and even more preferably 10 atomic% with respect to the total of the metal elements and the metalloid elements of the hydrolysis condensate.
  • metal compound (I) examples include a compound represented by the following formula (1) (hereinafter also referred to as “metal compound (I-1)”).
  • metal compound (I-1) a compound represented by the following formula (1)
  • metal compound (I-1) When such a metal compound is hydrolyzed and condensed, metal atoms can be cross-linked with —O— to stably form a metal oxide. As a result, the sensitivity and nanoedge roughness performance of the radiation-sensitive composition can be further enhanced.
  • M is a metal element.
  • L is a ligand.
  • a is an integer of 0-2.
  • Y is a hydrolyzable group selected from a halogen atom, an alkoxy group and a carboxylate group.
  • b is an integer of 2 to 6.
  • a plurality of Y may be the same or different.
  • L is a ligand not corresponding to Y.
  • Examples of the metal element represented by M include Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 12. , Group 13 and Group 14 metal elements, and the like. Of these, metal elements of Group 4 to Group 6, Group 8 to Group 10, Group 13 and Group 14 are preferred, and zirconium, hafnium, nickel, cobalt, tin, indium, titanium, ruthenium, tungsten And combinations thereof are more preferred.
  • Examples of the ligand represented by L include a monodentate ligand and a polydentate ligand.
  • monodentate ligands examples include hydroxo ligands, carboxy ligands, amide ligands, and the like.
  • amide ligand examples include an unsubstituted amide ligand (NH 2 ), a methylamide ligand (NHMe), a dimethylamide ligand (NMe 2 ), a diethylamide ligand (NEt 2 ), and a dipropylamide ligand.
  • NH 2 unsubstituted amide ligand
  • NHSe methylamide ligand
  • NMe 2 dimethylamide ligand
  • NEt 2 diethylamide ligand
  • NPr 2 dipropylamide ligand
  • polydentate ligand examples include hydroxy acid ester, ⁇ -diketone, ⁇ -keto ester, ⁇ -dicarboxylic acid ester, hydrocarbon having ⁇ bond, diphosphine, ammonia and the like.
  • hydroxy acid ester examples include glycolic acid ester, lactic acid ester, 2-hydroxycyclohexane-1-carboxylic acid ester, and salicylic acid ester.
  • ⁇ -diketone examples include 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, and the like.
  • ⁇ -ketoesters examples include acetoacetate ester, ⁇ -alkyl-substituted acetoacetate ester, ⁇ -ketopentanoic acid ester, benzoyl acetate ester, 1,3-acetone dicarboxylic acid ester and the like.
  • ⁇ -dicarboxylic acid esters include malonic acid diesters, ⁇ -alkyl substituted malonic acid diesters, ⁇ -cycloalkyl substituted malonic acid diesters, ⁇ -aryl substituted malonic acid diesters, and the like.
  • hydrocarbons having a ⁇ bond examples include chain olefins such as ethylene and propylene; Cyclic olefins such as cyclopentene, cyclohexene, norbornene; Chain dienes such as butadiene and isoprene; Cyclic dienes such as cyclopentadiene, methylcyclopentadiene, pentamethylcyclopentadiene, cyclohexadiene, norbornadiene; Examples thereof include aromatic hydrocarbons such as benzene, toluene, xylene, hexamethylbenzene, naphthalene, and indene.
  • chain olefins such as ethylene and propylene
  • Cyclic olefins such as cyclopentene, cyclohexene, norbornene
  • Chain dienes such as butadiene and isoprene
  • Cyclic dienes such as cyclopentadiene, methylcycl
  • diphosphine examples include 1,1-bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 2,2′-bis (diphenylphosphine). Phino) -1,1′-binaphthyl, 1,1′-bis (diphenylphosphino) ferrocene and the like.
  • Examples of the halogen atom represented by Y include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkoxy group represented by Y include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • Examples of the carboxylate group represented by Y include a formate group, an acetate group, a propionate group, a butyrate group, a valerate group, and a stearate group.
  • Y is preferably an alkoxy group or a carboxylate group, more preferably an isopropoxy group, a butoxy group or a stearate group.
  • B is preferably 4.
  • the content of the metal oxide in the [B] particles can be increased, and the generation of secondary electrons by the [B] particles can be promoted. As a result, the sensitivity of the radiation sensitive composition can be further increased.
  • the metal-containing compound is preferably a metal alkoxide that is neither hydrolyzed nor hydrolyzed.
  • Examples of the metal-containing compound include zirconium / tetra n-butoxide, zirconium / tetra n-propoxide, hafnium / tetraethoxide, hafnium / tetraisopropoxide, tantalum / pentaethoxide, tungsten / pentamethoxide, tungsten ⁇ Hexaethoxide, Iron chloride, Titanium tetra-n-butoxide, Titanium tetra-n-propoxide, Zirconium di-n-butoxide bis (2,4-pentanedionate), Titanium tri-n-butoxide stearate Bis (cyclopentadienyl) hafnium dichloride, bis (cyclopentadienyl) tungsten dichloride, diacetate [(S)-( ⁇ )-2,2′-bis (diphenylphosphino) -1,1′-binaph
  • titanium / tri-n-butoxide / stearate, zirconium / tetra-n-butoxide, zirconium / tetra-n-propoxide and hafnium / tetraisopropoxide are preferable.
  • a compound that can be a ligand may be added.
  • the compound that can be a bridging ligand include compounds having a plurality of hydroxy groups, isocyanate groups, amino groups, ester groups, and amide groups.
  • the synthesis reaction of the particles can be performed, for example, in a solvent.
  • the hydrolysis-condensation reaction of the metal-containing compound or the like can be performed, for example, in a solvent containing water.
  • the lower limit of the amount of water used in this hydrolysis-condensation reaction is preferably 0.2-fold mol, more preferably 1-fold mol, and 3-fold mol based on the hydrolyzable group possessed by the [a] metal-containing compound. Is more preferable.
  • the upper limit of the amount is preferably 20 times mole, more preferably 15 times mole, and still more preferably 10 times mole.
  • the amount of water in the hydrolysis-condensation reaction within the above range, the content of the metal oxide in the obtained [B] particles can be increased. As a result, the sensitivity and nanoedge roughness of the radiation-sensitive composition can be increased. The performance can be further increased.
  • the solvent used in the particle synthesis reaction is not particularly limited, and the same solvents as those exemplified as the [D] solvent described later can be used.
  • alcohol solvents, ether solvents, ester solvents and hydrocarbon solvents are preferred, alcohol solvents and ester solvents are more preferred, polyhydric alcohol partial ether solvents, monocarboxylic acid ester solvents and Polyhydric alcohol partial ether carboxylate solvents are more preferred, with propylene glycol monoethyl ether, ethyl lactate and propylene glycol monomethyl ether acetate being particularly preferred.
  • the solvent used in the synthesis reaction of the particles can be directly used as the [D] solvent of the radiation-sensitive composition without being removed after the reaction.
  • the lower limit of the temperature of the particle synthesis reaction is preferably 0 ° C, and more preferably 10 ° C.
  • 150 degreeC is preferable and 100 degreeC is more preferable.
  • the lower limit of the synthesis reaction time of the particles is preferably 1 minute, and more preferably 10 minutes.
  • the upper limit of the time is preferably 100 hours, and more preferably 50 hours.
  • the acid generator is an acid generator that generates acid (I) by irradiation of radiation, and satisfies at least one of the following (i) and (ii) (the following (i) and (ii) are satisfied) [C]
  • the acid generator is also referred to as “[C1] acid generator” and “[C2] acid generator”, respectively).
  • the logarithmic value pKa of the reciprocal of the acid dissociation constant Ka of the acid generated from the [C] acid generator is smaller than the pKa of the [A] organic acid, and the van der Waals volume of the acid is 2.1 ⁇ 10 ⁇ 28 is m 3 or more
  • [C] acid generator has a plurality of groups capable of generating an acid, and logarithm pka of the reciprocal of the acid dissociation constant Ka of the acid pKa smaller than [a] an organic acid
  • Examples of the radiation include electromagnetic waves such as ultraviolet rays, visible rays, far ultraviolet rays, X-rays and ⁇ rays; charged particle rays such as electron rays and ⁇ rays.
  • electromagnetic waves such as ultraviolet rays, visible rays, far ultraviolet rays, X-rays and ⁇ rays
  • charged particle rays such as electron rays and ⁇ rays.
  • the acid generator is an acid generator in which the pKa of the generated acid is smaller than the pKa of the [A] organic acid and the van der Waals volume of the generated acid is 2.1 ⁇ 10 ⁇ 28 m 3 or more. is there.
  • the upper limit of the pKa of the acid (I) generated from the acid generator is preferably 3, more preferably 0, still more preferably -1, and particularly preferably -2.
  • the lower limit of the pKa is preferably -10, more preferably -8, still more preferably -6, and particularly preferably -5.
  • the lower limit of the van der Waals volume of acid (I) generated from the acid generating agent is preferably 2.5 ⁇ 10 -28 m 3, more preferably 2.8 ⁇ 10 -28 m 3, 3 . 1 ⁇ 10 ⁇ 28 m 3 is more preferable, and 3.4 ⁇ 10 ⁇ 28 m 3 is particularly preferable.
  • the upper limit of the van der Waals volume is preferably 20 ⁇ 10 ⁇ 28 m 3, more preferably 10 ⁇ 10 ⁇ 28 m 3 , further preferably 8 ⁇ 10 ⁇ 28 m 3 , and 5 ⁇ 10 ⁇ 28 m 3. Particularly preferred.
  • the dispersibility of the [B] particles in the vicinity of the acid (I) in the solvent can be further appropriately adjusted.
  • the sensitivity and nanoedge roughness performance of the radiation composition can be further improved.
  • Examples of the [C] acid generator include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, diazoketone compounds, and the like. Of these [C] acid generators, onium salt compounds are preferred.
  • onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
  • sulfonium salt examples include triphenylsulfonium perfluoro-n-octane sulfonate, triphenylsulfonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethane sulfonate, Phenylsulfonium camphorsulfonate, triphenylsulfonium 6- (1-adamantan-1-ylcarbonyloxy) -1,1,2,2-tetrafluorohexane-1-sulfonate, triphenylsulfonium 2- (1-adamantyl) -1 , 1-difluoroethanesulfonate, triphenylsulfonium 2- (adamantan-1-ylcarbonyloxy) -1,1,3,3,3-pentafluoropropane-1-sulfonate, triphenylsulfonium 2- (4-oxoadaman
  • tetrahydrothiophenium salt examples include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium perfluoro-n-octanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydro Thiophenium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium Camphorsulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium hexafluoropropylenesulfonimide, 1- (6-n-butoxynaphthalen-2-yl) tetrahydrothiophenium perfluoro-n- Octane sulfonate, 1- (6-n-butoxynaphthalene) 2-yl
  • iodonium salt examples include diphenyliodonium perfluoro-n-octanesulfonate, diphenyliodonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate, diphenyliodonium camphor Sulfonate, bis (4-t-butylphenyl) iodonium perfluoro-n-octane sulfonate, bis (4-t-butylphenyl) iodonium 2-bicyclo [2.2.1] hept-2-yl-1,1, Examples include 2,2-tetrafluoroethane sulfonate and bis (4-t-butylphenyl) iodonium camphor sulfonate.
  • N-sulfonyloxyimide compounds include N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (nonafluoro-n-butanesulfonyloxy).
  • [C1] acid generators are preferably onium salts, more preferably sulfonium salts, and even more preferably triphenylsulfonium salts.
  • the acid (I) generated from the acid generator is preferably a compound having one acid group from the viewpoint of availability of the [C1] acid generator, and a compound having one sulfo group is preferred. More preferably, 2- (4-oxoadamantan-1-ylcarbonyloxy) -1,1,3,3,3-pentafluoropropane-1-sulfonic acid, 5,6-di (cyclohexyloxycarbonyl) norbornane-2 -Sulfonic acid, 1,2-di (cyclohexyloxycarbonyl) ethane-1-sulfonic acid and 6- (adamantan-1-ylcarbonyloxy) hexane-1,1,2,2-tetrafluorobutane-1-sulfonic acid Is more preferable.
  • the [C2] acid generator is an acid generator having a plurality of groups capable of generating an acid, and the pKa of the acid dissociation constant of the acid is smaller than the pKa of the [A] organic acid.
  • Examples of the acid generating group possessed by the [C2] acid generator include protected sulfo groups such as a sulfonate group, a phosphonate group, a carboxylate group, a phenolate group, and an N-sulfonyloxy group.
  • Examples of the protecting group for the sulfo group include a 5-norbornene-2,3-dicarboximide group, a 4-methoxyphenyl-trifluoromethylketoimino group, a 2-nitro-6-trifluoromethylbenzyl group, and the like.
  • a sulfonate group, a phosphonate group and a protected sulfo group are preferable, a sulfonate group and a protected sulfo group are more preferable, a sulfonate group and an N -A sulfonyloxy group is more preferred, and a sulfonate group is particularly preferred.
  • the plurality of acid generating groups possessed by the acid generator may be the same or different.
  • Examples of the acid group contained in the acid (I) generated from the acid generator include a sulfo group, a phosphoric acid group, a phosphono group, a carboxy group, and a phenolic hydroxyl group. Among these, from the viewpoint of lowering pKa, a sulfo group and a phosphate group are preferable, and a sulfo group is more preferable.
  • the plurality of acid groups possessed by the acid (I) may be the same or different.
  • the lower limit of the number of acid generating groups of the acid generator is 2.
  • the upper limit of the number is preferably 10, more preferably 5, more preferably 3.
  • the upper limit of the pKa of the acid (I) generated from the acid generator is preferably 3, more preferably 0, still more preferably -1, and particularly preferably -2.
  • the lower limit of the pKa is preferably -10, more preferably -8, still more preferably -6, and particularly preferably -5.
  • the pKa of the acid generated from the [C2] acid generator is the first acid dissociation constant of the acid (I), that is, when the first proton dissociates among a plurality of protons dissociated from the acid (I). Is about.
  • the pKa of the acid is a value in water at 25 ° C., for example.
  • Examples of the [C2] acid generator include onium salt compounds, N-sulfonyloxyimide compounds, compounds having a protected sulfo group, halogen-containing compounds, diazoketone compounds, and the like. Of these [C2] acid generators, onium salt compounds are preferred.
  • An onium salt compound usually contains a radiation-sensitive onium cation and an anion having a plurality of acid-generating groups, and the radiation-sensitive onium cation acts as a radiation and acts such as secondary electrons that generate [B] particles by radiation. To generate a proton, which generates an acid (acid group) from the acid generating group.
  • onium salt compounds examples include sulfonium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
  • sulfonium salts include triaromatic group-containing sulfonium salts, dialkyl group-containing sulfonium salts, and tetrahydrothiophenium salts.
  • triaromatic group-containing sulfonium salt examples include compounds represented by the following formulas (i-1) to (i-15).
  • dialkyl group-containing sulfonium salt and tetrahydrothiophenium salt examples include compounds represented by the following formulas (ii-1) to (ii-11).
  • Examples of the iodonium salt include a compound represented by the following formula (iii-1), a compound represented by the following formula (iii-2), and the like.
  • Examples of the compound having a protected sulfo group include compounds represented by the following formulas (iv-1) to (iv-4).
  • [C2] acid generators are preferably onium salts, more preferably sulfonium salts, more preferably triaromatic group-containing sulfonium salts, and particularly preferably triphenylsulfonium salts and cycloalkylsulfonylphenyldiphenylsulfonium salts.
  • the acid generator is preferably a compound having two acid groups, such as cyclohexane-1,4-di (methyleneoxy-tetrafluoroethanesulfonic acid) and 1,1,2,2,3,3-hexafluoro. Propane-1,3-disulfonic acid is more preferred.
  • Acid generators include di (triphenylsulfonium) cyclohexane-1,4-di (methyleneoxy-tetrafluoroethanesulfonate) and di (4-cyclohexylsulfonylphenyldiphenylsulfonium) 1,1,2,2, 3,3-hexafluoropropane-1,3-disulfonate is preferred.
  • the lower limit of the content of the acid generator is preferably 1 part by weight, more preferably 10 parts by weight, and still more preferably 20 parts by weight with respect to 100 parts by weight of the [A] organic acid.
  • As an upper limit of the said content 1,000 mass parts is preferable, 500 mass parts is more preferable, 200 mass parts is further more preferable.
  • the lower limit of the content of the acid generator is preferably 1% by mass, more preferably 5% by mass, and still more preferably 10% by mass with respect to the total solid content in the radiation-sensitive composition.
  • As an upper limit of the said content 50 mass% is preferable, 40 mass% is more preferable, and 30 mass% is further more preferable.
  • the radiation-sensitive composition may contain only one [C] acid generator or two or more kinds.
  • the radiation-sensitive composition usually contains a [D] solvent.
  • the solvent is not particularly limited as long as it is a solvent that can dissolve or disperse at least [A] organic acid, [B] particles, [C] acid generator and optional components contained as necessary.
  • the solvent used in the reaction for synthesizing the particles can be used as it is as the [D] solvent.
  • the said radiation sensitive composition may contain only 1 type of [D] solvent, and may contain it 2 or more types.
  • Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
  • alcohol solvents examples include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol; An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol; A polyhydric alcohol solvent having 2 to 18 carbon atoms such as 1,2-propylene glycol; Examples thereof include polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  • ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether
  • Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran
  • aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone: Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone
  • chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate; Polyhydric alcohol carboxylate solvents such as propylene glycol acetate; Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monoethyl ether acetate; Polycarboxylic acid diester solvents such as diethyl oxalate; Lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone; Examples thereof include carbonate solvents such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane; Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
  • ester solvents are preferable, polyhydric alcohol partial ether carboxylate solvents and monocarboxylic acid ester solvents are preferable, and propylene glycol monomethyl ether acetate and ethyl lactate are more preferable.
  • the radiation-sensitive composition may contain other optional components such as a compound that can be a ligand and a sea surface activator.
  • the radiation-sensitive composition may contain a compound that can be a multidentate ligand or a bridging ligand (hereinafter also referred to as “compound (II)”).
  • a compound that can be a multidentate ligand or a bridging ligand include compounds exemplified as compounds that may be added during the hydrolysis condensation reaction.
  • the upper limit of the content of compound (II) is preferably 10 parts by weight, more preferably 3 parts by weight, and still more preferably 1 part by weight with respect to 100 parts by weight of [A] organic acid.
  • the upper limit of the content of compound (II) is preferably 10% by mass, more preferably 3% by mass, and still more preferably 1% by mass with respect to the total solid content in the radiation-sensitive composition.
  • a surfactant is a component that exhibits an effect of improving coatability, striation and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate.
  • nonionic surfactants such as stearate
  • commercially available products include KP341 (Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the radiation-sensitive composition is, for example, a mixture of [A] organic acid, [B] particles, [C] acid generator and other optional components and [D] solvent as required,
  • the obtained mixture can be prepared by filtering with a membrane filter having a pore size of about 0.2 ⁇ m.
  • the lower limit of the solid content concentration of the radiation-sensitive composition is preferably 0.1% by mass, more preferably 0.5% by mass, further preferably 1% by mass, and particularly preferably 1.5% by mass.
  • the upper limit of the solid content concentration is preferably 50% by mass, more preferably 30% by mass, further preferably 10% by mass, and particularly preferably 5% by mass.
  • the pattern forming method includes a step of forming a film (hereinafter also referred to as “film forming step”), a step of exposing the film (hereinafter also referred to as “exposure step”), and a step of developing the exposed film. (Hereinafter also referred to as “development process”).
  • film forming step a step of forming a film
  • exposure step a step of exposing the film
  • development process a step of developing the exposed film.
  • development process a step of developing the exposed film.
  • the said pattern formation method forms the said film
  • each step will be described.
  • a film is formed using the radiation-sensitive composition.
  • the film can be formed, for example, by applying a radiation sensitive composition on a substrate.
  • coating method for example, appropriate application
  • the substrate include a silicon wafer and a wafer coated with aluminum.
  • the lower limit of the average film thickness of the film is preferably 1 nm, more preferably 5 nm, still more preferably 10 nm, and particularly preferably 20 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 200 nm, further preferably 100 nm, and particularly preferably 50 nm.
  • the lower limit of the PB temperature is usually 60 ° C., preferably 80 ° C.
  • As an upper limit of the temperature of PB it is 140 degreeC normally and 120 degreeC is preferable.
  • the lower limit of the PB time is usually 5 seconds, and preferably 10 seconds.
  • the upper limit of the PB time is usually 600 seconds, and preferably 300 seconds.
  • the film formed in the film forming step is exposed.
  • this exposure is performed by irradiating radiation through a mask having a predetermined pattern through an immersion medium such as water.
  • the radiation include visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light (EUV; wavelength 13.5 nm), electromagnetic waves such as X-rays and ⁇ -rays, and charged particle beams such as electron beams and ⁇ -rays.
  • EUV extreme ultraviolet light
  • radiation that emits more secondary electrons from the [B] particles by exposure is preferable, and EUV and electron beams are more preferable.
  • PEB post-exposure baking
  • the upper limit of the PEB temperature is usually 180 ° C, preferably 130 ° C.
  • the lower limit of the PEB time is usually 5 seconds, and preferably 10 seconds.
  • the upper limit of the PEB time is usually 600 seconds, and preferably 300 seconds.
  • an organic or inorganic antireflection film can be formed on the substrate to be used.
  • a protective film can also be provided, for example on a coating film.
  • an immersion protective film may be provided on the film, for example, in order to avoid direct contact between the immersion medium and the film.
  • the film exposed in the exposure step is developed.
  • the developer used for the development include an alkaline aqueous solution and an organic solvent-containing solution.
  • alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, Ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4. 3.0] -5-nonene, and an alkaline aqueous solution in which at least one alkaline compound is dissolved.
  • TMAH tetramethylammonium hydroxide
  • the lower limit of the content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass, more preferably 0.5% by mass, and even more preferably 1% by mass.
  • 20 mass% is preferable, 10 mass% is more preferable, and 5 mass% is further more preferable.
  • TMAH aqueous solution As the alkaline aqueous solution, a TMAH aqueous solution is preferable, and a 2.38 mass% TMAH aqueous solution is more preferable.
  • organic solvent in the organic solvent-containing liquid examples include the same organic solvents exemplified as the [D] solvent of the radiation-sensitive composition. Of these, ester solvents are preferred, and butyl acetate is more preferred.
  • the lower limit of the content of the organic solvent in the organic solvent developer is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass.
  • These developers may be used alone or in combination of two or more.
  • the substrate is washed with water or the like and dried.
  • A-1 Maleic acid (pKa: 1.84)
  • A-2 Methacrylic acid (pKa: 4.66)
  • A-3 Acetic acid (pKa: 4.76)
  • A-4 trans-2,3-dimethylacrylic acid (pKa: 4.96)
  • MB-1 Titanium (IV) tri-n-butoxide stearate (90% strength by weight butanol solution)
  • MB-2 Zirconium (IV) tetra-n-butoxide (80% by weight butanol solution)
  • MB-3 Zirconium (IV) tetra-propoxide (n-propanol solution with a concentration of 70% by mass)
  • MB-4 Hafnium (IV) tetraisopropoxide
  • the obtained hafnium-containing particles were dispersed in propylene glycol monomethyl ether (PGMEA) and then stirred for 1 hour to obtain an organic acid-containing particle liquid (X-5) having a solid content concentration of 10.0% by mass. It was.
  • the hydrodynamic radius of the [B] particles contained in the organic acid-containing particle liquid (X-5) by the DLS method was 1.2 nm.
  • the particle-containing liquids (X-1) to (X-5) obtained in Synthesis Examples 1 to 5 are shown in Table 1 below. In addition, it confirmed by analysis that most of [A] organic acid mix
  • CC-1 triphenylsulfonium nonafluoro-n-butane-1-sulfonate (a compound represented by the following formula (CC-1), the van der Waals volume of the generated acid is 1.65 ⁇ 10 ⁇ 28 m 3 , The pKa of the acid generated is -3.31)
  • C1-1 Triphenylsulfonium 2- (4-oxoadamantan-1-ylcarbonyloxy) -1,1,3,3,3-pentafluoropropane-1-sulfonate (represented by the following formula (C1-1)) Compound, the van der Waals volume of the generated acid is 2.76 ⁇ 10 ⁇ 28 m 3 , and the pKa of the generated acid is ⁇ 1.44)
  • C1-2 4-cyclohexylsulfonylphenyldiphenylsulfonium 5,6-di (cyclohexyloxycarbonyl) norbornane-2-sulfonate (
  • Example 6 and Comparative Example 8 Except for using the radiation-sensitive composition described in Table 3, the same operation as in Comparative Example 1 was performed until electron beam irradiation. Next, in the clean track ACT-8, a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution was used and developed at 23 ° C. for 1 minute by the paddle method, followed by washing with pure water and drying. A positive pattern was formed.
  • TMAH tetramethylammonium hydroxide
  • sensitivity Optimum exposure dose is used to form a line-and-space pattern (1L1S) having a line width of 150 nm and a space portion having a spacing of 150 nm formed by adjacent line portions with a one-to-one line width. This optimum exposure amount was defined as sensitivity ( ⁇ C / cm 2 ).
  • the nano edge roughness is “AA” (very good) when it is 15 nm or less, “A” (good) when it exceeds 15.0 nm and 16.5 nm or less, and “B” when it exceeds 16.5 nm. "(Poor).
  • corrugation shown in FIG.1 and FIG.2 is exaggerated rather than actually.
  • high sensitivity and nano edge roughness can be obtained by combining a particle mainly composed of an organic acid and a metal oxide with an acid generator that generates a specific acid. Can be formed. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 本発明は、有機酸と、金属酸化物を主成分とする粒子と、放射線の照射により酸を発生する酸発生剤とを含有し、上記酸発生剤が下記(i)及び(ii)の少なくとも一方を満たす感放射線性樹脂組成物である。(i)上記酸発生剤から発生する酸の酸解離定数Kaの逆数の対数値pKaが上記有機酸のpKaより小さく、かつ上記酸のファンデルワールス体積が2.1×10-28以上である (ii)上記酸発生剤が酸を発生する基を複数有し、かつ上記酸の酸解離定数Kaの逆数の対数値pKaが上記有機酸のpKaより小さい

Description

感放射線性組成物及びパターン形成方法
 本発明は、感放射線性組成物及びパターン形成方法に関する。
 リソグラフィーによる微細加工に用いられる感放射線性組成物は、ArFエキシマレーザー光、KrFエキシマレーザー光等の遠紫外線、極端紫外線(EUV)等の電磁波、電子線等の荷電粒子線などの照射により露光部に酸を発生させ、この酸を触媒とする化学反応により露光部と未露光部との現像液に対する溶解速度に差を生じさせ、基板上にパターンを形成する。
 かかる感放射線性組成物には、加工技術の微細化に伴ってレジスト性能を向上させることが要求される。この要求に対し、組成物に用いられる重合体、酸発生剤、その他の成分の種類や分子構造が検討され、さらにその組み合わせについても詳細に検討されている(特開平11-125907号公報、特開平8-146610号公報及び特開2000-298347号公報参照)。
 現状、パターンの微細化は線幅40nm以下のレベルまで進展しているが、感放射線性組成物には、さらに高いレジスト性能、特に、高感度でナノエッジラフネスに優れるパターンを形成できることが求められている。
特開平11-125907号公報 特開平8-146610号公報 特開2000-298347号公報
 本発明は以上のような事情に基づいてなされたものであり、その目的は、高感度で、ナノエッジラフネスに優れるパターンを形成できる感放射線性組成物及びパターン形成方法を提供することにある。
 上記課題を解決するためになされた発明は、有機酸(以下、「[A]有機酸」ともいう)と、金属酸化物を主成分とする粒子(以下、「[B]粒子」ともいう)と、放射線の照射により酸を発生する酸発生剤(以下、「[C]酸発生剤」ともいう)とを含有し、上記[C]酸発生剤が下記(i)及び(ii)の少なくとも一方を満たす感放射線性樹脂組成物である。
(i)上記[C]酸発生剤から発生する酸の酸解離定数Kaの逆数の対数値pKaが上記[A]有機酸のpKaより小さく、かつ上記酸のファンデルワールス体積が2.1×10-28以上である
(ii)上記[C]酸発生剤が酸を発生する基を複数有し、かつ上記酸の酸解離定数Kaの逆数の対数値pKaが上記有機酸のpKaより小さい
 上記課題を解決するためになされた別の発明は、膜を形成する工程、上記膜を露光する工程、及び上記露光された膜を現像する工程を備え、上記膜を当該感放射線性組成物により形成するパターン形成方法である。
 ここで、「ファンデルワールス体積」とは、酸発生剤から発生した酸を構成する原子のファンデルワールス半径に基づいたファンデルワールス球により占有される領域の体積をいい、例えばWinMOPAC(富士通社、Ver.3.9.0)等の計算ソフトを用いて、PM3法により安定構造を求めることによって計算された値である。「感放射線性組成物中の全固形分」とは、溶媒以外の成分の総和をいう。
 本発明の感放射線性組成物及びパターン形成方法によれば、有機酸と金属酸化物を主成分とする粒子と特定の酸を発生する酸発生剤との組み合わせにより、高感度で、ナノエッジラフネスに優れるパターンを形成することができる。従って、これらは今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
ラインパターンを上方から見た際の模式的な平面図である。 ラインパターン形状の模式的な断面図である。
<感放射線性組成物>
 当該感放射線性組成物は、[A]有機酸と[B]粒子と[C]酸発生剤とを含有する。当該感放射線性組成物は、好適成分として[D]溶媒を含有してもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。当該感放射線性組成物は、[A]有機酸と[B]粒子と[C]酸発生剤とを含有することで、高感度で、ナノエッジラフネスに優れるパターンを形成することができる。当該感放射線性組成物が上記構成を有することで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、当該感放射線性組成物において、[A]有機酸は、[B]粒子の金属酸化物の金属原子又は酸素原子との相互作用により、[B]粒子の周辺に存在しており、その結果、[B]粒子は溶媒に対する高い分散性を有していると考えられる。一方、放射線の照射により[C]酸発生剤から酸(以下、「酸(I)」ともいう)が発生する。この酸(I)は[A]有機酸よりもpKaが小さいものであるため、[B]粒子の周辺に存在する[A]有機酸を置換し、[B]粒子の周辺に酸(I)が存在するものに変化する。その結果、[B]粒子は酸(I)のpKaが小さいことに起因して、有機溶媒に対する分散性が低下し、また酸(I)のファンデルワールス体積を上記特定値以上とすること又は酸(I)が複数の酸基を有することで、有機溶媒に対する分散性をさらに大きく低下させることができる。従って、当該感放射線性組成物の感度をさらに高いものとすることができる。また、酸(I)のファンデルワールス体積を上記特定値以上とすること又は酸(I)が複数の酸基を有することにより[B]粒子とキレートを形成したり、複数の[B]粒子に配位したりすると考えられることで、酸(I)が周辺に存在する[B]粒子の溶媒に対する分散性をより適度に調整することができ、コントラストが向上することが期待できる。その結果、当該感放射線性組成物のナノエッジラフネス性能を向上させることができる。以下、各成分について説明する。
<[A]有機酸>
 [A]有機酸は、酸性を示す有機化合物である。「有機化合物」とは、少なくとも1個の炭素原子を有する化合物をいう。[A]有機酸のpKaの上限としては、7が好ましく、6がより好ましく、5.5がさらに好ましく、5が特に好ましい。上記pKaの下限としては0が好ましく、1がより好ましく、1.5がさらに好ましく、3が特に好ましい。[A]有機酸のpKaを上記範囲とすることで、当該感放射線性組成物における[A]有機酸と[B]粒子との相互作用を弱めることができ、その結果、当該感放射線性組成物の感度及びナノエッジラフネス性能をより高めることができる。ここで、[A]有機酸が多価の酸である場合、[A]有機酸のpKaとは、第1酸解離定数、すなわち、1つめのプロトンの解離に対する解離定数の対数値をいう。[A]有機酸は、低分子化合物でもよく、高分子化合物でもよいが、[A]有機酸と[B]粒子との相互作用をより弱める観点から、低分子化合物が好ましい。[A]有機酸の分子量の上限としては、1,000が好ましく、500がより好ましく、400がさらに好ましく、300が特に好ましい。上記分子量の下限としては、50が好ましい。[A]有機酸の分子量を上記範囲とすることで、[B]粒子の分散性をより適度に調整することができ、その結果、当該感放射線性組成物の感度及びナノエッジラフネス性能をより高めることができる。
 [A]有機酸としては、例えばカルボン酸、スルホン酸、スルフィン酸、有機ホスフィン酸、有機ホスホン酸、フェノール、エノール、チオール、酸イミド、オキシム、スルホンアミド等が挙げられる。
 カルボン酸としては、例えば
 ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、2-エチルヘキサン酸、オレイン酸、アクリル酸、メタクリル酸、trans-2,3-ジメチルアクリル酸、ステアリン酸、リノール酸、リノレン酸、アラキドン酸、サリチル酸、安息香酸、p-アミノ安息香酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸、没食子酸、シキミ酸等のモノカルボン酸;
 シュウ酸、マロン酸、マレイン酸、メチルマロン酸、フマル酸、アジピン酸、セバシン酸、フタル酸、酒石酸等のジカルボン酸;
 クエン酸、クエン酸等の3以上のカルボキシ基を有するカルボン酸などが挙げられる。
 スルホン酸としては、例えばベンゼンスルホン酸、p-トルエンスルホン酸等が挙げられる。
 スルフィン酸としては、例えばベンゼンスルフィン酸、p-トルエンスルフィン酸等が挙げられる。
 有機ホスフィン酸としては、例えばジエチルホスフィン酸、メチルフェニルホスフィン酸、ジフェニルホスフィン酸等が挙げられる。
 有機ホスホン酸としては、例えばメチルホスホン酸、エチルホスホン酸、t-ブチルホスホン酸、シクロヘキシルホスホン酸、フェニルホスホン酸等が挙げられる。
 フェノールとしては、例えば
 フェノール、クレゾール、2,6-キシレノール、ナフトール等の1価フェノール;
 カテコール、レゾルシノール、ハイドロキノン、1,2-ナフタレンジオール等の2価フェノール;
 ピロガロール、2,3,6-ナフタレントリオール等の3価以上のフェノールなどが挙げられる。
 エノールとしては、例えば2-ヒドロキシ-3-メチル-2-ブテン、3-ヒドロキシ-4-メチル-3-ヘキセン等が挙げられる。
 チオールとしては、例えばメルカプトエタノール、メルカプトプロパノール等が挙げられる。
 酸イミドとしては、例えば
 マレイミド、コハク酸イミド等のカルボン酸イミド;
 ジ(トリフルオロメタンスルホン酸)イミド、ジ(ペンタフルオロエタンスルホン酸)イミド等のスルホン酸イミドなどが挙げられる。
 オキシムとしては、例えば
 ベンズアルドキシム、サリチルアルドキシム等のアルドキシム;
 ジエチルケトキシム、メチルエチルケトキシム、シクロヘキサノンオキシム等のケトキシムなどが挙げられる。
 スルホンアミドとしては、例えばメチルスルホンアミド、エチルスルホンアミド、ベンゼンスルホンアミド、トルエンスルホンアミド等が挙げられる。
 [A]有機酸としては、当該感放射線性組成物の感度及びナノエッジラフネス性能をさらに高める観点から、カルボン酸が好ましく、モノカルボン酸及びジカルボン酸がより好ましく、メタクリル酸、酢酸、trans-2,3-ジメチルアクリル酸及びマレイン酸がさらに好ましい。
 [A]有機酸の含有量の下限としては、当該感放射線性組成物中の全固形分に対して1質量%が好ましく、5質量%がより好ましく、10質量%がさらに好ましい。上記含有量の上限としては、90質量%が好ましく、70質量%がより好ましく、50質量%がさらに好ましい。[A]有機酸の含有量を上記範囲とすることで、当該感放射線性組成物の感度及びナノエッジラフネス性能をさらに高めることができる。当該感放射線性組成物は、[A]有機酸を1種のみ含有してもよく、2種以上含有してもよい。
<[B]粒子>
 [B]粒子は、金属酸化物を主成分とする粒子である。「金属酸化物」とは、金属原子と酸素原子とを含む化合物をいう。「主成分」とは、粒子を構成する物質のうち最も含有率が高いものをいい、好ましくは含有率が50質量%以上、より好ましくは60質量%以上であるものをいう。[B]粒子は、金属酸化物を主成分としているので、放射線を吸収して二次電子を生成することができ、二次電子の作用によっても[C]酸発生剤が分解して酸(I)を生成できるので、その結果、当該感放射線性組成物の感度を高いものとすることができる。また、[B]粒子は、金属酸化物を主成分としているので、当該感放射線性組成物から形成されるパターンのエッチング耐性を高いものとすることができる。
 金属酸化物を構成する金属元素としては、第3族、第4族、第5族、第6族、第7族、第8族、第9族、第10族、第11族、第12族、第13族及び第14族の金属元素が挙げられる。これらのうち、[B]粒子の二次電子の発生をより促進し、また形成される膜のエッチング耐性がより高くなる観点から、第4族~第6族、第8~10族、第13族及び第14族の金属元素が好ましく、第4族~第6族の金属元素がより好ましく、第4族の金属元素がさらに好ましい。
 金属元素としては、[B]粒子の二次電子の発生をより促進し、また形成される膜のエッチング耐性をより高くする観点から、ジルコニウム、ハフニウム、ニッケル、コバルト、スズ、インジウム、チタン、ルテニウム、タンタル、タングステン及びこれらの組み合わせが好ましく、チタン、ジルコニウム及びハフニウムがより好ましい。
 金属酸化物は、金属原子及び酸素原子以外の例えば炭素原子、水素原子、窒素原子、リン原子、硫黄原子、ハロゲン原子等を含んでいてもよい。金属酸化物における金属原子及び酸素原子の合計含有率の下限としては、30質量%が好ましく、50質量%がより好ましく、70質量%がさらに好ましく、90質量%が特に好ましい。上記合計含有率の上限は、通常100質量%であり、99.9質量%が好ましい。金属酸化物における金属原子及び酸素原子の合計含有率を上記範囲とすることで、[B]粒子からの二次電子の発生が促進され、その結果、当該感放射線性組成物の感度をより高めることができる。
 [B]粒子の動的光散乱法分析による流体力学半径の上限としては、20nmが好ましく、17nmがより好ましく、14nmがさらに好ましく、10nmが特に好ましい。上記流体力学半径の下限としては、0.01nmが好ましく、0.1nmがより好ましく、0.5nmがさらに好ましく、1nmが特に好ましい。[B]粒子の動的光散乱法分析による流体力学半径を上記範囲とすることで、[B]粒子による二次電子の発生をより促進することができ、その結果、当該感放射線性組成物の感度及びナノエッジラフネス性能をさらに向上させることができる。なお、動的光散乱法分析による流体力学半径は、例えば光散乱測定装置(ドイツALV社の「ALV-5000」)を用いた測定(DLS測定)により求めることができる。
 [B]粒子の含有量の下限としては、[A]有機酸100質量部に対して、10質量部が好ましく、50質量部がより好ましく、80質量部がさらに好ましく、100質量部が特に好ましい。上記含有量の上限としては、1,000質量部が好ましく、800質量部がより好ましく、700質量部がさらに好ましく、650質量部が特に好ましい。
 [B]粒子の含有量の下限としては、当該感放射線性組成物中の全固形分に対して10質量%が好ましく、30質量%がより好ましく、40質量%がさらに好ましい。上記含有量の上限としては、95質量%が好ましく、85質量%がより好ましく、80質量%がさらに好ましい。
 [B]粒子の含有量を上記範囲とすることで、当該感放射線性組成物の感度及びナノエッジラフネス性能をさらに高めることができる。当該感放射線性組成物は、[B]粒子を1種のみ含有してもよく、2種以上含有してもよい。
[[B]粒子の合成方法]
 [B]粒子は、例えば後述する[a]金属含有化合物を用いて合成することができ、例えば[a]金属含有化合物を加水分解縮合反応する方法、[a]金属含有化合物の配位子等を交換反応する方法等により得ることができる。「加水分解縮合反応」とは、[a]金属含有化合物が有する加水分解性基が水の作用により加水分解して-OHに変換され、生成した2個の-OHから水分子が脱離して縮合し-O-を形成する反応をいう。[a]金属化合物から[B]粒子を合成する反応の際、[A]有機酸を添加してもよい。[A]有機酸を添加して[B]粒子を形成することにより、[A]有機酸を含む[B]粒子(以下、「[X]有機酸含有粒子」ともいう)を得ることができる。
[[a]金属含有化合物]
 [a]金属含有化合物は、加水分解性基を有する金属化合物(I)、加水分解性基を有する金属化合物(I)の加水分解物、加水分解性基を有する金属化合物(I)の加水分解縮合物又はこれらの組み合わせである。
 加水分解性基としては、例えばハロゲン原子、アルコキシ基、カルボキシレート基等が挙げられる。
 ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 アルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシブトキシ基等が挙げられる。
 カルボキシレート基としては、例えばホルメート基、アセテート基、プロピオネート基、ブチレート基、ステアレート基、ベンゾエート基、オキサレート基、(メタ)アクリレート基等が挙げられる。
 加水分解性基としては、アルコキシ基及びカルボキシレート基が好ましく、イソプロポキシ基、ブトキシ基及びステアレート基がより好ましい。
 金属化合物(I)は1種単独で又は2種以上組み合わせて使用することができる。[a]金属含有化合物が金属化合物(I)の加水分解縮合物である場合には、金属化合物(I)は、本発明の効果を損なわない範囲内で、加水分解性基を有する金属以外の半金属元素を含む化合物と加水分解縮合されていてもよい。従って、金属化合物(I)の加水分解縮合物には、本発明の効果を損なわない範囲内で半金属元素が含まれていてもよい。半金属元素としてはホウ素原子、ケイ素原子等が挙げられる。半金属元素の含有量の上限としては、加水分解縮合物の金属元素と半金属元素との合計に対して50原子%が好ましく、30原子%がより好ましく、10原子%がさらに好ましい。
 金属化合物(I)としては、例えば下記式(1)で表される化合物(以下、「金属化合物(I-1)」ともいう)等が挙げられる。このような金属化合物を加水分解縮合させると、金属原子間を-O-で架橋し、金属酸化物を安定に形成することができる。その結果、当該感放射線性組成物の感度及びナノエッジラフネス性能をより高めることができる。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、Mは、金属元素である。Lは、配位子である。aは、0~2の整数である。aが2の場合、複数のLは同一でも異なっていてもよい。Yは、ハロゲン原子、アルコキシ基及びカルボキシレート基から選ばれる加水分解性基である。bは、2~6の整数である。複数のYは同一でも異なっていてもよい。なお、LはYに該当しない配位子である。
 Mで表される金属元素としては、例えば第3族、第4族、第5族、第6族、第7族、第8族、第9族、第10族、第11族、第12族、第13族、第14族の金属元素等が挙げられる。これらのうち、第4族~第6族、第8族~第10族、第13族及び第14族の金属元素が好ましく、ジルコニウム、ハフニウム、ニッケル、コバルト、スズ、インジウム、チタン、ルテニウム、タングステン及びこれらの組み合わせがより好ましい。
 Lで表される配位子としては、単座配位子及び多座配位子が挙げられる。
 単座配位子としては、例えばヒドロキソ配位子、カルボキシ配位子、アミド配位子等が挙げられる。
 アミド配位子としては、例えば無置換アミド配位子(NH)、メチルアミド配位子(NHMe)、ジメチルアミド配位子(NMe)、ジエチルアミド配位子(NEt)、ジプロピルアミド配位子(NPr)等が挙げられる。
 多座配位子としては、例えばヒドロキシ酸エステル、β-ジケトン、β-ケトエステル、β-ジカルボン酸エステル、π結合を有する炭化水素、ジホスフィン、アンモニア等が挙げられる。
 ヒドロキシ酸エステルとしては例えばグリコール酸エステル、乳酸エステル、2-ヒドロキシシクロヘキサン-1-カルボン酸エステル、サリチル酸エステル等が挙げられる。
 β-ジケトンとしては、例えば2,4-ペンタンジオン、3-メチル-2,4-ペンタンジオン、3-エチル-2,4-ペンタンジオン等が挙げられる。
 β-ケトエステルとしては、例えばアセト酢酸エステル、α-アルキル置換アセト酢酸エステル、β-ケトペンタン酸エステル、ベンゾイル酢酸エステル、1,3-アセトンジカルボン酸エステル等が挙げられる。
 β-ジカルボン酸エステルとしては、例えばマロン酸ジエステル、α-アルキル置換マロン酸ジエステル、α-シクロアルキル置換マロン酸ジエステル、α-アリール置換マロン酸ジエステル等が挙げられる。
 π結合を有する炭化水素としては、例えば
 エチレン、プロピレン等の鎖状オレフィン;
 シクロペンテン、シクロヘキセン、ノルボルネン等の環状オレフィン;
 ブタジエン、イソプレン等の鎖状ジエン;
 シクロペンタジエン、メチルシクロペンタジエン、ペンタメチルシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン;
 ベンゼン、トルエン、キシレン、ヘキサメチルベンゼン、ナフタレン、インデン等の芳香族炭化水素などが挙げられる。
 ジホスフィンとしては、例えば1,1-ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、1,1’-ビス(ジフェニルホスフィノ)フェロセン等が挙げられる。
 Yで表されるハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 Yで表されるアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。
 Yで表されるカルボキシレート基としては、ホルメート基、アセテート基、プロピオネート基、ブチレート基、バレレート基、ステアレート基等が挙げられる。
 Yとしては、アルコキシ基及びカルボキシレート基が好ましく、イソプロポキシ基、ブトキシ基及びステアレート基がより好ましい。
 bとしては、4が好ましい。bを上記値とすることで、[B]粒子における金属酸化物の含有率を高めることができ、[B]粒子による二次電子の発生を促進させることができる。その結果、当該感放射線性組成物の感度をより高めることができる。
 [a]金属含有化合物としては、加水分解も加水分解縮合もしていない金属アルコキシドが好ましい。
 [a]金属含有化合物としては、ジルコニウム・テトラn-ブトキシド、ジルコニウム・テトラn-プロポキシド、ハフニウム・テトラエトキシド、ハフニウム・テトライソプロポキシド、タンタル・ペンタエトキシド、タングステン・ペンタメトキシド、タングステン・ヘキサエトキシド、塩化鉄、チタン・テトラn-ブトキシド、チタン・テトラn-プロポキシド、ジルコニウム・ジn-ブトキシド・ビス(2,4-ペンタンジオナート)、チタン・トリn-ブトキシド・ステアレート、ビス(シクロペンタジエニル)ハフニウムジクロリド、ビス(シクロペンタジエニル)タングステンジクロリド、ジアセタト[(S)-(-)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル]ルテニウム、ジクロロ[エチレンビス(ジフェニルホスフィン)]コバルト、チタンブトキシドオリゴマー、アミノプロピルトリメトキシチタン、アミノプロピルトリエトキシジルコニウム、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシジルコニウム、γ-グリシドキシプロピルトリメトキシジルコニウム、3-イソシアノプロピルトリメトキシジルコニウム、3-イソシアノプロピルトリエトキシジルコニウム、トリエトキシモノ(アセチルアセトナート)チタン、トリ-n-プロポキシモノ(アセチルアセトナート)チタン、トリ-i-プロポキシモノ(アセチルアセトナート)チタン、トリエトキシモノ(アセチルアセトナート)ジルコニウム、トリ-n-プロポキシモノ(アセチルアセトナート)ジルコニウム、トリ-i-プロポキシモノ(アセチルアセトナート)ジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタン、ジn-ブトキシビス(アセチルアセトナート)チタン、ジn-ブトキシビス(アセチルアセトナート)ジルコニウム、トリ(3-メタクリロキシプロピル)メトキシジルコニウム、トリ(3-アクリロキシプロピル)メトキシジルコニウム等が挙げられる。これらの中で、チタニウム・トリn-ブトキシド・ステアレート、ジルコニウム・テトラn-ブトキシド、ジルコニウム・テトラn-プロポキシド及びハフニウム・テトライソプロポキシドが好ましい。
 [B]粒子の合成反応の際、金属化合物(I)及び[A]有機酸に加えて、上記式(1)の化合物におけるLで表される多座配位子になり得る化合物、架橋配位子になり得る化合物等を添加してもよい。架橋配位子になり得る化合物としては、例えば複数個のヒドロキシ基、イソシアネート基、アミノ基、エステル基及びアミド基を有する化合物等が挙げられる。
 [B]粒子の合成反応は、例えば溶媒中で行うことができる。[a]金属含有化合物等の加水分解縮合反応は、例えば水を含有する溶媒中で行うことができる。この加水分解縮合反応に用いる水の量の下限としては、[a]金属含有化合物等が有する加水分解性基に対して、0.2倍モルが好ましく、1倍モルがより好ましく、3倍モルがさらに好ましい。上記量の上限としては、20倍モルが好ましく、15倍モルがより好ましく、10倍モルがさらに好ましい。加水分解縮合反応における水の量を上記範囲とすることで、得られる[B]粒子における金属酸化物の含有率を高めることができ、その結果、当該感放射線性組成物の感度及びナノエッジラフネス性能をより高めることができる。
 [B]粒子の合成反応に用いる溶媒としては特に限定されず、後述する[D]溶媒として例示したものと同様の溶媒を用いることができる。これらの中で、アルコール系溶媒、エーテル系溶媒、エステル系溶媒及び炭化水素系溶媒が好ましく、アルコール系溶媒及びエステル系溶媒がより好ましく、多価アルコール部分エーテル系溶媒、モノカルボン酸エステル系溶媒及び多価アルコール部分エーテルカルボキシレート系溶媒がさらに好ましく、プロピレングリコールモノエチルエーテル、乳酸エチル及び酢酸プロピレングリコールモノメチルエーテルが特に好ましい。
 [B]粒子の合成反応に用いた溶媒は、反応後に除去することなく、そのまま当該感放射線性組成物の[D]溶媒とすることもできる。
 [B]粒子の合成反応の温度の下限としては、0℃が好ましく、10℃がより好ましい。上記温度の上限としては、150℃が好ましく、100℃がより好ましい。
 [B]粒子の合成反応の時間の下限としては、1分が好ましく、10分がより好ましい。上記時間の上限としては、100時間が好ましく、50時間がより好ましい。
<[C]酸発生剤>
 [C]酸発生剤は、放射線の照射により酸(I)を発生する酸発生剤であって、下記(i)及び(ii)の少なくとも一方を満たす(下記(i)及び(ii)を満たす[C]酸発生剤をそれぞれ「[C1]酸発生剤」及び「[C2]酸発生剤」ともいう)。
 (i)[C]酸発生剤から発生する酸の酸解離定数Kaの逆数の対数値pKaが[A]有機酸のpKaより小さく、かつ上記酸のファンデルワールス体積が2.1×10-28以上である
 (ii)[C]酸発生剤が酸を発生する基を複数有し、かつ上記酸の酸解離定数Kaの逆数の対数値pkaが[A]有機酸のpKaより小さい
 放射線としては、紫外線、可視光線、遠紫外線、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。以下、[C1]酸発生剤、[C2]酸発生剤について説明する。
[[C1]酸発生剤]
 [C1]酸発生剤は、発生する酸のpKaが[A]有機酸のpKaより小さく、かつ発生する酸のファンデルワールス体積が2.1×10-28以上である酸発生剤である。
 [C1]酸発生剤から発生する酸(I)のpKaの上限としては、3が好ましく、0がより好ましく、-1がさらに好ましく、-2が特に好ましい。上記pKaの下限としては、-10が好ましく、-8がより好ましく、-6がさらに好ましく、-5が特に好ましい。酸(I)のpKaを上記範囲とすることで、[B]粒子の溶媒に対する分散性をより低下させることができ、その結果、当該感放射線性組成物の感度をより高めることができる。なお、上記酸のpKaは、例えば25℃の水中における値である。
 [C1]酸発生剤から発生する酸(I)のファンデルワールス体積の下限としては、2.5×10-28が好ましく、2.8×10-28がより好ましく、3.1×10-28がさらに好ましく、3.4×10-28が特に好ましい。上記ファンデルワールス体積の上限としては、20×10-28が好ましく、10×10-28がより好ましく、8×10-28がさらに好ましく、5×10-28が特に好ましい。酸(I)のファンデルワールス体積を上記範囲とすることで、酸(I)が周辺に存在する[B]粒子の溶媒に対する分散性をさらに適度に調整することができ、その結果、当該感放射線性組成物の感度及びナノエッジラフネス性能をさらに向上させることができる。
 [C]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。これらの[C]酸発生剤のうち、オニウム塩化合物が好ましい。
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 スルホニウム塩としては、例えばトリフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、トリフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、トリフェニルスルホニウムカンファースルホネート、トリフェニルスルホニウム6-(1-アダマンタン-1-イルカルボニルオキシ)-1,1,2,2-テトラフルオロヘキサン-1-スルホネート、トリフェニルスルホニウム2-(1-アダマンチル)-1,1-ジフルオロエタンスルホネート、トリフェニルスルホニウム2-(アダマンタン-1-イルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパン-1-スルホネート、トリフェニルスルホニウム2-(4-オキソアダマンタン-1-イルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパン-1-スルホネート、トリフェニルスルホニウム1,2-ジ(シクロヘキシルオキシカルボニル)エタン-1-スルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムカンファースルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムカンファースルホネート、4-シクロヘキシルスルホニルフェニルジフェニルスルホニウム5,6-ジ(シクロヘキシルオキシカルボニル)ノルボルナン-2-スルホネート等が挙げられる。
 テトラヒドロチオフェニウム塩としては、例えば1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムカンファースルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムヘキサフルオロプロピレンスルホンイミド、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムカンファースルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムヘキサフルオロプロピレンスルホンイミド、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムカンファースルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムテトラヒドロチオフェニウムヘキサフルオロプロピレンスルホンイミド等が挙げられる。
 ヨードニウム塩としては、例えばジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ジフェニルヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ジフェニルヨードニウムカンファースルホネート、ビス(4-t-ブチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムカンファースルホネート等が挙げられる。
 N-スルホニルオキシイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(パーフルオロ-n-オクタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-(3-テトラシクロ[4.4.0.12,5.17,10]ドデカニル)-1,1-ジフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(カンファースルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等が挙げられる。
 [C1]酸発生剤としては、これらの中で、オニウム塩が好ましく、スルホニウム塩がより好ましく、トリフェニルスルホニウム塩がさらに好ましい。
 [C1]酸発生剤から発生する酸(I)としては、[C1]酸発生剤の入手容易性の観点から、1個の酸基を有する化合物が好ましく、1個のスルホ基を有する化合物がより好ましく、2-(4-オキソアダマンタン-1-イルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパン-1-スルホン酸、5,6-ジ(シクロヘキシルオキシカルボニル)ノルボルナン-2-スルホン酸、1,2-ジ(シクロヘキシルオキシカルボニル)エタン-1-スルホン酸及び6-(アダマンタン-1-イルカルボニルオキシ)ヘキサン-1,1,2,2-テトラフルオロブタン-1-スルホン酸がさらに好ましい。
[[C2]酸発生剤]
 [C2]酸発生剤は、酸を発生する基を複数有し、かつ上記酸の酸解離定数のpKaが[A]有機酸のpKaより小さい酸発生剤である。
 [C2]酸発生剤が有する酸発生基としては、例えばスルホネート基、ホスホネート基、カルボキシレート基、フェノレート基、N-スルホニルオキシ基等の保護されたスルホ基などが挙げられる。スルホ基の保護基としては、例えば5-ノルボルネン-2,3-ジカルボキシイミド基、4-メトキシフェニル-トリフルオロメチルケトイミノ基、2-ニトロ-6-トリフルオロメチルベンジル基等が挙げられる。これらの中で、発生する酸(I)のpKaをより低くできる観点から、スルホネート基、ホスホネート基及び保護されたスルホ基が好ましく、スルホネート基及び保護されたスルホ基がより好ましく、スルホネート基及びN-スルホニルオキシ基がさらに好ましく、スルホネート基が特に好ましい。[C2]酸発生剤が有する複数の酸発生基は、同一でも異なっていてもよい。
 [C2]酸発生剤から発生する酸(I)が有する酸基としては、例えばスルホ基、リン酸基、ホスホノ基、カルボキシ基、フェノール性水酸基等が挙げられる。これらの中で、pKaをより低くできる観点から、スルホ基及びリン酸基が好ましく、スルホ基がより好ましい。酸(I)が有する複数の酸基は、同一でも異なっていてもよい。
 [C2]酸発生剤が有する酸発生基の数の下限は2である。上記数の上限は、10が好ましく、5がより好ましく、3がさらに好ましい。
 [C2]酸発生剤から発生する酸(I)のpKaの上限としては、3が好ましく、0がより好ましく、-1がさらに好ましく、-2が特に好ましい。上記pKaの下限としては、-10が好ましく、-8がより好ましく、-6がさらに好ましく、-5が特に好ましい。酸(I)のpKaを上記範囲とすることで、[B]粒子の溶媒に対する分散性をより低下させることができ、その結果、当該感放射線性組成物の感度をより高めることができる。なお、[C2]酸発生剤から発生する上記酸のpKaは、酸(I)の第1酸解離定数、すなわち酸(I)から解離する複数のプロトンのうち、1つめのプロトンが解離する場合についてのものである。また、上記酸のpKaは、例えば25℃の水中における値である。
 [C2]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、保護されたスルホ基を有する化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。これらの[C2]酸発生剤のうち、オニウム塩化合物が好ましい。オニウム塩化合物は、通常、感放射線性オニウムカチオンと複数の酸発生基を有するアニオンとを含むものであり、感放射線性オニウムカチオンが放射線、放射線により[B]粒子が生じる二次電子等の作用により分解してプロトンを生じ、このプロトンにより酸発生基から酸(酸基)を生じる。
 オニウム塩化合物としては、例えばスルホニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 スルホニウム塩としては、例えばトリ芳香族基含有スルホニウム塩、ジアルキル基含有スルホニウム塩、テトラヒドロチオフェニウム塩等が挙げられる。
 トリ芳香族基含有スルホニウム塩としては、例えば下記式(i-1)~(i-15)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 ジアルキル基含有スルホニウム塩及びテトラヒドロチオフェニウム塩としては、例えば下記式(ii-1)~(ii-11)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 ヨードニウム塩としては、例えば下記式(iii-1)で表される化合物、下記式(iii-2)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 保護されたスルホ基を有する化合物としては、例えば下記式(iv-1)~(iv-4)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 [C2]酸発生剤としては、これらの中でオニウム塩が好ましく、スルホニウム塩がより好ましく、トリ芳香族基含有スルホニウム塩がさらに好ましく、トリフェニルスルホニウム塩及びシクロアルキルスルホニルフェニルジフェニルスルホニウム塩が特に好ましい。
 [C2]酸発生剤は、酸基を2個有する化合物が好ましく、シクロヘキサン-1,4-ジ(メチレンオキシ-テトラフルオロエタンスルホン酸)及び1,1,2,2,3,3-ヘキサフルオロプロパン-1,3-ジスルホン酸がより好ましい。
 [C]酸発生剤としては、ジ(トリフェニルスルホニウム)シクロヘキサン-1,4-ジ(メチレンオキシ-テトラフルオロエタンスルホネート)及びジ(4-シクロヘキシルスルホニルフェニルジフェニルスルホニウム)1,1,2,2,3,3-ヘキサフルオロプロパン-1,3-ジスルホネートが好ましい。
 [C]酸発生剤の含有量の下限としては、[A]有機酸100質量部に対して、1質量部が好ましく、10質量部がより好ましく、20質量部がさらに好ましい。上記含有量の上限としては、1,000質量部が好ましく、500質量部がより好ましく、200質量部がさらに好ましい。
 [C]酸発生剤の含有量の下限としては、当該感放射線性組成物中の全固形分に対して1質量%が好ましく、5質量%がより好ましく、10質量%がさらに好ましい。上記含有量の上限としては、50質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましい。
 [C]酸発生剤の含有量を上記範囲とすることで、当該感放射線性組成物の感度及びナノエッジラフネス性能をさらに向上させることができる。当該感放射線性組成物は、[C]酸発生剤を1種のみ含有してもよく、2種以上含有してもよい。
<[D]溶媒>
 当該感放射線性組成物は、通常[D]溶媒を含有する。[D]溶媒は、少なくとも[A]有機酸、[B]粒子、[C]酸発生剤及び必要に応じて含有される任意成分を溶解又は分散可能な溶媒であれば特に限定されない。[B]粒子を合成する反応等で用いた溶媒をそのまま[D]溶媒とすることもできる。当該感放射線性組成物は、[D]溶媒を1種のみ含有してもよく、2種以上含有してもよい。
 [D]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。
 アルコール系溶媒としては、例えば
 4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
 シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
 1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
 プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
 エーテル系溶媒としては、例えば
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
 ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒:
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノンなどが挙げられる。
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
 エステル系溶媒としては、例えば
 酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒;
 酢酸プロピレングリコール等の多価アルコールカルボキシレート系溶媒;
 酢酸プロピレングリコールモノエチルエーテル等の多価アルコール部分エーテルカルボキシレート系溶媒;
 シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
 γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;
 ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒などが挙げられる。
 炭化水素系溶媒としては、例えば
 n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒;
 トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒などが挙げられる。
 [D]溶媒としては、エステル系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒及びモノカルボン酸エステル系溶媒が好ましく、酢酸プロピレングリコールモノメチルエーテル及び乳酸エチルがより好ましい。
<その他の任意成分>
 当該感放射線性組成物は、[A]~[D]成分以外にも、配位子となり得る化合物、海面活性剤等のその他の任意成分を含有していてもよい。
[多座配位子又は架橋配位子となり得る化合物]
 当該感放射線性組成物は、多座配位子又は架橋配位子となり得る化合物(以下、「化合物(II)」ともいう)を配合していてもよい。多座配位子又は架橋配位子となり得る化合物としては、例えば上記加水分解縮合反応の際に添加してもよい化合物として例示した化合物等が挙げられる。
 化合物(II)の含有量の上限としては、[A]有機酸100質量部に対して、10質量部が好ましく、3質量部がより好ましく、1質量部がさらに好ましい。
 化合物(II)の含有量の上限としては、当該感放射線性組成物中の全固形分に対して、10質量%が好ましく、3質量%がより好ましく、1質量%がさらに好ましい。
[界面活性剤]
 界面活性剤は塗布性、ストリエーション等を改良する作用を示す成分である。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤の他、市販品としては、KP341(信越化学工業社)、ポリフローNo.75、同No.95(以上、共栄社化学社)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社)、メガファックF171、同F173(以上、DIC社)、フロラードFC430、同FC431(以上、住友スリーエム社)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子社)等が挙げられる。
<感放射線性組成物の調製方法>
 当該感放射線性組成物は、例えば[A]有機酸、[B]粒子、[C]酸発生剤及び必要に応じてその他の任意成分並びに[D]溶媒を所定の割合で混合し、好ましくは、得られた混合物を孔径0.2μm程度のメンブランフィルターでろ過することにより調製することができる。当該感放射線性組成物の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、1.5質量%が特に好ましい。上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、10質量%がさらに好ましく、5質量%が特に好ましい。
<パターン形成方法>
 当該パターン形成方法は、膜を形成する工程(以下、「膜形成工程」ともいう)、上記膜を露光する工程(以下、「露光工程」ともいう)、及び上記露光された膜を現像する工程(以下、「現像工程」ともいう)を備える。当該パターン形成方法は、上記膜を当該感放射線性組成物により形成する。当該パターン形成方法によれば、上述の当該感放射線性組成物を用いているので、高い感度で、ナノエッジラフネスに優れるパターンを形成することができる。以下、各工程について説明する。
[膜形成工程]
 本工程では、当該感放射線性組成物を用い、膜を形成する。膜の形成は、例えば感放射線性組成物を基板上に塗布することにより行うことができる。塗布方法としては特に限定されないが、例えば回転塗布、流延塗布、ロール塗布等の適宜の塗布手段を採用することができる。基板としては、例えばシリコンウエハ、アルミニウムで被覆されたウエハ等が挙げられる。具体的には、得られる膜が所定の厚さになるように感放射線性組成物を塗布した後、必要に応じてプレベーク(PB)することで塗膜中の溶媒を揮発させる。
 膜の平均膜みの下限としては、1nmが好ましく、5nmがより好ましく、10nmがさらに好ましく、20nmが特に好ましい。上記平均厚みの上限としては、1,000nmが好ましく、200nmがより好ましく、100nmがさらに好ましく、50nmが特に好ましい。
 PBの温度の下限としては、通常60℃であり、80℃が好ましい。PBの温度の上限としては、通常140℃であり、120℃が好ましい。PBの時間の下限としては、通常5秒であり、10秒が好ましい。PBの時間の上限としては、通常600秒であり、300秒が好ましい。
[露光工程]
 本工程では、上記膜形成工程で形成された膜を露光する。この露光は、場合によっては、水等の液浸媒体を介し、所定のパターンを有するマスクを介して放射線を照射することにより行う。上記放射線としては、例えば可視光線、紫外線、遠紫外線、極端紫外線(EUV;波長13.5nm)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中で、露光により[B]粒子から二次電子がより多く放出される放射線が好ましく、EUV及び電子線がより好ましい。
 また、露光後にポストエクスポージャーベーク(PEB)を行ってもよい。PEBの温度の下限としては、通常50℃であり、80℃が好ましい。PEBの温度の上限としては、通常180℃であり、130℃が好ましい。PEBの時間の下限としては、通常5秒であり、10秒が好ましい。PEBの時間の上限としては、通常600秒であり、300秒が好ましい。
 本発明においては、感放射線性組成物の潜在能力を最大限に引き出すため、例えば使用される基板上に有機系又は無機系の反射防止膜を形成しておくこともできる。また、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば塗膜上に保護膜を設けることもできる。また、液浸露光を行う場合は、液浸媒体と膜との直接的な接触を避けるため、例えば膜上に液浸用保護膜を設けてもよい。
[現像工程]
 本工程では、上記露光工程で露光された膜を現像する。この現像に用いる現像液としては、アルカリ水溶液、有機溶媒含有液等が挙げられる。
 アルカリ水溶液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液等が挙げられる。
 アルカリ水溶液中のアルカリ性化合物の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。上記含有量の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましい。
 アルカリ水溶液としては、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 有機溶媒含有液中の有機溶媒としては、例えば当該感放射線性組成物の[D]溶媒として例示した有機溶媒と同様のもの等が挙げられる。これらの中で、エステル系溶媒が好ましく、酢酸ブチルがより好ましい。
 有機溶媒現像液における有機溶媒の含有量の下限としては80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。
 これらの現像液は、単独で又は2種以上を組み合わせて用いてもよい。なお、現像後は、水等で洗浄し、乾燥することが一般的である。
 現像液としてアルカリ水溶液を用いた場合、ポジ型のパターンを得ることができる。また、現像液として有機溶媒を用いた場合、ネガ型のパターンを得ることができる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。本実施例における物性値の測定方法を以下に示す。
[粒子径分析]
 [B]粒子の流体力学半径は、光散乱測定装置(ドイツALV社の「ALV-5000」)を用いたDLS測定にて求めた。
<[X]有機酸含有粒子液の合成>
 [X]有機酸含有粒子液の調製に用いた[A]有機酸及び[a]金属化合物を以下に示す。
[[A]有機酸]
 A-1:マレイン酸(pKa:1.84)
 A-2:メタクリル酸(pKa:4.66)
 A-3:酢酸(pKa:4.76)
 A-4:trans-2,3-ジメチルアクリル酸(pKa:4.96)
[[a]金属化合物]
 MB-1:チタン(IV)・トリn-ブトキシド・ステアレート(90質量%濃度のブタノール溶液)
 MB-2:ジルコニウム(IV)・テトラn-ブトキシド(80質量%濃度のブタノール溶液)
 MB-3:ジルコニウム(IV)・テトラn-プロポキシド(70質量%濃度のn-プロパノール溶液)
 MB-4:ハフニウム(IV)・テトライソプロポキシド
[合成例1]
 上記化合物(MB-1)10.0gを、プロピレングリコールモノエチルエーテル(PGEE)40.0gに溶解させた。この溶液に、10.0gのPGEEと0.46gのマレイン酸との混合物を加えた後、室温で1時間攪拌した。次に、PGEEを加え、固形分濃度が10.0質量%の有機酸含有粒子液(X-1)を得た。この有機酸含有粒子液(X-1)が含む[B]粒子のDLS法による流体力学半径は1nm未満(分析限界未満)であった。
[合成例2]
 上記化合物(MB-2)4.0gをテトラヒドロフラン(THF)10.0gに溶解させ、ここに8.0gのメタクリル酸とを加えて室温で24時間攪拌した。この溶液をヘキサン100gと混合させて生成した沈殿を回収し、ヘキサンで洗浄後真空乾燥し、2.5gのジルコニウム含有粒子を得た。このジルコニウム含有粒子を乳酸エチル(EL)に分散させた後、1時間攪拌させることで、固形分濃度が10.0質量%の有機酸含有粒子液(X-2)を得た。この有機酸含有粒子液(X-2)が含む[B]粒子のDLS法による流体力学半径は18nmであった。
[合成例3]
 上記化合物(MB-2)4.0gをテトラヒドロフラン(THF)10.0gに溶解させ、ここに8.0gのメタクリル酸とを加えて60℃で24時間攪拌した。この溶液をヘキサン100gと混合させて生成した沈殿を回収し、ヘキサンで洗浄後真空乾燥し、2.8gのジルコニウム含有粒子を得た。得られたジルコニウム含有粒子を乳酸エチル(EL)に分散させた後、1時間攪拌させることで、固形分濃度が10.0質量%の有機酸含有粒子液(X-3)を得た。この有機酸含有粒子液(X-3)が含む[B]粒子のDLS法による流体力学半径は30nmであった。
[合成例4]
 上記化合物(MB-3)4.0gにメタクリル酸4.0gと酢酸2.0gとを加えて室温で72時間攪拌したところ沈殿の生成が確認された。この沈殿をヘキサンで洗浄後真空乾燥し、2.0gのジルコニウム含有粒子を得た。得られたジルコニウム含有粒子を酢酸プロピレングリコールモノメチルエーテル(PGMEA)に分散させた後、1時間攪拌させることで、固形分濃度が10.0質量%の有機酸含有粒子液(X-4)を得た。この有機酸含有粒子液(X-4)が含む[B]粒子のDLS法による流体力学半径は2nmであった。
[合成例5]
 上記化合物(MB-4)4.2gにトランス-2,3-ジメチルアクリル酸8.0gを加えて65℃で30分撹拌した後に、水を0.3g加え、65℃でさらに18時間加熱を継続した。ここに水を10g加えたところ沈殿の生成が確認された。この沈殿を遠心分離で回収後、アセトン5gで溶解し、さらに水を10g加え再度沈殿を析出させた。もう一度遠心分離を施した後、真空乾燥することで、1.3gのハフニウム含有粒子を得た。得られたハフニウム含有粒子を酢酸プロピレングリコールモノメチルエーテル(PGMEA)に分散させた後、1時間攪拌させることで、固形分濃度が10.0質量%の有機酸含有粒子液(X-5)を得た。この有機酸含有粒子液(X-5)が含む[B]粒子のDLS法による流体力学半径は1.2nmであった。
 上記合成例1~5により得られた粒子含有液(X-1)~(X-5)について下記表1に示す。なお、加水分解縮合反応の際に配合した[A]有機酸の大部分が[X]有機酸含有粒子液に含まれていることを分析により確認した。
Figure JPOXMLDOC01-appb-T000007
 
<感放射線性組成物の調製>
 感放射線性組成物の調製に用いた[C]酸発生剤及び[D]溶媒を以下に示す。
([C]酸発生剤)
 CC-1:トリフェニルスルホニウムノナフルオロ-n-ブタン-1-スルホネート(下記式(CC-1)で表される化合物、発生する酸のファンデルワールス体積は1.65×10-28、発生する酸のpKaは-3.31)
 C1-1:トリフェニルスルホニウム2-(4-オキソアダマンタン-1-イルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパン-1-スルホネート(下記式(C1-1)で表される化合物、発生する酸のファンデルワールス体積は2.76×10-28、発生する酸のpKaは-1.44)
 C1-2:4-シクロヘキシルスルホニルフェニルジフェニルスルホニウム5,6-ジ(シクロヘキシルオキシカルボニル)ノルボルナン-2-スルホネート(下記式(C1-2)で表される化合物、発生する酸のファンデルワールス体積は3.80×10-28、発生する酸のpKaは-0.70)
 C1-3:トリフェニルスルホニウム1,2-ジ(シクロヘキシルオキシカルボニル)エタン-1-スルホネート(下記式(C1-3)で表される化合物、発生する酸のファンデルワールス体積は3.20×10-28、発生する酸のpKaは-0.81)
 C1-4:トリフェニルスルホニウム6-(アダマンタン-1-イルカルボニルオキシ)-1,1,2,2-テトラフルオロヘキサン-1-スルホネート(下記式(C1-4)で表される化合物、発生する酸のファンデルワールス体積は3.34×10-28、発生する酸のpKaは-2.32)
 C2-1:ジ(トリフェニルスルホニウム)シクロヘキサン-1,4-ジ(メチレンオキシ-テトラフルオロエタンスルホネート)(下記式(C2-1)で表される化合物、発生する酸のpKaは-2.46)
 C2-2:ジ(4-シクロヘキシルスルホニルフェニルジフェニルスルホニウム)1,1,2,2,3,3-ヘキサフルオロプロパン-1,3-ジスルホネート(下記式(C2-2)で表される化合物、発生する酸のpKaは-3.39)
Figure JPOXMLDOC01-appb-C000008
([D]溶媒)
 D-1:酢酸プロピレングリコールモノメチルエーテル
 D-2:乳酸エチル
[比較例1]
 有機酸含有粒子液(有機酸及び[B]粒子を含有する液)(X-1)1,000質量部(全固形分が100質量部)、[C]酸発生剤としての(C-1)27質量部並びに[D]溶媒としての(D-1)を混合し、固形分濃度5質量%の混合液とし、得られた混合液を孔径0.20μmのメンブランフィルターでろ過し、感放射線性組成物(R-1)を調製した。
[実施例1~5及び7~13並びに比較例2~7及び9]
 下記表2に示す種類及び量の各成分を用いた以外は比較例1と同様に操作して各感放射線性組成物を調製した。下記表2の「-」は、該当する成分を用いなかったことを示す。
Figure JPOXMLDOC01-appb-T000009
 
<パターンの形成>
[比較例1]
 東京エレクトロン社のクリーントラックACT-8内で、シリコンウエハ上に上記比較例1で調製した感放射線性組成物(R-1)をスピンコートした後、80℃、60秒間の条件でPBを行い、平均厚み50nmの膜を形成した。次に、簡易型の電子線描画装置(日立製作所社の「HL800D」、出力;50KeV、電流密度;5.0アンペア/cm)を用いて電子線を照射し、パターニングを行った。電子線の照射後、上記クリーントラックACT-8内で、酢酸ブチルを用い、23℃で1分間、パドル法により現像した後、乾燥して、ネガ型パターンを形成した。
[実施例1~5及び7~13並びに比較例2~7及び9]
 表3に記載した感放射線性組成物を用いた以外は比較例1と同様に操作し、各ネガ型パターンを形成した。
[実施例6及び比較例8]
 表3に記載した感放射線性組成物を用いた以外は、電子線照射まで比較例1と同様に操作した。次いで、上記クリーントラックACT-8内で、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用い、23℃で1分間、パドル法により現像した後、純水で水洗し、乾燥して、ポジ型パターンを形成した。
<評価>
 上記形成した各パターンについて、下記に示す方法により感度及びナノエッジラフネスについての評価を行った。評価結果を表3に示す。
[感度]
 線幅150nmのライン部と、隣り合うライン部によって形成される間隔が150nmのスペース部とからなるライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する露光量を最適露光量とし、この最適露光量を感度(μC/cm)とした。
[ナノエッジラフネス]
 上記ライン・アンド・スペースパターン(1L1S)のラインパターンを、高分解能FEB測長装置(日立製作所社の「S-9220」)を用いて観察した。基板内の任意の20点を観察し、観察された形状について、図1及び図2に示すように、シリコンウエハ1上に形成した膜のライン部2の横側面2aに沿って生じた凹凸について、ライン部2における最大の線幅と、設計線幅150nmとの差「ΔCD」を測定し、このΔCDの平均値をナノエッジラフネス(nm)とした。ナノエッジラフネスは、15nm以下である場合は「AA」(極めて良好)と、15.0nmを超え16.5nm以下である場合は「A」(良好)と、16.5nmを超える場合は「B」(不良)と評価した。なお、図1及び図2で示す凹凸は、実際より誇張して記載している。
Figure JPOXMLDOC01-appb-T000010
 
 表3の結果から、有機酸と、金属酸化物を主成分とする粒子と、pKa値が特定値より小さくかつファンデルワールス体積が特定値以上の酸を発生する酸発生剤又は酸を発生する基を複数有し、かつpKa値が特定値より小さい酸発生剤とを組み合わせることで、酸発生剤を含有しない場合よりも感度を向上でき、かつナノエッジラフネス性能を維持又は改善できることが確認された。また、金属酸化物を主成分とする粒子の流体力学半径を20nm以下とすることで、ナノエッジラフネスをより小さくできることが明らかになった。なお、一般的に電子線露光によればEUV露光の場合と同様の傾向を示すことが知られており、従って、EUV露光の場合においても、本発明の感放射線性組成物は、感度及びナノエッジラフネス性能に優れることが推測される。
 本発明の感放射線性組成物及びパターン形成方法によれば、有機酸と金属酸化物を主成分とする粒子と特定の酸を発生する酸発生剤との組み合わせにより、高感度で、ナノエッジラフネスに優れるパターンを形成することができる。従って、これらは今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
 1 シリコンウエハ
 2 パターンのライン部
 2a パターンのライン部の横側面

Claims (8)

  1.  有機酸と、
     金属酸化物を主成分とする粒子と、
     放射線の照射により酸を発生する酸発生剤と
    を含有し、
     上記酸発生剤が下記(i)及び(ii)の少なくとも一方を満たす感放射線性樹脂組成物。
    (i)上記酸発生剤から発生する酸の酸解離定数Kaの逆数の対数値pKaが上記有機酸のpKaより小さく、かつ上記酸のファンデルワールス体積が2.1×10-28以上である
    (ii)上記酸発生剤が酸を発生する基を複数有し、かつ上記酸の酸解離定数Kaの逆数の対数値pKaが上記有機酸のpKaより小さい
  2.  上記金属酸化物を構成する金属元素が、ジルコニウム、ハフニウム、ニッケル、コバルト、スズ、インジウム、チタン、ルテニウム、タンタル、タングステン又はこれらの組み合わせを含む請求項1に記載の感放射線性組成物。
  3.  上記酸発生剤の組成物中の全固形分に対する含有量が、1質量%以上50質量%以下である請求項1又は請求項2に記載の感放射線性組成物。
  4.  上記粒子の動的光散乱法分析による流体力学半径が20nm以下である請求項1、請求項2又は請求項3に記載の感放射線性組成物。
  5.  膜を形成する工程、
     上記膜を露光する工程、及び
     上記露光された膜を現像する工程
    を備え、
     上記膜を請求項1から請求項4のいずれか1項に記載の感放射線性組成物により形成するパターン形成方法。
  6.  上記現像工程で用いる現像液が、アルカリ水溶液である請求項5に記載のパターン形成方法。
  7.  上記現像工程で用いる現像液が、有機溶媒含有液である請求項5に記載のパターン形成方法。
  8.  上記露光工程で用いる放射線が、極端紫外線又は電子線である請求項5、請求項6又は請求項7に記載のパターン形成方法。
PCT/JP2016/050164 2015-01-08 2016-01-05 感放射線性組成物及びパターン形成方法 WO2016111300A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16735039.6A EP3244262A4 (en) 2015-01-08 2016-01-05 Radiation-sensitive composition and pattern forming method
KR1020177015766A KR20170103762A (ko) 2015-01-08 2016-01-05 감방사선성 조성물 및 패턴 형성 방법
JP2016568728A JP6666564B2 (ja) 2015-01-08 2016-01-05 感放射線性組成物及びパターン形成方法
US15/642,908 US20170299962A1 (en) 2015-01-08 2017-07-06 Radiation-sensitive composition and pattern-forming method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015002705 2015-01-08
JP2015-002705 2015-01-08
JP2015006270 2015-01-15
JP2015-006270 2015-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/642,908 Continuation US20170299962A1 (en) 2015-01-08 2017-07-06 Radiation-sensitive composition and pattern-forming method

Publications (1)

Publication Number Publication Date
WO2016111300A1 true WO2016111300A1 (ja) 2016-07-14

Family

ID=56355987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050164 WO2016111300A1 (ja) 2015-01-08 2016-01-05 感放射線性組成物及びパターン形成方法

Country Status (6)

Country Link
US (1) US20170299962A1 (ja)
EP (1) EP3244262A4 (ja)
JP (1) JP6666564B2 (ja)
KR (1) KR20170103762A (ja)
TW (1) TWI678594B (ja)
WO (1) WO2016111300A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018084A1 (ja) * 2015-07-29 2017-02-02 富士フイルム株式会社 感活性光線性又は感放射線性組成物、並びに、この組成物を用いた感活性光線性又は感放射線性組成物膜
JP2017173537A (ja) * 2016-03-23 2017-09-28 株式会社先端ナノプロセス基盤開発センター 感光性組成物およびパターン形成方法
JP2018017780A (ja) * 2016-07-25 2018-02-01 Jsr株式会社 感放射線性組成物及びパターン形成方法
WO2018043506A1 (ja) * 2016-08-29 2018-03-08 Jsr株式会社 感放射線性組成物及びパターン形成方法
WO2019111727A1 (ja) * 2017-12-06 2019-06-13 Jsr株式会社 感放射線性組成物及びレジストパターン形成方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6875325B2 (ja) 2018-05-21 2021-05-19 信越化学工業株式会社 パターン形成方法
JP6933605B2 (ja) * 2018-05-21 2021-09-08 信越化学工業株式会社 パターン形成方法
KR102229623B1 (ko) * 2018-08-10 2021-03-17 삼성에스디아이 주식회사 반도체 레지스트용 조성물 및 이를 이용한 패턴 형성 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530921A (ja) * 2001-03-12 2004-10-07 ユニバーシティ オブ ノース カロライナ アット シャルロット 次世代リソグラフィー用の高分解能レジスト
WO2009110166A1 (ja) * 2008-03-06 2009-09-11 パナソニック株式会社 レジスト材料及びそれを用いたパターン形成方法
JP2012185484A (ja) * 2011-02-15 2012-09-27 Shin Etsu Chem Co Ltd レジスト材料及びこれを用いたパターン形成方法
JP2013025211A (ja) * 2011-07-25 2013-02-04 Shin Etsu Chem Co Ltd レジスト材料及びこれを用いたパターン形成方法
JP2014002359A (ja) * 2012-05-21 2014-01-09 Fujifilm Corp 化学増幅型レジスト組成物、ネガ型化学増幅型レジスト組成物、それを用いたレジスト膜、レジスト塗布マスクブランクス、フォトマスク及びパターン形成方法、並びに、電子デバイスの製造方法及び電子デバイス
JP2015157807A (ja) * 2014-02-14 2015-09-03 コーネル ユニバーシティCornell University 金属酸化物ナノ粒子およびフォトレジスト組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708113B2 (ja) * 2004-09-13 2011-06-22 東京応化工業株式会社 レジスト組成物、レジストパターン形成方法
JP2009009047A (ja) * 2007-06-29 2009-01-15 Fujifilm Corp パターン形成方法
JP5540689B2 (ja) * 2009-12-18 2014-07-02 Jsr株式会社 感放射線性組成物、硬化膜及びこの形成方法
JP5616871B2 (ja) * 2011-10-12 2014-10-29 富士フイルム株式会社 ポジ型感光性樹脂組成物、硬化物の製造方法、樹脂パターン製造方法、硬化物及び光学部材
JP2014102391A (ja) * 2012-11-20 2014-06-05 Fujifilm Corp 感光性樹脂組成物、硬化物及びその製造方法、樹脂パターン製造方法、硬化膜、有機el表示装置、液晶表示装置、並びに、タッチパネル表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530921A (ja) * 2001-03-12 2004-10-07 ユニバーシティ オブ ノース カロライナ アット シャルロット 次世代リソグラフィー用の高分解能レジスト
WO2009110166A1 (ja) * 2008-03-06 2009-09-11 パナソニック株式会社 レジスト材料及びそれを用いたパターン形成方法
JP2012185484A (ja) * 2011-02-15 2012-09-27 Shin Etsu Chem Co Ltd レジスト材料及びこれを用いたパターン形成方法
JP2013025211A (ja) * 2011-07-25 2013-02-04 Shin Etsu Chem Co Ltd レジスト材料及びこれを用いたパターン形成方法
JP2014002359A (ja) * 2012-05-21 2014-01-09 Fujifilm Corp 化学増幅型レジスト組成物、ネガ型化学増幅型レジスト組成物、それを用いたレジスト膜、レジスト塗布マスクブランクス、フォトマスク及びパターン形成方法、並びに、電子デバイスの製造方法及び電子デバイス
JP2015157807A (ja) * 2014-02-14 2015-09-03 コーネル ユニバーシティCornell University 金属酸化物ナノ粒子およびフォトレジスト組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3244262A4 *
TRIKERIOTIS ET AL.: "Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, vol. 25, no. 5, 26 July 2012 (2012-07-26), pages 583 - 586, XP055222227, DOI: doi:10.2494/photopolymer.25.583 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018084A1 (ja) * 2015-07-29 2017-02-02 富士フイルム株式会社 感活性光線性又は感放射線性組成物、並びに、この組成物を用いた感活性光線性又は感放射線性組成物膜
JPWO2017018084A1 (ja) * 2015-07-29 2018-03-29 富士フイルム株式会社 感活性光線性又は感放射線性組成物、並びに、この組成物を用いた感活性光線性又は感放射線性組成物膜
JP2017173537A (ja) * 2016-03-23 2017-09-28 株式会社先端ナノプロセス基盤開発センター 感光性組成物およびパターン形成方法
US10095108B2 (en) 2016-03-23 2018-10-09 Evolving nano process infrastructure Development Center, Inc. Photosensitive composition and pattern formation method
JP2018017780A (ja) * 2016-07-25 2018-02-01 Jsr株式会社 感放射線性組成物及びパターン形成方法
WO2018043506A1 (ja) * 2016-08-29 2018-03-08 Jsr株式会社 感放射線性組成物及びパターン形成方法
JPWO2018043506A1 (ja) * 2016-08-29 2019-06-24 Jsr株式会社 感放射線性組成物及びパターン形成方法
US11796912B2 (en) 2016-08-29 2023-10-24 Jsr Corporation Radiation-sensitive composition and pattern-forming method
WO2019111727A1 (ja) * 2017-12-06 2019-06-13 Jsr株式会社 感放射線性組成物及びレジストパターン形成方法

Also Published As

Publication number Publication date
KR20170103762A (ko) 2017-09-13
EP3244262A1 (en) 2017-11-15
JPWO2016111300A1 (ja) 2017-10-19
EP3244262A4 (en) 2018-07-04
JP6666564B2 (ja) 2020-03-18
TW201631388A (zh) 2016-09-01
TWI678594B (zh) 2019-12-01
US20170299962A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6666564B2 (ja) 感放射線性組成物及びパターン形成方法
JP6666572B2 (ja) 感放射線性組成物及びパターン形成方法
JP6572898B2 (ja) パターン形成方法
US11796912B2 (en) Radiation-sensitive composition and pattern-forming method
WO2016043200A1 (ja) パターン形成方法
US10120277B2 (en) Radiation-sensitive composition and pattern-forming method
WO2018168221A1 (ja) 感放射線性組成物及びパターン形成方法
US10108088B2 (en) Radiation-sensitive composition and pattern-forming method
JP7327392B2 (ja) パターン形成方法及び感放射線性組成物
JP2018017780A (ja) 感放射線性組成物及びパターン形成方法
US20190033713A1 (en) Radiation-sensitive composition and pattern-forming method
WO2017204090A1 (ja) 感放射線性組成物及びパターン形成方法
JP2018116160A (ja) 感放射線性組成物及びパターン形成方法
US20190094691A1 (en) Radiation-sensitive composition and pattern-forming method
WO2019220878A1 (ja) 感放射線性組成物及びパターン形成方法
JP2019144553A (ja) 感放射線性組成物及びパターン形成方法
US20180356725A1 (en) Radiation-sensitive composition and pattern-forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177015766

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016568728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016735039

Country of ref document: EP