WO2016104679A1 - 非水電解質二次電池とその製造方法 - Google Patents

非水電解質二次電池とその製造方法 Download PDF

Info

Publication number
WO2016104679A1
WO2016104679A1 PCT/JP2015/086179 JP2015086179W WO2016104679A1 WO 2016104679 A1 WO2016104679 A1 WO 2016104679A1 JP 2015086179 W JP2015086179 W JP 2015086179W WO 2016104679 A1 WO2016104679 A1 WO 2016104679A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
conductive
electrolyte
resin
main surface
Prior art date
Application number
PCT/JP2015/086179
Other languages
English (en)
French (fr)
Inventor
大澤 康彦
雄樹 草地
赤間 弘
堀江 英明
水野 雄介
健一 川北
康裕 進藤
都藤 靖泰
Original Assignee
日産自動車株式会社
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 三洋化成工業株式会社 filed Critical 日産自動車株式会社
Priority to CN201580071165.0A priority Critical patent/CN107112596B/zh
Priority to JP2016566493A priority patent/JP6342519B2/ja
Priority to US15/539,460 priority patent/US10431851B2/en
Priority to EP15873247.9A priority patent/EP3240095B1/en
Priority to KR1020177017481A priority patent/KR101871134B1/ko
Publication of WO2016104679A1 publication Critical patent/WO2016104679A1/ja
Priority to US16/521,766 priority patent/US11063295B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a manufacturing method thereof.
  • a bipolar secondary battery has been proposed as a battery that can save current collecting tabs of a single battery cell, a bus bar for connection between single cells, etc., and has a high volumetric efficiency and is suitable for in-vehicle use.
  • a bipolar secondary battery (also called a bipolar secondary battery) uses a bipolar electrode in which a positive electrode is formed on one surface of a current collector and a negative electrode is formed on the other surface. A plurality of the bipolar electrodes are laminated so that the positive electrode and the negative electrode face each other through a separator including an electrolyte layer.
  • one battery cell (unit cell) is constituted by the positive electrode, the negative electrode, and the separator (electrolyte layer) between the current collector and the current collector. Furthermore, it has been proposed to use a resin in which a conductive filler is dispersed in a current collector for higher performance.
  • Patent Document 1 discloses means for increasing the energy density of the battery by increasing the film thickness of the electrode, thereby reducing the relative proportion of the current collector and the separator.
  • the conventional method of applying the active material slurry to the current collector may make it difficult to produce the electrode itself.
  • the present inventors diligently studied to solve the above problems.
  • the component member of the electrode has a first main surface that contacts the electrolyte layer side and a second main surface that contacts the current collector side, and comes into contact with the active material from the first main surface to the second main surface.
  • a conductive member forming a conductive path that electrically connects the surface, a thick electrode could be produced.
  • At least one of the electrodes includes a conductive member and an active material coated with a coating agent containing a coating resin and a conductive auxiliary agent, and the conductive member electrically contacts both active surfaces while contacting the active material.
  • a non-aqueous electrolyte secondary battery having a conductive path connected to each other is provided.
  • the thickness of the electrode is increased.
  • a water electrolyte secondary battery can be realized.
  • the electrolyte of the nonaqueous electrolyte secondary battery of the present invention is gelled. Therefore, even if vibration is applied, the influence is reduced by gelation, and the constituent members of the electrode can be stably held, so that the cycle characteristics are also improved.
  • the power generation element includes: two electrodes having different polarities, each having an active material layer formed on a current collector; and an electrolyte layer disposed between the electrodes.
  • a nonaqueous electrolyte secondary battery wherein at least one of the active material layers of the two electrodes having different polarities includes a conductive member and an active material made of an electron conductive material, and the active material layer is the electrolyte layer A first main surface that contacts the side and a second main surface that contacts the current collector side, and at least a part of the conductive member is electrically connected from the first main surface to the second main surface.
  • the conductive path is in contact with the active material around the conductive path, and at least a part of the surface of the active material includes a coating resin and a conductive auxiliary agent.
  • the two electrodes having different polarities are coated with a coating material containing Or the electrolyte contained in the electrolyte layer, a gel electrolyte, a non-aqueous electrolyte secondary battery is provided.
  • the thickness of the electrode is increased.
  • a water electrolyte secondary battery can be provided.
  • the electrolyte solution of the nonaqueous electrolyte secondary battery of the present invention is gelled. Due to the presence of the gelled electrolyte, even if some force is locally applied to the electrode, the electrode reaction becomes uniform without being deformed, deterioration can be suppressed, and cycle characteristics can be improved.
  • bipolar lithium ion secondary battery may be simply referred to as “bipolar secondary battery”, and the bipolar lithium ion secondary battery electrode may be simply referred to as “bipolar electrode”.
  • active material may mean either a positive electrode active material or a negative electrode active material, or may mean both. The same applies to the “active material layer”. Those skilled in the art can reasonably interpret these.
  • FIG. 1 is a cross-sectional view schematically showing a bipolar secondary battery according to an embodiment of the present invention.
  • the bipolar secondary battery 10 shown in FIG. 1 has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate film 29 that is a battery exterior material.
  • the power generation element 21 of the bipolar secondary battery 10 includes a positive electrode active material layer 13 that is electrically coupled to one surface of the current collector 11.
  • a plurality of bipolar electrodes 23 having a negative electrode active material layer 15 electrically coupled to the opposite surface are provided.
  • Each bipolar electrode 23 is laminated via the electrolyte layer 17 to form the power generation element 21.
  • the electrolyte layer 17 has a configuration in which an electrolyte is held at the center in the surface direction of a separator as a base material.
  • the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of another bipolar electrode 23 adjacent to the one bipolar electrode 23 face each other through the electrolyte layer 17.
  • the bipolar electrodes 23 and the electrolyte layers 17 are alternately stacked. That is, the electrolyte layer 17 is sandwiched between the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of another bipolar electrode 23 adjacent to the one bipolar electrode 23. Has been.
  • the adjacent positive electrode active material layer 13, electrolyte layer 17, and negative electrode active material layer 15 constitute one unit cell layer 19. Therefore, it can be said that the bipolar secondary battery 10 has a configuration in which the single battery layers 19 are stacked.
  • a seal portion (insulating layer) 31 is disposed on the outer peripheral portion of the unit cell layer 19. Thereby, a liquid junction due to leakage of the electrolytic solution from the electrolyte layer 17 is prevented, the adjacent current collectors 11 in the battery are in contact with each other, a slight irregularity of the end portion of the unit cell layer 19 in the power generation element 21, etc.
  • a positive electrode active material layer 13 is formed only on one side of the positive electrode outermost layer current collector 11 a located in the outermost layer of the power generation element 21.
  • the negative electrode active material layer 15 is formed only on one surface of the outermost current collector 11b on the negative electrode side located in the outermost layer of the power generation element 21.
  • a positive electrode current collector plate 25 is disposed so as to be adjacent to the outermost layer current collector 11a on the positive electrode side, and this is extended to form a laminate film 29 which is a battery exterior material.
  • the negative electrode current collector plate 27 is disposed so as to be adjacent to the outermost layer current collector 11 b on the negative electrode side, and is similarly extended and led out from the laminate film 29.
  • the number of times the single battery layer 19 is stacked is adjusted according to the desired voltage.
  • the power generation element 21 is sealed under reduced pressure in a laminate film 29 that is a battery exterior material, and the positive electrode current collector plate 25 and the negative electrode current collector 25.
  • a structure in which the electric plate 27 is taken out of the laminate film 29 is preferable.
  • the embodiment of the present invention has been described by taking a bipolar secondary battery as an example, but the type of the non-aqueous electrolyte battery to which the present invention is applicable is not particularly limited, and a single cell layer is provided in the power generation element.
  • the present invention can be applied to any conventionally known nonaqueous electrolyte secondary battery such as a so-called parallel stacked battery of a type connected in parallel.
  • the current collector has a function of mediating transfer of electrons from one surface in contact with the positive electrode active material layer to the other surface in contact with the negative electrode active material layer.
  • a metal and resin which has electroconductivity can be employ
  • examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, copper, and nickel are preferable from the viewpoint of electronic conductivity and battery operating potential.
  • the latter conductive resin includes a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material as required.
  • the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
  • Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), or polystyrene (PS).
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PI polyimide
  • PAI polyamideimide
  • PA polyamide
  • PTFE polytetraflu
  • a conductive filler may be added to the conductive polymer material or the non-conductive polymer material as necessary.
  • a conductive filler is inevitably necessary to impart conductivity to the resin.
  • the conductive filler can be used without particular limitation as long as it has a conductivity.
  • metals, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion barrier
  • the metal is not particularly limited, but includes at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, and Sb, or these metals. It preferably contains an alloy or metal oxide.
  • it includes at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene.
  • the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by weight.
  • the current collector of this embodiment may have a single-layer structure made of a single material, or may have a laminated structure in which layers made of these materials are appropriately combined. Further, from the viewpoint of blocking the movement of lithium ions between the unit cell layers, a metal layer may be provided on a part of the current collector.
  • At least one of the positive electrode active material layer and the negative electrode active material layer includes a conductive member and an active material made of an electron conductive material.
  • at least a part of the surface of the active material is coated with a coating agent containing a coating resin and a conductive additive.
  • the active material layer has a first main surface that contacts the electrolyte layer side and a second main surface that contacts the current collector side. At least a part of the conductive member forms a conductive path that electrically connects the first main surface to the second main surface.
  • the conductive member is an example of a conductive fiber constituting a part of a nonwoven fabric, an example of a conductive fiber constituting a part of a woven fabric or a knitted fabric, the first main surface and the second surface.
  • conductive fibers that exist discretely between the main surfaces
  • examples are conductive resins that constitute a part of the foamed resin.
  • the conductive member is a conductive fiber constituting a part of the nonwoven fabric.
  • FIG. 2 is a cross-sectional view schematically showing an enlarged part indicated by a circle in FIG.
  • the single battery layer 19 is sandwiched between two current collectors 11.
  • the positive electrode active material layer 13 is in the form of a sheet having a predetermined thickness t1, and includes a first main surface 111 disposed on the electrolyte layer 17 side and a second main surface 121 disposed on the current collector 11 side. ing.
  • the positive electrode active material layer 13 includes a positive electrode active material 14.
  • the positive electrode active material 14 is covered with a coating agent, which will be described later.
  • the negative electrode active material layer 15 also has a sheet shape having a predetermined thickness t2, and includes a first main surface 211 disposed on the electrolyte layer 17 side and a second main surface 221 disposed on the current collector 11 side. I have.
  • the negative electrode active material layer 15 contains a negative electrode active material 24. In this embodiment, the negative electrode active material 24 is coated with a coating agent, which will be described later.
  • the thickness t1 of the positive electrode active material layer 13 and the thickness t2 of the negative electrode active material layer 15 are preferably independently 150 to 1500 ⁇ m.
  • the thickness t1 is more preferably 200 to 950 ⁇ m, and further preferably 250 to 900 ⁇ m.
  • the thickness t2 is more preferably 200 to 950 ⁇ m, and further preferably 250 to 900 ⁇ m. According to the characteristic structure of the present invention, such a thick electrode can be realized, which is effective in improving the energy density.
  • FIG. 3 is a cross-sectional view schematically showing only the positive electrode active material layer of FIG.
  • the positive electrode active material layer 100 includes the first main surface 111 and the second main surface 121 (not shown) as described above. And between the 1st main surface 111 and the 2nd main surface 121, the conductive fiber 131 as a conductive member and the positive electrode active material 14 as an active material are contained.
  • the conductive member is a conductive fiber 131 constituting a part of the nonwoven fabric. Since there are many voids in the nonwoven fabric, an electrode can be formed by filling the voids with the active material 14. The filling of the coating active material into the voids will be described in detail below.
  • one end of some of the fibers reaches the first main surface 111, and the other end reaches the second main surface 121. Therefore, at least a part of the conductive fiber 131 forms a conductive path that electrically connects the first main surface 111 to the second main surface 121.
  • conductive fibers 131 are entangled between the first main surface 111 and the second main surface 121, but a plurality of conductive fibers 131 are in contact with each other from the first main surface 111. Even when the second main surface 121 is continuously connected, it can be said that the conductive fibers form a conductive path that electrically connects the first main surface 111 to the second main surface 121.
  • FIG. 3 shows an example of the conductive fiber 131 corresponding to the conductive path that electrically connects the first main surface 111 to the second main surface 121.
  • the fiber shown as the conductive fiber 131a is an example in which one conductive fiber is a conductive path, and the two fibers shown as the conductive fiber 131b are a conductive path by contacting two conductive fibers. This is an example.
  • Examples of conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing highly conductive metal and graphite in synthetic fibers, and metals such as stainless steel. Examples thereof include fiberized metal fibers, conductive fibers obtained by coating the surfaces of organic fibers with metal, and conductive fibers obtained by coating the surfaces of organic fibers with a resin containing a conductive substance. Among these conductive fibers, carbon fibers are preferable.
  • the electric conductivity of the conductive member is preferably 50 mS / cm or more.
  • the electrical conductivity is obtained by measuring the volume resistivity in accordance with JIS R 7609 (2007) “Method for obtaining volume resistivity” and taking the reciprocal of the volume resistivity.
  • the electrical conductivity is 50 mS / cm or more, the resistance when forming a conductive path that electrically connects the first main surface 111 to the second main surface 121 is small, and the distance from the current collector is long. This is preferable because electrons move more smoothly from the active material.
  • the average fiber diameter of the conductive fibers is preferably 0.1 to 20 ⁇ m.
  • the average fiber diameter of the conductive fibers can be measured by SEM observation.
  • the diameter near the center is measured for each of the 10 arbitrary fibers existing in the 30 ⁇ m square field of view, and this measurement is performed for the three fields of view. Measured value.
  • the fiber length of the conductive fiber is not particularly limited.
  • the active material is a coated active material in which at least a part of the surface is coated with a coating 151 containing a coating resin and a conductive additive 16. Details will be described later.
  • the conductive path by the conductive fiber 131 is in contact with the positive electrode active material 14 around the conductive path.
  • the conductive path is made of a conductive member that is an electron conductive material, electrons can smoothly reach the current collector.
  • the active material is a coated active material. However, even when the coating agent is in contact with the conductive path, it can be considered that the conductive path is in contact with the active material.
  • the conductive auxiliary agent 16 is selected from conductive materials. Details of the conductive assistant will be described later.
  • the conductive additive 16 is included in the coating material 151, but the conductive additive 16 may be in contact with the positive electrode active material 14.
  • the conductive auxiliary agent 16 is contained in the coating material 151 or is in contact with the positive electrode active material 14, the electron conductivity from the positive electrode active material 14 to the conductive path can be further increased.
  • the positive electrode has been described as an example.
  • a negative electrode active material can be used as the active material instead of the positive electrode active material. Details of the negative electrode active material will also be described later.
  • FIG. 4 is a cross-sectional view schematically showing another example of the positive electrode active material layer.
  • the conductive member is a conductive fiber 113 constituting a part of the fabric.
  • the woven fabric is composed of warp yarn 113a and weft yarn 113b made of conductive fibers.
  • 4 has the same structure as the positive electrode active material layer 100 shown in FIG. 2 except that the cloth-like fiber structure corresponding to the nonwoven fabric in FIG. 3 is a woven fabric.
  • the weaving method of the woven fabric is not particularly limited, and a woven fabric woven with a plain weave, a twill weave, a satin weave, a pile weave, or the like can be used. Further, a knitted fabric made of conductive fibers may be used instead of the woven fabric.
  • the method of knitting the knitted fabric is not particularly limited, and a knitted fabric knitted by a flat knitting, a vertical knitting, a circular knitting or the like can be used.
  • Woven fabrics and knitted fabrics, like non-woven fabrics have many voids between the conductive fibers that make up the woven fabrics and knitted fabrics, so an electrode (active material layer) is formed by filling the voids with a coated active material. Can be made.
  • the conductive fibers 113 reach the first main surface 111, and some of the other fibers reach the second main surface 121. Accordingly, at least a part of the conductive fiber 113 forms a conductive path that electrically connects the first main surface 111 to the second main surface 121.
  • a preferable conductive fiber type and active material type are the same as those shown in FIG. 2, and thus detailed description thereof is omitted.
  • it can also be set as a negative electrode by making an active material into a negative electrode active material.
  • FIG. 5 is a cross-sectional view schematically showing another example of the positive electrode active material layer.
  • the conductive member is a conductive fiber 213 that exists discretely between the first main surface 111 and the second main surface 121.
  • the conductive fiber 213 is not a part of a structure made of conductive fibers such as the nonwoven fabric, woven fabric or knitted fabric shown in FIGS.
  • this form is manufactured using a slurry containing conductive fibers and a coated active material, and in the active material layer It can be said that the conductive fibers are discretely present, but the gap between the fibers is not filled with the coating active material.
  • the conductive fibers 213 At least some of the fibers reach the first main surface 111, and some of the other fibers reach the second main surface 121. Therefore, at least a part of the conductive fiber 213 forms a conductive path that electrically connects the first main surface 111 to the second main surface 121.
  • the fiber shown as the conductive fiber 213a is an example in which one conductive fiber is a conductive path, and the two fibers shown as the conductive fiber 213b are conductive when the two conductive fibers come into contact with each other. This is an example of a passage.
  • a preferable conductive fiber type and active material type are the same as those shown in FIG. 2, and thus detailed description thereof is omitted.
  • it can also be set as a negative electrode by making an active material into a negative electrode active material.
  • the conductive fiber as the conductive member and the coated active material may be fixed on the film and loosely maintained so that the shape does not flow. It is preferable that the film is made of a highly conductive material (conductive material) because the film can be used as a current collector, and even if the current collector and the film are brought into contact with each other, the conductivity is not inhibited.
  • the film is not shown in FIG. A manufacturing method in which the conductive fiber as the conductive member and the coated active material are fixed on the film will be described in detail later.
  • the conductive fiber as the conductive member and the coated active material are fixed by the resin, and the conductive fiber is dispersed in the active material layer. It may be in a state maintained in step (b).
  • FIG. 6 is a cross-sectional view schematically showing another example of the positive electrode active material layer.
  • the positive electrode active material layer 100 in the form shown in FIG. 6 is different in that the conductive fibers 213 as the conductive member and the positive electrode active material 14 (coating active material) as the active material are fixed by the resin 214.
  • the other configuration is the same as that shown in FIG.
  • Examples of the resin include vinyl resin, urethane resin, polyester resin, and polyamide resin.
  • FIG. 7 is a cross-sectional view schematically showing another example of the positive electrode active material layer.
  • the conductive member is a conductive resin 313 that constitutes a part of the foamed resin. Since many voids exist in the foamed resin, an electrode can be formed by filling the voids with a coating active material.
  • the resin subjected to the conductive treatment examples include a resin provided with conductivity by forming a conductive thin film on the surface of the resin, a resin provided with conductivity by mixing a conductive filler such as metal or carbon fiber inside the resin, and the like. Can be mentioned.
  • the resin itself may be a conductive polymer, or a resin in which conductivity is further imparted to the conductive polymer.
  • Examples of methods for forming a conductive thin film on the surface of a resin include metal plating, vapor deposition, and sputtering.
  • the conductive resin 313 is continuous from the first main surface 111 to the second main surface 121, and the conductive resin 313 is transferred from the first main surface 111 to the second main surface 121. Conductive passages are formed to electrically connect the above.
  • a resin foam is preferable, and examples thereof include polyurethane foam, polystyrene foam, polyethylene foam, and polypropylene foam.
  • a foamed resin obtained by plating the surface of the polyurethane foam with a metal such as nickel is preferable.
  • the electrical conductivity of the foamed resin containing the conductive resin is preferably 100 mS / cm or more.
  • the electrical conductivity of the foamed resin is determined by the four-terminal method.
  • the electrical conductivity of the foamed resin including the conductive resin is 100 mS / cm or more, a conductive path that electrically connects the first main surface to the second main surface is formed by the conductive fiber. This is preferable because the electron resistance from the active material is small and the movement of electrons from the active material that is far from the current collector is performed more smoothly.
  • it can also be set as a negative electrode by making an active material into a negative electrode active material.
  • the volume ratio of the conductive member is 0.1 to 15 vol% based on the volume of the positive electrode active material layer. Is preferred. That is, it is preferable that the volume occupied by the conductive member is relatively small in the positive electrode active material layer. The fact that the volume occupied by the conductive member is small means that a large number of coating active materials are filled in the gaps not occupied by the conductive member. Electrode. In this example, the volume ratio occupied by the conductive member was about 2 vol%.
  • the ratio of the volume occupied by the coated active material is 30 to 80 vol% based on the volume of the active material layer.
  • the volume ratio occupied by the conductive member was about 46 vol%.
  • a method for producing a non-aqueous electrolyte secondary battery includes: two electrodes having different active polarities, each having an active material layer formed on a current collector; and an electrolyte disposed between the electrodes.
  • a non-aqueous electrolyte secondary battery having a power generation element comprising: a conductive member made of an electron conductive material and an active material on at least one of the active material layers of the two electrodes having different polarities
  • the active material layer has a first main surface that contacts the electrolyte layer side and a second main surface that contacts the current collector side, and at least a part of the conductive member includes the first main surface
  • a conductive path electrically connecting from one main surface to the second main surface, wherein the conductive path is in contact with the active material around the conductive path, and the surface of the active material is Coating agent comprising at least a part of a coating resin and a conductive additive
  • One aspect of a method for producing an electrode (active material layer) of a nonaqueous electrolyte secondary battery of the present invention includes a conductive member, and has a plurality of voids therein, and includes a first main surface and a second main surface.
  • a step of preparing the provided structure a step of applying a slurry containing the coating active material to the first main surface or the second main surface of the structure, and pressurization or decompression to apply the coating active material. Filling the voids in the structure.
  • the manufacturing method of the above aspect is suitable for manufacturing the active material layer of the aspect described with reference to FIG. 3, FIG. 4 or FIG.
  • a structure including a conductive member and having a plurality of voids therein and having a first main surface and a second main surface is prepared (this is the first main surface and the second main surface of the active material layer). Skeleton).
  • a non-woven fabric containing a conductive member made of conductive fibers As the structure, it is preferable to use a non-woven fabric containing a conductive member made of conductive fibers, a woven or knitted fabric containing a conductive member made of conductive fibers, or a foamed resin containing a conductive member made of a conductive resin.
  • the details of the non-woven fabric, the woven fabric, the knitted fabric and the foamed resin are the same as those described above, and the detailed description thereof is omitted.
  • FIG. 8A and FIG. 8B are process diagrams schematically showing a process of filling the active material in the voids in the structure. The example using a nonwoven fabric as a structure is shown.
  • the slurry containing the coating active material is applied to the first main surface or the second main surface of the structure.
  • the active material is coated with a coating agent to form a coated active material.
  • the description of the method for producing the coated active material will be described later.
  • the slurry containing the active material may be a solvent slurry containing a solvent or an electrolyte solution slurry containing an electrolyte solution. Note that the description of the slurry can be similarly applied to other embodiments.
  • solvent examples include water, propylene carbonate, 1-methyl-2-pyrrolidone (N-methylpyrrolidone), methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine and tetrahydrofuran.
  • an electrolytic solution containing a supporting salt and / or an organic solvent used for manufacturing a lithium ion battery can be used.
  • a supporting salt a normal salt used in the production of a lithium ion battery can be used, and as the organic solvent, those used in a normal electrolytic solution can be used.
  • the electrolyte contained in the electrode or the electrolyte layer is gelled by a gelling agent.
  • a supporting salt and an organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • the slurry is preferably prepared by dispersing and slurrying the coating active material and, if necessary, the conductive additive at a concentration of 5 to 60% by weight based on the weight of the solvent or the electrolyte.
  • the slurry containing the coating active material can be applied to the first main surface or the second main surface of the structure using an arbitrary coating apparatus such as a bar coater or a brush.
  • FIG. 8A schematically shows a state in which the slurry is applied on the second main surface of the nonwoven fabric as the structure, and the second main surface 62 of the nonwoven fabric 60 is coated with the coating material 151.
  • a slurry containing the positive electrode active material 14 is applied.
  • pressurization or decompression is performed to fill the voids in the structure with the coated active material.
  • a method of pressurizing operation a method of pressing using a press machine from the slurry application surface can be mentioned.
  • a method for the decompression operation a method in which a filter paper or a mesh is applied to the surface on which the slurry is not applied to the structure, and suction is performed by a vacuum pump.
  • the structure has voids, it is possible to fill the voids in the structure with the coated active material by pressurization or decompression.
  • FIG. 8A shows an arrow indicating the direction in which pressure is applied from above the slurry application surface, and an arrow indicating the direction in which pressure is reduced from below the filter paper 70.
  • FIG. 8B shows a positive electrode active material layer 100 in which a coating active material is filled in voids in the structure.
  • the positive electrode active material layer 100 illustrated in FIG. 8B is the same as the positive electrode active material layer 100 illustrated in FIG.
  • the slurry containing the coating active material is a solvent slurry containing a solvent
  • the slurry containing the coating active material is an electrolyte solution slurry containing an electrolytic solution
  • the voids in the structure are filled with the coating active material and the electrolytic solution, and the preferred configuration as an electrode for a lithium ion battery Become.
  • the electrolyte contained in the electrode or the electrolyte layer is gelled by a gelling agent.
  • the coated active material is filled in the voids in the structure by the above process.
  • an active material layer can be manufactured.
  • Another embodiment of the present invention includes a step of applying a slurry containing a conductive member and a coated active material on a film, and a step of fixing the coated active material and the conductive member on the film by applying pressure or reduced pressure. Including.
  • the manufacturing method according to the above aspect is suitable for manufacturing the positive electrode active material layer according to the aspect described with reference to FIG.
  • FIG. 9A and FIG. 9B are process diagrams schematically showing a process of fixing the coated active material and the conductive member on the film.
  • a slurry containing a coating active material which is a positive electrode active material 14 coated with a conductive material 213 and a coating 151 containing a coating resin and a conductive auxiliary agent 16, is applied onto the film 470.
  • Examples of the slurry include those obtained by further adding conductive fibers as a conductive member to the above-described slurry and dispersing the conductive fibers in the slurry.
  • the above-described conductive fiber can be used, but the shape of the conductive fiber is preferably such that each of the fibers is an independent shape, such as a nonwoven fabric, a woven fabric, or a knitted fabric. It preferably has no structure. When each of the conductive fibers is independent, the conductive fibers are dispersed in the slurry.
  • the slurry may be an electrolyte slurry containing an electrolyte.
  • the electrolyte the same electrolyte as that in the above-described electrolyte slurry can be used.
  • the slurry is preferably a solvent slurry containing a solvent.
  • the electrolyte contained in the electrode or the electrolyte layer is gelled by a gelling agent.
  • the film 470 is preferably a film that can separate the coating active material and the conductive member from the electrolytic solution and the solvent in the subsequent pressurization or decompression step.
  • the film is made of a highly conductive material (conductive material) because the film can be used as a current collector, and even if the current collector is in contact with the film, the conductivity is not inhibited.
  • a material having an electric conductivity of 100 S / cm or more can be suitably used. Examples of materials having such characteristics include filter papers, metal meshes and the like in which conductive fibers such as carbon fibers are blended. Such a material can be used as a current collector.
  • the metal mesh it is preferable to use a stainless steel mesh, for example, a SUS316 twilled woven wire mesh (manufactured by Sunnet Kogyo) and the like.
  • the mesh opening of the metal mesh is preferably set so that the coated active material and the conductive member do not pass through. For example, it is preferable to use a mesh of 2300 mesh.
  • the slurry can be applied onto the film using an arbitrary coating apparatus such as a bar coater or a brush.
  • FIG. 9A schematically shows a state in which the slurry is applied on the membrane, and the slurry containing the coated active material and the conductive fibers 213 is applied on the filter paper 470 as the membrane. .
  • the coated active material and the conductive member are fixed on the film by applying pressure or reduced pressure.
  • the same method as the above-described step can be used, and an electrolytic solution or a solvent is removed from the slurry by pressurization or pressure reduction, and a conductive fiber as a conductive member is coated.
  • the active material is fixed on the film, and its shape is maintained so as not to flow.
  • FIG. 9B shows a positive electrode active material layer 110 in which conductive fibers 213 as conductive members and a coated active material are fixed on a filter paper 470.
  • the film when the film is made of a conductive material, the film can be used as a current collector, and can function as a single current collector by contacting the film with another current collector. You can also. That is, in the positive electrode active material layer 110, the second main surface 121 can be defined as a portion where the conductive fiber 213 as a conductive member is in contact with the filter paper 470.
  • the membrane may be a separator.
  • the film made of a material having no conductivity include an aramid separator (manufactured by Japan Vilene Co., Ltd.).
  • the membrane when the slurry is an electrolyte slurry containing an electrolyte solution, the membrane is a membrane that does not transmit the coating active material but allows the electrolyte solution to pass therethrough. It is preferable to pass through and remove.
  • the pressing step is a step of improving the density of the coated active material by increasing the pressure difference further than the pressurization or depressurization in the previous step.
  • Such a pressing process is a concept including both an aspect in which pressurization is applied when the previous process is depressurization and an aspect in which the pressurization pressure is further increased when the previous process is pressurization.
  • the pressure in the pressing step at this time can be set as appropriate, but is preferably about 1 to 5 kg / cm 2 , for example.
  • a step of transferring the coated active material fixed on the film to the main surface of the current collector or the separator is performed, and the first main surface of the active material layer is disposed on the main surface of the separator, or the active material
  • the second main surface of the layer forms an electrode disposed on the main surface of the current collector.
  • the transferring step it is preferable to transfer the main surface opposite to the film in contact with the main surface of the current collector or separator.
  • the film When the film is made of a conductive material and the film is used as a current collector, it is preferable to transfer the main surface opposite to the film in contact with the main surface of the separator. In the case where the film is not used as a current collector, it is preferable to perform a step of peeling the film after the transfer.
  • the membrane may be used as part of the separator.
  • FIG. 10A and FIG. 10B are process diagrams schematically showing a process of fixing the coated active material and the conductive member with a resin.
  • an active material composition including a conductive member, a coated active material, and a resin is prepared.
  • conductive member it is preferable to use conductive fibers each having an independent shape, as in the embodiment described with reference to FIGS. 9 (a) and 9 (b).
  • the resin it is preferable to use vinyl resin, urethane resin, polyester resin, polyamide resin or the like. These resins are preferable in terms of moldability.
  • the resin may be present in the form of a resin solution dissolved in a solvent, or may be present in a solid form such as pellets that are fluidized by heating.
  • the resin may be a coating resin contained in the coating agent.
  • the conductive member and the active material are preferably dispersed in the resin solution. Further, even when the resin is present in a solid form, it is preferable that the resin, the conductive member, and the active material are dispersed without being unevenly distributed in a specific portion.
  • the conductive member and the active material are fixed with resin by heat-pressing the prepared composition for active material.
  • the method of the hot press is not particularly limited, but as shown in FIG. 10A, a composition for active material containing a coated active material, conductive fibers 213, and a resin 214 on a plate 570 such as a metal plate.
  • coating and heat-pressing from an upper surface is mentioned.
  • Application of the active material composition can be performed using an arbitrary coating apparatus such as a bar coater or a brush. Moreover, a heat press can be performed using a normal heat press apparatus.
  • the resin is a coating resin for the coating active material
  • the conductive member and the coating active material are applied to the plate and heated and pressed, the conductive member and the (coating) active material are formed by the coating resin melted by heating. Fixed.
  • the active material fixed by the coating resin is a coated active material that is still coated with the coating resin, but may be peeled off to some extent.
  • the conditions of the heating press may be determined as appropriate depending on the curing conditions of the resin used, and are not particularly limited.
  • the conditions are 100 to 200 ° C., 0.01 to 5 MPa, and 5 to 300 seconds. It is preferable to heat press under conditions.
  • vinyl resin it is preferable to heat press under conditions of 80 to 180 ° C., 0.01 to 5 MPa, and 5 to 300 seconds.
  • the positive electrode active material layer 110 in which the conductive fibers 213 and the coating active material are fixed with a resin 214 can be manufactured by heating press.
  • the positive electrode active material 14 examples include composite oxides of lithium and transition metals (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (for example, MnO 2 and V 2 O 5 ), and transition metals. And sulfides (eg, MoS 2 and TiS 2 ) and conductive polymers (eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
  • sulfides eg, MoS 2 and TiS 2
  • conductive polymers eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole.
  • Examples of the negative electrode active material 24 include graphite, amorphous carbon, polymer compound fired bodies (for example, those obtained by firing and carbonizing phenol resin and furan resin, etc.), cokes (for example, pitch coke, needle coke, and petroleum coke), Carbon fibers, conductive polymers (such as polyacetylene and polypyrrole), tin, silicon, and metal alloys (such as lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy) It is done.
  • At least one of the positive electrode active material layer and the negative electrode active material layer includes the conductive member and the active material made of the electron conductive material. In that form, at least a part of the surface of the active material is coated with a coating 151 containing a coating resin and a conductive additive 16.
  • the conductive auxiliary agent 16 is selected from conductive materials.
  • metals ⁇ aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc. ⁇ , carbon ⁇ graphite and carbon black [acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.], etc. ⁇ , And mixtures thereof, but are not limited thereto.
  • These conductive assistants may be used alone or in combination of two or more. Moreover, these alloys or metal oxides may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, gold, copper, titanium and mixtures thereof are preferred, silver, gold, aluminum, stainless steel and carbon are more preferred, and carbon is particularly preferred. is there. These conductive aids may be those obtained by coating a conductive material (a metal among the above-mentioned conductive materials) with plating or the like around a particle ceramic material or a resin material.
  • the shape (form) of the conductive auxiliary agent is not limited to the particle form, and may be a form other than the particle form, or may be a form put into practical use as a so-called filler-based conductive resin composition such as a carbon nanotube. Good.
  • the average particle size (primary particle size) of the conductive assistant is not particularly limited, but is preferably about 0.01 to 10 ⁇ m from the viewpoint of the electric characteristics of the battery.
  • the “particle diameter” means the maximum distance L among the distances between any two points on the contour line of the conductive additive.
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the active material coating resin (also simply referred to as “coating resin”) has a tensile elongation at break of 10% or more in a saturated liquid absorption state.
  • the tensile elongation at break in the saturated liquid absorption state is determined by ASTM D683 (test piece shape) by punching the coating resin into a dumbbell shape, dipping in an electrolytic solution at 50 ° C. for 3 days to bring the coating resin into a saturated liquid absorption state. It can be measured according to Type II).
  • the tensile elongation at break is a value obtained by calculating the elongation until the test piece breaks in the tensile test according to the following formula.
  • Tensile elongation at break (%) [(length of specimen at break ⁇ length of specimen before test) / length of specimen before test] ⁇ 100
  • the tensile elongation at break is more preferably 20% or more, and further preferably 30% or more.
  • a preferable upper limit of the tensile elongation at break 400% is preferable, and a more preferable upper limit is 300%.
  • a urethane resin obtained by reacting an active hydrogen component and an isocyanate component is also preferable as a coating resin. Since the urethane resin has flexibility, coating the lithium ion battery active material with the urethane resin can alleviate the volume change of the electrode and suppress the expansion of the electrode.
  • the coating resin has a liquid absorption rate of 10% or more when immersed in an electrolytic solution, and a tensile elongation at break in a saturated liquid absorption state of 10% or more. .
  • the liquid absorption rate when immersed in the electrolytic solution is obtained by the following equation by measuring the weight of the coating resin before and after being immersed in the electrolytic solution.
  • Absorption rate (%) [(weight of coating resin after immersion in electrolytic solution ⁇ weight of coating resin before immersion in electrolytic solution) / weight of coating resin before immersion in electrolytic solution] ⁇ 100
  • An electrolytic solution dissolved to a concentration is used.
  • the saturated liquid absorption state refers to a state in which the weight of the coating resin does not increase even when immersed in the electrolyte.
  • the coating resin When the liquid absorption is 10% or more, the coating resin sufficiently absorbs the electrolytic solution, and lithium ions can easily permeate the coating resin. The movement of lithium ions is not hindered.
  • the liquid absorption rate is preferably 20% or more, and more preferably 30% or more. Moreover, as a preferable upper limit of a liquid absorption rate, it is 400%, and as a more preferable upper limit, it is 300%.
  • the lithium ion conductivity of the active material coating resin according to the embodiment of the present invention can be obtained by measuring the conductivity at room temperature of the coating resin after the saturated liquid absorption state is obtained by an AC impedance method.
  • the lithium ion conductivity measured by the above method is preferably 1.0 to 10.0 mS / cm, and the performance as a lithium ion battery is sufficiently exhibited within the above range.
  • the coating resin has a liquid absorption rate of 10% or more when immersed in an electrolytic solution, a tensile elongation at break in a saturated liquid absorption state of 10% or more, and active hydrogen.
  • a urethane resin obtained by reacting a component with an isocyanate component is preferred.
  • the active hydrogen component preferably contains at least one selected from the group consisting of polyether diol, polycarbonate diol and polyester diol.
  • Polyether diols include polyoxyethylene glycol (hereinafter abbreviated as PEG), polyoxyethyleneoxypropylene block copolymer diol, polyoxyethyleneoxytetramethylene block copolymer diol; ethylene glycol, propylene glycol, 1,4-butanediol 1,6-hexamethylene glycol, neopentyl glycol, bis (hydroxymethyl) cyclohexane, 4,4′-bis (2-hydroxyethoxy) -diphenylpropane and other low molecular glycol ethylene oxide adducts; number average molecular weight 2, PEG of 000 or less and dicarboxylic acid [aliphatic dicarboxylic acid having 4 to 10 carbon atoms (for example, succinic acid, adipic acid, sebacic acid, etc.), aromatic dicarboxylic acid having 8 to 15 carbon atoms (for example, terephthalic acid, 1 or more fused polyethers obtained by reacting an ester dio
  • the content of the oxyethylene unit is preferably 20% by weight, more preferably 30% by weight or more, and further preferably 40% by weight or more.
  • polyoxypropylene glycol polyoxytetramethylene glycol (hereinafter abbreviated as PTMG), polyoxypropyleneoxytetramethylene block copolymer diol, and the like.
  • PTMG polyoxytetramethylene glycol
  • PEG polyoxyethyleneoxypropylene block copolymer diol
  • polyoxyethyleneoxytetramethylene block copolymer diol are preferable, and PEG is particularly preferable.
  • only 1 type of polyether diol may be used, and 2 or more types of these mixtures may be used.
  • Examples of the polycarbonate diol include polyhexamethylene carbonate diol.
  • Examples of the polyester diol include a condensed polyester diol obtained by reacting a low-molecular diol and / or a polyether diol having a number average molecular weight of 1,000 or less with one or more of the aforementioned dicarboxylic acids, or a lactone having 4 to 12 carbon atoms. And polylactone diols obtained by ring-opening polymerization.
  • Examples of the low molecular diol include the low molecular glycols exemplified in the section of the polyether diol.
  • polyether diol having a number average molecular weight of 1,000 or less examples include polyoxypropylene glycol and PTMG.
  • lactone examples include ⁇ -caprolactone and ⁇ -valerolactone.
  • polyester diol examples include polyethylene adipate diol, polybutylene adipate diol, polyneopentylene adipate diol, poly (3-methyl-1,5-pentylene adipate) diol, polyhexamethylene adipate diol, polycaprolactone diol. And a mixture of two or more of these.
  • the active hydrogen component may be a mixture of two or more of the above polyether diol, polycarbonate diol and polyester diol.
  • the active hydrogen component is preferably a high molecular diol having a number average molecular weight of 2,500 to 15,000 as an essential component.
  • the polymer diol include the polyether diol, polycarbonate diol, and polyester diol described above.
  • a polymer diol having a number average molecular weight of 2,500 to 15,000 is preferable because the hardness of the urethane resin is moderately soft and the strength of the film formed on the active material is increased.
  • the number average molecular weight of the polymer diol is more preferably 3,000 to 12,500, and further preferably 4,000 to 10,000.
  • the number average molecular weight of the polymer diol can be calculated from the hydroxyl value of the polymer diol. The hydroxyl value can be measured according to the description of JIS K1557-1.
  • a polymer diol having an active hydrogen component having a number average molecular weight of 2,500 to 15,000 is an essential component, and the solubility parameter (hereinafter abbreviated as SP value) of the polymer diol is 8.0 to 12.0 ( cal / cm 3 ) 1/2 .
  • the SP value of the high molecular diol is more preferably 8.5 to 11.5 (cal / cm 3 ) 1/2 , and 9.0 to 11.0 (cal / cm 3 ) 1/2. Further preferred.
  • SP value is calculated by Fedors method.
  • the SP value can be expressed by the following equation.
  • ⁇ H and V are the sum of the heat of molar evaporation ( ⁇ H) of the atomic group described in “POLYMER ENGINEERING AND SCIENCE, 1974, Vol. 14, No. 2, ROBERT F. FEDORS. (Pages 151 to 153)”.
  • the total molar volume (V) can be used.
  • the SP value of the polymer diol is preferably 8.0 to 12.0 (cal / cm 3 ) 1/2 from the viewpoint of liquid absorption of the urethane resin electrolyte.
  • the active hydrogen component is essentially a high molecular diol having a number average molecular weight of 2,500 to 15,000, and the content of the high molecular diol is 20 to 80% by weight based on the weight of the urethane resin. preferable.
  • the content of the polymer diol is more preferably 30 to 70% by weight, and further preferably 40 to 65% by weight.
  • the content of the polymer diol is 20 to 80% by weight, it is preferable from the viewpoint of liquid absorption of the urethane resin electrolyte.
  • the active hydrogen component includes a polymer diol having a number average molecular weight of 2,500 to 15,000 and a chain extender as essential components.
  • chain extender examples include low molecular diols having 2 to 10 carbon atoms [for example, ethylene glycol (hereinafter abbreviated as EG), propylene glycol, 1,4-butanediol (hereinafter abbreviated as 14BG), diethylene glycol (hereinafter abbreviated as DEG).
  • EG ethylene glycol
  • 14BG 1,4-butanediol
  • DEG diethylene glycol
  • diamines [aliphatic diamines having 2 to 6 carbon atoms (eg, ethylene diamine, 1,2-propylene diamine, etc.), alicyclic diamines having 6 to 15 carbon atoms (eg, isophorone diamine, etc.) , 4,4′-diaminodicyclohexylmethane, etc.], aromatic diamines having 6 to 15 carbon atoms (eg, 4,4′-diaminodiphenylmethane, etc.); monoalkanolamines (eg, monoethanolamine); hydrazine or derivatives thereof (Eg adipic acid dihydrazide) And mixtures of two or more thereof.
  • low molecular diols are preferable, and EG, DEG and 14BG are particularly preferable.
  • the combination of the polymer diol and the chain extender is preferably a combination of PEG as the polymer diol and EG as the chain extender, or a combination of polycarbonate diol as the polymer diol and EG as the chain extender.
  • the active hydrogen component includes a polymer diol (a11) having a number average molecular weight of 2,500 to 15,000, a diol (a12) other than the polymer diol and a chain extender (a13), and (a11) and (a12 ) And the equivalent ratio ⁇ (a11) / (a12) ⁇ of 10/1 to 30/1, and the equivalent ratio of (a11) to the total equivalent of (a12) and (a13) ⁇ (a11) / [( a12) + (a13)] ⁇ is preferably 0.9 / 1 to 1.1 / 1.
  • the equivalent ratio ⁇ (a11) / (a12) ⁇ between (a11) and (a12) is more preferably 13/1 to 25/1, and still more preferably 15/1 to 20/1.
  • the diol other than the polymer diol is not particularly limited as long as it is a diol and is not included in the above-described polymer diol, and specifically, a diol having a number average molecular weight of less than 2,500, And the diol whose number average molecular weight exceeds 15,000 is mentioned.
  • diol examples include the polyether diol, polycarbonate diol, and polyester diol described above.
  • the diol other than the polymer diol and the low molecular diol having 2 to 10 carbon atoms contained in the chain extender is not included in the diol other than the polymer diol.
  • isocyanate component those conventionally used for polyurethane production can be used.
  • isocyanates include aromatic diisocyanates having 6 to 20 carbon atoms (excluding carbon in the NCO group, the same shall apply hereinafter), aliphatic diisocyanates having 2 to 18 carbon atoms, alicyclic diisocyanates having 4 to 15 carbon atoms, Examples thereof include araliphatic diisocyanates having 8 to 15 carbon atoms, modified products of these diisocyanates (carbodiimide-modified products, urethane-modified products, uretdione-modified products, etc.) and mixtures of two or more thereof.
  • aromatic diisocyanate examples include 1,3- and / or 1,4-phenylene diisocyanate, 2,4- and / or 2,6-tolylene diisocyanate, 2,4′- and / or 4,4.
  • '-Diphenylmethane diisocyanate hereinafter abbreviated as diphenylmethane diisocyanate
  • 4,4'-diisocyanatobiphenyl 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4 4,4'-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate and the like.
  • aliphatic diisocyanate examples include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, Examples thereof include bis (2-isocyanatoethyl) carbonate and 2-isocyanatoethyl-2,6-diisocyanatohexanoate.
  • alicyclic diisocyanate examples include isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, and bis (2-isocyanatoethyl) -4-cyclohexylene-1,2. -Dicarboxylate, 2,5- and / or 2,6-norbornane diisocyanate and the like.
  • araliphatic diisocyanate examples include m- and / or p-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate, and the like.
  • aromatic diisocyanates and alicyclic diisocyanates, more preferred are aromatic diisocyanates, and particularly preferred is MDI.
  • the equivalent ratio of (a2) / (a11) is preferably 10 to 30/1, more preferably 11 to 28/1.
  • the ratio of the isocyanate component exceeds 30 equivalents, a hard coating film is obtained.
  • the equivalent ratio of (a2) / [(a11) + (a13)] is usually 0.9 to 1.1 / 1, preferably 0.95 to 1.05 / 1. If it is outside this range, the urethane resin may not have a sufficiently high molecular weight.
  • the number average molecular weight of the urethane resin is preferably 40,000 to 500,000, more preferably 50,000 to 400,000.
  • the strength of the coating is low, and when it exceeds 500,000, the solution viscosity increases and a uniform coating may not be obtained.
  • the number average molecular weight of the urethane resin is measured by gel permeation chromatography (hereinafter abbreviated as GPC) using DMF as a solvent and polyoxypropylene glycol as a standard substance.
  • GPC gel permeation chromatography
  • the sample concentration may be 0.25% by weight
  • the column stationary phase may be TSKgel SuperH2000, TSKgel SuperH3000, TSKgel SuperH4000 (both manufactured by Tosoh Corporation), and the column temperature may be 40 ° C.
  • Urethane resin can be produced by reacting an active hydrogen component and an isocyanate component.
  • a polymer diol and a chain extender are used as active hydrogen components, and a one-shot method in which an isocyanate component, a polymer diol and a chain extender are reacted simultaneously, or after a polymer diol and an isocyanate component are reacted first
  • a prepolymer method in which a chain extender is continuously reacted.
  • the urethane resin can be produced in the presence or absence of a solvent inert to the isocyanate group.
  • Suitable solvents in the presence of a solvent include amide solvents [dimethylformamide (hereinafter abbreviated as DMF), dimethylacetamide, etc.], sulfoxide solvents (dimethylsulfoxide, etc.), ketone solvents [methyl ethyl ketone, methyl isobutyl ketone.
  • Etc. aromatic solvents (toluene, xylene, etc.), ether solvents (dioxane, tetrahydrofuran, etc.), ester solvents (ethyl acetate, butyl acetate, etc.) and mixtures of two or more thereof.
  • aromatic solvents toluene, xylene, etc.
  • ether solvents dioxane, tetrahydrofuran, etc.
  • ester solvents ethyl acetate, butyl acetate, etc.
  • amide solvents, ketone solvents, aromatic solvents, and mixtures of two or more thereof are preferred.
  • the reaction temperature may be the same as that usually used for the urethanization reaction, and is usually 20 to 100 ° C. when a solvent is used, and usually 20 to 220 ° C. when no solvent is used.
  • a catalyst usually used in a polyurethane reaction for example, amine-based catalyst (triethylamine, triethylenediamine, etc.), tin-based catalyst (dibutyltin dilaurate, etc.)] can be used.
  • a polymerization terminator for example, monohydric alcohol (ethanol, isopropyl alcohol, butanol, etc.), monovalent amine (dimethylamine, dibutylamine, etc.), etc.
  • monohydric alcohol ethanol, isopropyl alcohol, butanol, etc.
  • monovalent amine dimethylamine, dibutylamine, etc.
  • Urethane resin can be produced by a production apparatus usually employed in the industry. When no solvent is used, a manufacturing apparatus such as a kneader or an extruder can be used.
  • the urethane resin produced in this way has a solution viscosity of usually 10 to 10,000 poise / 20 ° C. measured as a 30% by weight (solid content) DMF solution, and practically preferred is 100 to 2,000 poise. / 20 ° C.
  • a polymer having a vinyl monomer as an essential constituent monomer is also preferable as the coating resin. Since a polymer having a vinyl monomer as an essential constituent monomer has flexibility, coating the active material with the polymer can alleviate the volume change of the electrode and suppress the expansion of the electrode.
  • the coating resin has a liquid absorption rate of 10% or more when immersed in an electrolytic solution, a tensile elongation at break in a saturated liquid absorption state of 10% or more, and a vinyl monomer as an essential constituent monomer. It is preferable to comprise the polymer to do.
  • a vinyl monomer having a carboxyl group as a vinyl monomer and a vinyl monomer represented by the following general formula (1).
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a linear alkyl group having 1 to 4 carbon atoms or a branched alkyl group having 4 to 36 carbon atoms.
  • vinyl monomers having a carboxyl group examples include monocarboxylic acids having 3 to 15 carbon atoms such as (meth) acrylic acid, crotonic acid, cinnamic acid; (anhydrous) maleic acid, fumaric acid, (anhydrous) itaconic acid, citraconic acid, Examples thereof include dicarboxylic acids having 4 to 24 carbon atoms such as mesaconic acid; polycarboxylic acids having 6 to 24 carbon atoms such as aconitic acid and trivalent to tetravalent or higher valences.
  • (meth) acrylic acid is preferable, and methacrylic acid is particularly preferable.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 1 is preferably a methyl group.
  • R 2 is a linear alkyl group having 1 to 4 carbon atoms or a branched alkyl group having 4 to 36 carbon atoms. Specific examples of R 2 include a methyl group, an ethyl group, a propyl group, and a 1-alkylalkyl group.
  • a methyl group, an ethyl group, and a 2-alkylalkyl group are preferable from the viewpoint of absorbing the electrolyte solution, and a 2-ethylhexyl group and a 2-decyltetradecyl group are more preferable.
  • the monomer constituting the polymer includes a copolymerizable vinyl monomer (b3) that does not contain active hydrogen. Also good.
  • Examples of the copolymerizable vinyl monomer (b3) containing no active hydrogen include the following (b31) to (b35).
  • the monool includes (i) aliphatic monool [methanol, ethanol, n- and i-propyl.
  • Alcohol n-butyl alcohol, n-pentyl alcohol, n-octyl alcohol, nonyl alcohol, decyl alcohol, lauryl alcohol, tridecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, etc.], (ii) alicyclic monool [ Cyclohexyl alcohol etc.], (iii) araliphatic monools [benzyl alcohol etc.] and mixtures of two or more thereof.
  • (B32) Poly (n 2 to 30) oxyalkylene (carbon number 2 to 4) alkyl (carbon number 1 to 18) ether (meth) acrylate [methanol ethylene oxide (hereinafter abbreviated as EO) 10 mol adduct (meth) Acrylate, propylene oxide of methanol (hereinafter abbreviated as PO), 10 mol adduct (meth) acrylate, etc.]
  • Nitrogen-containing vinyl compound (b33-1) Amido group-containing vinyl compound (i) (Meth) acrylamide compound having 3 to 30 carbon atoms, such as N, N-dialkyl (1 to 6 carbon atoms) or diaralkyl (carbon number) 7-15) (Meth) acrylamide [N, N-dimethylacrylamide, N, N-dibenzylacrylamide, etc.], diacetone acrylamide (ii) Contains an amide group having 4 to 20 carbon atoms excluding the above (meth) acrylamide compound
  • acetoxystyrene (B35-2) Vinyl ether Aliphatic vinyl ether [carbon number 3 to 15, for example, vinyl alkyl (carbon number 1 to 10) ether [vinyl methyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, etc.], vinyl alkoxy (carbon number 1 to 6) alkyl (1 to 4 carbon atoms) ether [vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2′-vinyloxydiethyl ether, vinyl-2 -Ethyl mercaptoethyl ether, etc.], poly (2-4) (meth) allyloxyalkanes (2-6 carbon atoms) [diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetrametaallyloxyethane, etc.] ] Aromatic vinyl ether (C8
  • the content of the vinyl monomer (b1) having a carboxyl group, the vinyl monomer (b2) represented by the general formula (1) and the copolymerizable vinyl monomer (b3) not containing active hydrogen is (B1) is preferably 0.1 to 80% by weight, (b2) is preferably 0.1 to 99.9% by weight, and (b3) is preferably 0 to 99.8% by weight.
  • the liquid absorbency to the electrolyte is good.
  • More preferable contents are 30 to 60% by weight of (b1), 5 to 60% by weight of (b2), and 5 to 80% by weight of (b3). Further more preferable contents are 35 to 60% of (b1). 50% by weight, (b2) is 15 to 45% by weight, and (b3) is 20 to 60% by weight.
  • the preferable lower limit of the number average molecular weight of the polymer is 3,000, more preferably 50,000, particularly preferably 100,000, most preferably 200,000, and the preferable upper limit is 2,000,000, more preferably 1. 500,000, particularly preferably 1,000,000, most preferably 800,000.
  • the number average molecular weight of the polymer can be determined by GPC (gel permeation chromatography) measurement under the following conditions.
  • the solubility parameter (SP value) of the polymer is preferably 9.0 to 20.0 (cal / cm 3 ) 1/2 .
  • the SP value of the polymer is more preferably 10.0 to 18.0 (cal / cm 3 ) 1/2 , and further preferably 11.5 to 14.0 (cal / cm 3 ) 1/2. preferable.
  • the SP value of the polymer is preferably 9.0 to 20.0 (cal / cm 3 ) 1/2 in view of the absorption of the electrolytic solution.
  • the glass transition point of the polymer is preferably 80 to 200 ° C., more preferably 90 to 180 ° C. from the viewpoint of heat resistance of the battery. Particularly preferred is 100 to 150 ° C.
  • the polymer can be produced by a known polymerization method (bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.).
  • azo initiators [2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile, etc.), peroxide initiators] Agents (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.)] and the like].
  • the amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.03 to 2% by weight, based on the total weight of the monomers.
  • Examples of the solvent used in the solution polymerization include esters (having 2 to 8 carbon atoms such as ethyl acetate and butyl acetate), alcohols (having 1 to 8 carbon atoms such as methanol, ethanol and octanol), hydrocarbons (having carbon atoms).
  • the monomer concentration is usually 5 to 900%, preferably 10 to 400%, and the monomer concentration is usually 10 to 95% by weight, preferably 20 to 90% by weight.
  • Examples of the dispersion medium in emulsion polymerization and suspension polymerization include water, alcohol (for example, ethanol), ester (for example, ethyl propionate), light naphtha, and the like.
  • As the emulsifier higher fatty acid (10 to 24 carbon atoms) metal salt.
  • higher alcohol (10 to 24 carbon atoms) sulfate metal salt for example, sodium lauryl sulfate
  • sulfoethyl sodium methacrylate dimethylaminomethyl methacrylate, etc.
  • the monomer concentration of the solution or dispersion is usually 5 to 95% by weight, and the amount of the polymerization initiator used is usually 0.01 to 5% based on the total weight of the monomer, preferably from the viewpoint of adhesive strength and cohesive strength. 05-2%.
  • chain transfer agents such as mercapto compounds (such as dodecyl mercaptan and n-butyl mercaptan) and halogenated hydrocarbons (such as carbon tetrachloride, carbon tetrabromide and benzyl chloride) can be used.
  • the amount used is usually 2% or less based on the total weight of the monomer, and preferably 0.5% or less from the viewpoint of adhesive strength and cohesive strength.
  • the system temperature in the polymerization reaction is usually ⁇ 5 to 150 ° C., preferably 30 to 120 ° C.
  • the reaction time is usually 0.1 to 50 hours, preferably 2 to 24 hours
  • the end point of the reaction is unreacted It can be confirmed that the amount of monomer is usually 5% by weight or less, preferably 1% by weight or less of the total amount of monomers used.
  • the coating resin may be a crosslinked polymer obtained by crosslinking a polymer with a polyepoxy compound and / or a polyol compound.
  • cross-linked polymer it is preferable to cross-link the polymer using a cross-linking agent having a reactive functional group that reacts with active hydrogen such as a carboxyl group in the polymer, and a polyepoxy compound and / or a polyol compound is used as the cross-linking agent. It is more preferable to use
  • Polyepoxy compounds having an epoxy equivalent of 80 to 2,500 such as glycidyl ether [bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, pyrogallol triglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neodymium Pentyl glycol diglycidyl ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, polyethylene glycol (Mw 200-2,000) diglycidyl ether, polypropylene glycol (Mw 200-2,000) diglycidyl ether, alkylene oxide 1 of bisphenol A ⁇ 20 mol adduct diglycidyl ether, etc.]; glycidyl ester (diglyceryl phthalate) Glycidylamine (N, N-diglycidylaniline, N, N-diglycidy
  • polyol compounds include low molecular weight polyhydric alcohols [aliphatic and alicyclic diols having 2 to 20 carbon atoms [EG, DEG, propylene glycol, 1,3-butylene glycol, 1,4BG, 1,6-hexanediol.
  • the use amount of the cross-linking agent is preferably an equivalent ratio of the active hydrogen-containing group in the polymer and the reactive functional group in the cross-linking agent from the viewpoint of absorbing the electrolyte solution, preferably 1: 0.01 to 2, The amount is preferably 1: 0.02 to 1.
  • Examples of a method for crosslinking a polymer using a crosslinking agent include a method in which an active material is coated with a coating resin made of a polymer and then crosslinked. Specifically, a resin solution containing an active material and a polymer is mixed and removed to produce a coated active material in which the active material is coated with a resin, and then a solution containing a crosslinking agent is mixed into the coated active material. And heating to cause a solvent removal and a crosslinking reaction to coat the active material with a crosslinked polymer.
  • the heating temperature is preferably 70 ° C. or higher when a polyepoxy compound is used as a crosslinking agent, and preferably 120 ° C. or higher when a polyol compound is used.
  • the coated active material coated with the coating agent is, for example, a resin solution containing a coating resin (coating resin solution) for 1 to 90 minutes in a state where the active material is put in a universal mixer and stirred at 10 to 500 rpm.
  • the mixture is added dropwise, mixed with a conductive additive, heated to 50 to 200 ° C. with stirring, depressurized to 0.007 to 0.04 MPa, and held for 10 to 150 minutes.
  • a solvent of a resin solution alcohol, such as methanol, ethanol, or isopropanol, can be used conveniently.
  • the coating resin solution contains a coating resin and a solvent, but in some cases, the coating resin solution may be produced by mixing a coating resin and a conductive additive.
  • the active material can be coated with the coating resin solution (coating agent) by further mixing the coating resin solution mixed in advance with the active material.
  • the coating resin solution coating agent
  • the coating resin, the active material, and the conductive assistant are mixed at the same time, and the coating resin and the conductive assistant are included on the surface of the active material. You may coat
  • the coating resin is mixed with the active material, and further the conductive assistant is mixed, so that the coating resin and the conductive assistant are mixed on the surface of the active material.
  • the coated active material at least a part of the surface of the active material is coated with a coating agent containing a coating resin and a conductive auxiliary agent. It can be said that it has a shell structure.
  • the average particle size of the core part (active material) is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m from the viewpoint of high output.
  • the thickness of the shell portion is not particularly limited, but is preferably 0.01 to 5 ⁇ m, more preferably 0.1 to 2 ⁇ m, as the thickness in the state where no gel is formed.
  • the two electrodes having different polarities or the electrolyte contained in the electrolyte layer is a gel electrolyte
  • the electrolyte contained in the active material layer in the two electrodes having different polarities is a gel. It can be a state electrolyte.
  • the method of including the gel electrolyte in the active material layer is not particularly limited, and in the form of FIG. 8, the second main surface 62 of the nonwoven fabric 60 includes the gel electrolyte in the slurry containing the coated active material. May be.
  • a gel electrolyte may be included in the slurry containing the conductive member 213 and the coating active material.
  • FIG. 9 a gel electrolyte may be included in the slurry containing the conductive member 213 and the coating active material.
  • a gel electrolyte may be included in the composition for active material including the positive electrode active material 14, the conductive fiber 213, and the resin 214. Further, the active material layer produced as described above can be included by impregnating the gel electrolyte and moistening it.
  • the gel electrolyte can be produced by having a step including a gelling agent in the liquid electrolyte.
  • the liquid electrolyte may have a form in which a supporting salt is dissolved in an organic solvent.
  • an organic solvent for example, a lactone compound, a cyclic or chain carbonate ester, a chain carboxylate ester, a cyclic or chain ether, a phosphate ester, a nitrile compound, an amide compound, a sulfone, a sulfolane, or a mixture thereof is used.
  • Examples thereof include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate.
  • organic solvents lactone compounds, cyclic carbonates, chain carbonates and phosphates are preferable from the viewpoint of battery output and charge / discharge cycle characteristics, and more preferable are lactone compounds, cyclic carbonates and chain esters.
  • Carbonic acid ester is particularly preferable, and a mixed liquid of cyclic carbonate and chain carbonate is preferable. Most preferred is a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC).
  • the gel electrolyte obtained by including a gelling agent in the liquid electrolyte preferably has an electric conductivity of 0.1 mS / cm or more, more preferably an electric conductivity of 0.1 to 2 mS / cm. 0.5 to 2 mS / cm.
  • the conductivity of the gel material is used as an indicator of the strength of the gel material. It is possible.
  • the electrical conductivity of the gel electrolyte used in the nonaqueous electrolyte secondary battery of the present invention can be measured by the following method, and the electrical conductivity can be obtained by adding a preferred part of the gelling agent described below to the liquid electrolyte. Can be made a preferable range.
  • a gel electrolyte is produced by gelling a mixture in which a liquid electrolyte and a gelling agent are mixed in the same ratio as that used in the non-aqueous electrolyte secondary battery of the present invention.
  • measurement is performed at 25 ° C. by the AC impedance method according to the method of measuring the conductivity of JIS R 1661-2004 fine ceramics ion conductor.
  • the gelling agent for example, a gelling monomer can be used.
  • the gelling monomer include a monomer having two or more polymerizable groups capable of thermal polymerization in one molecule, or an oligomer.
  • the matrix polymer forming the gel electrolyte contains a carboxylic acid ester as a functional group. If the gel matrix polymer of the electrolytic solution is a gel matrix polymer having the same functional group as the functional group of the electrolytic solution constituting solvent, a carboxylic acid ester is included as a functional group.
  • Examples of the gelling monomer include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene di (meth) acrylate, dipropylene di ( 2) such as (meth) acrylate, tripropylene di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate
  • Functional acrylates trifunctional acrylates such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, although such tetrafunctional acrylates such as pentaerythritol tetra
  • monomers such as urethane acrylate and urethane methacrylate, copolymer oligomers thereof, and copolymer oligomers with acrylonitrile are exemplified, but not limited thereto. These gelling monomers are preferably used in combination of two or more.
  • the amount of the gelling monomer used (the total amount when two or more are used in combination) is not particularly limited.
  • a liquid electrolyte organic Solvent
  • the cycle characteristics are further improved.
  • the matrix polymer forming the gel electrolyte contains a thermal polymerization initiator in an electrolytic solution containing a mixture of at least a molecule having two polymerizable groups and a molecule having three polymerizable groups. Not obtained by having thermal polymerization to gel the electrolyte.
  • a thermal polymerization initiator in an electrolytic solution containing a mixture of at least a molecule having two polymerizable groups and a molecule having three polymerizable groups.
  • the liquid electrolyte may further contain additives other than the components described above.
  • additives include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate.
  • vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • These cyclic carbonates may be used alone or in combination of two or more.
  • the type of thermal polymerization initiator is not particularly limited, but is preferably one that can react at a temperature at which the electrolytic solution does not decompose and the decomposition product is not easily oxidized / reduced, such as t-butyl peroxypivalate, t-butyl.
  • Peroxyneodecanoate, t-hexylperoxyneodecanoate, t-hexylperoxypivalate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, etc. can be used .
  • the time for thermal polymerization is not particularly limited, but is about 10 to 300 minutes.
  • At least one of the active material layers includes a conductive member made of an electron conductive material and a coated active material.
  • the electrolytic solution may contain an ion conductive polymer, a supporting salt, and the like.
  • Non conductive polymer examples include polyethylene oxide (PEO) -based and polypropylene oxide (PPO) -based polymers.
  • LiPF 6 LiBF 4, LiSbF 6, LiAsF 6 and LiClO 4 lithium salts of inorganic acids such as, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2 and LiC Examples thereof include lithium salts of organic acids such as (CF 3 SO 2 ) 3 .
  • LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
  • the compounding ratio of the components contained in the active material layer is not particularly limited.
  • the blending ratio can be adjusted by appropriately referring to known knowledge about lithium ion secondary batteries.
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to.
  • the electrolyte used for the electrolyte layer 17 of this embodiment may be a gel electrolyte. Since the explanation of the gel electrolyte has been described above, it is omitted here.
  • a separator may be used for the electrolyte layer.
  • the separator has a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
  • separator examples include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte and a nonwoven fabric separator.
  • a microporous (microporous film) can be used as the separator of the porous sheet made of polymer or fiber.
  • the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • PE polyethylene
  • PP polypropylene
  • a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • the thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), the thickness may be 4 to 60 ⁇ m in a single layer or multiple layers. preferable.
  • the fine pore diameter of the microporous (microporous membrane) separator is preferably 1 ⁇ m or less (usually a pore diameter of about several tens of nm). In this example, a microporous separator was used.
  • the nonwoven fabric separator cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination.
  • the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the material which comprises a current collector plate (25, 27) is not restrict
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable.
  • the same material may be used for the positive electrode current collecting plate 27 and the negative electrode current collecting plate 25, and different materials may be used.
  • ⁇ Positive electrode lead and negative electrode lead> ⁇ Positive electrode lead and negative electrode lead> Moreover, although illustration is abbreviate
  • materials used in known lithium ion secondary batteries can be similarly employed.
  • heat-shrinkable heat-shrinkable parts are removed from the exterior so that they do not affect products (for example, automobile parts, especially electronic devices) by touching peripheral devices or wiring and causing leakage. It is preferable to coat with a tube or the like.
  • the seal portion (insulating layer) has a function of preventing contact between current collectors and a short circuit at the end of the single cell layer.
  • any material constituting the seal portion any material having insulating properties, sealability against falling off of solid electrolyte, sealability against moisture permeation from the outside (sealing property), heat resistance under battery operating temperature, etc. Good.
  • acrylic resin, urethane resin, epoxy resin, polyethylene resin, polypropylene resin, polyimide resin, rubber (ethylene-propylene-diene rubber: EPDM), and the like can be used.
  • an isocyanate-based adhesive an acrylic resin-based adhesive, a cyanoacrylate-based adhesive, or the like may be used, and a hot-melt adhesive (urethane resin, polyamide resin, polyolefin resin) or the like may be used.
  • a hot-melt adhesive urethane resin, polyamide resin, polyolefin resin
  • polyethylene resin and polypropylene resin are preferably used as the constituent material of the insulating layer, and amorphous polypropylene resin is mainly used. It is preferable to use a resin obtained by copolymerizing ethylene, propylene and butene as components.
  • the battery outer case As the battery outer case, a known metal can case can be used, and a bag-like case using a laminate film 29 containing aluminum that can cover the power generation element as shown in FIG. 1 can be used.
  • a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used as the laminate film, but the laminate film is not limited thereto.
  • a laminate film is preferred from the viewpoint that it is excellent in high output and cooling performance and can be suitably used for a battery for large equipment for EV and HEV.
  • the exterior body is more preferably an aluminate laminate.
  • the positive electrode active material layer or the negative electrode active material layer is configured using the sheet-like electrode described above, so that the active material can be expanded and contracted even when an active material having a large battery capacity is used. The stress due to can be relieved, and the cycle characteristics of the battery can be improved. Therefore, the bipolar secondary battery of this embodiment is suitably used as a driving power source for EVs and HEVs.
  • FIG. 11 is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of the secondary battery.
  • the flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive electrode tab 58 and a negative electrode tab 59 for taking out electric power are drawn out from both sides thereof.
  • the power generation element 57 is wrapped by a battery exterior material (laminate film 52) of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed.
  • the power generation element 57 pulls out the positive electrode tab 58 and the negative electrode tab 59 to the outside. Sealed.
  • the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery 10 shown in FIG. 1 described above.
  • the power generation element 57 is formed by laminating a positive electrode, an electrolyte layer 17 and a negative electrode. According to a preferred embodiment, a plurality of such layers are stacked.
  • the lithium ion secondary battery is not limited to a stacked flat shape.
  • the wound lithium ion secondary battery may have a cylindrical shape, or may have a shape that is a flattened rectangular shape by deforming such a cylindrical shape.
  • a laminate film may be used for the exterior material, and the conventional cylindrical can (metal can) may be used, for example, It does not restrict
  • the power generation element is covered with an aluminum laminate film. With this configuration, weight reduction can be achieved.
  • the tabs 58 and 59 shown in FIG. 11 are not particularly limited.
  • the positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to.
  • a terminal may be formed using a cylindrical can (metal can).
  • the battery storage space is about 170L. Since auxiliary devices such as cells and charge / discharge control devices are stored in this space, the storage efficiency of a normal cell is about 50%. The efficiency of loading cells into this space is a factor that governs the cruising range of electric vehicles. If the size of the single cell is reduced, the loading efficiency is impaired, so that the cruising distance cannot be secured.
  • the battery structure in which the power generation element is covered with the exterior body is preferably large.
  • the length of the short side of the laminated cell battery is preferably 100 mm or more. Such a large battery can be used for vehicle applications.
  • the length of the short side of the laminated cell battery refers to the side having the shortest length.
  • the upper limit of the short side length is not particularly limited, but is usually 400 mm or less.
  • a travel distance (cruising range) by one charge is 100 km.
  • the volume energy density of the battery is preferably 157 Wh / L or more, and the rated capacity is preferably 20 Wh or more.
  • the ratio of the battery area (projected area of the battery including the battery outer package) to the rated capacity is 5 cm 2 / Ah or more, and the rated capacity is 3 Ah or more.
  • the battery area per unit capacity is large, the problem of deterioration of battery characteristics (cycle characteristics) due to the collapse of the crystal structure accompanying the expansion and contraction of the active material is more likely to become apparent.
  • the nonaqueous electrolyte secondary battery according to the present embodiment is a battery having a large size as described above, because the merit due to the expression of the effects of the present invention is greater.
  • the aspect ratio of the rectangular electrode is preferably 1 to 3, and more preferably 1 to 2.
  • the electrode aspect ratio is defined as the aspect ratio of the rectangular positive electrode active material layer.
  • an active material whose surface is coated with a conductive additive and a gel matrix polymer is used.
  • conventional lithium ion secondary batteries use polymer compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene and polypropylene as binders.
  • a binder may not be used.
  • the battery by gelling the electrolyte of a battery using an electrode containing a conductive member such as carbon fiber, the battery has excellent rate characteristics, and even if it is thick, the electrode does not crack and is not uniform. Even when pressure is applied, the electrode is not partially deformed, so that the cycle durability of the battery can be improved.
  • a conductive member such as carbon fiber
  • the assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
  • a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, by connecting a plurality of these detachable small assembled batteries in series or in parallel, a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density.
  • An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
  • the nonaqueous electrolyte secondary battery of the present invention maintains a discharge capacity even when used for a long period of time, and has good cycle characteristics. Furthermore, the volume energy density is high. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the nonaqueous electrolyte secondary battery can be suitably used as a vehicle power source, for example, a vehicle driving power source or an auxiliary power source.
  • a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
  • a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery.
  • a car a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile.
  • the application is not limited to automobiles.
  • it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
  • Part means “part by mass” unless otherwise specified.
  • an initiator solution prepared by dissolving 0.583 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) in 26 parts of ethyl acetate was continuously added over 2 hours using a dropping funnel. . Furthermore, the polymerization was continued for 4 hours at the boiling point. After removing the solvent to obtain 582 parts of resin, 1,360 parts of isopropanol was added to obtain a coating resin solution comprising a vinyl resin having a resin concentration of 30% by weight.
  • ⁇ Production of coated positive electrode active material 96 parts by weight of LiCoO 2 powder (Cell Seed C-8G manufactured by Nippon Kagaku Kogyo Co., Ltd.) was placed in a universal mixer and stirred at room temperature (25 ° C.) and 150 rpm. %) was added dropwise over 60 minutes so as to be 2 parts by weight as resin solids, and further stirred for 30 minutes.
  • LiCoO 2 powder Cell Seed C-8G manufactured by Nippon Kagaku Kogyo Co., Ltd.
  • acetylene black [DENKA BLACK (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.] (average particle size (primary particle size): 0.036 ⁇ m) in a stirred state was mixed in three portions, and 30 While stirring for a minute, the temperature was raised to 70 ° C., and the pressure was reduced to 100 mmHg and held for 30 minutes.
  • the coated positive electrode active material was obtained by the above operation. The tensile elongation at break in the saturated liquid absorption state was 50%. Assuming that the coated positive electrode active material has a core-shell structure, the average particle diameter of the LiCoO 2 powder as the core was 8 ⁇ m. The thickness of the shell was 0.14 ⁇ m when simply calculated as the total coating.
  • LiPF 6 was dissolved at a rate of 1 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) to prepare an electrolytic solution for a lithium ion battery.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Electrolytic Solution 2 To 100 parts by weight of the electrolytic solution 1, 3.8 parts by weight of triethylene glycol diacrylate and 1 part by weight of trimethylolpropane triacrylate were added and mixed well as a gelling agent. Thereafter, 0.5 parts by weight of t-butyl peroxypivalate was mixed as a polymerization initiator. The mixture obtained by mixing was placed in a thermostat at 80 ° C. and thermally polymerized for 2 hours to prepare conductivity for conductivity measurement, adjusted to 25 ° C., and then JIS R 1661-2004 Fine Ceramics Ion Conduction The conductivity was measured by the AC impedance method according to the method for measuring the electrical conductivity of the body. The conductivity was 0.7 mS / cm.
  • Carbon fiber (Donakabo Mild S-243 manufactured by Osaka Gas Chemical Co., Ltd .: average fiber length 500 ⁇ m, average fiber diameter 13 ⁇ m: electrical conductivity 200 mS / cm) was prepared as a conductive member.
  • the slurry was prepared by mixing 1.75 parts by weight of the carbon fiber and 98.25 parts by weight of the coated positive electrode active material with 1000 parts by weight of propylene carbonate.
  • An aramid nonwoven fabric (20 ⁇ m) was laid on a glass filter of a separable flask whose suction part was a glass filter with a diameter of 70 mm.
  • the slurry dispersed in propylene carbonate was poured there, suction filtration (depressurization) and pressurization with a pressurization pressure of 1.5 kg / cm 2 to fix the coated positive electrode active material and the carbon fiber to the non-woven fabric of aramid,
  • a positive electrode active material layer was prepared.
  • the coating density of the positive electrode active material layer was 120 mg / cm 2 .
  • the film thickness of the positive electrode active material layer at this time was 500 ⁇ m.
  • the above electrolyte solution 1 was added and the product was laminated (on the negative electrode) with the PP separator interposed therebetween (that is, Al current collector, coated positive electrode active material layer, aramid nonwoven fabric, PP separator, Li metal foil) , Cu current collectors were laminated in order, and aramid was also used as a separator in combination with polypropylene).
  • the Al lead was taken out from the positive electrode Al current collector, the Ni lead was taken out from the negative electrode Cu current collector, and housed in an aluminum laminate pack (laminate film) and heat-sealed under reduced pressure.
  • the cell was pressed with two SUS plates via a rubber sheet.
  • Example 1 A cell was constructed in the same manner as in Reference Example 1 except that the electrolytic solution 1 was changed to the electrolytic solution 2.
  • Example 2 A cell was constructed in the same manner as in Reference Example 1 except that the electrolytic solution 1 was changed to the electrolytic solution 3.
  • the battery was charged to 4.2V with a CC-CV of 0.2C for a total of 8 hours, and discharged to 2.5V with a CC of 0.2C. Thereafter, the charge / discharge rate is 0.5C, 3 hours, and CC discharge is performed at 0.5C, and the capacity maintenance rate after 50 cycles is a value for the third discharge capacity under the 0.5C charge / discharge condition.
  • the active material is coated with a conductive additive and a coating resin (gel matrix polymer), and a slurry is prepared by adding a conductive member (carbon fiber).
  • a slurry is prepared by adding a conductive member (carbon fiber).
  • a thick film electrode having good reactivity can be formed, and a battery having excellent cycle durability can be obtained by gelling the electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】電極の膜厚を厚くしても、電極作製が可能な構造を提供するとともに、それを用いた非水電解質二次電池を提供する。 【解決手段】 集電体上に、活物質層が形成されてなる、極性の異なる2つの電極と;前記電極の間に配置される電解質層と;を含む発電要素を有する、非水電解質二次電池であって、前記極性の異なる2つの電極の活物質層のうち少なくとも一方が、電子伝導材料からなる導電部材および活物質を含み、前記活物質層が、前記電解質層側に接触する第1主面と、前記集電体側に接触する第2主面とを有し、前記導電部材の少なくとも一部は、前記第1主面から前記第2主面までを電気的に接続する導電通路を形成しており、前記導電通路が、前記導電通路の周囲の前記活物質と接触しており、前記活物質の表面の少なくとも一部が、被覆用樹脂および導電助剤を含む被覆剤によって被覆されており、前記極性の異なる2つの電極または前記電解質層に含まれる電解液が、ゲル状電解質である、非水電解質二次電池。

Description

非水電解質二次電池とその製造方法
 本発明は、非水電解質二次電池とその製造方法に関する。
 近年、環境保護のため二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できるリチウムイオン二次電池に注目が集まっている。
 近年、環境・エネルギー問題の解決へ向けて、種々の電気自動車の普及が期待されている。これら電気自動車の普及の鍵を握るモータ駆動用電源などの車載電源として、二次電池の開発が鋭意行われている。しかしながら、広く普及するためには電池を高性能にして、より安くする必要がある。また、電気自動車については、一充電走行距離をガソリンエンジン車に近づける必要があり、より高エネルギー密度の電池が望まれている。電池を高エネルギー密度にするためには、電池反応に直接かかわらない電池部材をできるだけ減らす必要がある。電池単セルの集電タブや単セル間接続のためのバスバーなどが節約できて、非常に体積効率がよく車載に適した電池として、バイポーラ型の二次電池が提案されている。バイポーラ型二次電池(双極型二次電池とも称されている)は、一枚の集電体の一方の面に正極、他方の面に負極が形成されたバイポーラ型電極を用いている。そしてこのバイポーラ電極を、電解質層を含んだセパレータを介して正極と負極が向かい合うように複数積層した構造となっている。したがって、このバイポーラ型二次電池は、集電体と集電体の間の正極、負極およびセパレータ(電解質層)によって一つの電池セル(単電池)が構成されている。更に、より高性能化を目指して、集電体に導電性フィラーを分散させた樹脂を用いることが提案されている。
 かような構成を有するリチウムイオン二次電池は、自動車の走行エネルギーを貯蔵するため、高エネルギー密度が基本特性として重要である。電池のエネルギー密度を高くする方法として、電池内の正極材料と負極材料の割合を高くする方法が知られている。特許文献1には、電極の膜厚を厚くすることにより、集電体やセパレータの相対的な割合を減少させて電池のエネルギー密度を高くするという手段が開示されている。
特開平9-204936号公報
 特許文献1に記載されているように、電極の膜厚を厚くすることができれば集電体やセパレータの相対的な割合を減少させることができ、エネルギー密度向上に有効であると考えられる。
 しかしながら、電極の膜厚を厚くするためには、従来の、集電体に活物質スラリーを塗る方法では、電極の作製自体が困難となる場合があった。
 よって、電極の膜厚を厚くしても、電極作製が可能な構造の創造が必要であった。
 本発明者らは、上記課題を解決するために鋭意検討した。
 結果、電極の構成部材として、電解質層側に接触する第1主面と、前記集電体側に接触する第2主面とを有し、活物質に接しながら、第1主面から第2主面までを電気的に接続する導電通路を形成している導電部材を含むことで、厚い電極を作製することができた。
 すなわち、電極の少なくとも一方が、導電部材と、被覆用樹脂および導電助剤を含む被覆剤によって被覆された活物質とを含み、前記導電部材が、活物質と接触しながら、両主面を電気的に接続する、導電通路を形成している、非水電解質二次電池を提供する。そのことによって、上記課題を解決できることを見出し、本発明が完成した。
 本発明によれば、活物質に接しながら、第1主面から第2主面までを電気的に接続する導電通路を形成している導電部材を含むので、電極の膜厚を厚くした、非水電解質二次電池が実現できる。
 また、本発明の非水電解質二次電池の電解質は、ゲル化されている。そのため、振動が加わっても、ゲル化により影響が低減されて、電極の構成部材を安定的に保持することができるため、サイクル特性も向上する。
本発明の一実施形態である、双極型二次電池を模式的に表した断面図である。 図1の丸印で示した部分を拡大した部分を模式的に示す断面図である。 図2に示す正極活物質層のみを模式的に示す断面図である。 別の正極活物質層の形態の例を模式的に示す断面図である。 別の正極活物質層の形態の例を模式的に示す断面図である。 別の正極活物質層の形態の例を模式的に示す断面図である。 別の正極活物質層の形態の例を模式的に示す断面図である。 活物質を構造体中の空隙に充填する工程を模式的に示す工程図である。 活物質と導電部材とを膜上に定着させる工程を模式的に示す工程図である。 樹脂によって活物質と導電部材とを固定する工程を模式的に示す工程図である。 二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
 本発明の一形態によれば、集電体上に、活物質層が形成されてなる、極性の異なる2つの電極と;前記電極の間に配置される電解質層と;を含む発電要素を有する、非水電解質二次電池であって、前記極性の異なる2つの電極の活物質層のうち少なくとも一方が、電子伝導材料からなる導電部材および活物質を含み、前記活物質層が、前記電解質層側に接触する第1主面と、前記集電体側に接触する第2主面とを有し、前記導電部材の少なくとも一部は、前記第1主面から前記第2主面までを電気的に接続する導電通路を形成しており、前記導電通路が、前記導電通路の周囲の前記活物質と接触しており、前記活物質の表面の少なくとも一部が、被覆用樹脂および導電助剤を含む被覆剤によって被覆されており、前記極性の異なる2つの電極または前記電解質層に含まれる電解液が、ゲル状電解質である、非水電解質二次電池が提供される。
 本発明によれば、活物質に接しながら、第1主面から第2主面までを電気的に接続する導電通路を形成している導電部材を含むので、電極の膜厚を厚くした、非水電解質二次電池を提供することができる。
 また、本発明の非水電解質二次電池の電解液は、ゲル化されている。ゲル化された電解質が存在することによって、電極に局部的に何らかの力が加わっても、変形することなく電極反応が均一となり、劣化の抑制をすることができ、サイクル特性向上に繋がる。
 以下、図面を参照しながら、本発明の実施形態を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみに制限されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 なお、本明細書では、双極型リチウムイオン二次電池を単に「双極型二次電池」と称することがあり、双極型リチウムイオン二次電池用電極を単に「双極型電極」と称することがある。また、「活物質」と称する場合、正極活物質または負極活物質のいずれかを意味する場合もあるし、両方を意味する場合がある。「活物質層」についても同様である。これらは、当業者であれば、合理的に解釈することができる。
 <双極型二次電池>
 図1は、本発明の一実施形態である双極型二次電池を模式的に表した断面図である。図1に示す双極型二次電池10は、実際に充放電反応が進行する略矩形の発電要素21が、電池外装材であるラミネートフィルム29の内部に封止された構造を有する。
 図1に示すように、本形態の双極型二次電池10の発電要素21は、集電体11の一方の面に電気的に結合した正極活物質層13が形成され、集電体11の反対側の面に電気的に結合した負極活物質層15が形成された複数の双極型電極23を有する。各双極型電極23は、電解質層17を介して積層されて発電要素21を形成する。なお、電解質層17は、基材としてのセパレータの面方向中央部に電解質が保持されてなる構成を有する。この際、一の双極型電極23の正極活物質層13と、前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15とが電解質層17を介して向き合うように、各双極型電極23および電解質層17が交互に積層されている。すなわち、一の双極型電極23の正極活物質層13と、前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15との間に電解質層17が挟まれて配置されている。
 隣接する正極活物質層13、電解質層17、および負極活物質層15は、一つの単電池層19を構成する。したがって、双極型二次電池10は、単電池層19が積層されてなる構成を有するともいえる。また、単電池層19の外周部にはシール部(絶縁層)31が配置されている。これにより、電解質層17からの電解液の漏れによる液絡を防止し、電池内で隣り合う集電体11どうしが接触したり、発電要素21における単電池層19の端部の僅かな不揃いなどに起因する短絡が起こったりするのを防止している。なお、発電要素21の最外層に位置する正極側の最外層集電体11aには、片面のみに正極活物質層13が形成されている。また、発電要素21の最外層に位置する負極側の最外層集電体11bには、片面のみに負極活物質層15が形成されている。
 さらに、図1に示す双極型二次電池10では、正極側の最外層集電体11aに隣接するように正極集電板25が配置され、これが延長されて電池外装材であるラミネートフィルム29から導出している。一方、負極側の最外層集電体11bに隣接するように負極集電板27が配置され、同様にこれが延長されてラミネートフィルム29から導出している。
 なお、単電池層19の積層回数は、所望する電圧に応じて調節する。双極型二次電池10でも、使用する際の外部からの衝撃、環境劣化を防止するために、発電要素21を電池外装材であるラミネートフィルム29に減圧封入し、正極集電板25および負極集電板27をラミネートフィルム29の外部に取り出した構造とするのがよい。なお、ここでは、双極型二次電池を例に挙げて本発明の実施形態を説明したが、本発明が適用可能な非水電解質電池の種類は特に制限されず、発電要素において単電池層が並列接続されてなる形式のいわゆる並列積層型電池などの従来公知の任意の非水電解質二次電池に適用可能である。
 以下、本形態の双極型二次電池の主な構成要素について説明する。
 [集電体]
 集電体は、正極活物質層と接する一方の面から、負極活物質層と接する他方の面へと電子の移動を媒介する機能を有する。集電体を構成する材料に特に制限はないが、例えば、金属や、導電性を有する樹脂が採用されうる。
 具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
 また、後者の導電性を有する樹脂としては、導電性高分子材料または非導電性高分子材料に必要に応じて導電性フィラーが添加された樹脂が挙げられる。導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
 非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
 上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。
 導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、及びSbからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。
 導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5~35重量%程度である。
 なお、本形態の集電体は、単独の材料からなる単層構造であってもよいし、あるいは、これらの材料からなる層を適宜組み合わせた積層構造であっても構わない。また、単電池層間のリチウムイオンの移動を遮断する観点からは、集電体の一部に金属層を設けてもよい。
 [正極活物質層、負極活物質層]
 本発明の実施形態によれば、正極活物質層および負極活物質層のうち少なくとも一方が、電子伝導材料からなる導電部材および活物質を含む。その形態においては、活物質の表面の少なくとも一部は、被覆用樹脂および導電助剤を含む被覆剤によって被覆されている。また、本発明の実施形態によれば、前記活物質層が、前記電解質層側に接触する第1主面と、前記集電体側に接触する第2主面とを有する。そして、前記導電部材の少なくとも一部は、前記第1主面から前記第2主面までを電気的に接続する導電通路を形成している。
 本発明の実施形態によれば、導電部材が、不織布の一部を構成する導電性繊維である例、織物または編物の一部を構成する導電性繊維である例、第1主面と第2主面の間に離散して存在する導電性繊維である例、および、発泡樹脂の一部を構成する導電化処理された樹脂である例が挙げられる。
 まず、導電部材が不織布の一部を構成する導電性繊維である例について図面を使用して説明する。
 図2は、図1の丸印で示した部分を拡大した部分を模式的に示す断面図である。
 図2に示すように、2枚の集電体11により単電池層19が挟持されている構造を有している。
 正極活物質層13は所定の厚さt1を有するシート状であり、電解質層17側に配置される第1主面111と、集電体11側に配置される第2主面121とを備えている。正極活物質層13には正極活物質14が含まれている。本形態では、正極活物質14は、被覆剤によって被覆されており、これは後述する。
 同様に、負極活物質層15も所定の厚さt2を有するシート状であり、電解質層17側に配置される第1主面211および集電体11側に配置される第2主面221を備えている。負極活物質層15には負極活物質24が含まれている。本形態では、負極活物質24は、被覆剤によって被覆されており、これは後述する。
 正極活物質層13の厚さt1および負極活物質層15の厚さt2は、それぞれ独立して、150~1500μmであることが好ましく、このように電極が厚いと電池内に多くの活物質を含ませることができ、電池を高容量化することができ、エネルギー密度向上に有効である。厚さt1は、より好ましくは200~950μmであり、さらに好ましくは250~900μmである。厚さt2は、より好ましくは200~950μmであり、さらに好ましくは250~900μmである。本発明の特徴的な構造によれば、かような厚い電極が実現可能となり、エネルギー密度向上に有効である。
 図3は、図2の正極活物質層のみを模式的に示す断面図である。
 図3に示すように、正極活物質層100は、上述したように第1主面111と第2主面121を備えている(図示せず)。そして、第1主面111と第2主面121の間には、導電部材としての導電性繊維131と、活物質としての正極活物質14とが含まれている。
 図3に示す形態では、導電部材が不織布の一部を構成する導電性繊維131である。不織布には多くの空隙が存在するため、その空隙に活物質14を充填させることによって電極を形成させることができる。空隙への被覆活物質の充填については下記にて詳しく説明する。
 導電性繊維131のうち、一部の繊維の一方の端部は、第1主面111に達しており、もう一方の端部は、第2主面121に達している。したがって、導電性繊維131のうち少なくとも一部は、第1主面111から第2主面121までを電気的に接続する導電通路を形成している。
 また、第1主面111と第2主面121の間には多数の導電性繊維131が絡み合って存在しているが、複数本の導電性繊維131が接触していて第1主面111から第2主面121までを連続的に繋いでいる場合も、導電性繊維が第1主面111から第2主面121までを電気的に接続する導電通路を形成しているといえる。
 図3には、第1主面111から第2主面121までを電気的に接続している導電通路に相当する導電性繊維131の例を示している。導電性繊維131aとして示す繊維は1本の導電性繊維が導電通路となっている例であり、導電性繊維131bとして示す2本の繊維は2本の導電性繊維が接触して導電通路となっている例である。
 導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を、導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。
 本形態において、導電部材の電気伝導度は、50mS/cm以上であることが好ましい。電気伝導度は、JIS R 7609(2007)の「炭素繊維-体積抵抗率の求め方」に準じて体積抵抗率を測定し、体積抵抗率の逆数を取ることによって求められる。電気伝導度が50mS/cm以上であると、第1主面111から第2主面121までを電気的に接続する導電通路を形成させた際の抵抗が小さく、集電体からの距離が遠い活物質からの電子の移動がよりスムーズに行われるため好ましい。
 導電性繊維の平均繊維径は、0.1~20μmであることが好ましい。導電性繊維の平均繊維径は、SEM観察して測定することができる。導電性繊維の平均繊維径は、30μm角視野中に存在する任意の繊維10本についてそれぞれ中央付近の直径を測定し、この測定を三視野について行い、合計30本の繊維の径の平均値をもって測定値とする。
 導電性繊維の繊維長は、特に限定されるものではない。
 本形態においては、活物質が、表面の少なくとも一部が被覆用樹脂および導電助剤16を含む被覆剤151で被覆されてなる被覆活物質である。詳細は、後述する。
 導電性繊維131による導電通路は、導電通路の周囲の正極活物質14と接している。導電通路と正極活物質が接していると、正極活物質から発生した電子がすぐに導電通路に達し、導電通路を流れて集電体にまで達する。導電通路は電子伝導性材料である導電部材からなるため、電子はスムーズに集電体にまで達することができる。本形態では、活物質が被覆活物質であるが、被覆剤と導電通路が接している場合も、導電通路が活物質と接しているとみなすことができる。
 導電通路を有していない活物質層では、電子は電子伝導性が高くない活物質を通る必要があるので、電子がスムーズに集電体にまで伝わりにくい。また、粒子状物質である導電助剤を経た電子伝導では、粒子間の電気抵抗があり、導電助剤の粒子は連続的に繋がるわけではないため電子が電気抵抗の高い箇所を通らざるを得ない。そのため、電子がスムーズに集電体にまで伝わりにくい。
 なお、上記説明では正極活物質から発生した電子が集電体に達する場合を例にして電子の動きを説明したが、集電体から正極活物質に向かって流れる電子も同様に導電通路を通ってスムーズに正極活物質にまで達することができる。すなわち、充電時と放電時で同様の効果が得られる。
 また、導電助剤16としては、導電性を有する材料から選択される。導電助剤の詳細は、後述する。また、本形態では、導電助剤16は、被覆剤151の中に含まれるが、導電助剤16が正極活物質14と接していてもよい。導電助剤16が被覆剤151の中に含まれていたり、正極活物質14と接していたりすると、正極活物質14から導電通路に達するまでの電子伝導性をさらに高めることができる。
 図3の形態では、正極を例にとって説明したが、負極である場合、正極活物質に代えて、活物質として負極活物質を用いることもできる。負極活物質の詳細も、後述する。
 負極においても、導電通路が導電通路の周囲の負極活物質と接しているので、正極の場合と同様に、負極活物質から発生した電子がすぐに導電通路に達し、導電通路を流れてスムーズに集電体にまで達する。また、集電体から負極活物質に向かって流れる電子もスムーズに負極活物質にまで達することができる。
 図4は、正極活物質層の別の形態の例を模式的に示す断面図である。
 図4に示す形態の正極活物質層100では、導電部材が、織物の一部を構成する導電性繊維113である。織物は導電性繊維からなる縦糸113aおよび横糸113bから構成されている。図4に示す形態の正極活物質層100は、図3における不織布に対応する布状の繊維構造が織物であるほかは、図2に示す正極活物質層100と同様の構造を有している。織物の織り方は特に限定されるものではなく、平織り、綾織り、朱子織り、パイル織り等で織られた織物が使用可能である。また、織物に代えて導電性繊維からなる編物を用いてもよい。編物の編み方は特に限定されるものではなく、横編、縦編、丸編等で編まれた編物が使用可能である。織物や編物も、不織布と同様に織物や編物を構成する導電性繊維の間に多くの空隙を有しているため、その空隙に被覆活物質を充填させることによって電極(活物質層)を形成させることができる。
 また、導電性繊維113のうち、少なくとも一部の繊維の一部は第1主面111に達しており、他の一部は第2主面121に達している。したがって、導電性繊維113のうち少なくとも一部は第1主面111から第2主面121までを電気的に接続する導電通路を形成している。
 好ましい導電性繊維の種類、活物質の種類等のその他の構成は図2に示す形態と同様であるため、その詳細な説明を省略する。また、活物質を負極活物質とすることによって負極とすることもできる。
 図5は、正極活物質層の別の形態の例を模式的に示す断面図である。
 図5に示す形態の正極活物質層100では、導電部材は、第1主面111と第2主面121の間に離散して存在する導電性繊維213である。導電性繊維213は、図3および図4に示した不織布、織物または編物のような導電性繊維からなる構造体の一部ではない。図5に示す形態の正極活物質層の製造方法については後で詳しく説明するが、この形態は、導電性繊維と被覆活物質とを含むスラリーを用いて製造されており、活物質層中に導電性繊維が離散して存在する形態といえ、繊維間の空隙に被覆活物質が充填されたというべきものではない。
 導電性繊維213のうち、少なくとも一部の繊維の一部は第1主面111に達しており、他の一部は第2主面121に達している。したがって、導電性繊維213のうち少なくとも一部は第1主面111から第2主面121までを電気的に接続する導電通路を形成している。
 図5において導電性繊維213aとして示す繊維は1本の導電性繊維が導電通路となっている例であり、導電性繊維213bとして示す2本の繊維は2本の導電性繊維が接触して導電通路となっている例である。
 好ましい導電性繊維の種類、活物質の種類等のその他の構成は図2に示す形態と同様であるため、その詳細な説明を省略する。また、活物質を負極活物質とすることによって負極とすることもできる。
 図5に示す形態では、導電部材としての導電性繊維と、被覆活物質とが膜の上に定着されて、流動しない程度に緩くその形状が維持された状態のものであってもよい。膜が導電性の高い材料(導電性材料)からなると、集電体として膜を用いることができ、また、集電体と膜とを接触させても導電性が阻害されないため好ましい。なお、膜は図5には示していない。導電部材としての導電性繊維と、被覆活物質とが膜の上に定着された製造方法については、後で詳しく説明する。
 また、別の形態によれば、導電部材としての導電性繊維と、被覆活物質とが樹脂によって固定されて、導電性繊維が活物質層中に離散して存在した形態が、リチウムイオン電池内において維持された状態のものであってもよい。
 図6は、正極活物質層の別の形態の例を模式的に示す断面図である。
 図6に示す形態の正極活物質層100は、導電部材としての導電性繊維213と、活物質としての正極活物質14(被覆活物質)とが樹脂214によって固定されている点で異なるが、その他は図5に示す形態と同様の構成である。
 樹脂としては、ビニル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂等が挙げられる。
 導電部材としての導電性繊維と被覆活物質が樹脂によって固定された製造方法については、後で詳しく説明する。
 図7は、正極活物質層の別の形態の例を模式的に示す断面図である。
 図7に示す形態では、導電部材は、発泡樹脂の一部を構成する導電化された樹脂313である。発泡樹脂には多くの空隙が存在するため、その空隙に被覆活物質を充填させることによって電極を形成させることができる。
 導電化処理された樹脂としては、樹脂の表面に導体の薄膜を形成して導電性を付与した樹脂、樹脂内部に金属や炭素繊維等の導電フィラーを混合して導電性を付与した樹脂等が挙げられる。また、樹脂自体が導電性高分子であってもよく、導電性高分子にさらに導電性が付与された樹脂であってもよい。
 樹脂の表面に導体の薄膜を形成する方法としては、金属めっき処理、蒸着処理、スパッタリング処理等が挙げられる。
 図7に示す形態では、導電化された樹脂313が、第1主面111から第2主面121まで連続しており、導電化された樹脂313は第1主面111から第2主面121までを電気的に接続する導電通路を形成している。
 導電化された樹脂によって構成される発泡樹脂としては、樹脂フォームが好ましく、ポリウレタンフォーム、ポリスチレンフォーム、ポリエチレンフォーム、ポリプロピレンフォーム等が挙げられる。特に、ポリウレタンフォームの表面をニッケル等の金属でめっき処理してなる発泡樹脂であることが好ましい。
 本発明の好ましい形態において、導電部材が導電化処理された樹脂を含む発泡樹脂である場合、導電化処理された樹脂を含む発泡樹脂の電気伝導度は、100mS/cm以上であることが好ましい。発泡樹脂の電気伝導度は、四端子法によって求められる。導電化処理された樹脂を含む発泡樹脂の電気伝導度が100mS/cm以上であると、導電性繊維により第1主面から第2主面までを電気的に接続する導電通路を形成させた際の電気抵抗が小さく、集電体からの距離が遠い活物質からの電子の移動がよりスムーズに行われるため好ましい。また、活物質を負極活物質とすることによって負極とすることもできる。
 図3~7に示す形態を含む、本発明の好ましい形態による正極活物質においては、正極活物質層の体積を基準として、導電部材の占める体積の割合は、0.1~15vol%であることが好ましい。すなわち、正極活物質層内では、導電部材の占める体積は相対的に少ないほうが好ましい。導電部材の占める体積が少ないということは、導電部材が占有していない空隙に多数の被覆活物質が充填されることを意味しており、多数の被覆活物質が充填されることによって、高容量の電極となる。なお、本実施例においては、導電部材の占める体積の割合は、約2vol%程度であった。
 また、本発明の好ましい形態においては、活物質層の体積を基準として、被覆活物質の占める体積の割合が30~80vol%であることが好ましい。被覆活物質の割合が多くなることによって、高容量の電極となる。なお、本実施例においては、導電部材の占める体積の割合は、約46vol%程度であった。
 続いて、本発明の好ましい実施形態の非水電解質二次電池の製造方法について説明する。
 本発明の好ましい実施形態の非水電解質二次電池の製造方法は、集電体上に、活物質層を形成されてなる、極性の異なる2つの電極と;前記電極の間に配置される電解質層と;を含む発電要素を有する、非水電解質二次電池の製造方法であって、前記極性の異なる2つの電極の活物質層のうち少なくとも一方に、電子伝導材料からなる導電部材および活物質を含ませ、前記活物質層が、前記電解質層側に接触する第1主面と、前記集電体側に接触する第2主面とを有し、前記導電部材の少なくとも一部は、前記第1主面から前記第2主面までを電気的に接続する導電通路を形成しており、前記導電通路が、前記導電通路の周囲の前記活物質と接触させており、前記活物質の表面の少なくとも一部を、被覆用樹脂および導電助剤を含む被覆剤によって被覆させており、前記極性の異なる2つの電極または前記電解質層に含まれる電解液を、ゲル状電解質とする。
 かような実施形態の非水電解質二次電池の製造方法につき、まずは、電極(活物質層)の製造方法につき、いくつかの態様に分けて説明する。
 本発明の非水電解質二次電池の電極(活物質層)の製造方法の一の態様は、導電部材を含み、その中に複数の空隙を有し、第1主面と第2主面を備えた構造体を準備する工程と、上記被覆活物質を含むスラリーを、上記構造体の上記第1主面または上記第2主面に塗布する工程と、加圧または減圧して上記被覆活物質を上記構造体中の上記空隙に充填する工程とを含む。
 上記態様の製造方法は、図3、図4または図7を用いて説明した態様の活物質層を製造することに適している。
 まず、導電部材を含み、その中に複数の空隙を有し、第1主面と第2主面を備えた構造体を準備する(これが、活物質層の第1主面と第2主面の骨格となる)。
 構造体としては、導電性繊維からなる導電部材を含む不織布、導電性繊維からなる導電部材を含む織物もしくは編物、または、導電化処理された樹脂からなる導電部材を含む発泡樹脂を用いることが好ましい。不織布、織物、編物および発泡樹脂の詳細については上記したものと同様であるのでその詳細な説明を省略する。
 図8(a)および図8(b)は、被覆活物質を構造体中の空隙に充填する工程を模式的に示す工程図である。構造体としては不織布を用いた例を示している。
 続いて、被覆活物質を含むスラリーを、構造体の第1主面または第2主面に塗布する。
 活物質は、被覆剤によって被覆され、被覆活物質となっている。被覆活物質の製造方法の説明は、後述する。
 活物質を含むスラリーは、溶剤を含む溶剤スラリーであるか、電解液を含む電解液スラリーであってもよい。なお、かかるスラリーについての説明は、他の実施形態においても同様に適用可能である。
 溶剤としては、水、プロピレンカーボネート、1-メチル-2-ピロリドン(N-メチルピロリドン)、メチルエチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N,N-ジメチルアミノプロピルアミンおよびテトラヒドロフラン等が挙げられる。
 また、電解液としては、リチウムイオン電池の製造に用いられる、支持塩および/または有機溶媒を含有する電解液を使用することができる。支持塩としては、リチウムイオン電池の製造に用いられる、通常のものを用いることができ、有機溶媒としては、通常の電解液に用いられているもの等が使用できる。ただし、電極または前記電解質層に含まれる電解液は、ゲル化剤によって、ゲル化させる。なお、支持塩、有機溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 スラリーは、被覆活物質と、必要によりさらに導電助剤とを、溶剤または電解液の重量に基づいて5~60重量%の濃度で分散してスラリー化することにより調製することが好ましい。
 被覆活物質を含むスラリーは、構造体の第1主面または第2主面にバーコーター、刷毛等の任意の塗工装置を用いて塗布することができる。
 図8(a)には構造体としての不織布の第2主面上にスラリーを塗布した様子を模式的に示しており、不織布60の第2主面62に、被覆剤151によって被覆されてなる正極活物質14を含むスラリーが塗布されている。
 続いて、加圧または減圧して被覆活物質を構造体中の空隙に充填する。
 加圧操作の方法としては、スラリーの塗布面の上からプレス機を用いてプレスする方法が挙げられる。また、減圧操作の方法としては、構造体にスラリーが塗布されていない側の面に濾紙やメッシュ等を当てて、真空ポンプにより吸引する方法が挙げられる。
 構造体には空隙があるため、加圧または減圧操作により被覆活物質を構造体中の空隙に充填することができる。
 図8(a)にはスラリーの塗布面の上から加圧する向きを示す矢印、および、濾紙70の下から減圧する向きを示す矢印を示している。また、図8(b)には、被覆活物質を構造体中の空隙に充填されてなる正極活物質層100を示している。図8(b)に示す正極活物質層100は、図3に示す正極活物質層100と同様である。
 被覆活物質を含むスラリーが溶剤を含む溶剤スラリーである場合、後に、溶剤を留去する工程をさらに行うことが好ましい。
 また、被覆活物質を含むスラリーが、電解液を含む電解液スラリーである場合、構造体中の空隙は、被覆活物質および電解液で満たされることになり、リチウムイオン電池用電極として好ましい構成となる。ただし、電極または前記電解質層に含まれる電解液は、ゲル化剤によって、ゲル化させる。
 構造体として不織布に代えて、導電部材を含む織物もしくは編物または導電化処理された樹脂からなる発泡樹脂を用いた場合であっても、上記工程により被覆活物質を構造体中の空隙に充填して活物質層を製造することができる。
 本発明の別の形態は、導電部材と、被覆活物質とを含むスラリーを、膜上に塗布する工程と、加圧または減圧して、被覆活物質と導電部材とを膜上に定着する工程とを含む。
 上記態様の製造方法は、図5を用いて説明した態様の正極活物質層を製造することに適している。
 図9(a)および図9(b)は、被覆活物質と、導電部材とを膜上に定着させる工程を模式的に示す工程図である。
 まず、導電部材213および、被覆用樹脂および導電助剤16を含む被覆剤151によって被覆されてなる正極活物質14である被覆活物質を含むスラリーを、膜470上に塗布する。
 スラリーとしては、上述したスラリーにさらに導電部材としての導電性繊維を加えてスラリー中に導電性繊維を分散させたものが挙げられる。
 導電性繊維としては、上記の導電性繊維を用いることができるが、導電性繊維の形状は、繊維の1本1本が独立した形状となっていることが好ましく、不織布、織物、編物といった立体構造を有していないことが好ましい。導電性繊維の1本1本が独立していると、スラリー中で分散された状態となる。
 本形態において、スラリーは、電解液を含む電解液スラリーであってもよい。電解液としては、上述した電解液スラリーにおける電解液と同様のものを用いることができる。また、スラリーは、溶剤を含む溶剤スラリーであっても好ましい。ただし、電極または前記電解質層に含まれる電解液は、ゲル化剤によって、ゲル化させる。
 膜470としては、その後の加圧または減圧工程において被覆活物質および導電部材と、電解液および溶剤とを分離できるものが好ましい。また、膜が、導電性の高い材料(導電性材料)からなると、集電体として膜を用いることができ、また、集電体と膜を接触させても導電性が阻害されないため好ましい。例えば、電気伝導度が100S/cm以上である材料を好適に用いることができる。このような特性を有する材料の例としては、炭素繊維等の導電性繊維を配合した濾紙、金属メッシュ等が挙げられる。かようなものを、集電体として用いることができる。
 金属メッシュとしては、ステンレス製メッシュを用いることが好ましく、例えばSUS316製の綾畳織金網(サンネット工業製)等が挙げられる。金属メッシュの目開きは、被覆活物質および導電部材が通過しない程度とすることが好ましく、例えば2300メッシュのものを用いることが好ましい。
 本形態において、スラリーは、膜上にバーコーター、刷毛等の任意の塗工装置を用いて塗布することができる。
 図9(a)には、膜上にスラリーを塗布した様子を模式的に示しており、膜としての濾紙470上に、被覆活物質と、導電性繊維213とを含むスラリーが塗布されている。
 続いて、加圧または減圧して被覆活物質と、導電部材とを膜上に定着させる。
 加圧操作、減圧操作の方法としては、上述した工程と同様の方法を用いることができ、加圧または減圧によりスラリーから電解液または溶剤が除去されて、導電部材としての導電性繊維と、被覆活物質とが膜の上に定着されて、流動しない程度に緩くその形状が維持された状態となる。
 図9(b)には、導電部材としての導電性繊維213と、被覆活物質とが濾紙470上で定着されてなる正極活物質層110を示している。
 正極活物質層110において、膜が導電性材料からなるとき、膜は集電体として使用することができ、また、他の集電体と膜を接触させて一つの集電体として機能させることもできる。すなわち、正極活物質層110において、第2主面121は導電部材としての導電性繊維213が濾紙470と接触する部分として定めることができる。
 膜が導電性を有さない材料であるときは、膜をセパレータ側に配置するようにするとよい。また、膜をセパレータとしてもよい。導電性を有さない材料からなる膜の例としては、アラミドセパレータ(日本バイリーン株式会社製)等が挙げられる。
 また、本形態において、スラリーが、電解液を含む電解液スラリーである場合、膜が、被覆活物質を透過させず電解液を透過させる膜であり、加圧または減圧して電解液を、膜を透過させて除去することが好ましい。
 また、スラリーを、さらに強い圧力で加圧するプレス工程を行うことが好ましい。
 プレス工程は、先の工程における加圧または減圧よりも、さらに圧力差を大きくして被覆活物質の密度を向上させる工程である。かかるプレス工程は、先の工程が減圧である場合に加圧を加えるという態様と、先の工程が加圧である場合に加圧する圧力をさらに高くするという態様の両方を含む概念である。
 この際のプレス工程の圧力は適宜設定できるが、例えば、1~5kg/cm程度であることが好ましい。
 さらに、膜上に定着された被覆活物質を、集電体またはセパレータの主面に転写する工程を行って、活物質層の第1主面をセパレータの主面に配置する、または、活物質層の第2主面が集電体の主面に配置された電極を形成する。
 転写する工程において、膜とは反対側の主面を集電体またはセパレータの主面に接触させて転写することが好ましい。
 膜が導電性材料からなり、集電体として膜を用いる場合、膜とは反対側の主面をセパレータの主面に接触させて転写させることが好ましい。また、膜を集電体として用いない場合は、転写を行った後に、膜を剥離する工程を行うことが好ましい。あるいは、膜をセパレータの一部として用いてもよい。
 図10(a)および図10(b)は、樹脂によって、被覆活物質と導電部材とを固定する工程を模式的に示す工程図である。
 まず、導電部材と、被覆活物質と、樹脂とを含む活物質用組成物を調製する。
 導電部材としては、図9(a)および図9(b)を用いて説明した態様と同様に、繊維の1本1本が独立した形状の導電性繊維を用いることが好ましい。
 樹脂としては、ビニル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂等を用いることが好ましい。これらの樹脂であると、成形性の点で好ましい。
 活物質用組成物中において、樹脂は溶剤に溶解された樹脂溶液の形態で存在していてもよいし、加熱によって流動化するペレット等、固体の形で存在していてもよい。
 また、樹脂としては、被覆剤に含まれる被覆用樹脂であってもよい。
 活物質用組成物中において、樹脂が溶剤に溶解された樹脂溶液の形態で存在している場合、導電部材および活物質は樹脂溶液に分散されていることが好ましい。また、樹脂が固体の形で存在している場合も、樹脂と、導電部材と、活物質とが特定の部位に偏在することなく分散していることが好ましい。
 そして、調製した活物質用組成物を、加熱プレスすることにより、樹脂によって導電部材および活物質を固定する。
 加熱プレスの方法は特に限定されるものではないが、図10(a)に示すように金属板等の板570に、被覆活物質、導電性繊維213、樹脂214を含む活物質用組成物を塗布し、上面から加熱プレスする方法が挙げられる。
 活物質用組成物の塗布は、バーコーター、刷毛等の任意の塗工装置を用いて行うことができる。また、加熱プレスは通常の加熱プレス装置を用いて行うことができる。
 また、樹脂が、被覆活物質の被覆用樹脂である場合、導電部材と、被覆活物質を板に塗布して加熱プレスすると、加熱によって溶融した被覆用樹脂により導電部材と(被覆)活物質が固定される。
 被覆用樹脂により固定される活物質は、被覆用樹脂で被覆されたままの被覆活物質であるが、ある程度剥がされた形態となってもよい。
 加熱プレスの条件は、用いる樹脂の硬化条件によって適宜定めればよく、特に限定されるものではないが、例えば、ウレタン樹脂の場合、100~200℃、0.01~5MPa、5~300秒の条件で加熱プレスすることが好ましい。ビニル樹脂の場合、80~180℃、0.01~5MPa、5~300秒の条件で加熱プレスすることが好ましい。
 加熱プレスにより、図10(b)に示すように、導電性繊維213と、被覆活物質とが樹脂214で固定されてなる正極活物質層110を製造することができる。
 (正極活物質)
 正極活物質14としては、リチウムと遷移金属との複合酸化物(例えばLiCoO、LiNiO、LiMnOおよびLiMn)、遷移金属酸化物(例えばMnOおよびV)、遷移金属硫化物(例えばMoSおよびTiS)および導電性高分子(例えばポリアニリン、ポリフッ化ビニリデン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ-p-フェニレンおよびポリカルバゾール)等が挙げられる。
 (負極活物質)
 負極活物質24としては、黒鉛、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂およびフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークスおよび石油コークス等)、炭素繊維、導電性高分子(例えばポリアセチレンおよびポリピロール等)、スズ、シリコン、および金属合金(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金およびリチウム-アルミニウム-マンガン合金等)等が挙げられる。
 (被覆剤)
 上記のように、本発明の実施形態によれば、正極活物質層および負極活物質層のうち少なくとも一方が、電子伝導材料からなる導電部材および活物質を含む。その形態においては、活物質の表面の少なくとも一部は、被覆用樹脂および導電助剤16を含む被覆剤151によって被覆されている。
 (導電助剤)
 導電助剤16としては、導電性を有する材料から選択される。
 具体的には、金属{アルミニウム、ステンレス(SUS)、銀、金、銅およびチタン等}、カーボン{グラファイトおよびカーボンブラック[アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等]等}、およびこれらの混合物等が挙げられるが、これらに限定されるわけではない。
 これらの導電助剤は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金または金属酸化物が用いられてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、金、銅、チタンおよびこれらの混合物であり、さらに好ましくは銀、金、アルミニウム、ステンレスおよびカーボンであり、特に好ましくはカーボンである。またこれらの導電助剤とは、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電性材料のうち金属のもの)をめっき等でコーティングしたものでもよい。
 導電助剤の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノチューブなど、いわゆるフィラー系導電性樹脂組成物として実用化されている形態であってもよい。
 導電助剤の平均粒子径(一次粒子径)は、特に限定されるものではないが、電池の電気特性の観点から、0.01~10μm程度であることが好ましい。なお、本明細書中において、「粒子径」とは、導電助剤の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
 (被覆用樹脂)
 本発明の好ましい実施形態によれば、活物質被覆用樹脂(単に「被覆用樹脂」ともいう)は、飽和吸液状態での引張破断伸び率は10%以上である。
 飽和吸液状態での引張破断伸び率は、被覆用樹脂をダンベル状に打ち抜き、電解液への浸漬を50℃、3日間行って被覆用樹脂を飽和吸液状態として、ASTM D683(試験片形状TypeII)に準拠して測定することができる。引張破断伸び率は、引張試験において試験片が破断するまでの伸び率を下記式によって算出した値である。
 引張破断伸び率(%)=[(破断時試験片長さ-試験前試験片長さ)/試験前試験片長さ]×100
 被覆用樹脂の飽和吸液状態での引張破断伸び率が10%以上であると、被覆用樹脂が適度な柔軟性を有するため、活物質を被覆することにより電極の体積変化を緩和し、電極の膨脹を抑制することができる。引張破断伸び率は20%以上であることがより好ましく、30%以上であることがさらに好ましい。また、引張破断伸び率の好ましい上限値としては、400%であることが好ましく、より好ましい上限値としては300%である。
 また、活性水素成分とイソシアネート成分とを反応させて得られるウレタン樹脂も、被覆用樹脂として好ましい。ウレタン樹脂は柔軟性を有するため、リチウムイオン電池活物質をウレタン樹脂で被覆することにより電極の体積変化を緩和し、電極の膨脹を抑制することができる。
 また、本発明の好ましい実施形態によれば、被覆用樹脂は、電解液に浸漬した際の吸液率が10%以上であり、飽和吸液状態での引張破断伸び率が10%以上である。
 電解液に浸漬した際の吸液率は、電解液に浸漬する前、浸漬した後の被覆用樹脂の重量を測定して、以下の式で求められる。
 吸液率(%)=[(電解液浸漬後の被覆用樹脂の重量-電解液浸漬前の被覆用樹脂の重量)/電解液浸漬前の被覆用樹脂の重量]×100
 吸液率を求めるための電解液としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積割合でEC:DEC=3:7で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した電解液を用いる。
 吸液率を求める際の電解液への浸漬は、50℃、3日間行う。50℃、3日間の浸漬を行うことにより被覆用樹脂が飽和吸液状態となる。なお、飽和吸液状態とは、それ以上電解液に浸漬しても被覆用樹脂の重量が増えない状態をいう。
 吸液率が10%以上であると、被覆用樹脂が充分に電解液を吸液しており、リチウムイオンが被覆用樹脂を容易に透過することができるため、活物質と電解液の間でのリチウムイオンの移動が妨げられることがない。なお、吸液率は20%以上であることが好ましく、30%以上であることがより好ましい。また、吸液率の好ましい上限値としては、400%であり、より好ましい上限値としては300%である。
 本発明の実施形態の活物質被覆用樹脂のリチウムイオンの伝導性は、飽和吸液状態とした後の被覆用樹脂の室温での伝導度を交流インピーダンス法で測定することによって求められる。
 上記方法で測定されるリチウムイオンの伝導性は、1.0~10.0mS/cmであることが好ましく、上記範囲であればリチウムイオン電池としての性能が充分に発揮される。
 また、他の形態によれば、被覆用樹脂は、電解液に浸漬した際の吸液率が10%以上であり、飽和吸液状態での引張破断伸び率が10%以上であり、活性水素成分とイソシアネート成分とを反応させて得られるウレタン樹脂であることが好ましい。
 活性水素成分としては、ポリエーテルジオール、ポリカーボネートジオールおよびポリエステルジオールからなる群から選ばれる少なくとも1種を含むことが好ましい。
 ポリエーテルジオールとしては、ポリオキシエチレングリコール(以下PEGと略記)、ポリオキシエチレンオキシプロピレンブロック共重合ジオール、ポリオキシエチレンオキシテトラメチレンブロック共重合ジオール;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサメチレングリコール、ネオペンチルグリコール、ビス(ヒドロキシメチル)シクロヘキサン、4,4’-ビス(2-ヒドロキシエトキシ)-ジフェニルプロパンなどの低分子グリコールのエチレンオキシド付加物;数平均分子量2,000以下のPEGと、ジカルボン酸[炭素数4~10の脂肪族ジカルボン酸(例えばコハク酸、アジピン酸、セバシン酸など)、炭素数8~15の芳香族ジカルボン酸(例えばテレフタル酸、イソフタル酸など)など]の1種以上とを反応させて得られる縮合ポリエーテルエステルジオール;およびこれらの2種以上混合物が挙げられる。
 ポリエーテルジオール中にオキシエチレン単位が含まれる場合、オキシエチレン単位の含有量は好ましくは20重量%、より好ましくは30重量%以上、さらに好ましくは40重量%以上である。また、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール(以下PTMGと略記)、ポリオキシプロピレンオキシテトラメチレンブロック共重合ジオールなども挙げられる。これらのうち、好ましくはPEG、ポリオキシエチレンオキシプロピレンブロック共重合ジオールおよびポリオキシエチレンオキシテトラメチレンブロック共重合ジオールであり、特に好ましくはPEGである。また、ポリエーテルジオールを1種のみ用いてもよいし、これらの2種以上の混合物を用いてもよい。
 ポリカーボネートジオールとしては、例えばポリヘキサメチレンカーボネートジオールが挙げられる。ポリエステルジオールとしては、低分子ジオールおよび/または数平均分子量1,000以下のポリエーテルジオールと前述のジカルボン酸の1種以上とを反応させて得られる縮合ポリエステルジオールや、炭素数4~12のラクトンの開環重合により得られるポリラクトンジオールなどが挙げられる。上記低分子ジオールとして上記ポリエーテルジオールの項で例示した低分子グリコールなどが挙げられる。上記数平均分子量1,000以下のポリエーテルジオールとしてはポリオキシプロピレングリコール、PTMGなどが挙げられる。上記ラクトンとしては、例えばε-カプロラクトン、γ-バレロラクトンなどが挙げられる。該ポリエステルジオールの具体例としては、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリネオペンチレンアジペートジオール、ポリ(3-メチル-1,5-ペンチレンアジペート)ジオール、ポリヘキサメチレンアジペートジオール、ポリカプロラクトンジオールおよびこれらの2種以上の混合物が挙げられる。
 また、活性水素成分は上記ポリエーテルジオール、ポリカーボネートジオールおよびポリエステルジオールのうちの2種以上の混合物であってもよい。
 活性水素成分は数平均分子量2,500~15,000の高分子ジオールを必須成分とすることが好ましい。高分子ジオールとしては上述したポリエーテルジオール、ポリカーボネートジオールおよびポリエステルジオール等が挙げられる。
 数平均分子量が2,500~15,000の高分子ジオールは、ウレタン樹脂の硬さが適度に柔らかく、また、活物質上に形成した被膜の強度が強くなるため好ましい。また、高分子ジオールの数平均分子量が3,000~12,500であることがより好ましく、4,000~10,000であることがさらに好ましい。高分子ジオールの数平均分子量は、高分子ジオールの水酸基価から算出することができる。また、水酸基価は、JIS K1557-1の記載に準じて測定できる。
 また、活性水素成分が数平均分子量2,500~15,000の高分子ジオールを必須成分とし、上記高分子ジオールの溶解度パラメータ(以下、SP値と略記する)が8.0~12.0(cal/cm1/2であることが好ましい。高分子ジオールのSP値は8.5~11.5(cal/cm1/2であることがより好ましく、9.0~11.0(cal/cm1/2であることがさらに好ましい。
 SP値は、Fedors法によって計算される。SP値は、次式で表せる。
 SP値(δ)=(ΔH/V)1/2
 但し、式中、ΔHはモル蒸発熱(cal)を、Vはモル体積(cm)を表す。
 また、ΔHおよびVは、「POLYMER ENGINEERING AND SCIENCE,1974,Vol.14,No.2,ROBERT F.FEDORS.(151~153頁)」に記載の原子団のモル蒸発熱の合計(ΔH)とモル体積の合計(V)を用いることができる。
 この数値が近いもの同士はお互いに混ざりやすく(相溶性が高い)、この数値が離れているものは混ざりにくいことを表す指標である。
 高分子ジオールのSP値が8.0~12.0(cal/cm1/2であると、ウレタン樹脂の電解液の吸液の点で好ましい。
 また、活性水素成分が数平均分子量2,500~15,000の高分子ジオールを必須成分とし、上記高分子ジオールの含有量が上記ウレタン樹脂の重量を基準として20~80重量%であることが好ましい。高分子ジオールの含有量は30~70重量%であることがより好ましく、40~65重量%であることがさらに好ましい。
 高分子ジオールの含有量が20~80重量%であると、ウレタン樹脂の電解液の吸液の点で好ましい。
 また、活性水素成分が数平均分子量2,500~15,000の高分子ジオールおよび鎖伸長剤を必須成分とすることが好ましい。
 鎖伸長剤としては、例えば炭素数2~10の低分子ジオール[例えばエチレングリコール(以下EGと略記)、プロピレングリコール、1,4-ブタンジオール(以下14BGと略記)、ジエチレングリコール(以下DEGと略記)、1,6-ヘキサメチレングリコールなど];ジアミン類[炭素数2~6の脂肪族ジアミン(例えばエチレンジアミン、1,2-プロピレンジアミンなど)、炭素数6~15の脂環式ジアミン(例えばイソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタンなど)、炭素数6~15の芳香族ジアミン(例えば4,4’-ジアミノジフェニルメタンなど)など];モノアルカノールアミン(例えばモノエタノールアミンなど);ヒドラジンもしくはその誘導体(例えばアジピン酸ジヒドラジドなど)およびこれらの2種以上の混合物が挙げられる。これらのうち好ましいものは低分子ジオールであり、特に好ましいものはEG、DEGおよび14BGである。
 高分子ジオールおよび鎖伸長剤の組み合わせとしては、高分子ジオールとしてのPEGと鎖伸長剤としてのEGの組み合わせ、または、高分子ジオールとしてのポリカーボネートジオールと鎖伸長剤としてのEGの組み合わせが好ましい。
 また、活性水素成分が数平均分子量2,500~15,000の高分子ジオール(a11)、上記高分子ジオール以外のジオール(a12)および鎖伸長剤(a13)を含み、(a11)と(a12)との当量比{(a11)/(a12)}が10/1~30/1であり、(a11)と(a12)および(a13)の合計当量との当量比{(a11)/[(a12)+(a13)]}が0.9/1~1.1/1であることが好ましい。
 なお、(a11)と(a12)との当量比{(a11)/(a12)}はより好ましくは13/1~25/1であり、さらに好ましくは15/1~20/1である。
 高分子ジオール以外のジオールとしては、ジオールであって上述した高分子ジオールに含まれないものであれば特に限定されるものではなく、具体的には、数平均分子量が2,500未満のジオール、および、数平均分子量が15,000を超えるジオールが挙げられる。
 ジオールの種類としては、上述したポリエーテルジオール、ポリカーボネートジオールおよびポリエステルジオール等が挙げられる。
 なお、高分子ジオール以外のジオールであって、鎖伸長剤に含まれる炭素数2~10の低分子ジオールは、高分子ジオール以外のジオールには含まれないものとする。
 イソシアネート成分としては、従来からポリウレタン製造に使用されているものが使用できる。このようなイソシアネートには、炭素数(NCO基中の炭素を除く、以下同様)6~20の芳香族ジイソシアネート、炭素数2~18の脂肪族ジイソシアネート、炭素数4~15の脂環式ジイソシアネート、炭素数8~15の芳香脂肪族ジイソシアネート、これらのジイソシアネートの変性体(カーボジイミド変性体、ウレタン変性体、ウレトジオン変性体など)およびこれらの2種以上の混合物が含まれる。
 上記芳香族ジイソシアネートの具体例としては、1,3-および/または1,4-フェニレンジイソシアネート、2,4-および/または2,6-トリレンジイソシアネート、2,4’-および/または4,4’-ジフェニルメタンジイソシアネート(以下、ジフェニルメタンジイソシアネートをMDIと略記)、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネートなどが挙げられる。
 上記脂肪族ジイソシアネートの具体例としては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエートなどが挙げられる。
 上記脂環式ジイソシアネートの具体例としては、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロヘキシレン-1,2-ジカルボキシレート、2,5-および/または2,6-ノルボルナンジイソシアネートなどが挙げられる。
 上記芳香脂肪族ジイソシアネートの具体例としては、m-および/またはp-キシリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネートなどが挙げられる。
 これらのうち好ましいものは芳香族ジイソシアネートおよび脂環式ジイソシアネートであり、さらに好ましいものは芳香族ジイソシアネートであり、特に好ましいのはMDIである。
 ウレタン樹脂が高分子ジオール(a11)およびイソシアネート成分(a2)を含む場合、好ましい(a2)/(a11)の当量比は10~30/1であり、より好ましくは11~28/1である。イソシアネート成分の比率が30当量を超えると硬い塗膜となる。
 また、ウレタン樹脂が高分子ジオール(a11)、鎖伸長剤(a13)およびイソシアネート成分(a2)を含む場合、(a2)/[(a11)+(a13)]の当量比は通常0.9~1.1/1、好ましくは0.95~1.05/1である。この範囲外の場合ではウレタン樹脂が充分に高分子量にならないことがある。
 ウレタン樹脂の数平均分子量は、40,000~500,000であることが好ましく、より好ましくは50,000~400,000である。ウレタン樹脂の数平均分子量が40,000未満では被膜の強度が低くなり、500,000を超えると溶液粘度が高くなって、均一な被膜が得られないことがある。
 ウレタン樹脂の数平均分子量は、DMFを溶剤として用い、ポリオキシプロピレングリコールを標準物質としてゲルパーミエーションクロマトグラフィー(以下GPCと略記)により測定される。サンプル濃度は0.25重量%、カラム固定相はTSKgel SuperH2000、TSKgel SuperH3000、TSKgel SuperH4000(いずれも東ソー株式会社製)を各1本連結したもの、カラム温度は40℃とすればよい。
 ウレタン樹脂は活性水素成分とイソシアネート成分を反応させて製造することができる。
 例えば、活性水素成分として高分子ジオールと鎖伸長剤を用い、イソシアネート成分と高分子ジオールと鎖伸長剤とを同時に反応させるワンショット法や、高分子ジオールとイソシアネート成分とを先に反応させた後に鎖伸長剤を続けて反応させるプレポリマー法が挙げられる。
 また、ウレタン樹脂の製造は、イソシアネート基に対して不活性な溶媒の存在下または非存在下で行うことができる。溶媒の存在下で行う場合の適当な溶媒としては、アミド系溶媒[ジメチルホルムアミド(以下DMFと略記)、ジメチルアセトアミドなど]、スルホキシド系溶媒(ジメチルスルホキシドなど)、ケトン系溶媒[メチルエチルケトン、メチルイソブチルケトンなど]、芳香族系溶媒(トルエン、キシレンなど)、エーテル系溶媒(ジオキサン、テトラヒドロフランなど)、エステル系溶媒(酢酸エチル、酢酸ブチルなど)およびこれらの2種以上の混合物が挙げられる。これらのうち好ましいものはアミド系溶媒、ケトン系溶媒、芳香族系溶媒およびこれらの2種以上の混合物である。
 ウレタン樹脂の製造に際し、反応温度はウレタン化反応に通常採用される温度と同じでよく、溶媒を使用する場合は通常20~100℃、無溶媒の場合は通常20~220℃である。
 反応を促進させるために必要により、ポリウレタン反応に通常使用される触媒[例えばアミン系触媒(トリエチルアミン、トリエチレンジアミンなど)、錫系触媒(ジブチルチンジラウレートなど)]を使用することができる。
 また、必要により重合停止剤[例えば1価アルコール(エタノール、イソプロピルアルコール、ブタノールなど)、1価アミン(ジメチルアミン、ジブチルアミンなど)など]を用いることもできる。
 ウレタン樹脂の製造は当該業界において通常採用されている製造装置で行うことができる。また溶媒を使用しない場合はニーダーやエクストルーダーなどの製造装置を用いることができる。このようにして製造されるウレタン樹脂は、30重量%(固形分)DMF溶液として測定した溶液粘度が通常10~10,000ポイズ/20℃であり、実用上好ましいのは100~2,000ポイズ/20℃である。
 また、本発明の好ましい実施形態によれば、ビニルモノマーを必須構成単量体とする重合体も被覆用樹脂として好ましい。ビニルモノマーを必須構成単量体とする重合体は柔軟性を有するため、活物質を重合体で被覆することにより電極の体積変化を緩和し、電極の膨脹を抑制することができる。
 また、被覆用樹脂は、電解液に浸漬した際の吸液率が10%以上であり、飽和吸液状態での引張破断伸び率が10%以上であり、ビニルモノマーを必須構成単量体とする重合体を含んでなることが好ましい。
 特に、ビニルモノマーとしてカルボキシル基を有するビニルモノマーおよび下記一般式(1)で表されるビニルモノマーを含むことが好ましい。
 CH=C(R)COOR  (1)
 式(1)中、Rは水素原子またはメチル基であり、Rは、炭素数1~4の直鎖のアルキル基または炭素数4~36の分岐アルキル基である。
 カルボキシル基を有するビニルモノマーとしては、(メタ)アクリル酸、クロトン酸、桂皮酸等の炭素数3~15のモノカルボン酸;(無水)マレイン酸、フマル酸、(無水)イタコン酸、シトラコン酸、メサコン酸等の炭素数4~24のジカルボン酸;アコニット酸等の炭素数6~24の3価~4価またはそれ以上の価数のポリカルボン酸等が挙げられる。これらの中でも(メタ)アクリル酸が好ましく、メタクリル酸が特に好ましい。
 上記一般式(1)で表されるビニルモノマーにおいて、Rは水素原子またはメチル基を表す。Rはメチル基であることが好ましい。
 Rは、炭素数1~4の直鎖のアルキル基または炭素数4~36の分岐アルキル基であり、Rの具体例としては、メチル基、エチル基、プロピル基、1-アルキルアルキル基(1-メチルプロピル基(sec-ブチル基)、1,1-ジメチルエチル基(tert-ブチル基)、1-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1-メチルペンチル基、1-エチルブチル基、1-メチルヘキシル基、1-エチルペンチル基、1-メチルヘプチル基、1-エチルヘキシル基、1-メチルオクチル基、1-エチルヘプチル基、1-メチルノニル基、1-エチルオクチル基、1-メチルデシル基、1-エチルノニル基、1-ブチルエイコシル基、1-ヘキシルオクタデシル基、1-オクチルヘキサデシル基、1-デシルテトラデシル基、1-ウンデシルトリデシル基等)、2-アルキルアルキル基(2-メチルプロピル基(iso-ブチル基)、2-メチルブチル基、2-エチルプロピル基、2,2-ジメチルプロピル基、2-メチルペンチル基、2-エチルブチル基、2-メチルヘキシル基、2-エチルペンチル基、2-メチルヘプチル基、2-エチルヘキシル基、2-メチルオクチル基、2-エチルヘプチル基、2-メチルノニル基、2-エチルオクチル基、2-メチルデシル基、2-エチルノニル基、2-ヘキシルオクタデシル基、2-オクチルヘキサデシル基、2-デシルテトラデシル基、2-ウンデシルトリデシル基、2-ドデシルヘキサデシル基、2-トリデシルペンタデシル基、2-デシルオクタデシル基、2-テトラデシルオクタデシル基、2-ヘキサデシルオクタデシル基、2-テトラデシルエイコシル基、2-ヘキサデシルエイコシル基等)、3~34-アルキルアルキル基(3-アルキルアルキル基、4-アルキルアルキル基、5-アルキルアルキル基、32-アルキルアルキル基、33-アルキルアルキル基および34-アルキルアルキル基等)、ならびに、プロピレンオリゴマー(7~11量体)、エチレン/プロピレン(モル比16/1~1/11)オリゴマー、イソブチレンオリゴマー(7~8量体)およびα-オレフィン(炭素数5~20)オリゴマー(4~8量体)等に対応するオキソアルコールのアルキル残基のような1またはそれ以上の分岐アルキル基を含有する混合アルキル基等が挙げられる。
 これらのうち、電解液の吸液の観点から好ましいのは、メチル基、エチル基、2-アルキルアルキル基であり、さらに好ましいのは2-エチルヘキシル基および2-デシルテトラデシル基である。
 また、重合体を構成する単量体には、ビニルモノマーおよび上記一般式(1)で表されるビニルモノマーの他に、活性水素を含有しない共重合性ビニルモノマー(b3)が含まれていてもよい。
 活性水素を含有しない共重合性ビニルモノマー(b3)としては、下記(b31)~(b35)が挙げられる。
 (b31)炭素数1~20のモノオールと(メタ)アクリル酸から形成されるカルビル(メタ)アクリレート
 上記モノオールとしては、(i)脂肪族モノオール[メタノール、エタノール、n-およびi-プロピルアルコール、n-ブチルアルコール、n-ペンチルアルコール、n-オクチルアルコール、ノニルアルコール、デシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール等]、(ii)脂環式モノオール[シクロヘキシルアルコール等]、(iii)芳香脂肪族モノオール[ベンジルアルコール等]およびこれらの2種以上の混合物が挙げられる。
 (b32)ポリ(n=2~30)オキシアルキレン(炭素数2~4)アルキル(炭素数1~18)エーテル(メタ)アクリレート[メタノールのエチレンオキシド(以下EOと略記)10モル付加物(メタ)アクリレート、メタノールのプロピレンオキシド(以下POと略記)10モル付加物(メタ)アクリレートなど]
 (b33)窒素含有ビニル化合物
 (b33-1)アミド基含有ビニル化合物
 (i)炭素数3~30の(メタ)アクリルアミド化合物、例えばN,N-ジアルキル(炭素数1~6)もしくはジアラルキル(炭素数7~15)(メタ)アクリルアミド[N,N-ジメチルアクリルアミド、N,N-ジベンジルアクリルアミドなど]、ジアセトンアクリルアミド
 (ii)上記(メタ)アクリルアミド化合物を除く、炭素数4~20のアミド基含有ビニル化合物、例えばN-メチル-N-ビニルアセトアミド、環状アミド(ピロリドン化合物(炭素数6~13、例えば、N-ビニルピロリドンなど))
 (b33-2)(メタ)アクリレート化合物
 (i)ジアルキル(炭素数1~4)アミノアルキル(炭素数1~4)(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、モルホリノエチル(メタ)アクリレートなど]
 (ii)4級アンモニウム基含有(メタ)アクリレート〔3級アミノ基含有(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレートなど]の4級化物(前記の4級化剤を用いて4級化したもの)など〕
 (b33-3)複素環含有ビニル化合物
 ピリジン化合物(炭素数7~14、例えば2-および4-ビニルピリジン)、イミダゾール化合物(炭素数5~12、例えばN-ビニルイミダゾール)、ピロール化合物(炭素数6~13、例えばN-ビニルピロール)、ピロリドン化合物(炭素数6~13、例えばN-ビニル-2-ピロリドン)
 (b33-4)ニトリル基含有ビニル化合物
 炭素数3~15のニトリル基含有ビニル化合物、例えば(メタ)アクリロニトリル、シアノスチレン、シアノアルキル(炭素数1~4)アクリレート
 (b33-5)その他ビニル化合物
 ニトロ基含有ビニル化合物(炭素数8~16、例えばニトロスチレン)など
 (b34)ビニル炭化水素
 (b34-1)脂肪族ビニル炭化水素
 炭素数2~18またはそれ以上のオレフィン[エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセンなど]、炭素数4~10またはそれ以上のジエン[ブタジエン、イソプレン、1,4-ペンタジエン、1,5-ヘキサジエン、1,7-オクタジエンなど]など
 (b34-2)脂環式ビニル炭化水素
 炭素数4~18またはそれ以上の環状不飽和化合物、例えばシクロアルケン(例えばシクロヘキセン)、(ジ)シクロアルカジエン[例えば(ジ)シクロペンタジエン]、テルペン(例えばピネン、リモネンおよびインデン)
 (b34-3)芳香族ビニル炭化水素
 炭素数8~20またはそれ以上の芳香族不飽和化合物、例えばスチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン
 (b35)ビニルエステル、ビニルエーテル、ビニルケトン、不飽和ジカルボン酸ジエステル
 (b35-1)ビニルエステル
 脂肪族ビニルエステル[炭素数4~15、例えば脂肪族カルボン酸(モノ-およびジカルボン酸)のアルケニルエステル(例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ジアリルアジペート、イソプロペニルアセテート、ビニルメトキシアセテート)]、芳香族ビニルエステル[炭素数9~20、例えば芳香族カルボン酸(モノ-およびジカルボン酸)のアルケニルエステル(例えばビニルベンゾエート、ジアリルフタレート、メチル-4-ビニルベンゾエート)、脂肪族カルボン酸の芳香環含有エステル(例えばアセトキシスチレン)]
 (b35-2)ビニルエーテル
 脂肪族ビニルエーテル〔炭素数3~15、例えばビニルアルキル(炭素数1~10)エーテル[ビニルメチルエーテル、ビニルブチルエーテル、ビニル2-エチルヘキシルエーテルなど]、ビニルアルコキシ(炭素数1~6)アルキル(炭素数1~4)エーテル[ビニル-2-メトキシエチルエーテル、メトキシブタジエン、3,4-ジヒドロ-1,2-ピラン、2-ブトキシ-2’-ビニロキシジエチルエーテル、ビニル-2-エチルメルカプトエチルエーテルなど]、ポリ(2~4)(メタ)アリロキシアルカン(炭素数2~6)[ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシブタン、テトラメタアリロキシエタンなど]〕
 芳香族ビニルエーテル(炭素数8~20、例えばビニルフェニルエーテル、フェノキシスチレン)
 (b35-3)ビニルケトン
 脂肪族ビニルケトン(炭素数4~25、例えばビニルメチルケトン、ビニルエチルケトン)
 芳香族ビニルケトン(炭素数9~21、例えばビニルフェニルケトン)
 (b35-4)不飽和ジカルボン酸ジエステル
 炭素数4~34の不飽和ジカルボン酸ジエステル、例えばジアルキルフマレート(2個のアルキル基は、炭素数1~22の、直鎖、分枝鎖もしくは脂環式の基)、ジアルキルマレエート(2個のアルキル基は、炭素数1~22の、直鎖、分枝鎖もしくは脂環式の基)
 上記(b3)として例示したもののうち電解液の吸液および耐電圧の観点から好ましいのは、(b31)、(b32)および(b33)であり、さらに好ましいのは、(b31)のうちのメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレートである。
 重合体において、カルボキシル基を有するビニルモノマー(b1)、上記一般式(1)で表されるビニルモノマー(b2)および活性水素を含有しない共重合性ビニルモノマー(b3)の含有量は、重合体の重量を基準として、(b1)が0.1~80重量%、(b2)が0.1~99.9重量%、(b3)が0~99.8重量%であることが好ましい。
 モノマーの含有量が上記範囲内であると、電解液への吸液性が良好となる。
 より好ましい含有量は、(b1)が30~60重量%、(b2)が5~60重量%、(b3)が5~80重量%であり、さらに好ましい含有量は、(b1)が35~50重量%、(b2)が15~45重量%、(b3)が20~60重量%である。
 重合体の数平均分子量の好ましい下限は3,000、さらに好ましくは50,000、特に好ましくは100,000、最も好ましくは200,000であり、好ましい上限は2,000,000、さらに好ましくは1,500,000、特に好ましくは1,000,000、最も好ましくは800,000である。
 重合体の数平均分子量は、以下の条件でGPC(ゲルパーミエーションクロマトグラフィー)測定により求めることができる。
 装置:Alliance GPC V2000(Waters社製)
 溶媒:オルトジクロロベンゼン
 標準物質:ポリスチレン
 サンプル濃度:3mg/ml
 カラム固定相:PLgel 10μm、MIXED-B 2本直列(ポリマーラボラトリーズ社製)
 カラム温度:135℃
 重合体の溶解度パラメータ(SP値)は9.0~20.0(cal/cm1/2であることが好ましい。重合体のSP値は10.0~18.0(cal/cm1/2であることがより好ましく、11.5~14.0(cal/cm1/2であることがさらに好ましい。重合体のSP値が9.0~20.0(cal/cm1/2であると、電解液の吸液の点で好ましい。
 また、重合体のガラス転移点[以下Tgと略記、測定法:DSC(走査型示差熱分析)法]は、電池の耐熱性の観点から好ましくは80~200℃、さらに好ましくは90~180℃、特に好ましくは100~150℃である。
 重合体は、公知の重合方法(塊状重合、溶液重合、乳化重合、懸濁重合など)により製造することができる。
 重合に際しては、公知の重合開始剤〔アゾ系開始剤[2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリルなど)、パーオキシド系開始剤(ベンゾイルパーオキシド、ジ-t-ブチルパーオキシド、ラウリルパーオキシドなど)]など〕を使用して行なうことができる。
 重合開始剤の使用量は、モノマーの全重量に基づいて好ましくは0.01~5重量%、より好ましくは0.03~2重量%である。
 溶液重合の場合に使用される溶媒としては、例えばエステル(炭素数2~8、例えば酢酸エチルおよび酢酸ブチル)、アルコール(炭素数1~8、例えばメタノール、エタノールおよびオクタノール)、炭化水素(炭素数4~8、例えばn-ブタン、シクロヘキサンおよびトルエン)およびケトン(炭素数3~9、例えばメチルエチルケトン)が挙げられ、2種類以上を混合して用いてもよく、使用量はモノマーの合計重量に基づいて通常5~900%、好ましくは10~400%であり、モノマー濃度としては、通常10~95重量%、好ましくは20~90重量%である。
 乳化重合および懸濁重合における分散媒としては、水、アルコール(例えばエタノール)、エステル(例えばプロピオン酸エチル)、軽ナフサなどが挙げられ、乳化剤としては、高級脂肪酸(炭素数10~24)金属塩(例えばオレイン酸ナトリウムおよびステアリン酸ナトリウム)、高級アルコール(炭素数10~24)硫酸エステル金属塩(例えばラウリル硫酸ナトリウム)、エトキシ化テトラメチルデシンジオール、メタクリル酸スルホエチルナトリウム、メタクリル酸ジメチルアミノメチルなどが挙げられる。さらに安定剤としてポリビニルアルコール、ポリビニルピロリドンなどを加えてもよい。
 溶液または分散液のモノマー濃度は通常5~95重量%、重合開始剤の使用量は、モノマーの全重量に基づいて通常0.01~5%、粘着力および凝集力の観点から好ましくは0.05~2%である。
 重合に際しては、公知の連鎖移動剤、例えばメルカプト化合物(ドデシルメルカプタン、n-ブチルメルカプタン等)およびハロゲン化炭化水素(四塩化炭素、四臭化炭素、塩化ベンジル等)を使用することができる。使用量はモノマーの全重量に基づいて通常2%以下、粘着力および凝集力の観点から好ましくは0.5%以下である。
 また、重合反応における系内温度は通常-5~150℃、好ましくは30~120℃、反応時間は通常0.1~50時間、好ましくは2~24時間であり、反応の終点は、未反応単量体の量が使用した単量体全量の通常5重量%以下、好ましくは1重量%以下となることにより確認できる。
 被覆用樹脂は、重合体をポリエポキシ化合物および/またはポリオール化合物で架橋してなる架橋重合体であってもよい。
 架橋重合体においては、重合体中のカルボキシル基等の活性水素と反応する反応性官能基を有する架橋剤を用いて重合体を架橋することが好ましく、架橋剤としてポリエポキシ化合物および/またはポリオール化合物を用いることがより好ましい。
 ポリエポキシ化合物としては、エポキシ当量80~2,500のもの、例えばグリシジルエーテル[ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ピロガロールトリグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、ポリエチレングリコール(Mw200~2,000)ジグリシジルエーテル、ポリプロピレングリコール(Mw200~2,000)ジグリシジルエーテル、ビスフェノールAのアルキレンオキシド1~20モル付加物のジグリシジルエーテル等];グリシジルエステル(フタル酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル、ダイマー酸ジグリシジルエステル、アジピン酸ジグリシジルエステル等);グリシジルアミン(N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、N,N,N’,N’-テトラグリシジルジアミノジフェニルメタン、N,N,N’,N’-テトラグリシジルキシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジルヘキサメチレンジアミン等);脂肪族エポキシド(エポキシ化ポリブタジエン、エポキシ化大豆油等);脂環式エポキシド(リモネンジオキシド、ジシクロペンタジエンジオキシド等)が挙げられる。
 ポリオール化合物としては、低分子多価アルコール〔炭素数2~20の脂肪族および脂環式のジオール[EG、DEG、プロピレングリコール、1,3-ブチレングリコール、1,4BG、1,6-ヘキサンジオール、3-メチルペンタンジオール、ネオペンチルグリコール、1,9-ノナンジオール、1,4-ジヒドロキシシクロヘキサン、1,4-ビス(ヒドロキシメチル)シクロヘキサン、2,2-ビス(4,4’-ヒドロキシシクロヘキシル)プロパン等];炭素数8~15の芳香環含有ジオール[m-およびp-キシリレングリコール、1,4-ビス(ヒドロキシエチル)ベンゼン等];炭素数3~8のトリオール(グリセリン、トリメチロールプロパン等);4価以上の多価アルコール[ペンタエリスリトール、α-メチルグルコシド、ソルビトール、キシリット、マンニット、グルコース、フルクトース、ショ糖、ジペンタエリスリトール、ポリグリセリン(重合度2~20)等]等〕、およびこれらのアルキレン(炭素数2~4)オキサイド付加物(重合度=2~30)等が挙げられる。
 架橋剤の使用量は、電解液の吸液の観点から、重合体中の活性水素含有基と、架橋剤中の反応性官能基の当量比が好ましくは、1:0.01~2、さらに好ましくは1:0.02~1となる量である。
 架橋剤を用いて重合体を架橋する方法としては、活物質を重合体からなる被覆用樹脂で被覆した後に架橋する方法が挙げられる。具体的には、活物質と重合体を含む樹脂溶液を混合し脱溶剤することにより、活物質が樹脂で被覆された被覆活物質を製造した後に、架橋剤を含む溶液を被覆活物質に混合して加熱することにより、脱溶剤と架橋反応を生じさせて、架橋重合体で活物質を被覆する方法が挙げられる。
 加熱温度は、架橋剤としてポリエポキシ化合物を用いる場合は70℃以上とすることが好ましく、ポリオール化合物を用いる場合は120℃以上とすることが好ましい。
 (被覆活物質の作製方法)
 被覆剤によって被覆された、被覆活物質は、例えば、活物質を万能混合機に入れて10~500rpmで撹拌した状態で、被覆用樹脂を含む樹脂溶液(被覆用樹脂溶液)を1~90分かけて滴下混合し、さらに導電助剤を混合し、撹拌したまま50~200℃に昇温し、0.007~0.04MPaまで減圧した後に、10~150分保持することにより得ることができる。なお、樹脂溶液の溶媒としては、メタノール、エタノールまたはイソプロパノールなどのアルコールが好適に使用できる。
 活物質被覆用樹脂と導電助剤の配合比率は特に限定されるものではないが、重量比率で活物質被覆用樹脂(樹脂固形分重量):導電助剤=1:0.2~3.0であることが好ましい。
 活物質と活物質被覆用樹脂(樹脂固形分重量)の配合比率は特に限定されるものではないが、重量比率で活物質:活物質被覆用樹脂(樹脂固形分重量)=1:0.001~0.1であることが好ましい。
 なお、被覆用樹脂溶液は、被覆用樹脂および溶媒を含むが、場合によっては、被覆用樹脂および導電助剤を混合することによって製造してもよい。事前に混合した被覆用樹脂溶液を活物質とさらに混合することにより、活物質を被覆用樹脂溶液(被覆剤)で被覆することができる。
 また、活物質を被覆用樹脂溶液(被覆剤)で被覆する際に、被覆用樹脂、活物質および導電助剤を同時に混合して、活物質の表面上で被覆用樹脂および導電助剤を含む被覆用樹脂溶液(被覆剤)で被覆してもよい。
 また、活物質を被覆用樹脂溶液(被覆剤)で被覆する際に、活物質に被覆用樹脂を混合し、さらに導電助剤を混合して、活物質の表面上で被覆用樹脂および導電助剤を含む被覆用樹脂溶液(被覆剤)で被覆してもよい。
 上記のように、被覆活物質は、前記活物質の表面の少なくとも一部が、被覆用樹脂および導電助剤を含む被覆剤によって被覆されており、かような形態は、見方によっては、コア-シェル構造を有しているともいえる。そのように考えたとき、コア部(活物質)の平均粒子径は、特に制限されないが、高出力化の観点からは、好ましくは1~100μm、より好ましくは1~20μmである。また、シェル部の厚さは特に制限されないが、ゲルを形成していない状態の厚さとして、好ましくは0.01~5μmであり、より好ましく0.1~2μmである。また、電解液(1M LiPF、エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=3/7(体積比))に50℃にて3日間浸した後の厚さとしては、好ましくは0.01~10μmであり、より好ましくは0.1~5μmである。
 (電解液)
 本発明の実施形態によれば、極性の異なる2つの電極または前記電解質層に含まれる電解液が、ゲル状電解質であり、極性の異なる2つの電極における活物質層に含まれる電解液は、ゲル状電解質でありうる。かかる活物質層に、ゲル状電解質を含ませる方法にも特に制限はなく、図8の形態では、不織布60の第2主面62に、被覆活物質を含むスラリーに、ゲル状電解質も含ませてもよい。図9の形態では、導電部材213および被覆活物質を含むスラリーに、ゲル状電解質を含ませてもよい。図10の形態では、正極活物質14、導電性繊維213、樹脂214を含む活物質用組成物に、ゲル状電解質を含ませてもよい。また、上記のように作製した活物質層にゲル状電解質を含浸等して湿らせることによっても含ませることもできる。
 ここで、ゲル状電解質は、液体電解質に、ゲル化剤を含む工程を有することによって作製することができる。液体電解質は、有機溶媒に支持塩が溶解した形態を有するとよい。有機溶媒としては、例えば、ラクトン化合物、環状または鎖状炭酸エステル、鎖状カルボン酸エステル、環状または鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等およびこれらの混合物を用いることができ、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。有機溶媒のうち、電池出力および充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステルおよびリン酸エステルであり、さらに好ましいのはラクトン化合物、環状炭酸エステルおよび鎖状炭酸エステルであり、特に好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。最も好ましいのはエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。
 液体電解質にゲル化剤を含むことで得られるゲル状電解質は、その電導度が0.1mS/cm以上であることが好ましく、その電導度が0.1~2mS/cmであることがより好ましく、0.5~2mS/cmであってもよい。
 ゲル状物質の強度を上げるとゲル状物質の電導度が低下し、ゲル状物質が液状に近いほど電導度が上がることから、ゲル状物質の電導度はゲル状物質の強度を示す指標として用いることが可能である。本願発明の目的である厚い電極を形成するためには従来よりも電極の強度を上げる必要があり、ゲル状電解質の電導度が好ましい範囲であると、電池の電気性能と電極の強度とを両立しやすくなり好ましい。
 なお、本発明の非水電解質二次電池に用いるゲル電解質の電導度は、以下の方法で測定することができ、液体電解質に以下に説明するゲル化剤等を好ましい部数添加することで電導度を好ましい範囲とすることができる。
 [電導度の測定方法]
 液体電解質とゲル化剤とを、本発明の非水電解質二次電池に用いる場合と同じ比率で混合した混合物をゲル化してゲル電解質を作製する。作製したゲル電解質を用い、25℃でJIS R 1661-2004 ファインセラミックスイオン伝導体の導電率測定方法に準じて交流インピーダンス法によって測定する。
 ゲル化剤としては、例えば、ゲル化用モノマーを用いることができ、ゲル化用モノマーとしては、熱重合可能な重合基が1分子中に2個以上有するモノマー、またはオリゴマーなどが挙げられる。また、本発明の好ましい実施形態によれば、前記ゲル状電解質を形成するマトリックスポリマーが、カルボン酸エステルを官能基として含む。電解液のゲルマトリックスポリマーとして、電解液構成溶媒の官能基と同じ官能基を持つゲルマトリックスポリマーであれば、カルボン酸エステルを官能基として含む。
 上記ゲル化用モノマーとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレンジ(メタ)アクリレート、ジプロピレンジ(メタ)アクリレート、トリプロピレンジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートなどの2官能アクリレート、また、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの3官能アクリレート、また、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどの4官能アクリレートなどが挙げられるが、これらに限定されるものではない。上記の他に、ウレタンアクリレート、ウレタンメタクリレートなどのモノマー、これらの共重合体オリゴマーやアクリロニトリルとの共重合体オリゴマーが挙げられるが、これらに限定されるものではない。これらゲル化用モノマーは2種以上併用して用いることが好ましい。
 かかるゲル化用モノマーの使用量(2種以上併用する場合はその合計量)としては特に制限はないが、電極の構造安定性とこれとは相反するイオン伝導性の観点から、液体電解質(有機溶媒)100重量部に対して、好ましくは1~30重量部、より好ましくは2~20重量部、さらに好ましくは4~10重量部である。特に、5.0重量部以上であると、サイクル特性がより向上する効果を有する。
 好ましい実施形態によれば、ゲル状電解質を形成するマトリックスポリマーが、少なくとも重合性基を2つ持つ分子と、重合性基を3つ持つ分子の混合物を含む電解液に、熱重合開始剤を含ませ、熱重合して電解液をゲル化することを有することによって得られる。2官能性基と3官能性基を併用することで、必要なイオン伝導性を低下させずに、ゲルの堅さを出せるようになると考えられる。
 前記液体電解質は、上述した成分以外の添加剤をさらに含んでもよい。かような化合物の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
 また、熱重合開始剤としては特に種類に制限はないが、電解液が分解しない温度で反応でき、分解生成物が容易に酸化還元されないものが好ましく、t-ブチルパーオキシピバレート、t-ブチルパーオキシネオデカノネート、t-ヘキシルパーオキシネオデカノネート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレートなどが使用できる。また、熱重合の時間にも特に制限はないが、10~300分程度である。
 [その他成分]
 活物質層のうち少なくとも一方は、電子伝導材料からなる導電部材と、被覆活物質とを含む。電解液は、これら以外に、イオン伝導性ポリマー、支持塩等を含みうる。
 (イオン伝導性ポリマー)
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
 (支持塩)
 支持塩としては、例えば、LiPF、LiBF、LiSbF、LiAsFおよびLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSOおよびLiC(CFSO等の有機酸のリチウム塩等が挙げられる。これらの内、電池出力および充放電サイクル特性の観点から好ましいのはLiPFである。
 活物質層に含まれる成分の配合比は、特に限定されない。配合比は、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。各活物質層の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。
 [電解質層]
 本形態の電解質層17に使用される電解質は、ゲル状電解質でありうる。ゲル状電解質の説明は、上記したので、ここでは省略する。
 本形態の双極型二次電池では、電解質層にセパレータを用いてもよい。セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
 セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
 ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
 微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。一例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4~60μmであることが好ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが好ましい。なお、本実施例では、微多孔質セパレータを用いた。
 不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5~200μmであり、特に好ましくは10~100μmである。
 [正極集電板および負極集電板]
 集電板(25、27)を構成する材料は、特に制限されず、電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板27と負極集電板25とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
 <正極リードおよび負極リード>
 また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
 <シール部>
 シール部(絶縁層)は、集電体同士の接触や単電池層の端部における短絡を防止する機能を有する。シール部を構成する材料としては、絶縁性、固体電解質の脱落に対するシール性や外部からの水分の透湿に対するシール性(密封性)、電池動作温度下での耐熱性等を有するものであればよい。例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴム(エチレン-プロピレン-ジエンゴム:EPDM)、等が用いられうる。また、イソシアネート系接着剤や、アクリル樹脂系接着剤、シアノアクリレート系接着剤などを用いても良く、ホットメルト接着剤(ウレタン樹脂、ポリアミド樹脂、ポリオレフィン樹脂)などを用いても良い。なかでも、耐蝕性、耐薬品性、作り易さ(製膜性)、経済性等の観点から、ポリエチレン樹脂やポリプロピレン樹脂が、絶縁層の構成材料として好ましく用いられ、非結晶性ポリプロピレン樹脂を主成分とするエチレン、プロピレン、ブテンを共重合した樹脂を用いることが、好ましい。
 [電池外装体]
 電池外装体としては、公知の金属缶ケースを用いることができるほか、図1に示すように発電要素を覆うことができる、アルミニウムを含むラミネートフィルム29を用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが好ましい。また、外部から掛かる発電要素への群圧を容易に調整することができ、所望の電解液層厚みへと調整容易であることから、外装体はアルミネートラミネートがより好ましい。
 本形態の双極型二次電池は、上述のシート状電極を用いて正極活物質層または負極活物質層を構成することにより、電池容量が大きい活物質を用いても、活物質の膨張・収縮による応力が緩和され、電池のサイクル特性を向上させることができる。したがって、本形態の双極型二次電池は、EV、HEVの駆動用電源として好適に使用される。
 図11は、二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
 図11に示すように、扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ58、負極タブ59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材(ラミネートフィルム52)によって包まれ、その周囲は熱融着されており、発電要素57は、正極タブ58および負極タブ59を外部に引き出した状態で密封されている。ここで、発電要素57は、先に説明した図1に示すリチウムイオン二次電池10の発電要素21に相当するものである。発電要素57は、正極、電解質層17および負極が積層されたものである。好ましい形態によれば、それが複数積層されてなる。
 なお、上記リチウムイオン二次電池は、積層型の扁平な形状のものに制限されるものではない。巻回型のリチウムイオン二次電池では、円筒型形状のものであってもよいし、こうした円筒型形状のものを変形させて、長方形状の扁平な形状にしたようなものであってもよいなど、特に制限されるものではない。上記円筒型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。
 また、図11に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図11に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
 一般的な電気自動車では、電池格納スペースが170L程度である。このスペースにセルおよび充放電制御機器等の補機を格納するため、通常セルの格納スペース効率は50%程度となる。この空間へのセルの積載効率が電気自動車の航続距離を支配する因子となる。単セルのサイズが小さくなると上記積載効率が損なわれるため、航続距離を確保できなくなる。
 したがって、本発明において、発電要素を外装体で覆った電池構造体は大型であることが好ましい。具体的には、ラミネートセル電池の短辺の長さが100mm以上であることが好ましい。かような大型の電池は、車両用途に用いることができる。ここで、ラミネートセル電池の短辺の長さとは、最も長さが短い辺を指す。短辺の長さの上限は特に限定されるものではないが、通常400mm以下である。
 一般的な電気自動車では、一回の充電による走行距離(航続距離)は100kmが市場要求である。かような航続距離を考慮すると、電池の体積エネルギー密度は157Wh/L以上であることが好ましく、かつ定格容量は20Wh以上であることが好ましい。
 また、電極の物理的な大きさの観点とは異なる、大型化電池の観点として、電池面積や電池容量の関係から電池の大型化を規定することもできる。例えば、扁平積層型ラミネート電池の場合には、定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上である電池においては、単位容量当たりの電池面積が大きいため、活物質の膨張収縮に伴う結晶構造の崩壊等に起因する電池特性(サイクル特性)の低下の問題がよりいっそう顕在化しやすい。したがって、本形態に係る非水電解質二次電池は、上述したような大型化された電池であることが、本願発明の作用効果の発現によるメリットがより大きいという点で、好ましい。さらに、矩形状の電極のアスペクト比は1~3であることが好ましく、1~2であることがより好ましい。なお、電極のアスペクト比は矩形状の正極活物質層の縦横比として定義される。アスペクト比をかような範囲とすることで、車両要求性能と搭載スペースを両立できるという利点がある。
 上記のように、本発明の実施形態によれば、表面に導電助剤とゲルマトリックスポリマーを被覆した活物質を用いている。他方で、従来のリチウムイオン二次電池では、バインダとして、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン-ブタジエンゴム、ポリエチレンおよびポリプロピレン等の高分子化合物を使用していたが、本発明の実施形態によれば、バインダを使用しないでもよいというメリットがある。また、カーボンファイバーなどの導電部材を含む電極を使用した電池の電解液をゲル化することによって、電池のレート特性に優れて、厚膜にしても電極にヒビ割等が生じず、不均一な圧力がかかった場合でも電極が部分的に変形することが無いので、電池のサイクル耐久性に優れるようにできる。
 <組電池>
 組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
 電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列にまたは並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
 <車両>
 本発明の非水電解質二次電池は、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記非水電解質二次電池は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
 具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
 以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。なお、「部」は特に断りのない限り、「質量部」を意味する。
 <被覆用樹脂溶液の作製>
 撹拌機、温度計、還流冷却管、滴下ロートおよび窒素ガス導入管を付した4つ口フラスコに、酢酸エチル83部とメタノール17部とを仕込み68℃に昇温した。
 次いで、メタクリル酸242.8部、メチルメタクリレート97.1部、2-エチルヘキシルメタクリレート242.8部、酢酸エチル52.1部およびメタノール10.7部を配合したモノマー配合液と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.263部を酢酸エチル34.2部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで4時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.583部を酢酸エチル26部に溶解した開始剤溶液を、滴下ロートを用いて2時間かけて連続的に追加した。さらに、沸点で重合を4時間継続した。溶媒を除去し、樹脂582部を得た後、イソプロパノールを1,360部加えて、樹脂濃度30重量%のビニル樹脂からなる被覆用樹脂溶液を得た。
 <被覆正極活物質の作製>
 LiCoO粉末(日本化学工業(株)製 セルシードC-8G)96重量部を万能混合機に入れ、室温(25℃)、150rpmで撹拌した状態で、被覆用樹脂溶液(樹脂固形分濃度30重量%)を樹脂固形分として2重量部になるように60分かけて滴下混合し、さらに30分撹拌した。
 次いで、撹拌した状態でアセチレンブラック[電気化学工業(株)製 デンカブラック(登録商標)](平均粒子径(一次粒子径):0.036μm)2重量部を3回に分けて混合し、30分撹拌したままで70℃に昇温し、100mmHgまで減圧し30分保持した。上記操作により被覆正極活物質を得た。なお、飽和吸液状態での引張破断伸び率は、50%であった。なお、被覆正極活物質がコア-シェル構造を有していると考えると、コアとしてのLiCoO粉末の平均粒子径は8μmであった。またシェルの厚さは、全被覆として単純計算を行うと0.14μmであった。
 <電解液1の作製>
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比率1:1)に、LiPFを1mol/Lの割合で溶解させて、リチウムイオン電池用電解液を作製した。
 <電解液2の作製>
 電解液1の100重量部に対して、ゲル化剤としてトリエチレングリコールジアクリレート 3.8重量部と、トリメチロールプロパントリアクリレート 1重量部とを加えてよく混合した。その後に、重合開始剤としてt-ブチルパーオキシピバレート 0.5重量部を混合することで調製した。混合して得られた混合物を80℃の恒温槽に入れて2時間熱重合し、電導度測定用の電導度を作成し、25℃に温調した後、JIS R 1661-2004 ファインセラミックスイオン伝導体の導電率測定方法に準じて交流インピーダンス法により電導度を測定した。電導度は、0.7mS/cmであった。
 <電解液3の作製>
 電解液1の100重量部に対して、ゲル化剤としてトリエチレングリコールジアクリレート 7.6重量部と、トリメチロールプロパントリアクリレート 2重量部とを加えてよく混合した。その後に、重合開始剤としてt-ブチルパーオキシピバレート 0.5重量部を混合することで調製した。実施例1と同様に、ゲル化を行った後、電導度測定用のゲル状電解質を作成し、電導度を測定した。電導度は、0.3mS/cmであった。
 <正極活物質層の作製>
 炭素繊維(大阪ガスケミカル(株)製 ドナカーボ・ミルド S-243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm)を導電部材として準備した。
 上記炭素繊維1.75重量部および被覆正極活物質98.25重量部をプロピレンカーボネート1000重量部に混合して、スラリーを作製した。
 吸引部がΦ70mmのガラスフィルターであるセパレブルフラスコのガラスフィルター上にアラミドの不織布(20μm)を敷いた。そこへプロピレンカーボネートに分散したスラリーを流し込んで、吸引濾過(減圧)するとともに加圧圧力1.5kg/cmで加圧することによって、被覆正極活物質と炭素繊維とをアラミドの不織布に定着させ、正極活物質層を作製した。
 正極活物質層の塗布密度は、120mg/cmとした。このときの正極活物質層の膜厚は、500μmであった。
 <電池の作製>
 [参考例1]
 正極活物質層の表面がAl集電体上にくる(つまり、正極活物質層の表面がAl集電体と接する)ように移し、負極はLi金属箔をCu集電体上に貼り付けたものを用いた。
 被覆正極活物質と;炭素繊維と;を保持してなる、アラミドの不織布がAl集電体に形成されたもの(つまり、Al集電体上に被覆正極活物質層とアラミドの不織布と順に積層もの)を、上記電解液1を加えてしめらせて、PPセパレータを挟んで(負極に)積層した(つまり、Al集電体、被覆正極活物質層、アラミドの不織布、PPセパレータ、Li金属箔、Cu集電体の順に積層された構成とし、アラミドもポリプロピレンと併用してセパレータとして用いた)。
 正極Al集電体からAlのリードを取り出し、負極Cu集電体からNiリードを取り出して、アルミニウムのラミネートパック(ラミネートフィルム)に収納して減圧ヒートシールした。セルを、ゴムシートを介して2枚のSUS板で押さえた。
 [実施例1]
 参考例1において、電解液1を電解液2にした以外は同様にしてセルを構成した。
 [実施例2]
 参考例1において、電解液1を電解液3にした以外は同様にしてセルを構成した。
 [比較例1]
 上記で使用したLiCoOを用いて、ポリフッ化ビニリデン、アセチレンブラックをそれぞれ90:5:5重量比で加えて、N-メチルピロリドンを溶剤として用いて、スラリーを調製した。これをアプリケータでAl集電体の上にLiCoOについて参考例1と同程度の塗布密度になるように塗布して、ポップレート上で乾燥して電極とした。これをΦ60mmに打ち抜くと、ヒビが入ってしまった。
 <セルの充放電評価>
 45℃の恒温槽中にセルをセットして、以下の条件で、充放電サイクル耐久試験を実施し、50サイクル後の容量維持率を表1にまとめた。
 最初の2サイクルは、0.2CのCC-CVにて4.2Vまで充電合計8時間充電し、0.2CのCCで2.5Vまで放電した。その後、充放電レートを0.5C、3時間充電、0.5CでのCC放電を行い、50サイクル後の容量維持率は、0.5C充放電条件の3回目の放電容量に対する値である。
 表1から分かるように、活物質を導電助剤と被覆用樹脂(ゲルマトリックスポリマー)で被覆し、導電部材(カーボン繊維)を加えてスラリーを作製して、減圧濾過法等で成膜すると、反応性のよい厚膜電極を構成できて、さらに電解液をゲル化するとサイクル耐久性に優れる電池とできる。
Figure JPOXMLDOC01-appb-T000001
  10 双極型二次電池、
  11 集電体、
  11a 正極側の最外層集電体、
  11b 負極側の最外層集電体、
  13 正極活物質層、
  15 負極活物質層、
  17 電解質層、
  19 単電池層、
  21 発電要素、
  23 双極型電極、
  25 正極集電板、
  27 負極集電板、
  29、52 ラミネートフィルム、
  31 シール部、
  58  正極タブ、
  59  負極タブ、
  14  正極活物質、
  24  負極活物質、
  111 正極活物質層の第1主面、
  121 正極活物質層の第2主面、
  211 負極活物質層の第1主面、
  221 負極活物質層の第2主面、
  131 導電性繊維、
  16  導電助剤、
  151 被覆剤、
  100 正極活物質層、
  213 導電性繊維、
  214 樹脂、
  313 樹脂、
  60  不織布、
  62  不織布の第2主面、
  70  濾紙、
  313 濾紙、
  470 濾紙、
  570 板、
  110 正極活物質層、
  50  扁平なリチウムイオン二次電池、
  57  発電要素。
 なお、本出願は、2014年12月26日に出願された日本国特許出願第2014-265522号に基づいており、その開示内容は、参照により全体として引用されている。

Claims (9)

  1.  集電体上に、活物質層が形成されてなる、極性の異なる2つの電極と;
     前記電極の間に配置される電解質層と;
    を含む発電要素を有する、非水電解質二次電池であって、
     前記極性の異なる2つの電極の活物質層のうち少なくとも一方が、電子伝導材料からなる導電部材および活物質を含み、
     前記活物質層が、前記電解質層側に接触する第1主面と、前記集電体側に接触する第2主面とを有し、
     前記導電部材の少なくとも一部は、前記第1主面から前記第2主面までを電気的に接続する導電通路を形成しており、前記導電通路が、前記導電通路の周囲の前記活物質と接触しており、
     前記活物質の表面の少なくとも一部が、被覆用樹脂および導電助剤を含む被覆剤によって被覆されており、
     前記極性の異なる2つの電極または前記電解質層に含まれる電解液が、ゲル状電解質である、非水電解質二次電池。
  2.  前記ゲル状電解質の電導度が0.1mS/cm以上である、請求項1に記載の非水電解質二次電池。
  3.  前記ゲル状電解質を形成するマトリックスポリマーが、カルボン酸エステルを官能基として含む、請求項1または2に記載の非水電解質二次電池。
  4.  前記被覆用樹脂が、飽和吸液状態での引張破断伸び率が10%以上である、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記被覆用樹脂が、活性水素成分とイソシアネート成分とを反応させて得られるウレタン樹脂である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記被覆用樹脂が、ビニルモノマーを必須構成単量体とする重合体で、ビニルモノマーとして、カルボキシル基を有するビニルモノマーおよび下記式(1):
     CH=C(R)COOR (1)
     式(1)中、Rは水素原子またはメチル基であり、Rは、炭素数1~4の直鎖のアルキル基または炭素数4~36の分岐アルキル基である、
    で表されるビニルモノマーを含む、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  7.  前記ゲル状電解質を形成するマトリックスポリマーが、少なくとも重合性基を2つ持つ分子と、重合性基を3つ持つ分子の混合物を含む電解液に、熱重合開始剤を含ませ、熱重合して電解液をゲル化することを有することによって得られる、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  集電体上に、活物質層を形成されてなる、極性の異なる2つの電極と;前記電極の間に配置される電解質層と;を含む発電要素を有する、非水電解質二次電池の製造方法であって、
     前記極性の異なる2つの電極の活物質層のうち少なくとも一方に、電子伝導材料からなる導電部材および活物質を含ませ、
     前記活物質層が、前記電解質層側に接触する第1主面と、前記集電体側に接触する第2主面とを有し、前記導電部材の少なくとも一部は、前記第1主面から前記第2主面までを電気的に接続する導電通路を形成しており、前記導電通路が、前記導電通路の周囲の前記活物質と接触させており、
     前記活物質の表面の少なくとも一部を、被覆用樹脂および導電助剤を含む被覆剤によって被覆させており、
     前記極性の異なる2つの電極または前記電解質層に含まれる電解液を、ゲル状電解質とする、非水電解質二次電池の製造方法。
  9.  前記ゲル状電解質を形成するマトリックスポリマーを、少なくとも重合性基を2つ持つ分子と、重合性基を3つ持つ分子の混合物を含む電解液に、熱重合開始剤を含ませ、熱重合して電解液をゲル化することを有することによって得る、請求項8に記載の製造方法。
PCT/JP2015/086179 2014-12-26 2015-12-25 非水電解質二次電池とその製造方法 WO2016104679A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580071165.0A CN107112596B (zh) 2014-12-26 2015-12-25 非水电解质二次电池及其制造方法
JP2016566493A JP6342519B2 (ja) 2014-12-26 2015-12-25 非水電解質二次電池とその製造方法
US15/539,460 US10431851B2 (en) 2014-12-26 2015-12-25 Non-aqueous electrolyte secondary battery and method for manufacturing the same
EP15873247.9A EP3240095B1 (en) 2014-12-26 2015-12-25 Nonaqueous electrolyte rechargeable battery and manufacturing method therefor
KR1020177017481A KR101871134B1 (ko) 2014-12-26 2015-12-25 비수전해질 이차 전지와 그 제조 방법
US16/521,766 US11063295B2 (en) 2014-12-26 2019-07-25 Non-aqueous electrolyte secondary battery and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-265522 2014-12-26
JP2014265522 2014-12-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/539,460 A-371-Of-International US10431851B2 (en) 2014-12-26 2015-12-25 Non-aqueous electrolyte secondary battery and method for manufacturing the same
US16/521,766 Division US11063295B2 (en) 2014-12-26 2019-07-25 Non-aqueous electrolyte secondary battery and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2016104679A1 true WO2016104679A1 (ja) 2016-06-30

Family

ID=56150691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086179 WO2016104679A1 (ja) 2014-12-26 2015-12-25 非水電解質二次電池とその製造方法

Country Status (6)

Country Link
US (2) US10431851B2 (ja)
EP (1) EP3240095B1 (ja)
JP (1) JP6342519B2 (ja)
KR (1) KR101871134B1 (ja)
CN (1) CN107112596B (ja)
WO (1) WO2016104679A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055955A1 (ja) * 2016-09-26 2018-03-29 日産自動車株式会社 非水電解質二次電池用正極
WO2018055956A1 (ja) * 2016-09-26 2018-03-29 日産自動車株式会社 非水電解質二次電池用負極
WO2018084320A1 (ja) * 2016-11-07 2018-05-11 日産自動車株式会社 リチウムイオン電池用正極及びリチウムイオン電池
WO2018084319A1 (ja) * 2016-11-07 2018-05-11 日産自動車株式会社 リチウムイオン電池用負極及びリチウムイオン電池
JP2018081910A (ja) * 2016-11-07 2018-05-24 三洋化成工業株式会社 リチウムイオン電池用負極及びリチウムイオン電池
JP2018081907A (ja) * 2016-11-07 2018-05-24 三洋化成工業株式会社 リチウムイオン電池用正極及びリチウムイオン電池
JP2019046765A (ja) * 2017-09-07 2019-03-22 三洋化成工業株式会社 リチウムイオン電池用電極の製造方法及びリチウムイオン電池用電極の製造装置
FR3072506A1 (fr) * 2017-10-17 2019-04-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication en continu d'une electrode
WO2019198467A1 (ja) 2018-04-09 2019-10-17 日産自動車株式会社 非水電解質二次電池の製造方法
CN110402511A (zh) * 2017-03-15 2019-11-01 日本电气株式会社 二次电池用粘合剂组合物
JP2020077619A (ja) * 2018-10-05 2020-05-21 荒川化学工業株式会社 リチウムイオン電池用熱架橋性バインダー水溶液、リチウムイオン電池用電極熱架橋性スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
WO2021025072A1 (ja) * 2019-08-06 2021-02-11 Apb株式会社 リチウムイオン電池の製造方法
JP2021044152A (ja) * 2019-09-11 2021-03-18 三洋化成工業株式会社 リチウムイオン電池の製造方法
CN112913063A (zh) * 2018-10-24 2021-06-04 氢氦锂有限公司 聚合物浸渍袋式电池单元
JP2021515363A (ja) * 2018-02-26 2021-06-17 ユミコア Liイオンバッテリー用の正極スラリー
WO2023171746A1 (ja) * 2022-03-11 2023-09-14 Apb株式会社 電池モジュール及び電池モジュールの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095652A (zh) * 2017-09-15 2020-05-01 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及、含固体电解质的片材及全固态二次电池的制造方法
JP7117157B2 (ja) 2018-06-01 2022-08-12 日産自動車株式会社 電池装置
KR20200099822A (ko) * 2019-02-15 2020-08-25 주식회사 유뱃 전기화학 소자 및 이의 제조방법
CN113646164B (zh) * 2019-04-02 2023-06-06 日本制铁株式会社 金属-碳纤维增强树脂材料复合体
US11817555B2 (en) * 2020-09-18 2023-11-14 Korea Institute Of Energy Research Composition for polymer electrolyte, polymer electrolyte comprising the same, and method for manufacturing polymer electrolyte

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331838A (ja) * 2002-05-14 2003-11-21 Hitachi Ltd リチウム二次電池
JP2003331823A (ja) * 2002-05-10 2003-11-21 Japan Storage Battery Co Ltd 非水電解質二次電池、およびその製造方法
JP2005078943A (ja) * 2003-08-29 2005-03-24 Tdk Corp 電極用複合粒子の製造方法、電極の製造方法及び電気化学素子の製造方法、並びに、電極用複合粒子製造装置、電極製造装置及び電気化学素子製造装置
JP2007265668A (ja) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd 非水電解質二次電池用正極及びその製造方法
JP2013127872A (ja) * 2011-12-16 2013-06-27 Samsung Sdi Co Ltd 二次電池用正極及び二次電池
JP2014157661A (ja) * 2013-02-14 2014-08-28 Nippon Zeon Co Ltd 電気化学素子正極用複合粒子の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204936A (ja) 1996-01-26 1997-08-05 Toray Ind Inc 電 池
US7754382B2 (en) * 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
US7662424B2 (en) 2003-08-29 2010-02-16 Tdk Corporation Method of making composite particle for electrode, method of making electrode, method of making electrochemical device, apparatus for making composite particle for electrode, apparatus for making electrode, and apparatus for making electrochemical device
JP3785407B2 (ja) * 2003-08-29 2006-06-14 Tdk株式会社 電極用複合粒子の製造方法、電極の製造方法及び電気化学素子の製造方法、並びに、電極用複合粒子製造装置、電極製造装置及び電気化学素子製造装置
JP5264271B2 (ja) * 2008-04-30 2013-08-14 パナソニック株式会社 非水電解質二次電池及びその製造方法
US8190831B2 (en) 2008-10-31 2012-05-29 Lsi Corporation Methods and apparatus for detecting a syncMark in a hard disk drive
KR101088073B1 (ko) 2010-10-16 2011-12-01 주식회사 샤인 금속 장섬유를 포함하는 전극 구조를 갖는 전지 및 이의 제조 방법
KR101806547B1 (ko) * 2011-04-06 2018-01-10 주식회사 제낙스 금속 섬유를 포함하는 전극 구조체를 갖는 전지 및 상기 전극 구조의 제조 방법
CN103988344B (zh) * 2011-12-14 2016-11-09 丰田自动车株式会社 非水电解质二次电池和二次电池用负极的制造方法
JP2013206623A (ja) * 2012-03-27 2013-10-07 Kawasaki Heavy Ind Ltd ファイバー電極及びファイバー電極を有するファイバー電池
US9397341B2 (en) * 2012-10-10 2016-07-19 Nthdegree Technologies Worldwide Inc. Printed energy storage device
KR101739298B1 (ko) 2013-02-20 2017-05-24 삼성에스디아이 주식회사 전지용 바인더, 이를 채용한 음극과 리튬전지
WO2015068325A1 (ja) * 2013-11-05 2015-05-14 ソニー株式会社 電池、セパレータ、電極、塗料、電池パック、電子機器、電動車両、蓄電装置および電力システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331823A (ja) * 2002-05-10 2003-11-21 Japan Storage Battery Co Ltd 非水電解質二次電池、およびその製造方法
JP2003331838A (ja) * 2002-05-14 2003-11-21 Hitachi Ltd リチウム二次電池
JP2005078943A (ja) * 2003-08-29 2005-03-24 Tdk Corp 電極用複合粒子の製造方法、電極の製造方法及び電気化学素子の製造方法、並びに、電極用複合粒子製造装置、電極製造装置及び電気化学素子製造装置
JP2007265668A (ja) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd 非水電解質二次電池用正極及びその製造方法
JP2013127872A (ja) * 2011-12-16 2013-06-27 Samsung Sdi Co Ltd 二次電池用正極及び二次電池
JP2014157661A (ja) * 2013-02-14 2014-08-28 Nippon Zeon Co Ltd 電気化学素子正極用複合粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3240095A4 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11302915B2 (en) 2016-09-26 2022-04-12 Nissan Motor Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery
WO2018055956A1 (ja) * 2016-09-26 2018-03-29 日産自動車株式会社 非水電解質二次電池用負極
JP2018055836A (ja) * 2016-09-26 2018-04-05 日産自動車株式会社 非水電解質二次電池用正極
JP2018055841A (ja) * 2016-09-26 2018-04-05 日産自動車株式会社 非水電解質二次電池用負極
WO2018055955A1 (ja) * 2016-09-26 2018-03-29 日産自動車株式会社 非水電解質二次電池用正極
CN109792037A (zh) * 2016-09-26 2019-05-21 日产自动车株式会社 非水电解质二次电池用负极
CN109792036A (zh) * 2016-09-26 2019-05-21 日产自动车株式会社 非水电解质二次电池用正极
JP2018081910A (ja) * 2016-11-07 2018-05-24 三洋化成工業株式会社 リチウムイオン電池用負極及びリチウムイオン電池
JP7143069B2 (ja) 2016-11-07 2022-09-28 三洋化成工業株式会社 リチウムイオン電池用負極及びリチウムイオン電池
JP7058491B2 (ja) 2016-11-07 2022-04-22 三洋化成工業株式会社 リチウムイオン電池用正極及びリチウムイオン電池
JP2018081907A (ja) * 2016-11-07 2018-05-24 三洋化成工業株式会社 リチウムイオン電池用正極及びリチウムイオン電池
US10930920B2 (en) 2016-11-07 2021-02-23 Nissan Motor Co., Ltd. Negative electrode for lithium ion battery and lithium ion battery
WO2018084319A1 (ja) * 2016-11-07 2018-05-11 日産自動車株式会社 リチウムイオン電池用負極及びリチウムイオン電池
US11024835B2 (en) 2016-11-07 2021-06-01 Nissan Motor Co., Ltd. Positive electrode for lithium ion battery and lithium ion battery
WO2018084320A1 (ja) * 2016-11-07 2018-05-11 日産自動車株式会社 リチウムイオン電池用正極及びリチウムイオン電池
CN110402511A (zh) * 2017-03-15 2019-11-01 日本电气株式会社 二次电池用粘合剂组合物
JP2019046765A (ja) * 2017-09-07 2019-03-22 三洋化成工業株式会社 リチウムイオン電池用電極の製造方法及びリチウムイオン電池用電極の製造装置
FR3072506A1 (fr) * 2017-10-17 2019-04-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication en continu d'une electrode
EP3474349A1 (fr) * 2017-10-17 2019-04-24 Commissariat à l'énergie atomique et aux énergies alternatives Procede de fabrication en continu d'une electrode
JP2021515363A (ja) * 2018-02-26 2021-06-17 ユミコア Liイオンバッテリー用の正極スラリー
JP7332611B2 (ja) 2018-02-26 2023-08-23 ユミコア Liイオンバッテリー用の正極スラリー
WO2019198467A1 (ja) 2018-04-09 2019-10-17 日産自動車株式会社 非水電解質二次電池の製造方法
JP7259689B2 (ja) 2018-10-05 2023-04-18 荒川化学工業株式会社 リチウムイオン電池用熱架橋性バインダー水溶液、リチウムイオン電池用電極熱架橋性スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
JP2020077619A (ja) * 2018-10-05 2020-05-21 荒川化学工業株式会社 リチウムイオン電池用熱架橋性バインダー水溶液、リチウムイオン電池用電極熱架橋性スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
JP2022517468A (ja) * 2018-10-24 2022-03-09 ヒーリー、エルエルシー ポリマー浸漬パウチセル
CN112913063A (zh) * 2018-10-24 2021-06-04 氢氦锂有限公司 聚合物浸渍袋式电池单元
WO2021025072A1 (ja) * 2019-08-06 2021-02-11 Apb株式会社 リチウムイオン電池の製造方法
JP2021044152A (ja) * 2019-09-11 2021-03-18 三洋化成工業株式会社 リチウムイオン電池の製造方法
JP7510749B2 (ja) 2019-09-11 2024-07-04 三洋化成工業株式会社 リチウムイオン電池の製造方法
WO2023171746A1 (ja) * 2022-03-11 2023-09-14 Apb株式会社 電池モジュール及び電池モジュールの製造方法

Also Published As

Publication number Publication date
EP3240095A1 (en) 2017-11-01
US10431851B2 (en) 2019-10-01
KR101871134B1 (ko) 2018-06-25
US20180048023A1 (en) 2018-02-15
JP6342519B2 (ja) 2018-06-13
CN107112596A (zh) 2017-08-29
CN107112596B (zh) 2019-06-28
US11063295B2 (en) 2021-07-13
EP3240095A4 (en) 2017-11-22
KR20170087951A (ko) 2017-07-31
EP3240095B1 (en) 2018-10-17
US20190348712A1 (en) 2019-11-14
JPWO2016104679A1 (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6342519B2 (ja) 非水電解質二次電池とその製造方法
JP6158360B2 (ja) 非水電解質二次電池
JP6920074B2 (ja) リチウムイオン二次電池用電極及びその製造方法
JP6944773B2 (ja) 非水電解質二次電池用負極
JP6944772B2 (ja) 非水電解質二次電池用正極
JP6940390B2 (ja) 二次電池用電極及び二次電池
JP6929186B2 (ja) 電池用電極の製造方法
WO2019074028A1 (ja) 非水電解質二次電池用電極
WO2019230536A1 (ja) 電池装置
WO2019074025A1 (ja) 非水電解質二次電池用電極の製造方法
JP2019186063A (ja) リチウムイオン二次電池
WO2019074030A1 (ja) 非水電解質二次電池用電極
WO2019074029A1 (ja) 非水電解質二次電池用電極
WO2021125286A1 (ja) リチウムイオン電池用被覆正極活物質粒子、リチウムイオン電池用正極及びリチウムイオン電池用被覆正極活物質粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873247

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016566493

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15539460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015873247

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020177017481

Country of ref document: KR