WO2016101692A1 - 树脂组合物和金属-树脂复合体及其制备方法和应用以及电子产品外壳 - Google Patents

树脂组合物和金属-树脂复合体及其制备方法和应用以及电子产品外壳 Download PDF

Info

Publication number
WO2016101692A1
WO2016101692A1 PCT/CN2015/092722 CN2015092722W WO2016101692A1 WO 2016101692 A1 WO2016101692 A1 WO 2016101692A1 CN 2015092722 W CN2015092722 W CN 2015092722W WO 2016101692 A1 WO2016101692 A1 WO 2016101692A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal
resin composition
weight
composition according
Prior art date
Application number
PCT/CN2015/092722
Other languages
English (en)
French (fr)
Inventor
张�雄
温建军
赵正生
周维
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP15871765.2A priority Critical patent/EP3239241A4/en
Publication of WO2016101692A1 publication Critical patent/WO2016101692A1/zh
Priority to US15/631,440 priority patent/US20170292021A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0046Details relating to the filling pattern or flow paths or flow characteristics of moulding material in the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/08Epoxidised polymerised polyenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers

Definitions

  • the present disclosure relates to a resin composition, and in particular to a metal-resin composite formed from the resin composition, a preparation method and application thereof, and an electronic product casing, the resin member in the electronic product casing
  • the resin composition is formed.
  • metal-resin composites have become higher and higher.
  • a metal-resin composite is used for forming an outer casing of an electronic product
  • the resin layer in the metal-resin composite is required to have a low impact. Dielectric constant and low dielectric loss to reduce the attenuation of the electromagnetic signal.
  • the resin layer in the existing metal-resin composite is difficult to achieve both high impact strength and low dielectric constant and dielectric loss.
  • the metal-resin composite and its preparation method still need further improvement.
  • the purpose of the present disclosure is to overcome the technical problem that the resin layer in the existing metal-resin composite is difficult to have both high impact resistance and low dielectric constant and low dielectric loss, providing a resin composition and The metal-resin composite formed of the resin composition and the metal, the resin layer in the metal-resin composite formed of the resin composition and the metal not only has high impact properties, but also has a low dielectric constant and Lower dielectric loss.
  • the present disclosure provides a resin composition
  • a resin composition comprising a host resin, a modified resin, and a fiber
  • the host resin being one of a polyarylene sulfide resin, a polyether resin, and a polyester resin Or two or more kinds
  • the melting point of the modified resin is 3-24 ° C higher than the glass transition temperature of the host resin
  • the content of the modified resin is 1-10 parts by weight with respect to 100 parts by weight of the host resin.
  • the present disclosure provides a metal-resin composite comprising a metal substrate and a resin layer attached to at least a portion of a surface of the metal substrate, wherein the resin layer is composed of a resin according to the present disclosure The composition is formed.
  • the present disclosure provides a method of preparing a metal-resin composite comprising mixing a resin composition according to the present disclosure, injecting a metal substrate surface and molding to form a metal A resin layer is formed on the surface of the substrate.
  • the present disclosure provides a metal-resin composite prepared by the method according to the third aspect of the present disclosure.
  • the present disclosure provides an application of a metal-composite according to the present disclosure in preparing an outer casing of an electronic product.
  • the present disclosure provides an electronic product housing including a metal shell body and at least one resin member attached to at least a portion of an inner surface and/or at least a portion of an outer surface of the metal shell body
  • the resin member is formed of the resin composition according to the present disclosure.
  • the resin layer in the metal-resin composite formed from the resin composition according to the present disclosure not only has good impact resistance, but also satisfies various application requirements; and exhibits low dielectric constant and low dielectric loss, Can effectively reduce the attenuation of the signal.
  • the metal-resin composite according to the present disclosure is particularly suitable for the production of an outer casing of an electronic product, particularly an outer casing of an electronic product having a signal transmitting element and/or a signal receiving element, such as a cell phone casing.
  • FIG. 1 is a cross-sectional view for schematically illustrating a mobile phone case according to the present disclosure, including a front view and a top view;
  • FIG. 2 is a cross-sectional view for schematically illustrating a smart watch case in accordance with the present disclosure.
  • the present disclosure provides a resin composition comprising a host resin, a modified resin, and fibers.
  • the melting point of the modified resin is 3 to 24 ° C higher than the glass transition temperature of the host resin, so that not only the metal formed by integrally molding the resin composition and the metal substrate can be formed.
  • the resin composite has better impact resistance and also allows the composite to exhibit a lower dielectric constant and dielectric loss.
  • the melting point of the modified resin can be further reduced from the viewpoint of further reducing the dielectric constant and dielectric loss. It is 10-20 ° C higher than the glass transition temperature of the host resin.
  • the modified resin has a melting point that is 14-18 ° C higher than the glass transition temperature of the host resin.
  • the modified resin generally has a melting point. In the present disclosure, both numerical values are included in the description of the numerical range.
  • the glass transition temperature and melting point are determined by the method specified in ASTM D3418-08, and the midpoint is The temperature is taken as the glass transition temperature, and the melting peak top temperature is taken as the melting point.
  • the modified resin is a polyolefin containing a structural unit containing an epoxy group from the viewpoint of further improving the impact resistance of the metal-resin composite formed of the resin composition and the metal substrate.
  • the epoxy group may serve as an end group of the polyolefin molecular chain or may be located in a side chain of the polyolefin molecular chain.
  • the epoxy group is located in a side chain of the polyolefin molecular chain.
  • the modified resin contains an epoxy group-containing structural unit of formula I:
  • R 1 is hydrogen or a C 1 -C 5 alkyl group.
  • the C 1 -C 5 alkyl group includes a C 1 -C 5 linear alkyl group and a C 3 -C 5 branched alkyl group, and specific examples thereof may include, but are not limited to, a methyl group, an ethyl group, a n-propyl group.
  • the modified resin contains an epoxy group-containing structural unit represented by Formula II:
  • the modified resin further contains a structural unit formed of an olefin (for example, a C 2 -C 4 monoolefin), and optionally a structural unit formed of ethylene.
  • an olefin for example, a C 2 -C 4 monoolefin
  • the structural unit of the modified resin is a structural unit formed of ethylene and an epoxy group-containing structural unit represented by Formula II.
  • the polyolefin as the modified resin may be a random copolymer, a block copolymer, or an alternating copolymer.
  • the polyolefin as a modified resin is a random copolymer.
  • the epoxy resin is contained in the modified resin.
  • the content of the structural unit may be from 1 to 8% by weight, for example from 2 to 4% by weight.
  • the modified resin may be commercially available or may be synthesized by a conventional method, for example, an olefin may be copolymerized with an ethylenic monomer having an epoxy group in a molecular structure, and a specific example of the ethylenic monomer May include, but is not limited to, glycidyl methacrylate.
  • the content of the modified resin may be from 1 to 10 parts by weight relative to 100 parts by weight of the host resin. From the viewpoint of further improving the impact strength of the resin layer formed of the resin composition and further reducing the dielectric constant and dielectric loss of the resin layer formed of the resin composition, with respect to 100 parts by weight of the host resin, the content of the modified resin may be 4 to 8 parts by weight.
  • the resin composition according to the present disclosure optionally further contains at least one adhesion-enhancing resin whose initial melting temperature is not higher than the crystallization temperature of the host resin.
  • the initial melting temperature of the bonding strength enhancing resin is 10-20 ° C lower than the crystallization temperature of the host resin.
  • the bonding strength between the metal substrate and the resin layer in the metal-resin composite formed of the resin composition and the metal can be further improved by introducing the adhesion-enhancing resin.
  • the initial melting temperature of the binding strength enhancing resin is 14-18 ° C lower than the crystallization temperature of the host resin.
  • the melting point of the adhesion-enhancing resin is generally higher than the melting point of the modified resin, such as 5-10 ° C higher.
  • the initial melting temperature and crystallization temperature are determined by the method specified in ASTM D3418-08, and the extrapolated starting melting temperature is taken as the initial melting temperature, and the crystallization peak top temperature is taken as the crystallization temperature.
  • the adhesion-enhancing resin may be a structure containing a maleic anhydride-containing group from the viewpoint of further improving the bonding strength between the metal substrate and the resin layer in the metal-resin composite formed of the resin composition and the metal substrate.
  • the content of the structural unit containing a maleic anhydride group may be from 0.5 to 2% by weight.
  • the content of the structural unit containing the maleic anhydride group is from 1 to 1.5% by weight, which can further improve the combination of the composite formed of the resin composition and the metal matrix. strength.
  • the content of the structural unit containing a maleic anhydride group can be determined by an acid-base titration method.
  • the content of the maleic anhydride group-containing structural unit may be formed of maleic anhydride, that is, the polyolefin as the adhesion-enhancing resin contains a structural unit formed of maleic anhydride.
  • the polyolefin as the adhesion-enhancing resin further contains a structural unit formed of an olefin (for example, a C 2 - C 4 monoolefin), and optionally a structural unit formed of ethylene.
  • a structural unit formed of an olefin for example, a C 2 - C 4 monoolefin
  • ethylene optionally a structural unit formed of ethylene
  • the structural unit of the adhesion-enhancing resin is a structural unit formed of maleic anhydride and a structural unit formed of ethylene.
  • the polyolefin as the adhesion-enhancing resin may be a random copolymer, a block copolymer, or an alternating copolymer such as a random copolymer.
  • the polyolefin as the adhesion-enhancing resin is commercially available or can be synthesized by a conventional method, for example, by copolymerizing an olefin such as ethylene with maleic anhydride.
  • the content of the adhesion-enhancing resin is relative to 100 parts by weight of the host resin It may be from 1 to 5 parts by weight. From the viewpoint of further improving the bonding strength between the metal substrate and the resin layer in the metal-resin composite formed of the resin composition, the content of the adhesion-enhancing resin may be 1 with respect to 100 parts by weight of the host resin. - 4 parts by weight.
  • the host resin is one or more of a polyarylene sulfide resin, a polyether resin, and a polyester resin.
  • the polyester resin means an ester group in a molecular structure (ie, ) of the polymer.
  • Specific examples of the host resin may include, but are not limited to, polyphenylene sulfide, polyphenylene ether, polycarbonate, polybutylene terephthalate, dimethanol ester, polyallyl diallyl, poly One or more of diallyl terephthalate, polybutylene naphthalate, polyethylene terephthalate, and polybutylene terephthalate.
  • the host resin is selected from the group consisting of polyphenylene sulfide resin, polyphenylene ether resin, and polyparaphenylene from the viewpoint of further improving the bonding strength between the metal substrate and the resin layer in the metal-resin composite formed of the resin composition.
  • the polyethylene terephthalate may be polybutylene terephthalate and/or polyethylene terephthalate.
  • the host resin is a partially crystalline polymer having a crystallization temperature and a glass transition temperature.
  • the crystallization temperature of the host resin depends on the type of the host resin and the molecular weight.
  • a resin having a crystallization temperature in the range of 100 to 150 ° C can be selected as the host resin, and a resin having a crystallization temperature in the range of 110 to 130 ° C as a host resin.
  • the glass transition temperature of the host resin is usually at least 30 ° C lower than its crystallization temperature.
  • the ash content of the host resin may be not more than 0.2% by weight, which can further reduce the dielectric of the metal-resin composite formed by integrally molding the resin composition with the metal substrate. loss.
  • the bulk resin has an ash content in the range of from 0.1 to 0.2% by weight.
  • the ash content can be obtained by burning the host resin in a muffle furnace at 1000 ° C for 4 hours in an air atmosphere, and taking the ignition residue as a percentage by mass of the main resin before burning as an ash content.
  • the ash of the host resin can be controlled within a predetermined range by screening the host resin.
  • the fiber functions as a reinforcing fiber and may be a common fiber material.
  • the fiber may be selected from one or more of glass fiber, carbon fiber, and polyamide fiber.
  • the content of the silica of the glass fiber is generally 60% by weight or more, and usually 60 to 80% by weight.
  • the inventors of the present disclosure have found during the research that the silica content of the glass fiber has an influence on the dielectric constant of the metal-resin composite formed of the resin composition and the metal matrix, and the glass fiber having a high silica content can further The dielectric constant of the metal-resin composite formed of the resin composition and the metal substrate is lowered.
  • the glass fiber may have a silicon oxide content of 70% by weight or more, and the metal-resin composite thus formed exhibits a lower dielectric constant. Further reducing the metal-resin complex formed by the resin composition and the metal matrix
  • the glass fiber has a silica content of 70 to 75% by weight from the viewpoint of the dielectric constant of the combination.
  • the content of the fiber can be selected depending on the specific use of the resin composition.
  • the fiber may be included in an amount of 10 to 60 parts by weight, for example, 30 to 50 parts by weight, per 100 parts by weight of the main body resin.
  • the resin composition according to the present disclosure may further contain at least one auxiliary agent such as an antioxidant, a light stabilizer, a lubricant, depending on the specific use, to improve the properties of the resin composition and/or to impart the resin composition. New performance.
  • at least one auxiliary agent such as an antioxidant, a light stabilizer, a lubricant, depending on the specific use, to improve the properties of the resin composition and/or to impart the resin composition. New performance.
  • the antioxidant can improve the oxidation resistance of the resin composition, thereby increasing the service life of the metal-resin composite formed of the resin composition and the metal substrate.
  • the antioxidant may be various antioxidants commonly used in the field of polymers, and may, for example, contain a primary antioxidant and a secondary antioxidant.
  • the relative amount of the primary antioxidant and the auxiliary antioxidant can be appropriately selected depending on the kind.
  • the weight ratio of the primary antioxidant to the secondary antioxidant may range from 1 to 4 .
  • the primary antioxidant may be a hindered phenol type antioxidant, and specific examples thereof may include, but are not limited to, an antioxidant 1098 and an antioxidant 1010, wherein the main component of the antioxidant 1098 is N, N'-double- (3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl)hexanediamine, the main component of the antioxidant 1010 is tetrakis[3-(3,5-di-tert-butyl-4- Hydroxyphenyl) propionic acid] pentaerythritol.
  • an antioxidant 1098 is N, N'-double- (3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl)hexanediamine
  • the main component of the antioxidant 1010 is tetrakis[3-(3,5-di-tert-butyl-4- Hydroxyphenyl) propionic acid] pentaerythritol.
  • the auxiliary antioxidant may be a phosphite type antioxidant, and specific examples thereof may include, but are not limited to, an antioxidant 168 whose main component is tris(2,4-di-tert-butylphenyl)phosphite.
  • the antioxidant may be used in a conventionally selected form. Generally, the antioxidant may be used in an amount of from 0.01 to 5 parts by weight, for example, from 0.1 to 1 part by weight, per 100 parts by weight of the main body resin.
  • the light stabilizer may be various known light stabilizers, such as a hindered amine type light stabilizer, and specific examples thereof may include, but are not limited to, bis(2,2,6,6-tetramethyl-4-piperidinyl group). ) sebacate.
  • the light stabilizer may be used in an amount of 0.01 to 5 parts by weight, for example, 0.1 to 1 part by weight, per 100 parts by weight of the main body resin.
  • the lubricant may be various materials capable of improving the fluidity of the polymer melt, and may be, for example, a copolymer wax (EVA wax) selected from ethylene/vinyl acetate, a polyethylene wax (PE wax), a stearate, and One or more of silicones.
  • EVA wax copolymer wax
  • the lubricant may be included in an amount of 0.1 to 5 parts by weight, for example, 0.5 to 2 parts by weight, per 100 parts by weight of the main body resin.
  • the resin composition according to the present disclosure is particularly suitable for bonding with a metal matrix, and the formed metal-resin composite not only has high impact resistance but also has a low dielectric constant and dielectric loss.
  • the present disclosure also provides a metal-resin composite including a metal substrate and a resin layer attached to at least a portion of a surface of the metal substrate, wherein the resin layer is according to the present disclosure
  • the resin composition is formed.
  • the types and contents of the components in the resin composition have been described in detail above and will not be described in detail herein.
  • various methods commonly used in the art can be used to improve the metal matrix and the tree.
  • the bonding force between the lipid layers may be distributed with holes and/or grooves, and a part of the resin in the resin layer extends downward and fills the holes and/or grooves, thereby resin
  • the layer is anchored in a metal matrix.
  • the method of forming holes and/or grooves on the surface of the metal substrate will be described in detail below and will not be described in detail herein.
  • the thickness of the resin layer can be selected depending on the specific use of the metal-resin composite. Generally, the resin layer may have a thickness of 0.3 to 2 mm.
  • the material of the metal substrate can be selected depending on the specific use of the metal-resin composite.
  • the material of the metal substrate may be aluminum, aluminum alloy, magnesium, magnesium alloy or stainless steel.
  • the present disclosure also provides a method of producing a metal-resin composite, which comprises uniformly mixing a resin composition according to the present disclosure, injecting a surface of a metal substrate, and molding to form a resin layer on the surface of the metal substrate.
  • the resin composition has been described in detail above and will not be described in detail herein.
  • the components in the resin composition according to the present disclosure may be uniformly mixed by various methods, for example, the components in the resin composition according to the present disclosure may be uniformly mixed in a twin-screw extruder, and then granulated. .
  • the formed mixture can be injected into the surface of the metal substrate by a conventional method and molded to form a resin layer on the surface of the metal substrate.
  • the metal substrate is placed in a mold, and a mixture of the resin composition is injected by an injection molding method.
  • the conditions of the injection molding may be conventionally selected.
  • the conditions for the injection molding include: a mold temperature of 100-160 ° C, a dwell time of 1-60 seconds, an injection pressure of 50-140 MPa, an injection time of 0.2-3 seconds, and a delay time of 1-60 seconds. .
  • the injection amount of the resin composition can be selected in accordance with the intended thickness of the resin layer. Generally, the resin composition is injected in an amount such that the thickness of the formed resin layer is from 0.3 to 2 mm.
  • holes and/or grooves may be formed on the surface of the metal substrate where the resin layer needs to be formed. . Holes and/or grooves may be formed in the surface of the metal substrate by various conventional methods.
  • the metal substrate may be anodized to form an anodized film layer on the surface of the metal substrate, and pores are distributed in the anodized film layer, and part of the resin composition is injected into the surface of the metal substrate when the resin composition is injected into the surface of the metal substrate. It can be filled in the pores of the anodized film layer.
  • a metal substrate can be placed in the etchant to form a etched hole in the metal surface.
  • the type of the etching liquid can be selected depending on the material of the metal substrate, and is not particularly limited.
  • the pore size of the formed etching holes can generally be in the range of 100 to 2000 nm.
  • the corrosion hole may have a depth of 10 to 50% of the thickness of the metal substrate.
  • the present disclosure also provides a metal-resin composite prepared by the method according to the present disclosure.
  • the metal-resin composite according to the present disclosure not only has high impact strength, but also has low dielectric constant and dielectric loss, and is particularly suitable for preparing an outer casing of an electronic product, particularly having a signal transmitting element and/or signal receiving.
  • the present disclosure also provides the use of the metal-resin composite according to the present disclosure in the preparation of an electronic product casing.
  • the present disclosure further provides an electronic product housing including a metal shell body and at least one resin member attached to at least a portion of an inner surface and/or at least a portion of an outer surface of the metal shell body, the resin member being The disclosed resin composition is formed.
  • the outer casing includes not only an outer casing that is a sheet-like structure but also various frame structures such as an outer frame.
  • At least one opening may be disposed on the metal shell body to install an electronic product at a corresponding position of the opening to avoid the components of the metal shell body.
  • the position of the at least part of the opening may correspond to a mounting position of the signal transmitting element and/or the signal receiving element, and the opening position may be provided with a resin member, and A part of the resin in the resin member is filled in the opening, and a signal emitting element and/or a signal receiving element may be mounted on the resin member.
  • the metal shell body may be a unitary structure or a splicing structure.
  • the splicing structure means that the metal shell body includes at least two portions that are disconnected from each other, and the two portions are spliced together to form a metal shell body.
  • the adjacent two portions may be bonded together with an adhesive.
  • the splicing positions of the adjacent two portions are provided with the resin member, and the resin members respectively overlap the adjacent two portions and cover the splicing position (ie, the resin member bridges the adjacent two portions) In this way, the bonding strength of the splicing position can be improved; and the metal shell body can be divided into a plurality of parts according to the internal structure of the electronic product, and the resin member functions to form the metal shell body as a whole, and Can be used as a mounting base for some electronic components.
  • At least a part of the outer surface of the metal shell body may be attached with a resin member, which may cover the entire outer surface, or may cover a part of the outer surface of the metal shell body to form a pattern, such as decoration Sexual pattern.
  • the resin member when the inner surface of the metal shell body is attached with a resin member, the resin member may be disposed at one or more positions required.
  • the resin member is attached to the entire inner surface of the metal shell body, and the resin member may be a unitary structure. According to this specific embodiment, it is particularly suitable for the case where the metal shell body is a spliced structure.
  • the electronic product casing according to the present disclosure may be any electronic product casing that requires a metal as a casing, such as a casing or a frame of a mobile terminal, a casing or a frame of the wearable electronic device.
  • the mobile terminal refers to a device that can be in a mobile state and has a wireless transmission function, such as a mobile phone, a portable computer (including a laptop and a tablet).
  • the wearable electronic device refers to an intelligent wearable device, such as a smart watch or a smart bracelet.
  • the electronic product may specifically be, but not limited to, one or more of a mobile phone, a portable computer (such as a notebook computer and a tablet), a smart watch, and a smart wristband.
  • Fig. 1 shows a front view and a top view of an embodiment of the electronic product casing when it is a casing of a mobile phone.
  • a plurality of openings 3 are formed in the metal shell body 1 of the mobile phone.
  • the position of the opening 3 may correspond to the position where the antenna is mounted and the position at which various buttons are mounted.
  • the resin layer 2 is attached to the entire inner surface of the metal shell body 1 of the mobile phone, the resin layer 2 is an integral structure, and a part of the resin in the resin layer 2 is filled in the opening 3.
  • Fig. 2 shows a front view of an embodiment of the outer casing of the electronic product being a smart watch.
  • the smart watch metal shell body 4 is provided with a signal element opening 6 corresponding to the mounting signal emitting element and/or the signal receiving element, and the inner surface of the smart watch metal shell body 4 is adhered with a resin inner liner 5, resin A part of the resin in the inner liner 5 is filled in the signal element opening 6, and the signal element can be mounted at a corresponding position on the resin inner liner 5.
  • the electronic product casing can be prepared by the method for preparing a metal-resin composite as described above, and will not be described in detail herein.
  • the electronic product casing according to the present disclosure has good impact resistance and also has a low dielectric constant and a low dielectric loss.
  • the glass transition temperature, the melting point, the initial melting temperature, and the crystallization temperature were measured in accordance with the method specified in ASTM D3418-08, wherein the midpoint temperature was taken as the glass transition temperature, and the melting peak top temperature was measured. As the melting point, the extrapolated starting melting temperature was taken as the initial melting temperature, and the crystallization peak top temperature was taken as the crystallization temperature.
  • the tensile strength (tensile strength at the time of breaking) of a sample prepared from the resin composition was measured by the method specified in ASTM D638-2010, wherein a type I sample was used.
  • the average shear strength between the metal matrix and the resin layer in the metal-resin composite was measured on an INSTRON 3369 universal testing machine in accordance with the method specified in ASTM D1002-10, wherein the metal matrix and the resin The layers are overlapped, and the size of the overlapping portion is 5 mm long by 15 mm wide.
  • the Izod notched impact strength of the sample prepared from the resin composition was measured by the method specified in ASTM D256-06, wherein the size of the test sample was 63.5 mm ⁇ 12.7 mm ⁇ 3.0 mm (on the test sample) The gap depth is 2.54 mm).
  • the dielectric constant and the dielectric constant of the sample prepared from the resin composition were measured by the resonant cavity method. Electrical loss tangent.
  • the ash content of the main resin was measured by a muffle furnace burning method by placing the main resin in a muffle furnace at a temperature of 1000 ° C and burning in an air atmosphere. The ignition residue was collected and weighed, and the percentage of the mass of the residue to the mass of the main resin to be fired was taken as the ash content of the host resin.
  • the corrosion holes on the surface of the etched metal substrate were observed using an S-4800 electron microscope available from Hitachi, Ltd., and the inner diameter thereof was measured.
  • Examples 1-6 are used to illustrate the disclosure.
  • the A5052 aluminum alloy plate having a thickness of 1.0 mm was cut into a rectangular plate of 100 mm ⁇ 15 mm in width, and then immersed in a 1% by weight aqueous solution of NaOH (wherein the solution temperature was 40 ° C), and after soaking for 1 minute, the aluminum was plated.
  • the alloy plate was taken out, washed three times with deionized water, and then dried to obtain a metal substrate.
  • the surface of the metal substrate was observed by an electron microscope, and it was confirmed that corrosion holes were distributed on the surface of the aluminum alloy plate, and the average inner diameter of the corrosion holes was 100 nm.
  • a metal substrate was prepared in the same manner as in the step (1) of Example 1.
  • Resin pellets were prepared in the same manner as in the step (2) of Example 1, except that no modified resin was used.
  • a metal-resin composite was prepared in the same manner as in the step (3) of Example 1, except that the resin pellets were prepared using the step (2) of Comparative Example 1.
  • the performance data of the metal-resin composite is listed in Table 1.
  • a metal substrate was prepared in the same manner as in the step (1) of Example 1.
  • a resin pellet was prepared in the same manner as in the step (2) of Example 1, except that instead of using a modified resin, 5 parts by weight of Arkema Lotader AX8900 resin (for ethylene, methacrylic acid) was used.
  • a metal-resin composite was prepared in the same manner as in the step (3) of Example 1, except that the resin pellets prepared in the step (2) of Comparative Example 2 were used.
  • the performance data of the prepared metal-resin composites are listed in Table 1.
  • a metal substrate was prepared in the same manner as in the step (1) of Example 1.
  • Resin pellets were prepared in the same manner as in the step (2) of Example 1, except that the binder-enhancing resin was not used.
  • a metal-resin composite was prepared in the same manner as in the step (3) of Example 1, except that the resin pellets prepared in the step (2) of Example 2 were used.
  • the performance data of the prepared metal-resin composites are listed in Table 1.
  • a metal substrate was prepared in the same manner as in the step (1) of Example 1.
  • Resin pellets were prepared in the same manner as in the step (2) of Example 1, except that the polyphenylene sulfide resin (Sichuan Deyang PPS-Hb) was used without screening, and the ash content was 0.70% by weight.
  • the polyphenylene sulfide resin Sichuan Deyang PPS-Hb
  • a metal-resin composite was prepared in the same manner as in the step (3) of Example 1, except that the resin pellets were the resin pellets prepared in the step (2) of Example 3.
  • the performance data of the prepared metal-resin composites are listed in Table 1.
  • a metal substrate was prepared in the same manner as in the step (1) of Example 1.
  • Resin pellets were prepared in the same manner as in the step (2) of Example 1, except that the glass fibers used were E glass fibers (Zhejiang Boulder 988A, silica content of 60% by weight).
  • a metal-resin composite was prepared in the same manner as in the step (3) of Example 1, except that the resin pellets were the resin pellets prepared in the step (2) of Example 4.
  • the performance data of the prepared metal-resin composites are listed in Table 1.
  • a metal substrate was prepared in the same manner as in the step (1) of Example 1.
  • a resin pellet was prepared in the same manner as in the step (2) of Example 1, except that 2 parts by weight of a resin of GR205 of Dow Chemical (the resin is a random copolymer of maleic anhydride and ethylene, The content of the structural unit formed of maleic anhydride was 1.8% by weight, the initial melting temperature was 122 ° C, and the melting point was 130 ° C. Instead of the adhesion-enhancing resin.
  • a metal-resin composite was prepared in the same manner as in the step (3) of Example 1, except that the resin pellets were the resin pellets prepared in the step (2) of Example 5.
  • the performance data of the prepared metal-resin composites are listed in Table 1.
  • a SUS304 stainless steel plate having a thickness of 1.0 mm was cut into a rectangular plate of 100 mm ⁇ 15 mm in width, and then immersed in 35% by weight of hydrochloric acid (wherein the solution temperature was 50 ° C), and after immersing for 2 minutes, the stainless steel plate was taken out. After washing three times with deionized water, it was dried to obtain a metal substrate. The surface of the metal substrate was observed by an electron microscope, and it was confirmed that corrosion holes were distributed on the surface of the stainless steel plate, and the average inner diameter of the corrosion holes was 150 nm.
  • the polyphenylene sulfide resin (PPS-1H30C) used had an ash content of 0.1% by weight, a crystallization temperature of 121 ° C, and a glass transition temperature of 90 °C.
  • Comparing Example 1 with Comparative Example 1 and Comparative Example 2 it can be seen that the metal-resin composite formed using the resin composition according to the present disclosure and the metal substrate has not only high impact resistance but also lower The dielectric constant and low dielectric loss have low interference with electromagnetic signals and are suitable as an outer casing for electronic products.
  • Example 1 Comparing Example 1 with Example 2 and Example 5, it can be seen that by introducing a binding force-enhancing resin into the resin composition, the bonding strength between the metal substrate and the resin layer in the metal-resin composite can be further improved. Improve the structural stability of the metal-resin composite.
  • Example 1 Comparing Example 1 with Example 3, it can be seen that the dielectric loss of the finally prepared metal-resin composite can be further reduced by lowering the ash content of the host resin.
  • Example 1 Comparing Example 1 with Example 4, it can be seen that the use of glass fibers having a relatively high silica content can further reduce the dielectric constant of the finally prepared metal-resin composite, thereby further reducing interference with electromagnetic signals and avoiding The electromagnetic signal strength is rapidly attenuated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

公开了一种树脂组合物,由该树脂组合物与金属基体形成的金属-树脂复合体及其制备方法和应用,以及使用所述树脂组合物的电子产品外壳。所述树脂组合物含有主体树脂、改性树脂和纤维,所述主体树脂为聚芳硫醚树脂、聚醚树脂和聚酯树脂中的一种或两种以上,所述改性树脂的熔点比所述主体树脂的玻璃化转变温度高3-24℃。

Description

树脂组合物和金属-树脂复合体及其制备方法和应用以及电子产品外壳
相关申请的交叉引用
本申请主张在2014年12月26日在中国提交的中国专利申请号No.201410836687.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及一种树脂组合物,具体涉及一种由该树脂组合物形成的金属-树脂复合体及其制备方法和应用,以及一种电子产品外壳,所述电子产品外壳中的树脂件由所述树脂组合物形成。
背景技术
随着电子设备的发展,其使用范围逐渐拓宽,对金属-树脂复合体的综合性能要求也越来越高。例如,在金属-树脂复合体用于形成电子产品外壳时,不仅要求金属-树脂复合体中的树脂层具有较高的抗冲击强度,还要求金属-树脂复合体中的树脂层具有较低的介电常数和较低的介电损耗,以降低电磁信号的衰减幅度。然而,现有的金属-树脂复合体中的树脂层难以兼顾高的抗冲击强度以及低的介电常数和介电损耗。
因此,金属-树脂复合体及其制备方法仍有待进一步的改进。
发明内容
本公开的目的在于克服现有的金属-树脂复合体中的树脂层很难同时具有高的抗冲击性能以及低的介电常数和低的介电损耗的技术问题,提供一种树脂组合物以及由该树脂组合物与金属形成的金属-树脂复合体,由该树脂组合物与金属形成的金属-树脂复合体中的树脂层不仅具有较高的冲击性能,而且具有较低的介电常数和较低的介电损耗。
根据本公开的第一个方面,本公开提供了一种树脂组合物,包含主体树脂、改性树脂和纤维,所述主体树脂为聚芳硫醚树脂、聚醚树脂和聚酯树脂中的一种或两种以上,所述改性树脂的熔点比所述主体树脂的玻璃化转变温度高3-24℃,相对于100重量份主体树脂,所述改性树脂的含量为1-10重量份。
根据本公开的第二个方面,本公开提供了一种金属-树脂复合体,包含金属基体以及附着在所述金属基体的至少部分表面的树脂层,其中所述树脂层由根据本公开的树脂组合物形成。
根据本公开的第三个方面,本公开提供了一种制备金属-树脂复合体的方法,包含将根据本公开的树脂组合物混合均匀后,注入金属基体表面并进行成型,以在所述金属基体表面形成树脂层。
根据本公开的第四个方面,本公开提供了一种由根据本公开的第三个方面的方法制备的金属-树脂复合体。
根据本公开的第五个方面,本公开提供了根据本公开的金属-复合体在制备电子产品外壳中的应用。
根据本公开的第六个方面,本公开提供了一种电子产品外壳,该外壳包括金属壳本体以及附着于所述金属壳本体的至少部分内表面和/或至少部分外表面的至少一个树脂件,所述树脂件由根据本公开的树脂组合物形成。
由根据本公开的树脂组合物形成的金属-树脂复合体中的树脂层不仅具有良好的抗冲击性能,满足多种使用场合的要求;而且显示出低的介电常数和低的介电损耗,能够有效地降低信号的衰减幅度。因而,根据本公开的金属-树脂复合体特别适用于制备电子产品的外壳,特别是具有信号发射元件和/或信号接受元件的电子产品的外壳,如手机外壳。
附图说明
图1为用于示意性地说明根据本公开的手机外壳的剖视图,包括主视图和俯视图;以及
图2为用于示意性地说明根据本公开的智能表外壳的剖视图。
具体实施方式
本公开提供了一种树脂组合物,包含主体树脂、改性树脂和纤维。
根据本公开的树脂组合物,所述改性树脂的熔点比所述主体树脂的玻璃化转变温度高3-24℃,这样不仅能使由该树脂组合物与金属基体一体化成型而形成的金属-树脂复合体具有较好的抗冲击性能,而且还能使该复合体显示出较低的介电常数和介电损耗。在使由该树脂组合物与金属基体形成的金属-树脂复合体具有较好的抗冲击性能的前提下,从进一步降低介电常数和介电损耗的角度出发,所述改性树脂的熔点可以比所述主体树脂的玻璃化转变温度高10-20℃。可选地,所述改性树脂的熔点比所述主体树脂的玻璃化转变温度高14-18℃。所述改性树脂一般为具有一个熔点。本公开中,在说明数值范围时,均包括两个端值。
本公开中,玻璃化转变温度和熔点采用ASTM D3418-08中规定的方法测定,将中点 温度作为玻璃化转变温度,将熔融峰顶温度作为熔点。
从进一步提高由该树脂组合物与金属基体形成的金属-树脂复合体的抗冲击性能的角度出发,所述改性树脂为含有含环氧基团的结构单元的聚烯烃。所述环氧基团可以作为聚烯烃分子链的端基,也可以位于所述聚烯烃分子链的侧链。可选地,所述环氧基团位于所述聚烯烃分子链的侧链。
在一个具体实施方式中,所述改性树脂含有式I所示的含环氧基团的结构单元:
Figure PCTCN2015092722-appb-000001
式I中,R1为氢或C1-C5的烷基。所述C1-C5的烷基包括C1-C5的直链烷基和C3-C5的支链烷基,其具体实例可以包括但不限于甲基、乙基、正丙基、异丙基、正丁基、2,2-二甲基乙基、2-甲基丙基、正戊基、2-甲基丁基、3-甲基丁基、4-甲基丁基、2,2-二甲基丙基、2,3-二甲基丙基、2-乙基丙基和3-乙基丙基。
可选地,所述改性树脂含有式II所示的含环氧基团的结构单元:
Figure PCTCN2015092722-appb-000002
根据本公开的树脂组合物,所述改性树脂还含有由烯烃(例如为C2-C4的单烯烃)形成的结构单元,可选地还含有由乙烯形成的结构单元。
在本公开的一个具体实施方式中,所述改性树脂的结构单元为由乙烯形成的结构单元和式II所示的含环氧基团的结构单元。
根据本公开的树脂组合物,作为改性树脂的聚烯烃可以为无规共聚物,也可以为嵌段共聚物,还可以为交替共聚物。可选地,作为改性树脂的所述聚烯烃为无规共聚物。
根据本公开的树脂组合物,从进一步提高由该树脂组合物与金属基体形成的金属-树脂复合体中的树脂层的抗冲击性能的角度出发,所述改性树脂中,含环氧基团的结构单元的含量可以为1-8重量%,例如为2-4重量%。
所述改性树脂可以商购得到,也可以采用常规方法合成,例如可以将烯烃与分子结构中含有环氧基团的烯键式单体进行共聚合,所述烯键式单体的具体实例可以包括但不限于甲基丙烯酸缩水甘油酯。
根据本公开的树脂组合物,相对于100重量份主体树脂,所述改性树脂的含量可以为1-10重量份。从进一步提高由该树脂组合物形成的树脂层的抗冲击强度,并进一步降低由该树脂组合物形成的树脂层的介电常数和介电损耗的角度出发,相对于100重量份主体树脂,所述改性树脂的含量可以为4-8重量份。
根据本公开的树脂组合物,可选地还含有至少一种结合力增强树脂,所述结合力增强树脂的起始熔融温度不高于所述主体树脂的结晶温度。可选地,所述结合力增强树脂的起始熔融温度比所述主体树脂的结晶温度低10-20℃。根据本公开的树脂组合物,通过引入结合力增强树脂能进一步提高由该树脂组合物与金属形成的金属-树脂复合体中金属基体与树脂层之间的结合强度。可选地,所述结合力增强树脂的起始熔融温度比所述主体树脂的结晶温度低14-18℃。根据本公开的树脂组合物,所述结合力增强树脂的熔点一般为高于所述改性树脂的熔点,如高5-10℃。
本公开中,起始熔融温度和结晶温度采用ASTM D3418-08中规定的方法测定,将外推起始熔融温度作为起始熔融温度,将结晶峰顶温度作为结晶温度。
从进一步提高由该树脂组合物与金属基体形成的金属-树脂复合体中金属基体与树脂层之间的结合强度的角度出发,所述结合力增强树脂可以为含有含马来酸酐基团的结构单元的聚烯烃。
作为结合力增强树脂的聚烯烃中,含马来酸酐基团的结构单元的含量可以为0.5-2重量%。可选地,作为结合力增强树脂的聚烯烃中,含马来酸酐基团的结构单元的含量为1-1.5重量%,这样能进一步提高由该树脂组合物与金属基体形成的复合体的结合强度。含马来酸酐基团的结构单元的含量可以采用酸碱滴定的方法测定。
所述含马来酸酐基团的结构单元的含量可以由马来酸酐形成,即作为结合力增强树脂的聚烯烃含有由马来酸酐形成的结构单元。
作为结合力增强树脂的聚烯烃还含有由烯烃(例如为C2-C4的单烯烃)形成的结构单元,可选地还含有由乙烯形成的结构单元。
在本公开的一个具体实施方式中,所述结合力增强树脂的结构单元为由马来酸酐形成的结构单元和由乙烯形成的结构单元。
作为结合力增强树脂的聚烯烃可以为无规共聚物,还可以为嵌段共聚物,也可以为交替共聚物,例如为无规共聚物。
作为结合力增强树脂的聚烯烃可以商购得到,也可以采用常规方法合成,例如:将烯烃(如乙烯)与马来酸酐进行共聚而得到。
根据本公开的树脂组合物,相对于100重量份主体树脂,所述结合力增强树脂的含量 可以为1-5重量份。从进一步提高由该树脂组合物形成的金属-树脂复合体中,金属基体与树脂层之间的结合强度的角度出发,相对于100重量份主体树脂,所述结合力增强树脂的含量可以为1-4重量份。
根据本公开的树脂组合物,所述主体树脂为聚芳硫醚树脂、聚醚树脂和聚酯树脂中的一种或两种以上。所述聚酯树脂是指分子结构中含有酯基(即,
Figure PCTCN2015092722-appb-000003
)的聚合物。所述主体树脂的具体实例可以包括但不限于:聚苯硫醚、聚苯醚、聚碳酸酯、聚对苯二甲酸环己烷对二甲醇酯、聚间苯二甲酸二烯丙酯、聚对苯二甲酸二烯丙酯、聚萘二酸丁二醇酯、聚对苯二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯中的一种或两种以上。从进一步提高由该树脂组合物形成的金属-树脂复合体中金属基体与树脂层之间的结合强度的角度出发,所述主体树脂选自聚苯硫醚树脂、聚苯醚树脂和聚对苯二甲酸二醇酯的一种或两种以上。所述聚对苯二甲酸二醇酯可以为聚对苯二甲酸丁二醇酯和/或聚对苯二甲酸乙二醇酯。
根据本公开的树脂组合物,主体树脂为部分结晶聚合物,具有结晶温度和玻璃化转变温度。所述主体树脂的结晶温度根据主体树脂种类以及分子量而定。根据本公开的树脂组合物,可以选择结晶温度在100-150℃的范围内的树脂作为主体树脂,如结晶温度在110-130℃的范围内的树脂作为主体树脂。根据本公开的树脂组合物,所述主体树脂的玻璃化转变温度通常比其结晶温度低至少30℃。
根据本公开的树脂组合物,所述主体树脂的灰分含量可以为不高于0.2重量%,这样能够进一步降低由该树脂组合物与金属基体一体化成型而形成的金属-树脂复合体的介电损耗。可选地,所述主体树脂的灰分含量在0.1-0.2重量%的范围内。所述灰分含量可以通过将主体树脂于马弗炉中在1000℃于空气气氛中灼烧4小时,将灼烧残留物占灼烧前主体树脂的质量百分比作为灰分含量。
可以通过对主体树脂进行筛选,从而将主体树脂的灰分控制在预定范围内。
根据本公开的树脂组合物,所述纤维起到增强的作用,可以为常见的纤维材料。具体地,所述纤维可以选自玻璃纤维、碳纤维和聚酰胺纤维的一种或两种以上。
在所述纤维为玻璃纤维时,玻璃纤维的氧化硅的含量一般为60重量%以上,通常为60-80重量%。本公开的发明人在研究过程中发现,玻璃纤维的氧化硅含量对由该树脂组合物与金属基体形成的金属-树脂复合体的介电常数具有影响,采用高氧化硅含量的玻璃纤维能进一步降低由该树脂组合物与金属基体形成的金属-树脂复合体的介电常数。根据本公开的树脂组合物,所述玻璃纤维的氧化硅含量可以为70重量%以上,由此形成的金属-树脂复合体显示出更低的介电常数。从进一步降低由该树脂组合物与金属基体形成的金属-树脂复 合体的介电常数的角度出发,所述玻璃纤维的氧化硅含量为70-75重量%。
根据本公开的树脂组合物,所述纤维的含量可以根据该树脂组合物的具体使用场合进行选择。一般地,相对于100重量份主体树脂,所述纤维的含量可以为10-60重量份,例如为30-50重量份。
根据本公开的树脂组合物,根据具体使用场合还可以含有至少一种助剂,如抗氧剂、光稳定剂、润滑剂,以改善该树脂组合物的性能和/或赋予该树脂组合物以新的性能。
所述抗氧剂可以提高树脂组合物的抗氧化性能,从而提高由该树脂组合物与金属基体形成的金属-树脂复合体的使用寿命。所述抗氧剂可以为聚合物领域中常用的各种抗氧剂,例如可以含有主抗氧剂和辅助抗氧剂。所述主抗氧剂与所述辅助抗氧剂之间的相对用量可以根据种类进行适当的选择。一般地,所述主抗氧剂与所述辅助抗氧剂的重量比可以为1:1-4。所述主抗氧剂可以为受阻酚型抗氧剂,其具体实例可以包括但不限于抗氧剂1098和抗氧剂1010,其中,抗氧剂1098的主要成分为N,N’-双-(3-(3,5-二叔丁基-4-羟基苯基)丙酰基)己二胺,抗氧剂1010的主要成分为四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇。所述辅助抗氧剂可以为亚磷酸酯型抗氧剂,其具体实例可以包括但不限于抗氧剂168,其主要成分为三(2,4-二叔丁基苯基)亚磷酸酯。
所述抗氧剂的用量可以为常规选择,一般地,相对于100重量份主体树脂,所述抗氧剂的用量可以为0.01-5重量份,例如为0.1-1重量份。
所述光稳定剂可以为公知的各种光稳定剂,例如受阻胺型光稳定剂,其具体实例可以包括但不限于双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯。
相对于100重量份主体树脂,所述光稳定剂的用量可以为0.01-5重量份,例如为0.1-1重量份。
所述润滑剂可以为各种能够改善聚合物熔体的流动性的物质,例如可以为选自乙烯/醋酸乙烯的共聚蜡(EVA蜡)、聚乙烯蜡(PE蜡)、硬脂酸盐以及硅酮中的一种或两种以上。相对于100重量份主体树脂,所述润滑剂的含量可以为0.1-5重量份,例如为0.5-2重量份。
根据本公开的树脂组合物特别适于与金属基体结合,形成的金属-树脂复合体不仅具有较高的抗冲击性能,而且具有较低的介电常数和介电损耗。
由此,本公开还提供了一种金属-树脂复合体,该金属-树脂复合体包括金属基体以及附着在所述金属基体的至少部分表面的树脂层,其中,所述树脂层由根据本公开的树脂组合物形成。所述树脂组合物中各组分的种类以及含量在前文已经进行了详细的说明,此处不再详述。
根据本公开的金属-树脂复合体,可以采用本领域常用的各种方法来提高金属基体与树 脂层之间的结合力。可选地,金属基体中附着有树脂层的表面可以分布有孔和/或沟槽,所述树脂层中的部分树脂向下延伸并填充于所述孔和/或沟槽中,从而将树脂层锚定在金属基体中。在金属基材表面形成孔和/或沟槽的方法将在下文进行详细说明,此处不再详述。
根据本公开的金属-树脂复合体,所述树脂层的厚度可以根据该金属-树脂复合体的具体使用场合进行选择。一般地,所述树脂层的厚度可以为0.3-2mm。
根据本公开的金属-树脂复合体,所述金属基体的材质可以根据该金属-树脂复合体的具体使用场合进行选择。一般地,所述金属基体的材质可以为铝、铝合金、镁、镁合金或者不锈钢。
本公开还提供了一种金属-树脂复合体的制备方法,该方法包括将根据本公开的树脂组合物混合均匀后,注入金属基体表面并进行成型,以在所述金属基体表面形成树脂层。所述树脂组合物在前文已经进行了详细的说明,此处不再详述。
可以采用各种方法将根据本公开的树脂组合物中的各组分混合均匀,例如可以在双螺杆挤出机中将根据本公开的树脂组合物中的各组分混合均匀后,进行造粒。
可以采用常规方法将形成的混合物注入金属基体表面并进行成型,从而在金属基体表面形成树脂层。在本公开的一个具体实施方式中,将所述金属基材置于模具中,通过注塑的方法注入所述树脂组合物的混合物。
所述注塑的条件可以为常规选择。可选地,所述注塑的条件包括:模具温度为100-160℃,保压时间为1-60秒,射出压力为50-140MPa,射出时间为0.2-3秒,延迟时间为1-60秒。
所述树脂组合物的注入量可以根据预期的树脂层厚度进行选择。一般地,所述树脂组合物的注入量使得形成的树脂层的厚度为0.3-2mm。
根据本公开的方法,从进一步提高最终形成的金属-树脂复合体中金属基体与树脂层之间的结合强度的角度出发,可以先在金属基体需要形成树脂层的表面形成孔和/或沟槽。可以采用常用的各种方法在金属基体表面形成孔和/或沟槽。
在一种实施方式中,可以将金属基体进行阳极氧化,在金属基体表面形成阳极氧化膜层,阳极氧化膜层中分布有孔,在将树脂组合物注入金属基材表面时,部分树脂组合物可以填充于阳极氧化膜层的孔中。将金属基体进行阳极氧化的方法是本领域技术人员所公知的,本文不再详述。
在另一种实施方式中,可以将金属基体置于蚀刻液中,以在金属表面形成腐蚀孔。所述蚀刻液的种类可以根据金属基体的材质进行选择,没有特别限定。形成的腐蚀孔的孔径一般可以在100-2000nm的范围内。所述腐蚀孔的深度可以为金属基体的厚度为10-50%。
也可以将上述两种实施方式组合使用。
本公开还提供了由根据本公开的方法制备的金属-树脂复合体。
根据本公开的金属-树脂复合体不仅具有较高的抗冲击强度,而且具有低的介电常数和介电损耗,特别适于制备电子产品的外壳,特别是具有信号发射元件和/或信号接收元件的电子产品的外壳,如手机外壳。
由此,本公开还提供了根据本公开的金属-树脂复合体在制备电子产品外壳中的应用。
本公开进一步提供了一种电子产品外壳,该外壳包括金属壳本体以及附着于所述金属壳本体的至少部分内表面和/或至少部分外表面的至少一个树脂件,所述树脂件由根据本公开的树脂组合物形成。本公开中,所述外壳不仅包括为片状结构的外壳,也包括各种框架结构,如外框。
根据本公开的电子产品外壳,根据具体需要,所述金属壳本体上可以设置有至少一个开口,以在该开口的对应位置安装电子产品的需要避开金属壳本体的元件。在一种实施方式中,由于金属对电磁信号具有屏蔽作用,因此至少部分开口的位置可以对应于信号发射元件和/或信号接受元件的安装位置,此时所述开口位置可以设置树脂件,并使所述树脂件中的部分树脂填充于所述开口中,信号发射元件和/或信号接受元件可以安装在所述树脂件上。
根据本公开的电子产品外壳,所述金属壳本体可以为一体结构,也可以为拼接结构。所述拼接结构是指所述金属壳本体包括相互断开的至少两个部分,两个部分相互拼接在一起形成金属壳本体。
在所述金属壳本体为拼接结构时,相邻两个部分可以用胶粘剂粘结在一起。在一个具体实施方式中,相邻两部分的拼接位置设置有所述树脂件,该树脂件分别与相邻两部分搭接并覆盖所述拼接位置(即该树脂件桥接该相邻两部分),这样能够提高拼接位置的结合强度;并且,可以根据电子产品的内部结构,将金属壳本体分成多个部分,所述树脂件在起到使金属壳本体形成为一个整体的作用的同时,还能用作一些电子元件的安装基体。
根据本公开的电子产品外壳,所述金属壳本体的至少部分外表面可以附着有树脂件,所述树脂件可以覆盖整个外表面,也可以覆盖金属壳本体的部分外表面以形成图案,例如装饰性图案。
根据本公开的电子产品外壳,所述金属壳本体的内表面附着有树脂件时,所述树脂件可以设置在需要的一个或多个位置。在一个具体实施方式中,所述树脂件附着于所述金属壳本体的整个内表面,此时所述树脂件可以为一体结构。根据该具体的实施方式,特别适用于金属壳本体为拼接结构的场合。
根据本公开的电子产品外壳,可以为各种需要以金属作为外壳的电子产品外壳,例如:移动终端的外壳或者外框,可穿戴电子设备的外壳或者外框。所述移动终端是指可以处于移动状态且具有无线传输功能的设备,例如:移动电话、便携式电脑(包括笔记本电脑和平板电脑)。所述可穿戴电子设备是指智能化的穿戴设备,例如:智能表、智能手环。所述电子产品具体可以为但不限于移动电话、便携式电脑(如笔记本电脑和平板电脑)、智能表和智能手环中的一种或两种以上。
图1示出了所述电子产品外壳为手机外壳时的一种实施方式的主视图和俯视图。如图1所示,在手机金属壳本体1上开设有多个开口3,开口3的位置可以对应于安装天线的位置以及安装各种按键的位置。树脂层2附着在手机金属壳本体1的整个内表面,树脂层2为一体结构并且树脂层2中的部分树脂填充于开口3中。
图2示出了所述电子产品外壳为智能表的外壳的一种实施方式的主视图。如2所示,智能表金属壳本体4上设置有对应于安装信号发射元件和/或信号接收元件的信号元件开口6,智能表金属壳本体4的内表面附着有树脂内衬层5,树脂内衬层5中的部分树脂填充在信号元件开口6中,信号元件可以安装在树脂内衬层5上的相应位置。
可以采用前文所述的金属-树脂复合体的制备方法制备所述电子产品外壳,此处不再详述。
根据本公开的电子产品外壳具有良好的抗冲击性能,并且还具有低的介电常数和低的介电损耗。
以下结合实施例详细说明本公开,但并不因此限制本公开的范围。
以下实施例和对比例中,参照ASTM D3418-08中规定的方法测定玻璃化转变温度、熔点、起始熔融温度和结晶温度,其中,将中点温度作为玻璃化转变温度,将熔融峰顶温度作为熔点,将外推起始熔融温度作为起始熔融温度,将结晶峰顶温度作为结晶温度。
以下实施例和对比例中,参照ASTM D638-2010中规定的方法测定由树脂组合物制备的试样的拉伸强度(断裂时的拉伸强度),其中,采用I型试样。
以下实施例和对比例中,参照ASTM D1002-10规定的方法,在INSTRON 3369型万能试验机上测定金属-树脂复合体中金属基体与树脂层之间的平均剪切强度,其中,金属基体与树脂层之间为搭接,搭接部位的尺寸为长5mm×宽15mm。
以下实施例和对比例中,参照ASTM D256-06中规定的方法测定由树脂组合物制备的试样的Izod缺口冲击强度,其中,测试样品的尺寸63.5mm×12.7mm×3.0mm(测试样品上的缺口深度为2.54mm)。
以下实施例和对比例中,采用谐振腔法测定由树脂组合物制备的试样的介电常数和介 电损耗角正切。
以下实施例和对比例中,采用马弗炉灼烧法测定主体树脂的灰分含量,具体操作方法为:将主体树脂置于马弗炉中于1000℃的温度下,在空气气氛中灼烧4小时,收集灼烧残留物并称重,将残留物的质量与进行灼烧的主体树脂的质量的百分比作为该主体树脂的灰分含量。
以下实施例和对比例中,采用购自日本日立株式会社的S-4800型电子显微镜观察经蚀刻的金属基材表面的腐蚀孔并测定其内径。
实施例1-6用于说明本公开。
实施例1
(1)将厚度为1.0mm的A5052铝合金板切割成长100mm×宽15mm的长方形板材,然后浸渍于1重量%的NaOH水溶液中(其中,溶液温度为40℃),浸泡1分钟后,将铝合金板取出,用去离子水洗涤3次后,进行干燥,得到金属基体。采用电子显微镜对金属基体的表面进行观察,确定在铝合金板表面分布有腐蚀孔,腐蚀孔的平均内径为100nm。
(2)将63重量份聚苯硫醚树脂(四川德阳PPS-Hb,灰分含量为0.19重量%,结晶温度为120℃,玻璃化转变温度为89℃)、2重量份结合力增强树脂(陶氏化学GR209,为马来酸酐与乙烯的无规共聚物,由马来酸酐形成的结构单元的含量为1.5重量%,起始熔融温度为105℃,熔点为115℃)和5重量份改性树脂(阿科玛Lotader AX8840,为乙烯与甲基丙烯酸缩水甘油酯的无规共聚物,由甲基丙烯酸缩水甘油酯形成的结构单元的含量为4重量%,熔点为106℃)混合均匀后,加入30重量份D玻璃纤维(重庆国际D-glass,氧化硅含量为75重量%)和1重量份作为润滑剂的硅酮(购自德国瓦克,牌号为GENIOPLAST)在双螺杆挤出机中混合均匀,然后挤出造粒得到粒料。将该粒料进行注塑成型,分别得到用于进行拉伸试验、Izod缺口冲击试验以及介电损耗测试的试样,以测定拉伸强度、Izod缺口冲击强度、介电常数和介电损耗角正切,结果在表1中列出。
(3)采用注塑机将步骤(2)得到粒料的熔体注塑到步骤(1)得到的金属基体的表面,冷却后得到金属-树脂复合体,其中,模具温度为110℃,喷嘴温度为300℃,保压时间为2秒,射出压力为50MPa,射出时间为1秒,延迟时间为5秒,形成的树脂层的尺寸为长100mm×宽15mm×厚1mm,其中,金属基体与树脂层之间为搭接,搭接部位的尺寸为长5mm×宽15mm。该金属-树脂复合体的性能数据在表1中列出。
对比例1
(1)采用与实施例1步骤(1)相同的方法制备金属基体。
(2)采用与实施例1步骤(2)相同的方法制备树脂粒料,不同的是,不使用改性树脂。
(3)采用与实施例1步骤(3)相同的方法制备金属-树脂复合体,不同的是,使用对比例1步骤(2)制备树脂粒料。该金属-树脂复合体的性能数据在表1中列出。
对比例2
(1)采用与实施例1步骤(1)相同的方法制备金属基体。
(2)采用与实施例1步骤(2)相同的方法制备树脂粒料,不同的是,不使用改性树脂,而是使用5重量份阿科玛Lotader AX8900树脂(为乙烯、甲基丙烯酸甲酯和甲基丙烯酸缩水甘油酯的无规共聚物,由甲基丙烯酸缩水甘油酯形成的结构单元的含量为8重量%,熔点为60℃)。
(3)采用与实施例1步骤(3)相同的方法制备金属-树脂复合体,不同的是,采用对比例2步骤(2)制备的树脂粒料。制备的金属-树脂复合体的性能数据在表1中列出。
实施例2
(1)采用与实施例1步骤(1)相同的方法制备金属基体。
(2)采用与实施例1步骤(2)相同的方法制备树脂粒料,不同的是,不使用结合力增强树脂。
(3)采用与实施例1步骤(3)相同的方法制备金属-树脂复合体,不同的是,采用实施例2步骤(2)制备的树脂粒料。制备的金属-树脂复合体的性能数据在表1中列出。
实施例3
(1)采用与实施例1步骤(1)相同的方法制备金属基体。
(2)采用与实施例1步骤(2)相同的方法制备树脂粒料,不同的是,使用的聚苯硫醚树脂(四川德阳PPS-Hb)不进行筛选,其灰分含量为0.70重量%。
(3)采用与实施例1步骤(3)相同的方法制备金属-树脂复合体,不同的是,树脂粒料为实施例3步骤(2)制备的树脂粒料。制备的金属-树脂复合体的性能数据在表1中列出。
实施例4
(1)采用与实施例1步骤(1)相同的方法制备金属基体。
(2)采用与实施例1步骤(2)相同的方法制备树脂粒料,不同的是,采用的玻璃纤维为E玻璃纤维(浙江巨石988A,氧化硅含量为60重量%)。
(3)采用与实施例1步骤(3)相同的方法制备金属-树脂复合体,不同的是,树脂粒料为实施例4步骤(2)制备的树脂粒料。制备的金属-树脂复合体的性能数据在表1中列出。
实施例5
(1)采用与实施例1步骤(1)相同的方法制备金属基体。
(2)采用与实施例1步骤(2)相同的方法制备树脂粒料,不同的是,使用2重量份陶氏化学的GR205的树脂(该树脂为马来酸酐与乙烯的无规共聚物,由马来酸酐形成的结构单元的含量为1.8重量%,起始熔融温度为122℃,熔点为130℃)代替结合力增强树脂。
(3)采用与实施例1步骤(3)相同的方法制备金属-树脂复合体,不同的是,树脂粒料为实施例5步骤(2)制备的树脂粒料。制备的金属-树脂复合体的性能数据在表1中列出。
实施例6
(1)将厚度为1.0mm的SUS304不锈钢板切割成长100mm×宽15mm的长方形板材,然后浸渍于35重量%的盐酸中(其中,溶液温度为50℃),浸泡2分钟后,将不锈钢板取出,用去离子水洗涤3次后,进行干燥,得到金属基体。采用电子显微镜对金属基体的表面进行观察,确定在不锈钢板表面分布有腐蚀孔,腐蚀孔的平均内径为150nm。
(2)使用的聚苯硫醚树脂(PPS-1H30C)的灰分含量为0.1重量%,结晶温度为121℃,玻璃化转变温度为90℃。
将63重量份聚苯硫醚树脂、0.65重量份结合力增强树脂(陶氏化学GR209,为马来酸酐与乙烯的无规共聚物,马来酸酐基团的含量为1.5重量%,起始熔融温度为105℃,熔点为115℃)和2.5重量份改性树脂(阿科玛Lotader AX8840,为乙烯与甲基丙烯酸缩水甘油酯的无规共聚物,由甲基丙烯酸缩水甘油酯形成的结构单元的含量为4重量%,熔点为106℃)混合均匀后,加入25.2重量份D玻璃纤维(重庆国际D-glass,氧化硅含量为75重量%)和0.5重量份作为润滑剂的硅酮(购自德国瓦克,牌号为GENIOPLAST)在双螺杆挤出机中混合均匀,然后挤出造粒得到粒料。将该粒料进行注塑成型,分别得到用于进行拉伸试验、缺口冲击试验以及介电损耗测试的试样,以测定拉伸强度、Izod缺口冲击强 度、介电常数和介电损耗角正切,结果在表1中列出。
(3)采用注塑机将步骤(2)得到粒料的熔体注塑到步骤(1)得到的金属基体的表面,冷却后得到金属-树脂复合体,其中,模具温度为110℃,喷嘴温度为300℃,保压时间为2秒,射出压力为50MPa,射出时间为1秒,延迟时间为5秒,形成的树脂层的尺寸为长100mm×宽15mm×厚1mm,其中,金属基体与树脂层之间为搭接,搭接部位的尺寸为长5mm×宽15mm。该金属-树脂复合体的性能数据在表1中列出。
表1
Figure PCTCN2015092722-appb-000004
将实施例1与对比例1和对比例2进行比较可以看出,采用根据本公开的树脂组合物与金属基体形成的金属-树脂复合体,不仅具有较高的抗冲击性能,而且具有较低的介电常数和较低的介电损耗,对电磁信号的干扰小,适于作为电子产品的外壳。
将实施例1与实施例2和实施例5进行比较可以看出,通过在树脂组合物中引入结合力增强树脂,能够进一步提高金属-树脂复合体中金属基体与树脂层之间的结合强度,提高金属-树脂复合体的结构稳定性。
将实施例1与实施例3进行比较可以看出,通过降低主体树脂的灰分含量,能够进一步降低最终制备的金属-树脂复合体的介电损耗。
将实施例1与实施例4进行比较可以看出,采用氧化硅含量较高的玻璃纤维,能够进一步降低最终制备的金属-树脂复合体的介电常数,从而进一步降低对电磁信号的干扰,避免电磁信号强度快速衰减。

Claims (21)

  1. 一种树脂组合物,包含主体树脂、改性树脂和纤维,所述主体树脂为聚芳硫醚树脂、聚醚树脂和聚酯树脂中的一种或两种以上,所述改性树脂的熔点比所述主体树脂的玻璃化转变温度高3-24℃,相对于100重量份主体树脂,所述改性树脂的含量为1-10重量份。
  2. 根据权利要求1所述的树脂组合物,其中所述改性树脂的熔点比所述主体树脂的玻璃化转变温度高10-20℃。
  3. 根据权利要求1或2所述的树脂组合物,其中所述改性树脂为含有含环氧基团的结构单元的聚烯烃。
  4. 根据权利要求1-3任一项所述的树脂组合物,其中所述改性树脂含有由烯烃形成的结构单元和式I所示的含环氧基团的结构单元,
    Figure PCTCN2015092722-appb-100001
    式I中,R1为氢或C1-C5的烷基。
  5. 根据权利要求1-4任一项所述的树脂组合物,其中所述改性树脂含有由乙烯形成的结构单元和式II所示的含环氧基团的结构单元,
    Figure PCTCN2015092722-appb-100002
  6. 根据权利要求3-5中任意一项所述的树脂组合物,其中所述改性树脂中,所述含环氧基团的结构单元的含量为1-8重量%。
  7. 根据权利要求1-6中任意一项所述的树脂组合物,其中所述树脂组合物还含有至少一种结合力增强树脂,所述结合力增强树脂的起始熔融温度比所述主体树脂的结晶温度低10-20℃。
  8. 根据权利要求7所述的树脂组合物,其中所述结合力增强树脂为含有含马来酸酐基团的结构单元的聚烯烃。
  9. 根据权利要求8所述的树脂组合物,其中所述结合力增强树脂中,所述含马来酸酐基团的结构单元的含量为0.5-2重量%。
  10. 根据权利要求7-9中任意一项所述的树脂组合物,其中相对于100重量份主体树脂,所述结合力增强树脂的含量为1-5重量份。
  11. 根据权利要求1-10中任意一项所述的树脂组合物,其中所述主体树脂的灰分含量为不高于0.2重量%。
  12. 根据权利要求1-11中任意一项所述的树脂组合物,其中所述主体树脂选自聚苯硫醚树脂、聚苯醚树脂和聚对苯二甲酸二醇酯的至少一种或两种以上。
  13. 根据权利要求1-12中任意一项所述的树脂组合物,其中相对于100重量份主体树脂,所述纤维的含量为10-60重量份。
  14. 根据权利要求1-13中任意一项所述的树脂组合物,其中所述纤维为玻璃纤维,所述玻璃纤维的氧化硅含量为70重量%以上,优选为70-75重量%。
  15. 一种金属-树脂复合体,包含金属基体以及附着在所述金属基体的至少部分表面的树脂层,其中所述树脂层由权利要求1-14中任意一项所述的树脂组合物形成。
  16. 根据权利要求15所述的复合体,其中所述金属基体中附着有树脂层的表面分布有孔和/或沟槽,所述树脂层中的部分树脂向下延伸并填充于所述孔和/或所述沟槽中。
  17. 一种制备金属-树脂复合体的方法,包含将权利要求1-14中任意一项所述的树脂组合物混合均匀后,注入金属基体表面并进行成型,以在所述金属基体表面形成树脂层。
  18. 根据权利要求17所述的方法,其中所述金属基体表面分布有孔和/或沟槽。
  19. 一种由权利要求17或18所述的方法制备的金属-树脂复合体。
  20. 权利要求15-16中任意一项所述的金属-树脂复合体或者权利要求19所述的金属-树脂复合体在制备电子产品外壳中的应用。
  21. 一种电子产品外壳,包含金属壳本体以及附着于所述金属壳本体的至少部分内表面和/或至少部分外表面的至少一个树脂件,所述树脂件由权利要求1-14中任意一项所述的树脂组合物形成。
PCT/CN2015/092722 2014-12-26 2015-10-23 树脂组合物和金属-树脂复合体及其制备方法和应用以及电子产品外壳 WO2016101692A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15871765.2A EP3239241A4 (en) 2014-12-26 2015-10-23 Resin composition, metal-resin composite, and preparation method and use thereof, and electronic product housing
US15/631,440 US20170292021A1 (en) 2014-12-26 2017-06-23 Resin composition, metal-resin composite and preparation method and use thereof, and electronic product shell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410836687.2A CN105566909A (zh) 2014-12-26 2014-12-26 一种树脂组合物和一种金属-树脂复合体及制备方法和应用以及一种电子产品外壳
CN201410836687.2 2014-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/631,440 Continuation US20170292021A1 (en) 2014-12-26 2017-06-23 Resin composition, metal-resin composite and preparation method and use thereof, and electronic product shell

Publications (1)

Publication Number Publication Date
WO2016101692A1 true WO2016101692A1 (zh) 2016-06-30

Family

ID=55877575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092722 WO2016101692A1 (zh) 2014-12-26 2015-10-23 树脂组合物和金属-树脂复合体及其制备方法和应用以及电子产品外壳

Country Status (4)

Country Link
US (1) US20170292021A1 (zh)
EP (1) EP3239241A4 (zh)
CN (1) CN105566909A (zh)
WO (1) WO2016101692A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3464449B1 (en) 2016-05-26 2019-08-21 SABIC Global Technologies B.V. Thermoplastic compositions for electronics or telecommunication applications and shaped article therefore
WO2019213920A1 (en) * 2018-05-10 2019-11-14 Ticona Llc Polymer composition with reduced dielectric constant
US11649355B2 (en) * 2017-04-27 2023-05-16 Byd Company Limited Low-dielectric resin composition, low-dielectric resin/metal composite material and preparation method thereof, and electronic equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377089B2 (en) * 2016-08-12 2019-08-13 Canon Kabushiki Kaisha Bonded part, manufacturing method of bonded part, ink tank, and ink cartridge
CN108250717A (zh) * 2016-12-29 2018-07-06 上海杰事杰新材料(集团)股份有限公司 低介电损耗耐磨聚苯醚和聚苯硫醚的复合材料及其制备方法
EP3854849B1 (en) * 2018-09-20 2023-09-06 Toray Industries, Inc. Thermoplastic polyester resin composition and molded article
DE102021208630A1 (de) * 2021-08-09 2023-02-09 Mahle International Gmbh Verfahren zur Herstellung eines Hybridbauteils

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158511A (ja) * 1996-11-27 1998-06-16 Kureha Chem Ind Co Ltd ポリアリーレンスルフィド樹脂組成物
CN1784466A (zh) * 2003-05-02 2006-06-07 东丽株式会社 聚酯树脂组合物
CN101313087A (zh) * 2005-10-04 2008-11-26 大成普拉斯株式会社 金属和树脂的复合体及其制造方法
CN101547779A (zh) * 2006-12-06 2009-09-30 大成普拉斯株式会社 高耐蚀性复合体的制造方法
CN101568420A (zh) * 2006-12-28 2009-10-28 大成普拉斯株式会社 金属和树脂的复合体及其制造方法
CN101792533A (zh) * 2009-01-30 2010-08-04 丰田合成株式会社 由金属和树脂制得的复合材料及其制造方法
US20110165342A1 (en) * 2010-01-07 2011-07-07 Toyoda Gosei Co., Ltd. Process for producing composite of metal and resin
JP2013087171A (ja) * 2011-10-17 2013-05-13 Toray Ind Inc ポリアリーレンスルフィド樹脂組成物シート
CN104072992A (zh) * 2013-03-26 2014-10-01 宝理塑料株式会社 嵌件成型用树脂组合物、使用其的金属树脂复合成型体及其制造方法
CN104098898A (zh) * 2013-04-09 2014-10-15 宝理塑料株式会社 嵌件成型用树脂组合物、使用其的金属树脂复合成型体及其制造方法
CN104403314A (zh) * 2014-11-03 2015-03-11 银禧工程塑料(东莞)有限公司 一种与金属具有高粘接强度的玻纤增强聚苯硫醚复合物及其制备方法
CN104592757A (zh) * 2014-12-24 2015-05-06 广东银禧科技股份有限公司 基于纳米成型技术的高流动玻纤增强聚苯硫醚复合材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040630B2 (ja) * 2007-12-11 2012-10-03 東ソー株式会社 ポリアリーレンスルフィド組成物
JP5158350B2 (ja) * 2008-01-25 2013-03-06 東ソー株式会社 ポリアリーレンスルフィド組成物
WO2011146074A1 (en) * 2010-05-21 2011-11-24 Ticona, Llc High temperature polymer alloy containing stabilizers
MX337377B (es) * 2012-03-23 2016-03-01 Dainippon Ink & Chemicals Composicion de resina de sulfuro de poliarileno y cuerpo moldeado.

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158511A (ja) * 1996-11-27 1998-06-16 Kureha Chem Ind Co Ltd ポリアリーレンスルフィド樹脂組成物
CN1784466A (zh) * 2003-05-02 2006-06-07 东丽株式会社 聚酯树脂组合物
CN101313087A (zh) * 2005-10-04 2008-11-26 大成普拉斯株式会社 金属和树脂的复合体及其制造方法
CN101547779A (zh) * 2006-12-06 2009-09-30 大成普拉斯株式会社 高耐蚀性复合体的制造方法
CN101568420A (zh) * 2006-12-28 2009-10-28 大成普拉斯株式会社 金属和树脂的复合体及其制造方法
CN101792533A (zh) * 2009-01-30 2010-08-04 丰田合成株式会社 由金属和树脂制得的复合材料及其制造方法
US20110165342A1 (en) * 2010-01-07 2011-07-07 Toyoda Gosei Co., Ltd. Process for producing composite of metal and resin
JP2013087171A (ja) * 2011-10-17 2013-05-13 Toray Ind Inc ポリアリーレンスルフィド樹脂組成物シート
CN104072992A (zh) * 2013-03-26 2014-10-01 宝理塑料株式会社 嵌件成型用树脂组合物、使用其的金属树脂复合成型体及其制造方法
CN104098898A (zh) * 2013-04-09 2014-10-15 宝理塑料株式会社 嵌件成型用树脂组合物、使用其的金属树脂复合成型体及其制造方法
CN104403314A (zh) * 2014-11-03 2015-03-11 银禧工程塑料(东莞)有限公司 一种与金属具有高粘接强度的玻纤增强聚苯硫醚复合物及其制备方法
CN104592757A (zh) * 2014-12-24 2015-05-06 广东银禧科技股份有限公司 基于纳米成型技术的高流动玻纤增强聚苯硫醚复合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239241A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3464449B1 (en) 2016-05-26 2019-08-21 SABIC Global Technologies B.V. Thermoplastic compositions for electronics or telecommunication applications and shaped article therefore
US11649355B2 (en) * 2017-04-27 2023-05-16 Byd Company Limited Low-dielectric resin composition, low-dielectric resin/metal composite material and preparation method thereof, and electronic equipment
WO2019213920A1 (en) * 2018-05-10 2019-11-14 Ticona Llc Polymer composition with reduced dielectric constant

Also Published As

Publication number Publication date
US20170292021A1 (en) 2017-10-12
EP3239241A4 (en) 2018-09-12
CN105566909A (zh) 2016-05-11
EP3239241A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
WO2016101692A1 (zh) 树脂组合物和金属-树脂复合体及其制备方法和应用以及电子产品外壳
TWI638010B (zh) 嵌入成形用樹脂組成物、使用此組成物之金屬樹脂複合成形體及其製造方法
US10173399B2 (en) Anti-yellowing composition, resin composition, metal-resin composite and preparation method and use thereof, and electronic product shell
CN102612540B (zh) 聚对苯二甲酸丁二醇酯树脂组合物
JP6132669B2 (ja) 金属樹脂複合成形体及びその製造方法
EP2326480A1 (en) Electronic device and method of forming the same
JP6269783B2 (ja) 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
JPWO2016103470A1 (ja) ポリアリーレンサルファイド樹脂組成物及びインサート成形品
JP2024019280A (ja) 接着組成物、並びにこれを含むカバーレイフィルム及びプリント回路基板
JP6522280B2 (ja) インサート成形用樹脂組成物、それを用いた金属樹脂複合成形体、及びその製造方法
JP2003262701A (ja) 光学材料用組成物、光学材料、それを用いた液晶表示装置、発光ダイオードおよびそれらの製造方法
WO2016151551A1 (en) Use of dynamic cross-linked polymer compositions in soldering applications
KR102070984B1 (ko) 금속 수지 복합 성형체 및 그 제조방법
JP2016124884A (ja) ポリアリーレンサルファイド樹脂組成物及びインサート成形品
EP3347414B1 (en) Polymer blends of poly(phenyl sulfone) and polyester polymers and mobile electronic device components made therefrom
JPWO2014167993A1 (ja) 熱伝導性樹脂組成物およびそれを使用した熱伝導性封止体
CN104072992A (zh) 嵌件成型用树脂组合物、使用其的金属树脂复合成型体及其制造方法
KR100912918B1 (ko) 수지 부착 금속박 및 다층 인쇄 회로판
KR20020067626A (ko) 절연 필름
KR101738755B1 (ko) 내가수분해성 및 내열성이 향상된 친환경 고분자 컴파운드 제조방법과 이를 이용한 다층절연전선 및 그 제조방법
CN110741047B (zh) 密封用树脂组合物
WO2007062310A2 (en) Shaped structural member, method of producing the member and a portable communication device including the member
CN105566908A (zh) 抗黄变组合物和树脂组合物和金属-树脂复合体及制备方法和应用和电子产品外壳
JP2000319596A (ja) プリント配線基板用接着剤組成物
WO2014167940A1 (ja) 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015871765

Country of ref document: EP