WO2016098398A1 - 光学素子の加工用工具および光学素子の製造方法 - Google Patents

光学素子の加工用工具および光学素子の製造方法 Download PDF

Info

Publication number
WO2016098398A1
WO2016098398A1 PCT/JP2015/075047 JP2015075047W WO2016098398A1 WO 2016098398 A1 WO2016098398 A1 WO 2016098398A1 JP 2015075047 W JP2015075047 W JP 2015075047W WO 2016098398 A1 WO2016098398 A1 WO 2016098398A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
grindstone
processing tool
processing
central axis
Prior art date
Application number
PCT/JP2015/075047
Other languages
English (en)
French (fr)
Inventor
修二 向山
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to DE112015005672.6T priority Critical patent/DE112015005672T5/de
Priority to CN201580067995.6A priority patent/CN107000154A/zh
Publication of WO2016098398A1 publication Critical patent/WO2016098398A1/ja
Priority to US15/622,044 priority patent/US10239180B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/01Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/02Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor by means of tools with abrading surfaces corresponding in shape with the lenses to be made
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/18Wheels of special form

Definitions

  • the present invention relates to an optical element processing tool and an optical element manufacturing method.
  • Some optical element processing tools that grind or polish optical elements such as lenses use pelletized grindstones formed by solidifying abrasive grains into a cylindrical shape. For example, using a grindstone whose upper surface is shaped into a spherical shape corresponding to the spherical shape of the processing target of the optical element, and providing a counterbore for fixing the grindstone on the spherical grindstone attachment surface, the placement accuracy of the grindstone is increased.
  • an optical element processing tool that stabilizes the spherical shape of an optical element to be processed (see, for example, Patent Document 1).
  • the grindstone wears by repeating the processing of the optical element, but the wear amount may be different between the outer grindstone and the inner grindstone, and it is stuck on the spherical grindstone sticking plate.
  • the machining tool diameter of the machining tool changes from the target diameter, and there is a problem in that the machining surface quality of the optical element cannot be maintained constant.
  • the present invention has been made in view of the above, and an optical element processing tool and an optical element that can maintain a constant processing surface quality of an optical element after processing even when a grindstone is worn It aims at providing the manufacturing method of.
  • an optical element processing tool is an optical element processing tool for grinding or polishing an optical element, and has a predetermined curvature. And a first spherical surface in which one end surface of the columnar body corresponds to a spherical shape of a processing target of the optical element, and a plurality of grindstones each forming a columnar body having the same initial height.
  • a plurality of grindstones having an initial shape formed into a shape and having the other end surface of the columnar body fixed to a fixed region of the platform, and a processing tool of the processing tool among the plurality of grindstones
  • An unconditional grindstone that is a grindstone that does not meet the condition determined by the diameter is characterized in that an outer end portion is cut away at least in parallel with the central axis of the platen so as to meet the above condition.
  • the first spherical shape has a first spherical center located on a central axis of the platform and a first radius of curvature
  • the dish has a shape in which the fixed region is formed in a spherical shape with a spherical center located on the central axis of the platform
  • the non-conditional grindstone has a diameter centered on the central axis and the diameter of the machining tool
  • the grindstone includes a portion included in a region deviated from a projection region obtained by projecting a circle that is parallel to the central axis, and a portion deviated from the projection region is cut out.
  • the non-conditional grindstone includes the first spherical center of the grindstone along the central axis in a direction from one end surface to the other end surface of the grindstone.
  • the outer end portion is notched to a position just above the position where the second spherical shape having the second spherical center moved by the initial height and having the first radius of curvature intersects the projection region.
  • the unconditional grindstone is fixed to the fixed region so that a center of the one end face of the unconditional grindstone is located inside the projection region. It is characterized by that.
  • the optical element manufacturing method is an optical element processing tool for grinding or polishing an optical element, each of which has the same initial height as a platform plate provided with a fixed region having a predetermined curvature.
  • a plurality of grindstones forming a columnar body, wherein one end face of the columnar body has an initial shape formed into a first spherical shape corresponding to a spherical shape of a processing target of the optical element, and the columnar shape
  • a non-conditional grindstone that is a grindstone that does not meet a condition determined by a processing tool diameter of the machining tool among the plurality of grindstones, the other end surface of the body being fixed to the fixed region of the platform Is one of the end faces in the height direction of each of the grindstones of the optical element machining tool whose outer end is notched in parallel with the central axis of the plate so as to meet the above conditions.
  • the processing tool for an optical element is a platform provided with a fixed region having a predetermined curvature, and a plurality of grindstones each forming a columnar body having the same initial height, and one of the columnar bodies A plurality of grindstones having an initial shape formed into a first spherical shape corresponding to the spherical shape of the processing target of the optical element, and the other end surface of the columnar body fixed to a fixed region of the platform.
  • the non-conditional grindstone that does not meet the conditions determined by the processing tool diameter of the machining tool among the plurality of grindstones is cut at the outer end parallel to at least the central axis of the platform so as to meet the conditions. Because it is missing, it keeps the processing tool diameter constant even if the grindstone wears, so that the processed surface quality of the optical element after processing can be stabilized and the quality of the optical element can be kept constant. Become.
  • FIG. 1 is a plan view of a processing tool for an optical element according to a first embodiment.
  • 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is an enlarged view of a main part of the machining tool shown in FIG.
  • FIG. 4 is a diagram for explaining a method of manufacturing the processing tool for the optical element shown in FIG.
  • FIG. 5 is a partial cross-sectional view for explaining a method of manufacturing an optical element using the processing tool shown in FIG.
  • FIG. 6 is a diagram in which the processing tool for an optical element according to the second embodiment is cut along a plane passing through the central axis of the platform of the processing tool.
  • FIG. 7 is an enlarged view of a main part of the machining tool shown in FIG.
  • FIG. 8 is a diagram for explaining a method for manufacturing the processing tool for an optical element according to the second embodiment.
  • FIG. 9 is a partial cross-sectional view for explaining a method of manufacturing an optical element using the machining tool shown in
  • an optical element processing tool for grinding or polishing an optical element will be described as a mode for carrying out the present invention (hereinafter referred to as “embodiment”). Moreover, this invention is not limited by this embodiment. Furthermore, the same code
  • FIG. 1 is a plan view of a processing tool for an optical element according to a first embodiment of the present invention.
  • 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is an enlarged view of a main part (region S1) of the machining tool shown in FIG.
  • An optical element processing tool 1 shown in FIG. 1 and FIG. 2 is a tool used for processing a processed surface of an optical element material into a part of a spherical surface (hereinafter referred to as “spherical shape”). is there.
  • the processing tool 1 is for processing an optical element material into a convex spherical shape.
  • the processing tool 1 includes a platform 2 and a plurality of grindstones 3 fixed to the upper surface 2a (fixed region) of the platform 2 with an adhesive 6.
  • the processing target spherical shape of the optical element material to be processed is a spherical shape having a radius of curvature R1 in which the spherical center is located on the central axis La of the platen 2.
  • the machining tool diameter of the machining tool 1 is set to D1.
  • the plurality of grindstones 3 are unevenly arranged on the upper surface 2 a of the base plate 2.
  • the base plate 2 has a shape in which the upper surface 2a has a predetermined curvature and is formed into a spherical shape with the ball center O1 positioned on the central axis La of the base plate 2.
  • the curvature radius of the upper surface 2a is a value R2 obtained by adding an initial height Ha of the grindstone 3 and a thickness of the adhesive 6 described later to the curvature radius R1. That is, as shown in FIG. 2, when the platen 2 is viewed in a cross section, the upper surface 2a has a shape along an arc A2 corresponding to a spherical shape having a radius of curvature R2 with the point O1 on the central axis La as a centroid. Is made.
  • the platen 2 is made of, for example, a metal such as copper, brass, or stainless steel or an alloy.
  • the grindstone 3 is formed by molding both bottom surfaces of pellets formed by solidifying abrasive grains made of diamond or the like into a cylindrical shape into a predetermined shape.
  • the grindstone 3 includes a metal-based one and a resin-based one.
  • the plurality of grindstones 3 each form a columnar body having the same initial height Ha.
  • Each of the grindstones 3 has a shape in which the upper end surface, which is one end surface in the height direction, is formed into a spherical shape (first spherical shape) corresponding to the spherical shape of the processing target of the optical element.
  • the initial shape of the upper end face of each grindstone 3 is formed into a spherical shape with a radius of curvature R1 where the spherical center O1 is located on the central axis La of the base plate 2, and when viewed in cross section as shown in FIG.
  • the lower end surface which is the other end surface in the height direction of each grindstone 3, is fixed to the upper surface 2 a of the platform 2 with an adhesive 6.
  • the plurality of grindstones 3 have the same shape.
  • the non-conditional grindstones (for example, grindstones 3 b and 3 c) that do not meet the conditions determined by the processing tool diameter D ⁇ b> 1 are at least center axis La so as to meet the conditions.
  • the outer end is cut out in parallel.
  • a projection area obtained by projecting a circle centered on the central axis La and having a diameter of the machining tool diameter D1 in parallel to the central axis La is defined as a projection area C1 (see FIG. 1).
  • the projection area C1 has a cylindrical shape whose diameter is the machining tool diameter D1 and whose central axis is the axis La.
  • the side surface of the projection area C1 having the cylindrical shape is indicated by a broken line SC1.
  • the unconditional grindstone is a grindstone in which a part is included in a region deviated from the projection region C1.
  • the outer end portions are notched so that the grinding surface is not located in a region outside the projection region C1.
  • the part 5b removed from the projection region C1 is cut out in parallel with the central axis La along the side surface SC1 of the projection region C1.
  • a portion deviated from the projection region C1 is cut out in parallel with the central axis La along the side surface SC1 of the projection region C1. Therefore, the notch surface 4a of the grindstone 3b and the notch surface 4c of the grindstone 3c have a shape along the side surface SC1.
  • the unconditional grindstone is located at a position O2 in which the ball center O1 is moved along the central axis La in the direction from the upper end surface Pa to the lower end surface Pb of the grindstone 3a by the initial height Ha of the grindstone 3.
  • the second spherical shape having the curvature radius R1 and the projection region C1 are notched up to a position just above.
  • the arc A3s corresponds to this second spherical shape.
  • the grindstones 3b and 3c are notched at the outer ends to a position directly above the position where the arc A3s and the side surface SC1 of the projection area C1 intersect.
  • the notch surface 4b of the grindstone 3b is a surface orthogonal to the side surface SC1, and the notched end corresponds to the position where the arc A3s and the side surface SC1 intersect.
  • each grindstone is such that the center of the upper end surface of the grindstone is located inside the projection area C ⁇ b> 1 so that a ground surface having a constant area can be secured even in a non-conditional grindstone with the outer end cut out.
  • 3 fixed position is adjusted.
  • the center Tb (see FIG. 1) of the upper end face of the grindstone 3b and the center Tc (see FIG. 1 and FIG. 2) of the upper end face of the grindstone 3c are located inside the projection region C1.
  • a fixed position is set to.
  • FIG. 4 is a diagram for explaining a method of manufacturing the optical element processing tool 1 shown in FIG.
  • the processing tool 1 has a projection area C1 of an unconditional grindstone (for example, grindstone 3bp, 3cp) after each grindstone 3 is fixed to the upper surface 2a of the base plate 2 with an adhesive 6.
  • the portion that is off is completed by being cut out in parallel with the central axis La along the side surface SC1 of the projection region C1.
  • This notch process is performed using a curve generator (CG) machine or a grinding cutting tool such as a file.
  • CG curve generator
  • the grindstone 3 is worn and repeatedly reduced in height by repeatedly processing the optical element.
  • the amount of wear of the grindstone 3 varies depending on the position of the base plate 2 with respect to the upper surface 2a, and the inner grindstone 3 (for example, the central grindstone 3a) is worn more than the outer grindstone 3 (for example, the grindstones 3bp and 3cp at the outer end).
  • the central grindstone 3a that wears the earliest wears down to the lower end face Pb the optical element material cannot be processed into the target spherical shape.
  • each grindstone 3 is worn with a spherical shape having a curvature radius R1 while the shape of the upper end face gradually moves in the direction of the central axis La.
  • the upper end face of each grindstone 3 advances from the initial shape along the arc A3 to the shape along the arc A3s as wear progresses.
  • the grindstones 3 bp and 3 cp of the outer end whose side portions are included in the region deviated from the side surface SC ⁇ b> 1 of the projection region C ⁇ b> 1 correspond to the curvature of the base plate 2 with respect to the central axis La. It is tilted and fixed. For this reason, when wear progresses in the direction of the central axis La, the upper end surfaces of the grindstones 3bp and 3cp have their outer ends spread outward from the side surface SC1 of the projection region C1, and the processing tool diameter of the processing tool is the processing tool diameter. It gradually increases from D1.
  • the upper end face of each grindstone 3 When wear progresses to the lower end face Pb of the central grindstone 3a, the upper end face of each grindstone 3 has a spherical shape corresponding to the arc A3s.
  • the machining tool diameter of the machining tool is D11 (> D1), and from the target diameter (D1). It will change.
  • the outer end grindstone (for example, grindstones 3 bp, 3 cp) partially included in the region deviated from the projection region C1 is at least the projection region as shown in (2) of FIG.
  • the unconditional grindstone for example, grindstones 3b and 3c
  • the initial height or the like of the grindstone 3 may be set so that the notched surfaces 4a and 4c) can be maintained.
  • the length Hb shown in FIG. 2 and FIG. 3 is a position where the side surface SC1 of the projection area C1 and the arc A3 intersect, and a position where the arc A3s and the side surface SC1 intersect, in an unconditional grindstone (for example, the grindstone 3b). It is the length of a straight line tied so as to be parallel to the central axis La.
  • the length of a straight line connecting the intersection of the first spherical shape and the projection area and the intersection of the second spherical shape and the projection area in the height direction of the central axis La in the unconditional grindstone It is also possible to set the initial height Ha of each grindstone 3, the size of the upper surface 2a of the base plate 2, and the like so that Hb is equal to or higher than the initial height Ha of the grindstone 3. In this case, when the machining tool 1 is used until the central grindstone 3a is worn down to the lower end face Pb, that is, until the central grindstone 3a is worn by the initial height Ha.
  • the notch surfaces 4a and 4c of the grindstones 3b and 3c at the outer end can maintain the shape along the side surface SC1 of the projection region C1, and the machining tool 1 has the machining tool diameter D1. Can be maintained.
  • the outer end portion is notched in parallel with at least the central axis La so that an unconditional grindstone that does not meet the condition determined by the machining tool diameter D1 of the machining tool 1 meets the condition.
  • the processing tool diameter D1 of the processing tool 1 can be kept constant even when the grindstone 3 is worn, so that the processing surface quality of the optical element can be stabilized and the quality of the optical element can be kept constant. Can be maintained.
  • the processing tool 1 according to the first embodiment can be configured by only the grindstone 3 having the same shape, and the simple end of the plural grindstones 3 is simply cut out so as to meet the conditions. Can be manufactured in a simple process.
  • the grindstone 3 is shape
  • the grindstone 3 is irregularly fixed to the upper surface 2a of the base plate 2 has been described as an example, but of course, it may be fixed regularly.
  • FIG. 5 is a partial cross-sectional view for explaining a method of manufacturing an optical element using the processing tool 1.
  • the processing tool 1 is attached to a polishing apparatus or grinding apparatus (not shown), and the optical element material 10 to be processed is attached to a jig (not shown) provided in the polishing apparatus or grinding apparatus.
  • the process of making the upper surface of each grindstone 3 which is a grinding surface of the processing tool 1 abut on the workpiece surface 10a.
  • the polishing apparatus or the grinding apparatus grinds or polishes the optical element material 10 by rotating the processing tool 1 about the central axis La of the base plate 2 and rotating the processing tool 1.
  • a processing step is performed. That is, the polishing apparatus or the grinding apparatus rotates the processing tool 1 as indicated by the arrow Y2 and swings as indicated by the arrow Y3.
  • FIG. 5 illustrates the case where the processing tool 1 is installed under the optical element and the case where the processing tool diameter D1 is set larger than the optical element diameter is illustrated.
  • the processing tool diameter D1 is set smaller than the optical element diameter.
  • the processing tool 1 is inclined, but the optical element installed on the upper shaft or the processing tool installed on the upper shaft is set to be inclined. There is also.
  • FIG. 6 is a diagram in which the processing tool for an optical element according to the second embodiment is cut along a plane passing through the central axis of the platform of the processing tool.
  • FIG. 7 is an enlarged view of a main part (region S2) of the machining tool shown in FIG.
  • the processing tool 21 according to the second embodiment shown in FIG. 6 is for processing an optical element material into a concave spherical shape.
  • the processing tool 21 includes a base plate 22 and a plurality of grindstones 23 fixed to the upper surface 22 a (fixed region) of the base plate 22 with an adhesive 6.
  • the processing target spherical shape of the optical element material to be processed has a spherical center on the central axis Lb of the base plate 22 and a radius of curvature R3.
  • the machining tool diameter of the machining tool 21 is set to D2.
  • a side surface of the projection area obtained by projecting a circle having the center axis Lb as the center and a diameter of the machining tool diameter D2 parallel to the center axis Lb is indicated by a broken line SC2.
  • the plurality of grindstones 23 are evenly arranged on the upper surface 22 a of the base plate 22.
  • the top plate 22 has a shape in which the upper surface 22 a has a predetermined curvature and is formed into a spherical shape in which the spherical center O ⁇ b> 3 is located on the central axis Lb of the base plate 22.
  • the curvature radius of the upper surface 22a is a value R4 obtained by subtracting the initial height Hc of the grindstone 23 and the thickness of the adhesive 6 to be described later from the curvature radius R3.
  • the upper surface 22a has a shape along an arc A22 corresponding to a spherical shape having a radius of curvature R4 with the point O3 on the central axis Lb as a sphere.
  • the plate 22 is made of the same material as the plate 2.
  • the grindstone 23 is made of the same material as the grindstone 3.
  • the plurality of grindstones 23 are columnar bodies each having the same initial height Hc.
  • Each of the grindstones 23 has an initial shape of an upper end surface formed into a spherical shape having a spherical center O3 positioned on the central axis Lb of the base plate 22 and having a radius of curvature R3. It forms a shape along an arc A23 corresponding to a spherical shape having a radius of curvature R3 with the point O3 as a spherical center.
  • the lower end surface of each grindstone 23 is fixed to the upper surface 22 a of the base plate 22 with the adhesive 6.
  • the upper end face of each grindstone 23 changes from the shape along the arc A23 to the shape along the arc A23s.
  • the arc A23s is a sphere center O4 whose sphere center moves along the central axis Lb in the direction from the upper end face Pc of the grindstone 23a toward the lower end face Pd by the initial height Hc of the grindstone 23.
  • the grindstone 23b partially located in the region outside the side surface SC2 of the projection region is shown in FIG.
  • the detached portion 25b is cut out at least directly above the position where the arc A23s and the side surface SC2 intersect.
  • the notched surface 24b of the notched portion has a shape along the side surface SC2.
  • the grindstone 23c as shown in FIG. 6, the portion of the projection area that is out of the side surface SC2 is cut out to at least a position just above the position where the arc A23s and the side surface SC2 intersect.
  • a notch surface 24c is formed.
  • the notch surface (for example, the notch surfaces 24 b and 24 c) can be maintained in a shape along the side surface SC ⁇ b> 2 of the projection region even when the center grindstone 23 a is completely used.
  • the height of the surface may be set.
  • the length Hd shown in FIGS. 6 and 7 is a straight line connecting the position where the side surface SC2 of the projection area and the arc A23 intersect with the position where the arc A23s and the side surface SC2 intersect so as to be parallel to the central axis Lb. Is the length of Also in the second embodiment, as in the first embodiment, it is possible to set the length Hd to be equal to or greater than the initial height Hc of the grindstone 23.
  • the central grindstone Even when the machining tool 21 is used until 23a is worn down to the lower end face Pd, the notches 24b and 24c of the grinding wheels 23b and 23c which are unconditional grinding wheels have a shape along the side surface SC2 of the projection area.
  • the machining tool diameter D2 can be maintained.
  • the fixed positions of the grindstones 23 are set so that the center of the unconditional grindstone is located inside the projection area so that a fixed-surface grinding surface can be secured. Adjusted. Specifically, like the grindstones 23b and 23c, the center Te (see FIG. 6) of the upper end face of the grindstone 23b and the center Tf (see FIG. 6) of the upper end face of the grindstone 23c are inside the side surface SC2 of the projection area. The fixed positions of the grindstones 23b, 23c are set so as to be located at
  • FIG. 8 is a diagram for explaining a method of manufacturing the processing tool 21 for the optical element shown in FIG.
  • the processing tool 21 has a projection region of an unconditional grindstone (for example, grindstones 23 bp and 23 cp) after each grindstone 23 is fixed to the upper surface 22 a of the base plate 22 with the adhesive 6.
  • a portion deviated from the side surface SC2 is completed by being cut out in parallel with the central axis Lb along the side surface SC2 of the projection region as shown in (2) of FIG.
  • This notch process is performed using a CG machine or a grinding cutting tool such as a file, as in the first embodiment.
  • the upper end face of each grindstone 23 is a spherical surface corresponding to the arc A23s.
  • the outer end of the upper end surface of the grindstones 23bp and 23cp at the outer end approaches the side surface SC2 side from the outside of the side surface SC2 of the projection region with processing, that is, the diameter of the projection region decreases. For this reason, the processing tool diameter of the processing tool is narrowed to D2 ( ⁇ D21).
  • the outer part of the projection area is parallel to the central axis Lb for the out-of-condition grindstones (for example, the grindstones 23b and 23c) of the outer end part of which is partially included in the area outside the projection area. Notched in. Further, with respect to the processing tool 21, even if the wear of the grindstone 23 progresses, the outer end of the upper end face of the outer grindstones 23b, 23c is worn while remaining along the side surface SC2 of the projection region.
  • the machining tool diameter D2 of 21 can be kept constant as it is. Therefore, the machining tool 21 according to the second embodiment also has the same effect as the first embodiment.
  • FIG. 9 is a partial cross-sectional view for explaining a method of manufacturing an optical element using the processing tool 21.
  • the processing tool 21 is attached to a polishing apparatus or grinding apparatus (not shown), and the optical element material 13 to be processed is attached to a jig (not shown) provided in the polishing apparatus or grinding apparatus.
  • the process of making the upper surface of each grindstone 23 which is a grinding surface of the processing tool 21 abut on the surface 13a to be processed is performed.
  • the polishing device or the grinding device rotates the processing tool 21 as indicated by an arrow Y5 about the central axis Lb of the base plate 22 as a rotation axis and swings the processing tool 21 as indicated by an arrow Y6.
  • a processing step of grinding or polishing the optical element material 13 is performed. Thereafter, by removing the processed optical element from the jig, it is possible to obtain an optical element in which the processed surface 13a is formed into a spherical shape having a curvature radius of R3.
  • the processing tool 21 since the processing tool diameter of the processing tool 21 can be maintained at D2 even if wear of the grindstone 23 progresses, the processing surface quality of the optical element can be stabilized.
  • the processing tool diameter D2 is set smaller than the optical element diameter and the optical element installed on the upper shaft, or In some cases, the machining tool installed on the upper shaft is set to be inclined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

本発明にかかる光学素子の加工用工具(1)は、所定の曲率を有する上面(2a)を備えた台皿(2)と、各々が同じ初期高さHaの柱状体を成し、該柱状体の上部端面が光学素子の加工目標の球面形状に対応する球面形状に成形された初期形状を有し、柱状体の下部端面が台皿(2)の上面(2a)に固定された複数の砥石(3)と、を備え、複数の砥石(3)のうち、加工用工具1の加工工具径D1によって決まる条件に合わない砥石である条件外砥石(3b,3c)は、条件に合うように、少なくとも中心軸Laと平行に外端部が切り欠かれている。

Description

光学素子の加工用工具および光学素子の製造方法
 本発明は、光学素子の加工用工具および光学素子の製造方法に関する。
 レンズ等の光学素子を研削または研磨する光学素子の加工用工具に、砥粒を固めて円柱形状に成形したペレット状の砥石を用いたものがある。例えば、上面を光学素子の加工目標の球面形状に対応した球面形状に成形した砥石を用い、球面状の砥石貼り付け面に砥石固定用の坐ぐり穴を設けることによって、砥石の配置精度を高めて、加工する光学素子の球面形状の安定化を図った光学素子の加工用工具が提案されている(例えば、特許文献1参照)。
特開2000-084820号公報
 ところで、光学素子の加工を繰り返し行うことによって砥石が摩耗していくが、外側の砥石と内側の砥石とで摩耗量が異なる場合が有ること、また、球面状の砥石貼り付け台皿に貼られた砥石の減耗に従って、加工用工具の加工工具径が目標の径から変わってしまい、光学素子の加工面品質を一定に維持することができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、砥石が摩耗しても、加工後の光学素子の加工面品質を一定に維持することが可能になる光学素子の加工用工具および光学素子の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる光学素子の加工用工具は、光学素子の研削または研磨用の光学素子の加工用工具であって、所定の曲率を有する固定領域を備えた台皿と、各々が同じ初期高さの柱状体を成す複数の砥石であって、前記柱状体の一方の端面が前記光学素子の加工目標の球面形状に対応した第1の球面形状に成形された初期形状を有し、前記柱状体の他方の端面が前記台皿の固定領域に固定された複数の砥石と、を備え、前記複数の砥石のうち当該加工用工具の加工工具径によって決まる条件に合わない砥石である条件外砥石は、前記条件に合うように、少なくとも前記台皿の中心軸と平行に外端部が切り欠かれていることを特徴とする。
 また、本発明にかかる光学素子の加工用工具は、前記第1の球面形状は、前記台皿の中心軸上に第1の球心が位置するとともに第1の曲率半径を有し、前記台皿は、前記固定領域が、該台皿の中心軸上に球心が位置する球面形状に成形された形状を有し、前記条件外砥石は、前記中心軸を中心とし直径が前記加工工具径である円を前記中心軸に平行に投影した投影領域から外れた領域に一部が含まれる前記砥石であって、前記投影領域から外れた部分が切り欠かれていることを特徴とする。
 また、本発明にかかる光学素子の加工用工具は、前記条件外砥石は、前記第1の球心を前記砥石における一方の端面から他方の端面に向かう方向に前記中心軸に沿って前記砥石の初期高さ分移動した第2の球心を有するとともに前記第1の曲率半径を有する第2の球面形状と、前記投影領域と、が交わる位置の直上まで、外端部が切り欠かれることを特徴とする。
 また、本発明にかかる光学素子の加工用工具は、前記条件外砥石は、該条件外砥石の前記一方の端面の中心が、前記投影領域の内側に位置するように前記固定領域に固定されることを特徴とする。
 また、本発明にかかる光学素子の製造方法は、光学素子の研削または研磨用の光学素子の加工用工具であって、所定の曲率を有する固定領域を備えた台皿と、各々が同じ初期高さの柱状体を成す複数の砥石であって、前記柱状体の一方の端面が前記光学素子の加工目標の球面形状に対応した第1の球面形状に成形された初期形状を有し、前記柱状体の他方の端面が前記台皿の固定領域に固定された複数の砥石と、を備え、前記複数の砥石のうち当該加工用工具の加工工具径によって決まる条件に合わない砥石である条件外砥石は、前記条件に合うように、少なくとも前記台皿の中心軸と平行に外端部が切り欠かれている光学素子の加工用工具が有する前記各砥石の高さ方向の一方の端面を加工対象の光学素子材料に当接させる工程と、前記台皿の中心軸を回転軸として前記光学素子の加工用工具を回転させることにより、前記光学素子材料を研削または研磨する加工工程と、を含むことを特徴とする。
 本発明によれば、光学素子の加工用工具は、所定の曲率を有する固定領域を備えた台皿と、各々が同じ初期高さの柱状体を成す複数の砥石であって、柱状体の一方の端面が光学素子の加工目標の球面形状に対応した第1の球面形状に成形された初期形状を有し、柱状体の他方の端面が台皿の固定領域に固定された複数の砥石と、を備え、複数の砥石のうち当該加工用工具の加工工具径によって決まる条件に合わない砥石である条件外砥石は、条件に合うように、少なくとも台皿の中心軸と平行に外端部が切り欠かれているため、砥石が摩耗しても加工工具径を一定に保持することで、加工後の光学素子の加工面品質を安定化でき、光学素子の品質を一定に維持することが可能になる。
図1は、実施の形態1にかかる光学素子の加工用工具の平面図である。 図2は、図1のA-A線断面図である。 図3は、図2に示す加工用工具の要部の拡大図である。 図4は、図1に示す光学素子の加工用工具の製造方法を説明する図である。 図5は、図1に示す加工用工具を用いて光学素子を製造する方法を説明するための一部断面図である。 図6は、実施の形態2にかかる光学素子の加工用工具を、該加工用工具の台皿の中心軸を通る平面で切断した図である。 図7は、図6に示す加工用工具の要部の拡大図である。 図8は、実施の形態2にかかる光学素子の加工用工具の製造方法を説明する図である。 図9は、図6に示す加工用工具を用いて光学素子を製造する方法を説明するための一部断面図である。
 以下の説明では、本発明を実施するための形態(以下、「実施の形態」という)として、光学素子の研削または研磨用の光学素子の加工用工具について説明する。また、この実施の形態により、この発明が限定されるものではない。さらに、図面の記載において、同一部分には同一の符号を付している。さらにまた、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間においても、互いの寸法や比率が異なる部分が含まれている。
(実施の形態1)
 図1は、本発明の実施の形態1にかかる光学素子の加工用工具の平面図である。図2は、図1のA-A線断面図である。図3は、図2に示す加工用工具の要部(領域S1)の拡大図である。
 図1および図2に示す光学素子の加工用工具1は、光学素子材料の被加工面を球面の一部を成す形状(以下、「球面形状」という。)に加工するために用いられる工具である。加工用工具1は、光学素子材料を凸の球面形状に加工するためのものである。
 本実施の形態1にかかる加工用工具1は、台皿2と、台皿2の上面2a(固定領域)に接着剤6で固定された複数の砥石3とを備える。加工対象である光学素子材料の加工目標の球面形状は、台皿2の中心軸La上に球心が位置する曲率半径R1の球面形状である。加工用工具1の加工工具径は、D1に設定される。図1の例では、複数の砥石3は、台皿2の上面2aに不均等に配置する。
 台皿2は、上面2aが、所定の曲率を有しており、該台皿2の中心軸La上に球心O1が位置する球面形状に成形された形状を有する。上面2aの曲率半径は、曲率半径R1に、後述する砥石3の初期高さHaおよび接着剤6の厚さを足した値R2である。すなわち、図2に示すように、台皿2を断面で見た場合、上面2aは、中心軸La上の点O1を球心とする曲率半径R2の球面形状に対応する円弧A2に沿った形状を成す。台皿2は、例えば、銅、真鍮、ステンレス等の金属または合金から成る。
 砥石3は、ダイヤモンド等から成る砥粒を固めて円柱形状に成形したペレットの両底面を所定形状に成形したものである。砥石3は、金属をベースにしたものや、レジン等の樹脂をベースにしたものがある。
 複数の砥石3は、各々が、同じ初期高さHaを有する柱状体を成す。砥石3は、それぞれ、高さ方向の一方の端面である上部端面が、光学素子の加工目標の球面形状に対応する球面形状(第1の球面形状)に成形された形状を有する。各砥石3の上部端面の初期形状は、台皿2の中心軸La上に球心O1が位置する曲率半径R1の球面形状に成形され、図2のように断面で見た場合、中心軸La上の点O1を球心とする曲率半径R1の球面形状に対応する円弧A3に沿った形状を成す。各砥石3の高さ方向の他方の端面である下部端面は、それぞれ、台皿2の上面2aに接着剤6で固定される。複数の砥石3は、いずれも同形状である。
 加工用工具1では、複数の砥石3のうち、加工工具径D1によって決まる条件に合わない砥石である条件外砥石(例えば、砥石3b,3c)は、条件に合うように、少なくとも中心軸Laと平行に外端部が切り欠かれている。
 説明のために、中心軸Laを中心とし直径が加工工具径D1である円を中心軸Laに平行に投影した投影領域を、投影領域C1(図1参照)とする。この投影領域C1は、直径が加工工具径D1であって中心軸が軸Laである円柱形状であり、図2では、この円柱形状である投影領域C1の側面を、破線SC1で示す。条件外砥石は、この投影領域C1から外れた領域に一部が含まれる砥石である。
 図2に示す砥石3b,3cにおいては、投影領域C1よりも外の領域に砥面が位置しないように外端部が切り欠かれている。このうち、砥石3bについては、図3に示すように、投影領域C1から外れた部分5bが、投影領域C1の側面SC1に沿って、中心軸Laと平行に切り欠かれる。砥石3cについても、同様に、投影領域C1から外れた部分が、投影領域C1の側面SC1に沿って、中心軸Laと平行に切り欠かれる。したがって、砥石3bの切り欠き面4aおよび砥石3cの切り欠き面4cは側面SC1に沿った形状となる。
 条件外砥石は、球心O1を、砥石3の初期高さHa分、砥石3aの上部端面Paから下部端面Pbに向かう方向に、中心軸Laに沿って移動した位置O2に球心が位置するとともに、曲率半径R1を有する第2の球面形状と、投影領域C1とが交わる位置の直上まで切り欠かれる。円弧A3sは、この第2の球面形状に対応する。砥石3b,3cは、この円弧A3sと投影領域C1の側面SC1とが交わる位置の直上まで外端部が切り欠かれている。砥石3bの切り欠き面4bは、側面SC1と直交する面であり、切り欠かれた端部が円弧A3sと側面SC1とが交わる位置に対応する。
 加工用工具1においては、外端部が切り欠かれた条件外砥石においても一定面積の砥面が確保できるように、砥石の上部端面の中心が投影領域C1の内側に位置するように各砥石3の固定位置が調整される。たとえば、砥石3b,3cの場合、砥石3bの上部端面の中心Tb(図1参照)および砥石3cの上面端面の中心Tc(図1および図2参照)が、投影領域C1の内側に位置するように固定位置が設定される。
 図4は、図1に示す光学素子の加工用工具1の製造方法を説明する図である。加工用工具1は、図4の(1)のように台皿2の上面2aに各砥石3が接着剤6で固定された後に、条件外砥石(例えば、砥石3bp,3cp)の投影領域C1から外れた部分が、図4の(2)のように、投影領域C1の側面SC1に沿って、中心軸Laと平行に切り欠かれることによって完成する。この切り欠き工程は、カーブジェネレータ(CG)機や、やすり等の研削切削工具を用いて実行される。
 ところで、砥石3は、光学素子の加工を繰り返し行うことによって摩耗し、高さが減っていく。砥石3の摩耗量は、台皿2の上面2aに対する配置位置によって異なり、内側の砥石3(例えば中央の砥石3a)の方が外側の砥石3(例えば外端の砥石3bp,3cp)よりも摩耗が早く進むことが経験的に分かっている。最も早く摩耗する中央の砥石3aが下部端面Pbまで摩耗してしまった場合には、光学素子材料を目標の球面形状に加工できなくなる。また、各砥石3は、上部端面の形状が、中心軸La方向に徐々に球心が移動しながらも曲率半径R1を有する球面形状のまま摩耗していくことがわかっている。各砥石3の上部端面は、図2のように断面で見た場合、摩耗が進むにしたがって、円弧A3に沿った初期形状から、円弧A3sに沿った形状に進む。
 図4の(1)に示すように、投影領域C1の側面SC1から外れた領域に側面部が含まれる外端の砥石3bp,3cpは、台皿2の曲率に対応して中心軸Laに対して傾いて固定されている。このため、中心軸La方向に摩耗が進むと、砥石3bp,3cpの上部端面は、外端部が投影領域C1の側面SC1から外側へ広がっていき、加工用工具の加工工具径が加工工具径D1から徐々に大きくなっていく。中央の砥石3aの下部端面Pbまで摩耗が進行した場合には、各砥石3の上部端面は、円弧A3sに対応する球面形状となる。この場合、外端の砥石3bp,3cpの上部端面も円弧A3sに沿って側面SC1の外側に広がるため、加工用工具の加工工具径は、D11(>D1)となり、目標の径(D1)から変わってしまう。
 本実施の形態1では、投影領域C1から外れた領域に一部が含まれる外端部の砥石(例えば、砥石3bp,3cp)については、図4の(2)に示すように、少なくとも投影領域C1から外れた外端部を中心軸Laと平行に切り欠くことによって、摩耗が進んでも、砥石3b,3cの上部端面の外端部が、投影領域C1の側面SC1に沿ったまま摩耗するようにしている。
 また、本実施の形態1では、中心の砥石3aを全て使い切る場合であっても、条件外砥石(例えば、砥石3b,3c)が、投影領域C1の側面SC1に沿う形状で切り欠き面(例えば切り欠き面4a,4c)を維持できるように、砥石3の初期高さ等を設定してもよい。図2および図3に示す長さHbは、条件外砥石(例えば、砥石3b)において、投影領域C1の側面SC1と円弧A3とが交わる位置と、円弧A3sと側面SC1とが交わる位置とを、中心軸Laと平行となるように結んだ直線の長さである。本実施の形態1では、条件外砥石における中心軸Laの高さ方向において、第1の球面形状および投影領域の交点と、第2の球面形状および投影領域の交点とを結んだ直線の長さHbが、砥石3の初期高さHa以上となるように、各砥石3の初期高さHaや台皿2の上面2aの大きさ等を設定することも可能である。このように設定した場合には、中央の砥石3aが下部端面Pbまで摩耗するまで加工用工具1を使用した場合、すなわち、中央の砥石3aが初期高さHa分摩耗するまで加工用工具1を使用した場合であっても、外端部の砥石3b,3cの切り欠き面4a,4cは、投影領域C1の側面SC1に沿った形状を維持でき、加工用工具1は、加工工具径D1を維持できる。
 このように、本実施の形態1では、加工用工具1の加工工具径D1によって決まる条件に合わない条件外砥石が、条件に合うように、少なくとも中心軸Laと平行に外端部が切り欠かれていることによって、砥石3の摩耗が進んでも、加工用工具1の加工工具径D1を一定に保持することができるため、光学素子の加工面品質を安定化でき、光学素子の品質を一定に維持することができる。
 さらに、本実施の形態1の加工用工具1は、同形状の砥石3のみで構成でき、複数の砥石3のうち、条件外砥石の外端部を、条件に合うように切り欠くだけの簡易な工程で製造できる。なお、砥石3は、上部端面が第1の球面形状に対応するように成形されており、かつ、初期高さHaの柱状体であれば、径が異なるものを複数種類用いてもよい。また、本実施の形態1では、不規則に砥石3を台皿2の上面2aに固定させた場合を例に説明したが、もちろん、規則的に固定してもよい。
 次に、加工用工具1を用いた光学素子の製造方法について、図5を参照して説明する。図5は、加工用工具1を用いて光学素子を製造する方法を説明するための一部断面図である。
 まず、図示しない研磨装置あるいは研削装置に、加工用工具1を取り付けるとともに、該研磨装置あるいは研削装置に設けられた治具(不図示)に加工対象の光学素子材料10を取り付け、光学素子材料10の被加工面10aに、加工用工具1の研削面である各砥石3の上面を当接させる工程を行う。続いて、研磨装置あるいは研削装置は、加工用工具1を台皿2の中心軸Laを回転軸として回転させるとともに、加工用工具1を揺動させることによって、光学素子材料10を研削または研磨する加工工程を行う。すなわち、研磨装置あるいは研削装置は、加工用工具1を矢印Y2のように回転させるとともに、矢印Y3のように揺動させる。その後、加工後の光学素子を治具から取り外すことによって、被加工面10aが砥石3の上面に対応する形状、すなわち、曲率半径がR1である球面形状に形成された光学素子を得ることができる。加工用工具1によれば、砥石3の摩耗が進んでも加工用工具1の加工工具径をD1に維持することができるため、光学素子の加工面品質を安定化することができる。なお、図5では、加工用工具1を光学素子の下に設置した場合であり、加工工具径D1が光学素子径よりも大きく設定された場合について例示したが、加工用工具1を光学素子の上に設置する場合には、加工工具径D1が光学素子径よりも小さく設定される。また、図5の例では、加工用工具1が斜めになっているが、上軸に設置された光学素子、または、上軸に設置された加工用工具が斜めになるように設定される場合もある。
(実施の形態2)
 次に、実施の形態2について説明する。図6は、実施の形態2にかかる光学素子の加工用工具を、該加工用工具の台皿の中心軸を通る平面で切断した図である。図7は、図6に示す加工用工具の要部(領域S2)の拡大図である。図6に示す実施の形態2にかかる加工用工具21は、光学素子材料を凹の球面形状に加工するためのものである。
 図6に示すように、加工用工具21は、台皿22と、台皿22の上面22a(固定領域)に接着剤6で固定された複数の砥石23とを備える。加工対象である光学素子材料の加工目標の球面形状は、台皿22の中心軸Lb上に球心が位置するとともに、曲率半径R3を有する。加工用工具21の加工工具径は、D2に設定される。図6では、中心軸Lbを中心とし直径が加工工具径D2である円を中心軸Lbに平行に投影した投影領域の側面を破線SC2で示す。図6の例では、複数の砥石23は、台皿22の上面22aに均等に配置する。
 台皿22は、上面22aが、所定の曲率を有しており、該台皿22の中心軸Lb上に球心O3が位置する球面形状に成形された形状を有する。上面22aの曲率半径は、曲率半径R3に、後述する砥石23の初期高さHcおよび接着剤6の厚さを引いた値R4となっている。台皿22を断面で見た場合、上面22aは、中心軸Lb上の点O3を球心とする曲率半径R4の球面形状に対応する円弧A22に沿った形状を成す。台皿22は、台皿2と同様の材料で形成される。
 砥石23は、砥石3と同様の材料から成る。複数の砥石23は、各々が、同じ初期高さHcを有する柱状体である。砥石23は、それぞれ、上部端面の初期形状が、台皿22の中心軸Lb上に球心O3が位置するとともに曲率半径R3を有する球面形状に成形された形状であって、中心軸Lb上の点O3を球心とする曲率半径R3の球面形状に対応する円弧A23に沿った形状を成す。各砥石23の下部端面は、それぞれ、台皿22の上面22aに接着剤6で固定される。
 最も早く摩耗する中央の砥石23aの上部端面Pcが下部端面Pdまで摩耗した場合には、各砥石23の上部端面は、円弧A23に沿った形状から、円弧A23sに沿った形状になる。円弧A23sは、球心が、球心O3を、砥石23の初期高さHc分、砥石23aの上部端面Pcから下部端面Pdに向かう方向に中心軸Lbに沿って移動した球心O4であって、曲率半径R3を有する球面形状に対応する。実施の形態2では、実施の形態1と同様に、投影領域の側面SC2よりも外の領域に一部が位置していた砥石23bについては、図7に示すように、投影領域の側面SC2から外れた部分25bが、少なくとも円弧A23sと側面SC2とが交わる位置の直上まで切り欠かれる。切り欠かれた部分の切り欠き面24bは側面SC2に沿った形状となる。また、砥石23cについても、図6に示すように、投影領域の側面SC2から外れた部分が、少なくとも円弧A23sと側面SC2とが交わる位置の直上まで切り欠かれており、側面SC2に沿った切り欠き面24cが形成される。
 また、加工用工具21においても、中心の砥石23aを全て使い切る場合であっても投影領域の側面SC2に沿う形状で切り欠き面(例えば切り欠き面24b,24c)が維持できるように、切り欠き面の高さ等を設定してもよい。図6および図7に示す長さHdは、投影領域の側面SC2と円弧A23とが交わる位置と、円弧A23sと側面SC2とが交わる位置とを、中心軸Lbと平行となるように結んだ直線の長さである。本実施の形態2においても、実施の形態1と同様に、この長さHdが、砥石23の初期高さHc以上となるように設定することも可能であり、この場合には、中央の砥石23aが下部端面Pdまで摩耗するまで加工用工具21を使用した場合であっても、条件外砥石である砥石23b,23cの切り欠き面24b,24cが、投影領域の側面SC2に沿った形状を維持できるようにして、加工工具径D2を維持できるようにしている。
 また、実施の形態2においても、条件外砥石については、一定面積の砥面が確保できるように、該条件外砥石の中心が投影領域の内側に位置するように、各砥石23の固定位置が調整される。具体的には、砥石23b,23cのように、砥石23bの上部端面の中心Te(図6参照)および砥石23cの上面端面の中心Tf(図6参照)が、投影領域の側面SC2よりも内側に位置するように、砥石23b,23cの固定位置が設定される。
 図8は、図6に示す光学素子の加工用工具21の製造方法を説明する図である。加工用工具21は、図8の(1)のように台皿22の上面22aに各砥石23が接着剤6で固定された後に、条件外砥石(例えば、砥石23bp,23cp)の投影領域の側面SC2から外れた部分が、図8の(2)のように、投影領域の側面SC2に沿って、中心軸Lbと平行に切り欠かれることによって完成する。この切り欠き工程は、実施の形態1と同様に、CG機や、やすり等の研削切削工具を用いて実行される。
 実施の形態1でも説明したように、外側の砥石23bp,23cpの切り欠きがない場合には、中央の砥石23aが下部端面Pdまで摩耗すると、各砥石23の上部端面は円弧A23sに対応する球面形状になり、外端の砥石23bp,23cpの上部端面の外端が、加工に伴い投影領域の側面SC2の外側から側面SC2側に近づく、すなわち、投影領域の径が小さくなる。このため、加工用工具の加工工具径がD2(<D21)まで狭まってしまう。本実施の形態2においても、投影領域から外れた領域に一部が含まれる外端部の条件外砥石(例えば、砥石23b,23c)について、少なくとも投影領域の外側の部分を中心軸Lbと平行に切り欠いている。そして、加工用工具21についても、砥石23の摩耗が進んでも、外側の砥石23b,23cの上部端面の外端部が、投影領域の側面SC2に沿ったまま摩耗するようにして、加工用工具21の加工工具径D2をそのまま一定に保持できるようにしている。したがって、本実施の形態2にかかる加工用工具21においても、実施の形態1と同様の効果を奏する。
 なお、図9は、加工用工具21を用いた光学素子の製造方法を説明するための一部断面図である。まず、図示しない研磨装置あるいは研削装置に、加工用工具21を取り付けるとともに、該研磨装置あるいは研削装置に設けられた治具(不図示)に加工対象の光学素子材料13を取り付け、光学素子材料13の被加工面13aに、加工用工具21の研削面である各砥石23の上面を当接させる工程を行う。続いて、研磨装置あるいは研削装置は、加工用工具21を台皿22の中心軸Lbを回転軸として矢印Y5のように回転させるとともに、加工用工具21を矢印Y6のように揺動させることによって、光学素子材料13を研削または研磨する加工工程を行う。その後、加工後の光学素子を治具から取り外すことによって、被加工面13aが曲率半径がR3である球面形状に形成された光学素子を得ることができる。加工用工具21によれば、砥石23の摩耗が進んでも加工用工具21の加工工具径をD2に維持することができるため、光学素子の加工面品質を安定化することができる。なお、実施の形態1と同様に、加工用工具21を光学素子の上に設置する場合には、加工工具径D2が光学素子径よりも小さく設定され、上軸に設置された光学素子、または、上軸に設置された加工用工具が斜めになるように設定される場合もある。
 1,21 加工用工具
 2,22 台皿
 2a,22a 上面
 3,3a,3b,3c,3bp,3cp,23,23a,23b,23c,23bp,23cp 砥石
 4a~4c,24b,24c 切り欠き面
 10,13 光学素子材料

Claims (5)

  1.  光学素子の研削または研磨用の光学素子の加工用工具であって、
     所定の曲率を有する固定領域を備えた台皿と、
     各々が同じ初期高さの柱状体を成す複数の砥石であって、前記柱状体の一方の端面が前記光学素子の加工目標の球面形状に対応した第1の球面形状に成形された初期形状を有し、前記柱状体の他方の端面が前記台皿の固定領域に固定された複数の砥石と、
     を備え、
     前記複数の砥石のうち当該加工用工具の加工工具径によって決まる条件に合わない砥石である条件外砥石は、前記条件に合うように、少なくとも前記台皿の中心軸と平行に外端部が切り欠かれていることを特徴とする光学素子の加工用工具。
  2.  前記第1の球面形状は、前記台皿の中心軸上に第1の球心が位置するとともに第1の曲率半径を有し、
     前記台皿は、前記固定領域が、該台皿の中心軸上に球心が位置する球面形状に成形された形状を有し、
     前記条件外砥石は、前記中心軸を中心とし直径が前記加工工具径である円を前記中心軸に平行に投影した投影領域から外れた領域に一部が含まれる前記砥石であって、前記投影領域から外れた部分が切り欠かれていることを特徴とする請求項1に記載の光学素子の加工用工具。
  3.  前記条件外砥石は、前記第1の球心を前記砥石における一方の端面から他方の端面に向かう方向に前記中心軸に沿って前記砥石の初期高さ分移動した第2の球心を有するとともに前記第1の曲率半径を有する第2の球面形状と、前記投影領域と、が交わる位置の直上まで、外端部が切り欠かれることを特徴とする請求項2に記載の光学素子の加工用工具。
  4.  前記条件外砥石は、該条件外砥石の前記一方の端面の中心が、前記投影領域の内側に位置するように前記固定領域に固定されることを特徴とする請求項2に記載の光学素子の加工用工具。
  5.  光学素子の研削または研磨用の光学素子の加工用工具であって、所定の曲率を有する固定領域を備えた台皿と、各々が同じ初期高さの柱状体を成す複数の砥石であって、前記柱状体の一方の端面が前記光学素子の加工目標の球面形状に対応した第1の球面形状に成形された初期形状を有し、前記柱状体の他方の端面が前記台皿の固定領域に固定された複数の砥石と、を備え、前記複数の砥石のうち当該加工用工具の加工工具径によって決まる条件に合わない砥石である条件外砥石は、前記条件に合うように、少なくとも前記台皿の中心軸と平行に外端部が切り欠かれている光学素子の加工用工具が有する前記各砥石の高さ方向の一方の端面を加工対象の光学素子材料に当接させる工程と、
     前記台皿の中心軸を回転軸として前記光学素子の加工用工具を回転させることにより、前記光学素子材料を研削または研磨する加工工程と、
     を含むことを特徴とする光学素子の製造方法。
PCT/JP2015/075047 2014-12-17 2015-09-03 光学素子の加工用工具および光学素子の製造方法 WO2016098398A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015005672.6T DE112015005672T5 (de) 2014-12-17 2015-09-03 Bearbeitungswerkzeug für ein optisches Element und Herstellungsverfahren für ein optisches Element
CN201580067995.6A CN107000154A (zh) 2014-12-17 2015-09-03 光学元件的加工用工具和光学元件的制造方法
US15/622,044 US10239180B2 (en) 2014-12-17 2017-06-13 Optical element processing tool and optical element manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014255416A JP6378626B2 (ja) 2014-12-17 2014-12-17 光学素子の加工用工具および光学素子の製造方法
JP2014-255416 2014-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/622,044 Continuation US10239180B2 (en) 2014-12-17 2017-06-13 Optical element processing tool and optical element manufacturing method

Publications (1)

Publication Number Publication Date
WO2016098398A1 true WO2016098398A1 (ja) 2016-06-23

Family

ID=56126300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075047 WO2016098398A1 (ja) 2014-12-17 2015-09-03 光学素子の加工用工具および光学素子の製造方法

Country Status (5)

Country Link
US (1) US10239180B2 (ja)
JP (1) JP6378626B2 (ja)
CN (1) CN107000154A (ja)
DE (1) DE112015005672T5 (ja)
WO (1) WO2016098398A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014146620A1 (zh) * 2013-03-19 2014-09-25 西安交通大学 一种光学元件的磨抛装置及方法
DE102016006741A1 (de) * 2016-06-06 2017-12-07 Schneider Gmbh & Co. Kg Werkzeug, Vorrichtung und Verfahren zum Polieren von Linsen
CN106363467A (zh) * 2016-11-14 2017-02-01 天津津航技术物理研究所 一种光学透镜精密加工定位工装及定位方法
WO2024083517A1 (de) * 2022-10-17 2024-04-25 Ernst-Abbe-Hochschule Jena Graduierte und adaptive polierwerkzeuge sowie verfahren zu deren herstellung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55179754U (ja) * 1979-06-12 1980-12-24
JP2004034221A (ja) * 2002-07-03 2004-02-05 Nikon Corp 研削用砥石及びこの砥石を備える研削・研磨工具
JP2014172106A (ja) * 2013-03-06 2014-09-22 Olympus Corp 砥石及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1045228A (fr) * 1951-11-17 1953-11-24 Machine à polir les surfaces optiques
FR2142562B1 (ja) * 1971-06-21 1973-05-25 Cmv
US3816997A (en) * 1972-03-20 1974-06-18 Itek Corp Apparatus for simultaneously performing rough and fine grinding operations
FR2575101B1 (fr) * 1984-12-26 1989-09-08 Procedes Fabrication Optiques Outil pour l'usinage de surfaces optiques et machine utilisant un tel outil
JPH08206953A (ja) * 1994-11-28 1996-08-13 Canon Inc 研削・研磨方法及び研削・研磨用工具及びその製造方法
US5593340A (en) * 1995-09-28 1997-01-14 Dac Vision, Inc. Castable ophthalmic lens polishing lap and method
JP2000084820A (ja) * 1998-09-16 2000-03-28 Canon Inc 研削及び又は研磨工具、研削及び又は研磨の加工工具及び、研削及び又は研磨用工具の製作方法並びに加工用皿
EP1616666A1 (en) * 2001-01-16 2006-01-18 Nikon Corporation process for producing an exposure apparatus
JP4127796B2 (ja) * 2003-02-06 2008-07-30 株式会社トプコン 光学材料用の研磨工具およびその製造方法と、その研磨工具を備えた研磨装置および曲率修正装置。
DE102005010583A1 (de) * 2005-03-04 2006-09-07 Satisloh Gmbh Polierteller für ein Werkzeug zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern
DE102007026841A1 (de) * 2007-06-06 2008-12-11 Satisloh Ag Polierteller für ein Werkzeug zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern und Verfahren für dessen Herstellung
CN104175192B (zh) * 2014-08-08 2016-08-24 中国科学院长春光学精密机械与物理研究所 多环形自适应抛光磨头

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55179754U (ja) * 1979-06-12 1980-12-24
JP2004034221A (ja) * 2002-07-03 2004-02-05 Nikon Corp 研削用砥石及びこの砥石を備える研削・研磨工具
JP2014172106A (ja) * 2013-03-06 2014-09-22 Olympus Corp 砥石及びその製造方法

Also Published As

Publication number Publication date
JP2016112670A (ja) 2016-06-23
DE112015005672T5 (de) 2017-08-31
US20170274491A1 (en) 2017-09-28
CN107000154A (zh) 2017-08-01
JP6378626B2 (ja) 2018-08-22
US10239180B2 (en) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2016098398A1 (ja) 光学素子の加工用工具および光学素子の製造方法
JP4742845B2 (ja) 半導体ウエーハの面取り部の加工方法及び砥石の溝形状の修正方法
JP2016203342A (ja) ツルーアーの製造方法および半導体ウェーハの製造方法、ならびに半導体ウェーハの面取り加工装置
JP5998574B2 (ja) スクライビングホイールの製造方法
JP2005322926A (ja) 表面研磨方法および研磨材
JP2008006507A (ja) ダイヤモンド研磨工具、ダイヤモンド研磨工具の作成方法、ダイヤモンド研磨工具の再生方法
TWI674169B (zh) 刻劃輪及其製造方法
JP2004138145A (ja) トラクションドライブ用転動体の製造方法
JP3762248B2 (ja) 回折光学素子用金型加工方法
WO2013065551A1 (ja) ロータリドレッサ及びその製造方法
JP2007185753A (ja) 研削研磨砥石
JP2008142799A (ja) 回折溝の加工方法
JP5169073B2 (ja) ホーニング砥石の成形方法
JP2012192510A (ja) 総型砥石の製造方法
JP5872865B2 (ja) 光学素子加工用工具、光学素子加工用工具の製造方法、及び光学素子の製造方法
TWI334374B (ja)
JP6902882B2 (ja) らせん形異形材研削用の砥石車
JP2010023221A (ja) 砥石のツルーイング方法およびツルーイング装置
JP2010115768A (ja) Cbn砥石
JP6409474B2 (ja) 砥石、砥石面形状の決定方法、及び、砥石の製造方法
KR20160133964A (ko) 고경질 자재 연마용 휠 및 그 제조방법
JP2016087719A (ja) 砥石車及び砥石車の製造方法
KR101275929B1 (ko) 보강입자가 삽입된 기어 연마용 드레서
JP2005040899A (ja) ダイヤモンド砥石
JP2009269105A (ja) 研磨ホイール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015005672

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869606

Country of ref document: EP

Kind code of ref document: A1