WO2016098699A1 - カルボン酸エステルの製造方法 - Google Patents

カルボン酸エステルの製造方法 Download PDF

Info

Publication number
WO2016098699A1
WO2016098699A1 PCT/JP2015/084794 JP2015084794W WO2016098699A1 WO 2016098699 A1 WO2016098699 A1 WO 2016098699A1 JP 2015084794 W JP2015084794 W JP 2015084794W WO 2016098699 A1 WO2016098699 A1 WO 2016098699A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
acid ester
mol
reaction
alcohol
Prior art date
Application number
PCT/JP2015/084794
Other languages
English (en)
French (fr)
Inventor
晃宏 後藤
良啓 加門
浩幸 森
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2015562223A priority Critical patent/JP6597312B2/ja
Priority to CN201580049418.4A priority patent/CN107074719B/zh
Priority to KR1020177007704A priority patent/KR102478883B1/ko
Priority to EP15869904.1A priority patent/EP3235801B1/en
Priority to US15/535,725 priority patent/US10421705B2/en
Publication of WO2016098699A1 publication Critical patent/WO2016098699A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/49Esterification or transesterification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/22Magnesium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing a carboxylic acid ester.
  • Carboxylic acid esters are widely used as solvents and as raw materials for fragrances, resins, paints, and adhesives.
  • a method for producing a carboxylic acid ester a method of reacting di-t-butyl dicarbonate, a carboxylic acid and an alcohol is known.
  • Non-Patent Document 1 describes a method for producing a carboxylic acid ester by reacting di-t-butyl dicarbonate, a carboxylic acid and an alcohol in the presence of magnesium chloride.
  • Non-Patent Document 2 describes a method for producing a carboxylic acid ester by reacting di-t-butyl dicarbonate, a carboxylic acid and an alcohol in the presence of an amine.
  • Non-Patent Document 1 the method for producing a carboxylic acid ester described in Non-Patent Document 1 is economically disadvantageous because the amount of alcohol used is more than the theoretical amount. Moreover, since it is necessary to use 0.1 molar equivalent of a catalyst with respect to carboxylic acid, it is inefficient. As a result of studies by the present inventors, when the amount of catalyst used is reduced and di-t-butyl dicarbonate, carboxylic acid and alcohol are reacted, the reaction does not proceed or is produced even if the reaction proceeds. It was found that the yield of the carboxylic acid ester was low. Moreover, when synthesizing phenyl (meth) acrylate by a known production method, it was found that the generality of the substrate was narrow because the reaction hardly proceeded.
  • Non-Patent Document 2 The method for producing a carboxylic acid ester described in Non-Patent Document 2 is inefficient because triethylamine must be used as an additive and the amount used is 2 molar equivalents relative to the carboxylic acid. Moreover, in order to remove triethylamine after completion
  • the object of the present invention is to provide a high yield of the corresponding carboxylic acid ester from various carboxylic acids even if the reaction operation is simple and the amount of the catalyst used is small, and the amount of the substrate used is the theoretical amount. It is in providing the manufacturing method which can be obtained by this.
  • the present invention provides a carboxylic acid ester produced by reacting a compound represented by the following formula (I), a carboxylic acid, and an alcohol in the presence of one or more magnesium compounds and one or more alkali metal compounds.
  • R 1 and R 2 represent a hydrocarbon group having 1 to 20 carbon atoms.
  • the carboxylic acid ester in the method for producing a carboxylic acid ester of the present invention, can be obtained in a high yield even if the amount of the substrate used is the theoretical amount. Thereby, compared with the conventional method, carboxylic acid ester can be obtained more efficiently and economically.
  • the carboxylic acid ester in the method for producing a carboxylic acid ester of the present invention, can be obtained in a high yield even if the amount of the catalyst used is small. As a result, the carboxylic acid ester can be obtained efficiently and economically with less burden on the environment as compared with conventional methods.
  • the carboxylic acid ester can be produced in a batch of raw materials. As a result, the carboxylic acid ester can be obtained more efficiently and simply than the conventional method.
  • acrylic acid and methacrylic acid are collectively referred to as (meth) acrylic acid.
  • Acrylic acid ester and methacrylic acid ester are collectively described as (meth) acrylic acid ester.
  • R 1 and R 2 each independently represents a hydrocarbon group having 1 to 20 carbon atoms.
  • R 1 and R 2 are hydrocarbon groups, their types and structures are not limited.
  • This hydrocarbon group may be linear, branched or have a ring structure, and the group may contain an unsaturated bond or an ether bond.
  • R 1 and R 2 may be bonded to form a cyclic structure.
  • hydrocarbon group examples include an alkyl group, an alkenyl group, an alkynyl group, and an aryl group. From the viewpoint of availability of the compound represented by the formula (I), these hydrocarbon groups have 1 to 20 carbon atoms, preferably 2 to 10 carbon atoms, and more preferably 3 to 7 carbon atoms. .
  • examples of the hydrocarbon group include an allyl group, a t-butyl group, a t-amyl group, and a benzyl group.
  • Specific examples of the compound represented by the formula (I) include diallyl dicarbonate, di-t-butyl dicarbonate, di-t-amyl dicarbonate, and dibenzyl dicarbonate.
  • di-t-butyl dicarbonate in which R 1 and R 2 are t-butyl groups is preferable because a carboxylic acid ester can be efficiently synthesized.
  • the compound represented by the formula (I) a commercially available one can be used, and one obtained by a known method can also be used. Moreover, the compound represented by Formula (I) may use 1 type, and may use 2 or more types together.
  • the type and structure of the carboxylic acid used as a raw material for the carboxylic acid ester are not limited.
  • the carboxylic acid can be represented as “R 3 —COOH”, and R 3 is preferably a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent.
  • the hydrocarbon group may be linear, branched, or have a ring structure, and the group may contain an unsaturated bond or an ether bond.
  • the term “may have a substituent” means that it may have one or more arbitrary substituents. For example, it may have one or more of the following bonds, groups and atoms. Meaning.
  • hydrocarbon group contained in the carboxylic acid examples include an alkyl group, an alkenyl group, an alkynyl group, and an aryl group. From the viewpoint of easy availability of carboxylic acid, these hydrocarbon groups preferably have 1 to 30 carbon atoms, and more preferably 2 to 20 carbon atoms.
  • examples of the hydrocarbon group include a vinyl group, an isopropenyl group, a t-butyl group, a hexyl group, a cyclohexyl group, and a phenyl group.
  • Specific examples of the carboxylic acid include (meth) acrylic acid, pivalic acid, heptanoic acid, cyclohexanecarboxylic acid, benzoic acid, monomethyl adipate, and 6-chlorohexanoic acid.
  • R 3 is more preferably a vinyl group or an isopropenyl group.
  • (meth) acrylic acid is particularly preferable because of its wide range of application as a carboxylic acid ester.
  • carboxylic acid a commercially available one can be used, and one obtained by a known method can also be used. Moreover, 1 type may be used for carboxylic acid, 2 or more types may be used together, and polyvalent carboxylic acid may be used.
  • the amount of carboxylic acid used in the method for producing a carboxylic acid ester of the present invention is preferably from 0.1 to 10 mol, more preferably from 0.2 to 5 mol, based on 1 mol of the compound represented by the formula (I). More preferred is 5 to 2 moles.
  • the amount of carboxylic acid used in the method for producing a carboxylic acid ester of the present invention is preferably from 0.1 to 10 mol, more preferably from 0.2 to 5 mol, based on 1 mol of the compound represented by the formula (I). More preferred is 5 to 2 moles.
  • the type and structure of the alcohol that is a raw material for the carboxylic acid ester are not limited.
  • the alcohol can be represented as “R 4 —OH”, and R 4 is preferably a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent.
  • This hydrocarbon group may be linear, branched, or have a ring structure, and may contain an unsaturated bond.
  • the term “may have a substituent” means that it may have one or more arbitrary substituents. For example, it may have one or more of the following bonds, groups and atoms. Meaning.
  • hydrocarbon group contained in the alcohol examples include an alkyl group, an alkenyl group, an alkynyl group, and an aryl group. From the viewpoint of easy availability of alcohol, these hydrocarbon groups preferably have 1 to 30 carbon atoms, and more preferably 2 to 20 carbon atoms. Among these, the hydrocarbon group is more preferably an aryl group. Aromatic alcohol-derived carboxylic acid esters, which have conventionally been difficult to synthesize in high yields, can be easily synthesized. Therefore, the alcohol is preferably an aromatic alcohol. Specifically, for example, phenol, phenylphenol, and Examples include naphthol.
  • Alcohol can use what is marketed, and can also use what was obtained by manufacturing by a publicly known method. Moreover, 1 type may be used for alcohol, 2 or more types may be used together, and a polyhydric alcohol may be used.
  • the amount of alcohol used is preferably 0.1 to 10 moles, more preferably 0.2 to 5 moles, and even more preferably 0.5 to 2 moles per mole of the compound represented by the formula (I).
  • the amount of alcohol used is preferably 0.1 to 10 moles, more preferably 0.2 to 5 moles, and even more preferably 0.5 to 2 moles per mole of the compound represented by the formula (I).
  • the amount of alcohol used is preferably 0.1 to 10 moles, more preferably 0.2 to 5 moles, and even more preferably 0.5 to 2 moles per mole of carboxylic acid.
  • the amount of alcohol used is preferably 0.1 to 10 moles, more preferably 0.2 to 5 moles, and even more preferably 0.5 to 2 moles per mole of carboxylic acid.
  • the catalyst used in the method for producing a carboxylic acid ester of the present invention is a magnesium compound and an alkali metal compound. Since the solubility of the catalyst varies depending on the ligand constituting the catalyst, the catalyst can be used as a homogeneous catalyst or a heterogeneous catalyst.
  • the compound represented by formula (I) is reacted with a carboxylic acid and an alcohol in the presence of a catalyst. It need only be present at at least some of the stages, and need not always be present at all stages of the reaction process.
  • the requirement “in the presence of a catalyst” is satisfied if a catalyst is added to the reaction system. For example, the requirement “in the presence of the catalyst” is satisfied even if any change occurs in the catalyst during the reaction after the catalyst is added to the reaction system.
  • Magnesium compounds include magnesium oxide, hydroxide salt, carbonate, bicarbonate, silicate, sulfate, ammonium sulfate, nitrate, phosphate, hydrogen phosphate, ammonium phosphate, boron Salts with inorganic acids, such as acid salts, halogenates, perhalogenates, and hydrohalides; salts with organic acids, such as carboxylates, percarboxylates, and sulfonates; acetylacetone salts, Examples thereof include complex salts such as hexafluoroacetylacetone salt, porphyrin salt, phthalocyanine salt, and cyclopentadiene salt.
  • magnesium salts may be either hydrates or anhydrides and are not particularly limited. Of these, oxides, hydroxide salts, carbonates, sulfates, ammonium sulfates, nitrates, hydrohalides, carboxylates and complex salts of magnesium are preferable. More specifically, as the magnesium compound, for example, magnesium oxide, magnesium hydroxide, magnesium carbonate hydroxide (also known as basic magnesium carbonate), magnesium sulfate, ammonium magnesium sulfate, magnesium nitrate, magnesium chloride, magnesium bromide, magnesium acetate , Magnesium benzoate, magnesium (meth) acrylate, and magnesium acetylacetone.
  • These magnesium compounds may be those commercially available, or those obtained by producing by a known method or the like. These may use 1 type and may use 2 or more types together.
  • the amount of magnesium compound used is not particularly limited as long as a carboxylic acid ester can be produced.
  • the amount of the magnesium compound used is preferably from 0.001 to 1000 mol%, more preferably from 0.005 to 500 mol%, based on the compound represented by the formula (I).
  • the yield of carboxylic acid ester can be made high.
  • the reason why the amount of magnesium compound used is preferably 1000 mol% or less with respect to the compound represented by formula (I) is that a dramatic improvement in effect is unlikely even if it exceeds 1000 mol%. .
  • the amount of the magnesium compound used is preferably 0.001 to 1000 mol%, more preferably 0.005 to 500 mol%, still more preferably 0.01 to 250 mol%, based on the alcohol.
  • the amount of the magnesium compound used is preferably 1000 mol% or less with respect to the alcohol is that a dramatic improvement in the effect is unlikely even if the amount exceeds 1000 mol%.
  • Alkali metal compounds include alkali metal hydrides, oxides, hydroxide salts, carbonates, bicarbonates, sulfates, nitrates, phosphates, borates, halogenates, perhalogenates. Salts with inorganic acids such as alkoxides, hydrohalides, and thiocyanates; salts with organic acids such as alkoxide salts, carboxylates, and sulfonates; and organic bases such as amide salts and sulfonamide salts And complex salts such as acetylacetone salt, hexafluoroacetylacetone salt, porphyrin salt, phthalocyanine salt, and cyclopentadiene salt.
  • alkali metal salts may be either hydrates or anhydrides and are not particularly limited. Of these, oxides, hydroxide salts, carbonates, hydrogen carbonates, hydrohalides, carboxylates, amide salts, and complex salts of alkali metals are preferable.
  • the metal contained in the alkali metal compound is not particularly limited, but among metals belonging to the alkali metal, lithium, sodium, potassium, rubidium, and cesium are preferable, and lithium is more preferable because of high catalytic activity. More specifically, examples of the lithium compound include lithium oxide, lithium hydroxide, lithium carbonate, lithium fluoride, lithium chloride, lithium bromide, lithium acetate, lithium benzoate, lithium (meth) acrylate, lithium amide, Examples include lithium triflimide and lithium acetylacetone.
  • alkali metal compounds commercially available ones can be used, and those obtained by producing by a known method can also be used. These may use 1 type and may use 2 or more types together.
  • the amount of the alkali metal compound used is not particularly limited as long as the carboxylic acid ester can be produced.
  • the amount of the alkali metal compound used is preferably from 0.001 to 1000 mol%, more preferably from 0.005 to 500 mol%, based on the compound represented by the formula (I).
  • the amount of the alkali metal compound used is preferably 1000 mol% or less with respect to the compound represented by the formula (I) because it is difficult to consider a dramatic improvement in the effect even if it exceeds 1000 mol%. is there.
  • the amount of the alkali metal compound used is preferably from 0.001 to 1000 mol%, more preferably from 0.005 to 500 mol%, still more preferably from 0.01 to 250 mol%, based on the alcohol.
  • the amount of the alkali metal compound used is preferably 1000 mol% or less with respect to the alcohol is that a dramatic improvement in the effect cannot be considered even if it exceeds 1000 mol%.
  • reaction conditions for production of carboxylic acid ester are not particularly limited, and the reaction conditions can be appropriately changed during the reaction process.
  • the form of the reaction vessel is not particularly limited.
  • the reaction temperature is not particularly limited, but can be ⁇ 20 to 180 ° C., preferably 0 to 100 ° C. By setting the reaction temperature to ⁇ 20 ° C. or higher, the reaction can proceed efficiently. By setting the reaction temperature to 180 ° C. or less, the amount of by-products and coloring of the reaction solution can be suppressed.
  • the reaction time is not particularly limited, but can be, for example, 0.5 to 72 hours, and preferably 2 to 48 hours. By setting the reaction time to 0.5 hours or longer, the reaction can sufficiently proceed. The reason why the reaction time can be set to 72 hours or less is that a dramatic improvement in the effect cannot be considered even if the reaction time exceeds 72 hours.
  • the reaction atmosphere is not particularly limited.
  • the reaction pressure is not particularly limited.
  • the production of the carboxylic acid ester of the present invention can be carried out without solvent (without using a solvent). If the viscosity of the reaction solution is high, a solvent can be used as necessary.
  • the type of the solvent is not particularly limited, and can be, for example, an organic compound having 1 to 25 carbon atoms, and can be appropriately selected according to the reaction conditions.
  • As the solvent for example, tetrahydrofuran can be used. 1 type may be sufficient as a solvent and 2 or more types of mixed solvents may be sufficient as it.
  • the amount of the solvent used is not limited and can be appropriately selected.
  • the raw material used in the reaction compound represented by formula (I), carboxylic acid, alcohol), catalyst, and, if necessary, the method of introducing the solvent into the reaction vessel. May be introduced at a time, some or all of the raw materials may be introduced stepwise, and some or all of the raw materials may be introduced continuously. Moreover, the introduction method which combined these methods may be sufficient.
  • the carboxylic acid used in the method for producing a carboxylic acid ester of the present invention is (meth) acrylic acid
  • a (meth) acrylic acid ester is generated. Since (meth) acrylic acid and (meth) acrylic acid ester are easily polymerized compounds, a polymerization inhibitor may be added in advance in order to prevent polymerization.
  • the timing at which the polymerization inhibitor is added is also not particularly limited, and it is preferably added at the start of the reaction from the viewpoint of ease of operation.
  • the type of the polymerization inhibitor to be used is not particularly limited, and for example, a known polymerization inhibitor such as 2,2,6,6-tetramethylpiperidine 1-oxyl free radical can be used. These may use 1 type and may use 2 or more types together.
  • the amount of the polymerization inhibitor used is preferably 0.001 to 0.5 parts by mass, and 0.01 to 0.1 parts by mass with respect to 100 parts by mass of (meth) acrylic acid or (meth) acrylic acid ester. More preferably, it is a part.
  • a gas containing oxygen such as air may be blown. The amount of the gas blown can be appropriately selected according to the reaction conditions.
  • the obtained carboxylic acid ester can be used in the next reaction as it is, or can be purified as necessary.
  • the purification conditions are not particularly limited, and the purification conditions can be appropriately changed depending on the reaction process and the completion of the reaction.
  • the carboxylic acid ester can be purified from the resulting reaction mixture by methods such as vacuum distillation, chromatography, and recrystallization. These purification methods can be performed alone or in combination.
  • the storage container for the obtained carboxylic acid ester is not particularly limited, and for example, a glass container, a resin container, a metal container, and the like can be used.
  • Di-t-butyl dicarbonate used in the following Examples and Comparative Examples is a compound having a purity of 98% by mass manufactured by Tokyo Chemical Industry Co., Ltd., and R 1 and R 2 in the formula (I) are C (CH 3 3 ).
  • Tetrahydrofuran (hereinafter abbreviated as “THF”) is a special grade (water content 0.05% or less) manufactured by Kanto Chemical Co., Inc.
  • the measuring method of the yield of a product is as follows.
  • Amount of catalyst added (mol%) (C 1 / R 1 ) ⁇ 100 (2) C 1 : amount of catalyst used (mmole) R 1 : substance amount of alcohol used (mmol).
  • Example 1 In a 100 mL eggplant-shaped flask, phenol 10.000 g (106.26 mmol), methacrylic acid 9.148 g (106.26 mmol), di-t-butyl dicarbonate 23.664 g (106.26 mmol), lithium hydroxide 0.018 g (0.43 mmol, 0.4 mol%) of monohydrate and 0.024 g (0.11 mmol, 0.1 mol%) of acetylacetone magnesium were sequentially added, and the reaction was allowed to proceed at 25 ° C. with stirring. To produce phenyl methacrylate. Table 1 shows the reaction results after 5 hours from the start of the reaction.
  • Example 2 to 14 As a catalyst, phenyl methacrylate was produced in the same manner as in Example 1 except that an alkali metal compound (0.4 mol%) of the type shown in Table 1 was used instead of lithium hydroxide monohydrate. Table 1 shows the reaction results after 5 hours from the start of the reaction.
  • Example 20 to 31 instead of acetylacetone magnesium, the types and amounts of magnesium compounds shown in Table 3 (0.05 mol% to 0.5 mol%) were used, and the amounts of lithium hydroxide monohydrate (0.2 mol%) shown in Table 3 were used. Phenyl methacrylate was produced in the same manner as in Example 1, except that ⁇ 2.0 mol%) was used. Table 3 shows the reaction results after 5 hours or 24 hours from the start of the reaction.
  • Example 32 In a 100 mL eggplant flask, phenol 10.000 g (106.26 mmol), acrylic acid 7.657 g (106.26 mmol), di-t-butyl dicarbonate 23.664 g (106.26 mmol), lithium bromide 0.046 g (0.53 mmol, 0.5 mol%) and magnesium sulfate 0.064 g (0.53 mmol, 0.5 mol%) were sequentially added, and the reaction was carried out at 25 ° C. with stirring. Phenyl was produced. Table 4 shows the reaction results 24 hours after the start of the reaction.
  • Example 36 In a 1 L eggplant-shaped flask, 153.370 g (1629.69 mmol) of phenol, 140.300 g (1629.69 mmol) of methacrylic acid, 362.938 g (1629.69 mmol) of di-t-butyl dicarbonate, lithium hydroxide Sequentially add 0.027 g (0.65 mmol, 0.04 mol%) of monohydrate and 0.010 g (0.16 mmol, 0.01 mol%) of magnesium hydroxide and react at 25 ° C. with stirring. And phenyl methacrylate was produced. Table 5 shows the reaction results 48 hours after the start of the reaction.
  • Examples 37 to 62 Using the raw materials, catalysts, and solvents described in Tables 5 to 7, the conditions described in the same table were changed, and the same operations as in Example 36 were performed except that a small eggplant flask was used. Manufactured. The reaction results are shown in the same table.
  • the carboxylic acid ester can be obtained more efficiently and economically than the conventional method.
  • the carboxylic acid ester can be obtained in a high yield under mild reaction conditions.
  • the carboxylic acid ester production method of the present invention can use various carboxylic acids and alcohols as raw materials, and the generality of the substrate is significantly wider than that of the conventional method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 反応操作が簡便でありかつ触媒の使用量が少ない条件、および基質の使用量が理論量であっても、種々のカルボン酸から対応するカルボン酸エステルを高収率で得ることができる製造方法を提供する。特定の二炭酸ジエステルとカルボン酸とアルコールとを、1種以上のマグネシウム化合物および1種以上のアルカリ金属化合物の存在下で反応させる、カルボン酸エステルの製造方法。

Description

カルボン酸エステルの製造方法
 本発明は、カルボン酸エステルの製造方法に関する。
 カルボン酸エステルは、溶媒として、並びに、香料、樹脂、塗料、および接着剤などの原料として幅広く利用されている。カルボン酸エステルの製造方法としては、二炭酸ジ-t-ブチルとカルボン酸とアルコールとを反応させる方法が知られている。
 非特許文献1には、塩化マグネシウムの存在下、二炭酸ジ-t-ブチルとカルボン酸とアルコールとを反応させて、カルボン酸エステルを製造する方法が記載されている。
 非特許文献2には、アミンの存在下、二炭酸ジ-t-ブチルとカルボン酸とアルコールとを反応させて、カルボン酸エステルを製造する方法が記載されている。
Synthesis 2007,3489. Adv.Synth.Catal. 2008,350,1891.
 しかしながら、非特許文献1に記載のカルボン酸エステルの製造方法は、アルコールの使用量が理論量よりも余剰であるため、経済的に不利である。また、触媒をカルボン酸に対して0.1モル当量用いる必要があるため、非効率である。本発明者らの検討により、触媒の使用量を下げ、二炭酸ジ-t-ブチルとカルボン酸とアルコールとを反応させた場合に、反応が進行しないか、または、反応が進行しても生成するカルボン酸エステルの収率が低いことが分かった。また、(メタ)アクリル酸フェニルを公知の製造方法で合成した際は、ほとんど反応が進行しないことから、基質の一般性が狭いことが分かった。
 非特許文献2に記載のカルボン酸エステルの製造方法は、添加剤としてトリエチルアミンを用いなければならず、その使用量はカルボン酸に対して2モル当量であるため、非効率である。また、反応終了後にトリエチルアミンを取り除くため、有機溶媒と酸性水溶液並びに塩基性水溶液を必要とする。結果、廃棄物が多量に副産するため、経済的に不利であり、環境への影響の観点からも問題がある。さらには、アルコールや二炭酸ジ-t-ブチルを、別途調製した-20℃の反応溶液に添加する必要があること、その後、反応温度を室温まで加温する必要があるため、操作が複雑になり、反応効率の観点からも不利である。本発明者らの検討により、触媒と添加剤の使用量を下げ、二炭酸ジ-t-ブチルとカルボン酸とアルコールとを反応させた場合に、反応が進行しないか、または、反応が進行しても生成するカルボン酸エステルの収率が低いことが分かった。
 従って、本発明の目的は、反応操作が簡便でありかつ触媒の使用量が少ない条件、および基質の使用量が理論量であっても、種々のカルボン酸から対応するカルボン酸エステルを高収率で得ることができる製造方法を提供することにある。
 本発明者らは、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の触媒を用いて反応させることにより上記目的を達成できることを見出し、本研究を完成させるに至った。
 すなわち、本発明は、下記式(I)で表される化合物とカルボン酸とアルコールとを、1種以上のマグネシウム化合物および1種以上のアルカリ金属化合物の存在下で反応させる、カルボン酸エステルの製造方法に関する。なお、式(I)中、RとRは炭素数1~20の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000002
 本発明のカルボン酸エステルの製造方法では、基質の使用量が理論量であってもカルボン酸エステルを高収率で得ることができる。これにより、従来の方法と比べてより効率的、経済的にカルボン酸エステルを得ることができる。
 本発明のカルボン酸エステルの製造方法では、触媒の使用量が少なくてもカルボン酸エステルを高収率で得ることができる。これにより、従来の方法と比べてより環境への負荷が少なく、効率的、経済的にカルボン酸エステルを得ることができる。
 本発明のカルボン酸エステルの製造方法では、原料仕込み一括でカルボン酸エステルを製造することができる。これにより、従来の方法と比べてより効率的かつ簡便にカルボン酸エステルを得ることができる。
 本発明のカルボン酸エステルの製造方法では、原料として種々のカルボン酸および種々のアルコールを用いることができ、基質一般性が従来の方法と比べて大幅に広い。
 本明細書中では、アクリル酸およびメタクリル酸を合わせて(メタ)アクリル酸と記載する。アクリル酸エステルおよびメタクリル酸エステルを合わせて(メタ)アクリル酸エステルと記載する。
 〔式(I)で表される化合物〕
 本発明のカルボン酸エステルの製造方法において、原料として式(I)で表される化合物が使用される。なお、式(I)で表される化合物は、反応によってその化合物由来の成分を含む中間体を生成するが、最終的に得られるカルボン酸エステルには、その化合物由来の成分は含まれない。
Figure JPOXMLDOC01-appb-C000003
 式(I)で表される化合物において、RとRは、それぞれ独立に炭素数1~20の炭化水素基を表す。RとRは炭化水素基であれば、その種類および構造は限定されない。この炭化水素基は直鎖状でも、分岐状でも、あるいは環構造を有してもよく、またその基中に不飽和結合あるいはエーテル結合を含んでいてもよい。RとRとが結合して、環状構造を形成していてもよい。
 炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基、およびアリール基が挙げられる。式(I)で表される化合物の入手容易性の観点から、これらの炭化水素基の炭素数は1~20であり、2~10であることが好ましく、3~7であることがより好ましい。
 炭化水素基としては、より詳細には、アリル基、t-ブチル基、t-アミル基、およびベンジル基などを挙げることができる。また、式(I)で表される化合物としては、具体的には、例えば、二炭酸ジアリル、二炭酸ジ-t-ブチル、二炭酸ジ-t-アミル、および二炭酸ジベンジルなどが挙げられる。そのなかでも、カルボン酸エステルを効率よく合成できることから、RとRがt-ブチル基である二炭酸ジ-t-ブチルが好ましい。
 式(I)で表される化合物としては、市販されているものを使用することもでき、公知の方法などで製造して得られたものを使用することもできる。また、式(I)で表される化合物は、1種を用いてもよく、2種以上を併用してもよい。
 〔カルボン酸〕
 本発明のカルボン酸エステルの製造方法において、カルボン酸エステルの原料となるカルボン酸の種類および構造は限定されない。例えば、カルボン酸は、「R-COOH」と表すことができ、Rは置換基を有していてもよい炭素数1~30の炭化水素基であることが好ましい。この炭化水素基は、直鎖状でも、分岐状でも、あるいは環構造を有してもよく、またその基中に不飽和結合あるいはエーテル結合を含んでいてもよい。置換基を有していてもよいとは、任意の置換基を1つ以上有してもよいという意味であり、例えば、以下の結合、基および原子などを1つ以上有してもよいという意味である。エステル結合、アミド結合、エーテル結合、スルフィド結合、ジスルフィド結合、ウレタン結合、ニトロ基、シアノ基、ケトン基、ホルミル基、アセタール基、チオアセタール基、スルホニル基、ハロゲン、ケイ素、リンなど。
 カルボン酸中に含まれる炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基、およびアリール基が挙げられる。カルボン酸の入手容易性の観点から、これらの炭化水素基の炭素数は、1~30であることが好ましく、2~20であることがより好ましい。
 炭化水素基としては、より詳細には、ビニル基、イソプロペニル基、t-ブチル基、ヘキシル基、シクロへキシル基、およびフェニル基などを挙げることができる。またカルボン酸としては、具体的には、例えば、(メタ)アクリル酸、ピバル酸、ヘプタン酸、シクロヘキサンカルボン酸、安息香酸、アジピン酸モノメチルおよび6-クロロヘキサン酸などが挙げられる。そのなかでも、Rはビニル基またはイソプロペニル基であることがより好ましい。カルボン酸としては、カルボン酸エステルとしての適用範囲が広いことから(メタ)アクリル酸が特に好ましい。
 カルボン酸としては、市販されているものを使用することもでき、公知の方法などで製造して得られたものを使用することもできる。また、カルボン酸は、1種を用いてもよく、2種以上を併用してもよく、多価カルボン酸を用いてもよい。
 本発明のカルボン酸エステルの製造方法におけるカルボン酸の使用量は、式(I)で表される化合物1モル当たり、0.1~10モルが好ましく、0.2~5モルがより好ましく、0.5~2モルがさらに好ましい。カルボン酸の使用量を式(I)で表される化合物1モル当たり、0.1モル以上とすることにより、カルボン酸エステルの収率を高くすることができる。カルボン酸の使用量を式(I)で表される化合物1モル当たり、10モル以下とすることにより、反応後の後処理工程への負荷を軽減することができ、経済性を良くすることができる。
 〔アルコール〕
 本発明のカルボン酸エステルの製造方法において、カルボン酸エステルの原料となるアルコールの種類および構造は限定されない。例えば、アルコールは、「R-OH」と表すことができ、Rは置換基を有していてもよい炭素数1~30の炭化水素基であることが好ましい。この炭化水素基は直鎖状でも、分岐状でも、あるいは環構造を有してもよく、またその基中に不飽和結合を含んでいてもよい。置換基を有していてもよいとは、任意の置換基を1つ以上有してもよいという意味であり、例えば、以下の結合、基および原子などを1つ以上有してもよいという意味である。エステル結合、アミド結合、エーテル結合、スルフィド結合、ジスルフィド結合、ウレタン結合、ニトロ基、シアノ基、ケトン基、ホルミル基、アセタール基、チオアセタール基、スルホニル基、ハロゲン、ケイ素、リンなど。
 アルコール中に含まれる炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基、およびアリール基が挙げられる。アルコールの入手容易性の観点から、これらの炭化水素基の炭素数は1~30であることが好ましく、2~20であることがより好ましい。そのなかでも、炭化水素基はアリール基であることがより好ましい。従来は、高い収率での合成が難しかった芳香族アルコール由来のカルボン酸エステルが容易に合成できることから、アルコールとしては、芳香族アルコールが好ましく、具体的には、例えば、フェノール、フェニルフェノール、およびナフトールなどが挙げられる。
 アルコールは、市販されているものを使用することもでき、公知の方法などで製造して得られたものを使用することもできる。また、アルコールは、1種を用いてもよく、2種以上を併用してもよく、多価アルコールを用いてもよい。
 アルコールの使用量は、式(I)で表される化合物1モル当たり、0.1~10モルが好ましく、0.2~5モルがより好ましく、0.5~2モルがさらに好ましい。アルコールの使用量を式(I)で表される化合物1モル当たり、0.1モル以上とすることにより、カルボン酸エステルの収率を高くすることができる。アルコールの使用量を式(I)で表される化合物1モル当たり、10モル以下とすることにより、反応後の後処理工程への負荷を軽減することができ、経済性を良くすることができる。
 アルコールの使用量は、カルボン酸1モル当たり、0.1~10モルが好ましく、0.2~5モルがより好ましく、0.5~2モルがさらに好ましい。アルコールの使用量をカルボン酸1モル当たり0.1モル以上とすることにより、カルボン酸エステルの収率を高くすることができる。アルコールの使用量をカルボン酸1モル当たり10モル以下とすることにより、反応後の後処理工程への負荷を軽減することができ、経済性を良くすることができる。
 〔カルボン酸エステルの製造用触媒〕
 本発明のカルボン酸エステルの製造方法において使用される触媒は、マグネシウム化合物およびアルカリ金属化合物である。当該触媒を構成する配位子によって、当該触媒の溶解性が変わるため、当該触媒は、均一系触媒として用いることもでき、不均一系触媒として用いることもできる。
 本発明のカルボン酸エステルの製造方法においては、式(I)で表される化合物とカルボン酸とアルコールとを触媒の存在下で反応させるが、「触媒の存在下」とは、触媒が反応過程の少なくとも一部の段階で存在していればよく、反応過程のすべての段階で常に存在している必要はない。本発明のカルボン酸エステルの製造方法においては、触媒が反応系内に加えられれば、「触媒の存在下」という要件は満たされる。例えば、触媒を反応系内に加えた後、反応過程で触媒に何らかの変化が生じたとしても、「触媒の存在下」という要件は満たされる。
 (マグネシウム化合物)
 マグネシウム化合物としては、マグネシウムの、酸化物、水酸化物塩、炭酸塩、炭酸水素塩、ケイ酸塩、硫酸塩、硫酸アンモニウム塩、硝酸塩、リン酸塩、リン酸水素塩、リン酸アンモニウム塩、ホウ酸塩、ハロゲン酸塩、過ハロゲン酸塩、およびハロゲン化水素酸塩などの無機酸との塩;カルボン酸塩、過カルボン酸塩、およびスルホン酸塩などの有機酸との塩;アセチルアセトン塩、ヘキサフルオロアセチルアセトン塩、ポルフィリン塩、フタロシアニン塩、およびシクロペンタジエン塩などの錯塩が挙げられる。これらのマグネシウム塩は、水和物および無水物のいずれでもよく、特に限定されない。そのなかでも、マグネシウムの、酸化物、水酸化物塩、炭酸塩、硫酸塩、硫酸アンモニウム塩、硝酸塩、ハロゲン化水素酸塩、カルボン酸塩、および錯塩が好ましい。マグネシウム化合物としては、より詳細には、例えば、酸化マグネシウム、水酸化マグネシウム、炭酸水酸化マグネシウム(別名:塩基性炭酸マグネシウム)、硫酸マグネシウム、硫酸アンモニウムマグネシウム、硝酸マグネシウム、塩化マグネシウム、臭化マグネシウム、酢酸マグネシウム、安息香酸マグネシウム、(メタ)アクリル酸マグネシウム、およびアセチルアセトンマグネシウムが挙げられる。
 これらのマグネシウム化合物は、市販されているものを使用することもでき、公知の方法などで製造して得られたものを使用することもできる。これらは、1種を用いてもよく、2種以上を併用してもよい。
 マグネシウム化合物の使用量は、カルボン酸エステルを製造できる限り、特には限定されない。マグネシウム化合物の使用量は、式(I)で表される化合物に対して、0.001~1000モル%が好ましく、0.005~500モル%がより好ましい。マグネシウム化合物の使用量を式(I)で表される化合物に対して、0.001モル%以上とすることにより、カルボン酸エステルの収率を高くすることができる。マグネシウム化合物の使用量を式(I)で表される化合物に対して、1000モル%以下とするのが好ましいのは、1000モル%超としても効果の飛躍的な向上が考えられにくいからである。
 マグネシウム化合物の使用量は、アルコールに対して、0.001~1000モル%が好ましく、0.005~500モル%がより好ましく、0.01~250モル%がさらに好ましい。マグネシウム化合物の使用量をアルコールに対して0.001モル%以上とすることにより、カルボン酸エステルの収率を高くすることができる。マグネシウム化合物の使用量をアルコールに対して1000モル%以下とするのが好ましいのは、1000モル%超としても効果の飛躍的な向上が考えられにくいからである。
 (アルカリ金属化合物)
 アルカリ金属化合物としては、アルカリ金属の、水素化塩、酸化物、水酸化物塩、炭酸塩、炭酸水素塩、硫酸塩、硝酸塩、リン酸塩、ホウ酸塩、ハロゲン酸塩、過ハロゲン酸塩、ハロゲン化水素酸塩、およびチオシアン酸塩などの無機酸との塩;アルコキシド塩、カルボン酸塩、およびスルホン酸塩などの有機酸との塩;アミド塩、およびスルホンアミド塩などの有機塩基との塩;アセチルアセトン塩、ヘキサフルオロアセチルアセトン塩、ポルフィリン塩、フタロシアニン塩、シクロペンタジエン塩などの錯塩が挙げられる。これらのアルカリ金属塩は、水和物および無水物のいずれでもよく、特に限定されない。そのなかでも、アルカリ金属の、酸化物、水酸化物塩、炭酸塩、炭酸水素塩、ハロゲン化水素酸塩、カルボン酸塩、アミド塩、および錯塩が好ましい。
 アルカリ金属化合物中に含まれる金属としては、特に限定されないが、アルカリ金属に属する金属のうち、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが好ましく、触媒活性が高いことからリチウムがより好ましい。リチウム化合物としては、より詳細には、例えば、酸化リチウム、水酸化リチウム、炭酸リチウム、フッ化リチウム、塩化リチウム、臭化リチウム、酢酸リチウム、安息香酸リチウム、(メタ)アクリル酸リチウム、リチウムアミド、リチウムトリフルイミド、およびアセチルアセトンリチウムが挙げられる。
 これらのアルカリ金属化合物は、市販されているものを使用することもでき、公知の方法などで製造して得られたものを使用することもできる。これらは、1種を用いてもよく、2種以上を併用してもよい。
 アルカリ金属化合物の使用量は、カルボン酸エステルを製造できる限り、特には限定されない。アルカリ金属化合物の使用量は、式(I)で表される化合物に対して、0.001~1000モル%が好ましく、0.005~500モル%がより好ましい。アルカリ金属化合物の使用量を式(I)で表される化合物に対して、0.001モル%以上とすることにより、カルボン酸エステルの収率を高くすることができる。アルカリ金属化合物の使用量を式(I)で表される化合物に対して、1000モル%以下とするのが好ましいのは、1000モル%超としても効果の飛躍的な向上が考えられにくいからである。
 アルカリ金属化合物の使用量は、アルコールに対して、0.001~1000モル%が好ましく、0.005~500モル%がより好ましく、0.01~250モル%がさらに好ましい。アルカリ金属化合物の使用量をアルコールに対して0.001モル%以上とすることにより、カルボン酸エステルの収率を高くすることができる。アルカリ金属化合物の使用量をアルコールに対して1000モル%以下とするのが好ましいのは、1000モル%超としても効果の飛躍的な向上が考えられにくいからである。
 〔カルボン酸エステルの製造用反応条件〕
 本発明のカルボン酸エステルの製造方法における反応条件は、特には限定されず、反応過程で反応条件を適宜変更することもできる。
 反応容器の形態は、特に限定されない。反応温度も特には限定されないが、-20~180℃とすることができ、0~100℃が好ましい。反応温度を-20℃以上とすることにより、反応を効率よく進行させることができる。反応温度を180℃以下とすることにより、副生成物の量や反応液の着色を抑制することができる。
 反応時間も特には限定されないが、例えば、0.5~72時間とすることができ、2~48時間とすることが好ましい。反応時間を0.5時間以上とすることにより、反応を十分に進行させることができる。反応時間を72時間以下とすることができるのは、72時間超としても効果の飛躍的な向上が考えられにくいからである。
 反応雰囲気も特には限定されない。反応圧力も特には限定されない。
 本発明のカルボン酸エステルの製造は、無溶媒(溶媒を用いない)で行うことができる。反応液の粘度が高いなどの場合には、必要に応じて、溶媒を用いることもできる。溶媒の種類も特には限定されないが、例えば、炭素数1~25の有機化合物とすることができ、反応条件に応じて適宜選択することができる。溶媒としては、例えばテトラヒドロフランなどを用いることができる。溶媒は、1種でもよく、2種以上の混合溶媒でもよい。溶媒の使用量も限定されず、適宜選択することができる。
 反応に用いる原料(式(I)で表される化合物、カルボン酸、アルコール)、触媒、および必要に応じて溶媒などの反応容器内への導入方法については、特には制限されないが、全ての原料を一度に導入してもよく、一部または全ての原料を段階的に導入してもよく、一部または全ての原料を連続的に導入してもよい。また、これらの方法を組み合わせた導入方法でもよい。
 〔カルボン酸エステル〕
 本発明のカルボン酸エステルの製造方法で得られる生成物は、例えば「RCOOR」と表すことができ、RとRは、カルボン酸の説明の欄とアルコールの説明の欄において記載した通りである。
 本発明のカルボン酸エステルの製造方法で使用されるカルボン酸が(メタ)アクリル酸である場合、(メタ)アクリル酸エステルが生成する。(メタ)アクリル酸や(メタ)アクリル酸エステルは重合しやすい化合物なので、重合を防止するために、予め重合禁止剤を添加してもよい。重合禁止剤を添加するタイミングも特には限定されず、反応開始時に添加するのが操作しやすさの観点から好ましい。
 使用する重合禁止剤の種類としては、特には限定されず、例えば、2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカルなどの公知の重合禁止剤を用いることができる。これらは、1種を用いてもよく、2種以上を併用してもよい。重合禁止剤の使用量は、(メタ)アクリル酸、または(メタ)アクリル酸エステル100質量部に対して0.001~0.5質量部とすることが好ましく、0.01~0.1質量部とすることがより好ましい。また、空気などの酸素を含有するガスの吹き込みを行ってもよい。当該ガスの吹き込み量は、反応条件などに応じて適宜選択することができる。
 本発明のカルボン酸エステルの製造方法において、得られたカルボン酸エステルは、そのまま次の反応に使用することもでき、必要に応じて精製することもできる。精製条件は、特に限定はなく、反応過程および反応終了時で精製条件を適宜変更することができる。例えば、反応終了後、得られた反応混合液から、減圧蒸留、クロマトグラフィー、および再結晶などの方法によってカルボン酸エステルを精製することができる。これらの精製方法は、単独でまたは組み合わせて行うことができる。
 本発明のカルボン酸エステルの製造方法において、得られたカルボン酸エステルの保存容器としては、特には限定されず、例えば、ガラス製容器、樹脂製容器、および金属製容器などを用いることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。
 以下の実施例および比較例において用いた二炭酸ジ-t-ブチルは、東京化成工業株式会社製の純度98質量%の化合物であり、式(I)におけるRとRはC(CHである。また、テトラヒドロフラン(以下、「THF」と略す。)は、関東化学株式会社製の特級グレード(水分0.05%以下)である。また、生成物の収率の測定方法は、以下の通りである。
 反応終了後、得られた反応混合液に標準物質(アニソールまたは1,1,2,2-テトラクロロエタン)を加え、重クロロホルム(CDCl)にこれらを溶解させ、H-NMR(270MHz)を測定した。得られたスペクトルの積分値から換算して、生成したカルボン酸エステルの物質量(ミリモル)を求めた。次いで、式(1)によりカルボン酸エステルの収率を算出した(ただし、算出した収率が1%未満の場合は0と表記する)。
  カルボン酸エステルの収率(%)=(P/R)×100  (1)
:生成したカルボン酸エステルの物質量(ミリモル)
:使用したアルコールの物質量(ミリモル)。
 また、触媒として用いたマグネシウム化合物およびアルカリ金属化合物の添加量(モル%)は、式(2)によりそれぞれ算出した。
  触媒の添加量(モル%)=(C/R)×100  (2)
:使用した触媒の物質量(ミリモル)
:使用したアルコールの物質量(ミリモル)。
 [実施例1]
 容量100mLのナスフラスコ内にフェノール10.000g(106.26ミリモル)、メタクリル酸9.148g(106.26ミリモル)、二炭酸ジ-t-ブチル23.664g(106.26ミリモル)、水酸化リチウム一水和物0.018g(0.43ミリモル、0.4モル%)、およびアセチルアセトンマグネシウム0.024g(0.11ミリモル、0.1モル%)を順次加え、撹拌下、25℃で反応を行い、メタクリル酸フェニルを製造した。反応開始から5時間後における反応結果を表1に示す。
 [実施例2~14]
 触媒として、水酸化リチウム一水和物の代わりに表1に示す種類のアルカリ金属化合物(0.4モル%)を用いたこと以外は実施例1と同様にして、メタクリル酸フェニルを製造した。反応開始から5時間後における反応結果を表1に示す。
 [比較例1]
 水酸化リチウム一水和物を用いないこと以外は実施例1と同様にして、メタクリル酸フェニルを製造した。反応開始から5時間後における反応結果を表1に示す。
 [比較例2]
 アセチルアセトンマグネシウムを用いないこと以外は実施例1と同様にして、メタクリル酸フェニルを製造しようとした。反応開始から5時間後における反応結果を表1に示す。
 [比較例3]
 水酸化リチウム一水和物の添加量を2.0モル%にしたこと以外は比較例2と同様にして、メタクリル酸フェニルを製造しようとした。反応開始から24時間後における反応結果を表1に示す。
 [比較例4~10]
 水酸化リチウム一水和物の代わりに表1に示す種類と量のアルカリ金属化合物(1.0モル%または2.0モル%)を用いたこと以外は比較例2と同様にして、メタクリル酸フェニルを製造しようとした。反応開始から24時間後における反応結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 
 [実施例15~19]
 表2に示す量の水酸化リチウム一水和物(0.1モル%~2.0モル%)を用いたこと以外は実施例1と同様にして、メタクリル酸フェニルを製造した。反応開始から5時間後または24時間後における反応結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 
 [実施例20~31]
 アセチルアセトンマグネシウムの代わりに表3に示す種類と量のマグネシウム化合物(0.05モル%~0.5モル%)を用い、表3に示す量の水酸化リチウム一水和物(0.2モル%~2.0モル%)を用いたこと以外は実施例1と同様にして、メタクリル酸フェニルを製造した。反応開始から5時間後または24時間後における反応結果を表3に示す。
 [比較例11~22]
 水酸化リチウム一水和物を用いないこと以外は実施例20~31と同様にして、メタクリル酸フェニルを製造または製造しようとした。反応開始から5時間後または24時間後における反応結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
 
 [実施例32]
 容量100mLのナスフラスコ内にフェノール10.000g(106.26ミリモル)、アクリル酸7.657g(106.26ミリモル)、二炭酸ジ-t-ブチル23.664g(106.26ミリモル)、臭化リチウム0.046g(0.53ミリモル、0.5モル%)、および硫酸マグネシウム0.064g(0.53ミリモル、0.5モル%)を順次加え、撹拌下、25℃で反応を行い、アクリル酸フェニルを製造した。反応開始から24時間後における反応結果を表4に示す。
 [実施例33~35]
 臭化リチウムの代わりに表4に示す種類のアルカリ金属化合物(0.5モル%)を用いたこと以外は実施例32と同様にして、アクリル酸フェニルを製造した。反応開始から24時間後における反応結果を表4に示す。
 [比較例23]
 臭化リチウムを用いないこと以外は実施例32と同様にして、アクリル酸フェニルを製造しようとした。反応開始から24時間後における反応結果を表4に示す。
 [比較例24]
 硫酸マグネシウムを用いないこと以外は、実施例32と同様にして、アクリル酸フェニルを製造しようとした。反応開始から24時間後における反応結果を表4に示す。
Figure JPOXMLDOC01-appb-T000007
 
 [実施例36]
 容量1Lのナスフラスコ内にフェノール153.370g(1629.69ミリモル)、メタクリル酸140.300g(1629.69ミリモル)、二炭酸ジ-t-ブチル362.938g(1629.69ミリモル)、水酸化リチウム一水和物0.027g(0.65ミリモル、0.04モル%)、および水酸化マグネシウム0.010g(0.16ミリモル、0.01モル%)を順次加え、撹拌下、25℃で反応を行い、メタクリル酸フェニルを製造した。反応開始から48時間後における反応結果を表5に示す。
 [実施例37~62]
 表5~7に記載の原料、触媒、溶媒を用いて同表に記載の条件に変更し、適宜、小さなナスフラスコを用いたこと以外は実施例36と同様の操作を行い、カルボン酸エステルを製造した。反応結果を同表に示す。
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
 本発明のカルボン酸エステルの製造方法では、従来の方法と比べてより効率的かつ経済的にカルボン酸エステルを得ることができる。また、本発明のカルボン酸エステルの製造方法では、穏和な反応条件下、高収率でカルボン酸エステルを得ることができる。加えて、本発明のカルボン酸エステルの製造方法は、原料として種々のカルボン酸やアルコールを用いることができ、基質の一般性が従来法と比べて大幅に広い。
 この出願は、2014年12月18日に出願された日本出願特願2014-255665を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。

Claims (7)

  1.  下記式(I)で表される化合物とカルボン酸とアルコールとを、1種以上のマグネシウム化合物および1種以上のアルカリ金属化合物の存在下で反応させる、カルボン酸エステルの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     
    [式(I)中、RとRは炭素数1~20の炭化水素基を表す。]
  2.  前記アルカリ金属化合物を構成する金属がリチウムである、請求項1に記載のカルボン酸エステルの製造方法。
  3.  前記式(I)で表される化合物が二炭酸ジ-t-ブチルである、請求項1または2に記載のカルボン酸エステルの製造方法。
  4.  前記カルボン酸が(メタ)アクリル酸である、請求項1~3のいずれか一項に記載のカルボン酸エステルの製造方法。
  5.  前記アルコールが芳香族アルコールである、請求項1~4のいずれか一項に記載のカルボン酸エステルの製造方法。
  6.  前記式(I)で表される化合物1モル当たり、前記カルボン酸エステル0.1~10モル、前記アルコール0.1~10モルを反応させる、請求項1~5のいずれか一項に記載のカルボン酸エステルの製造方法。
  7.  前記アルコールに対して、前記マグネシウム化合物0.001~1000モル%、前記アルカリ金属化合物0.001~1000モル%の存在下で反応させる、請求項1~6のいずれか一項に記載のカルボン酸エステルの製造方法。
PCT/JP2015/084794 2014-12-18 2015-12-11 カルボン酸エステルの製造方法 WO2016098699A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015562223A JP6597312B2 (ja) 2014-12-18 2015-12-11 カルボン酸エステルの製造方法
CN201580049418.4A CN107074719B (zh) 2014-12-18 2015-12-11 羧酸酯的制造方法
KR1020177007704A KR102478883B1 (ko) 2014-12-18 2015-12-11 카르복실산 에스테르의 제조 방법
EP15869904.1A EP3235801B1 (en) 2014-12-18 2015-12-11 Carboxylic acid ester production method
US15/535,725 US10421705B2 (en) 2014-12-18 2015-12-11 Carboxylic acid ester production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014255665 2014-12-18
JP2014-255665 2014-12-18

Publications (1)

Publication Number Publication Date
WO2016098699A1 true WO2016098699A1 (ja) 2016-06-23

Family

ID=56126589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084794 WO2016098699A1 (ja) 2014-12-18 2015-12-11 カルボン酸エステルの製造方法

Country Status (6)

Country Link
US (1) US10421705B2 (ja)
EP (1) EP3235801B1 (ja)
JP (1) JP6597312B2 (ja)
KR (1) KR102478883B1 (ja)
CN (1) CN107074719B (ja)
WO (1) WO2016098699A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090581A1 (ja) * 2015-11-26 2017-06-01 三菱レイヨン株式会社 カルボン酸チオエステルの製造方法
JP2017222637A (ja) * 2016-06-10 2017-12-21 三菱ケミカル株式会社 光学活性カルボン酸エステルの製造方法
JP2018154619A (ja) * 2017-03-16 2018-10-04 三菱ケミカル株式会社 (メタ)アクリル酸エステルの製造方法
JP2021024916A (ja) * 2019-08-01 2021-02-22 三菱ケミカル株式会社 ポリエステル系樹脂の製造方法
JP2021024915A (ja) * 2019-08-01 2021-02-22 三菱ケミカル株式会社 ポリエステル系樹脂の製造方法
JP2021024914A (ja) * 2019-08-01 2021-02-22 三菱ケミカル株式会社 ポリエステル系樹脂の製造方法
JP2021088526A (ja) * 2019-12-04 2021-06-10 三菱ケミカル株式会社 (メタ)アクリル酸エステルの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3571181A1 (de) 2017-01-20 2019-11-27 Evonik Röhm GmbH Lagerstabiles glycerin(meth)acrylatcarbonsäureester
EP3611155A1 (en) * 2018-08-16 2020-02-19 Evonik Operations GmbH Preparation of (meth)acrylic acid esters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149612A (ja) * 1974-05-25 1975-11-29
JPH07133252A (ja) * 1993-10-21 1995-05-23 Nippon Oil & Fats Co Ltd 第三級アルコールのメタクリル酸エステルの製造法
JP2006063035A (ja) * 2004-08-27 2006-03-09 Hironori Takahata カルボン酸類の新規なエステル化方法
JP2006335715A (ja) * 2005-06-03 2006-12-14 Tosoh Corp 高品質ビニル安息香酸−第3級ブチルエステル及びその製造方法
WO2015186787A1 (ja) * 2014-06-04 2015-12-10 三菱レイヨン株式会社 カルボン酸無水物の製造方法およびカルボン酸エステルの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090258A1 (ja) * 2009-02-05 2010-08-12 三菱レイヨン株式会社 (メタ)アクリル酸エステルの製造方法
HU230744B1 (hu) * 2012-11-30 2018-01-29 CHINOIN Gyógyszer és Vegyészeti Termékek Gyára Zrt. Új eljárás travoprost előállítására

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149612A (ja) * 1974-05-25 1975-11-29
JPH07133252A (ja) * 1993-10-21 1995-05-23 Nippon Oil & Fats Co Ltd 第三級アルコールのメタクリル酸エステルの製造法
JP2006063035A (ja) * 2004-08-27 2006-03-09 Hironori Takahata カルボン酸類の新規なエステル化方法
JP2006335715A (ja) * 2005-06-03 2006-12-14 Tosoh Corp 高品質ビニル安息香酸−第3級ブチルエステル及びその製造方法
WO2015186787A1 (ja) * 2014-06-04 2015-12-10 三菱レイヨン株式会社 カルボン酸無水物の製造方法およびカルボン酸エステルの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GIUSEPPE BARTOLI ET AL.: "Reaction of dicarbonates with carboxylic acids catalyzed by weak lewis acids: general method for the Synthesis of Anhydrides and Esters", SYNTHESIS, 2007, pages 3489 - 3496, XP055070641, DOI: doi:10.1055/s-2007-990812 *
L. GOOSSEN ET AL.: "Lewis Acids as Highly Efficient Catalysts for the Decarboxylative Esterification of Carboxylic Acids with Dialkyl Dicarbonates", ADV. SYNTH. CATAL., vol. 345, 2003, pages 943 - 947, XP009109422, DOI: doi:10.1002/adsc.200303040 *
See also references of EP3235801A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052195B2 (ja) 2015-11-26 2022-04-12 三菱ケミカル株式会社 カルボン酸チオエステルの製造方法
JPWO2017090581A1 (ja) * 2015-11-26 2018-09-13 三菱ケミカル株式会社 カルボン酸チオエステルの製造方法
WO2017090581A1 (ja) * 2015-11-26 2017-06-01 三菱レイヨン株式会社 カルボン酸チオエステルの製造方法
JP2017222637A (ja) * 2016-06-10 2017-12-21 三菱ケミカル株式会社 光学活性カルボン酸エステルの製造方法
JP2022100331A (ja) * 2017-03-16 2022-07-05 三菱ケミカル株式会社 (メタ)アクリル酸エステルの製造方法
JP2018154619A (ja) * 2017-03-16 2018-10-04 三菱ケミカル株式会社 (メタ)アクリル酸エステルの製造方法
JP7098973B2 (ja) 2017-03-16 2022-07-12 三菱ケミカル株式会社 (メタ)アクリル酸エステルの製造方法
JP2021024915A (ja) * 2019-08-01 2021-02-22 三菱ケミカル株式会社 ポリエステル系樹脂の製造方法
JP2021024914A (ja) * 2019-08-01 2021-02-22 三菱ケミカル株式会社 ポリエステル系樹脂の製造方法
JP2021024916A (ja) * 2019-08-01 2021-02-22 三菱ケミカル株式会社 ポリエステル系樹脂の製造方法
JP7298374B2 (ja) 2019-08-01 2023-06-27 三菱ケミカル株式会社 ポリエステル系樹脂の製造方法
JP7298375B2 (ja) 2019-08-01 2023-06-27 三菱ケミカル株式会社 ポリエステル系樹脂の製造方法
JP7363171B2 (ja) 2019-08-01 2023-10-18 三菱ケミカル株式会社 ポリエステル系樹脂の製造方法
JP2021088526A (ja) * 2019-12-04 2021-06-10 三菱ケミカル株式会社 (メタ)アクリル酸エステルの製造方法

Also Published As

Publication number Publication date
EP3235801B1 (en) 2019-02-20
US10421705B2 (en) 2019-09-24
JPWO2016098699A1 (ja) 2017-11-02
JP6597312B2 (ja) 2019-10-30
CN107074719A (zh) 2017-08-18
EP3235801A1 (en) 2017-10-25
CN107074719B (zh) 2021-05-07
US20180354885A1 (en) 2018-12-13
KR20170094118A (ko) 2017-08-17
EP3235801A4 (en) 2017-12-06
KR102478883B1 (ko) 2022-12-19

Similar Documents

Publication Publication Date Title
JP6597312B2 (ja) カルボン酸エステルの製造方法
JP6747560B2 (ja) カルボン酸エステルの製造方法
JP5849710B2 (ja) β−フルオロアルコール類の製造方法
JP2012106982A (ja) エステル製造方法
JP2009263392A (ja) アルコールの製造法
JP2016011292A (ja) 混合酸無水物の製造方法
JP7052195B2 (ja) カルボン酸チオエステルの製造方法
JP6627653B2 (ja) カルボン酸チオエステルの製造方法
JP5201620B2 (ja) ホスホニウムイオン液体、ビアリール化合物の製造方法およびイオン液体の使用方法
JP6204583B2 (ja) α−ブロモアセトフェノン化合物の製造方法
JP6766459B2 (ja) カルボン酸エステルの製造方法
JP6809366B2 (ja) 光学活性カルボン酸エステルの製造方法
JP2005306837A (ja) アダマンタノール類の製造方法
JP2021042171A (ja) カルボン酸エステルの製造方法
JP5645537B2 (ja) ヒドロキシエステル誘導体の製造方法
WO2006080425A1 (ja) 光学活性ヒドロキシメチル化化合物の製法及びそのための触媒
JP2005068077A (ja) (メタ)アクリル酸エステル類の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015562223

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177007704

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015869904

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE