WO2016095629A1 - 超大变断面隧道超前支护结构 - Google Patents

超大变断面隧道超前支护结构 Download PDF

Info

Publication number
WO2016095629A1
WO2016095629A1 PCT/CN2015/094284 CN2015094284W WO2016095629A1 WO 2016095629 A1 WO2016095629 A1 WO 2016095629A1 CN 2015094284 W CN2015094284 W CN 2015094284W WO 2016095629 A1 WO2016095629 A1 WO 2016095629A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavated
tunnel
jet grouting
main hole
pressure horizontal
Prior art date
Application number
PCT/CN2015/094284
Other languages
English (en)
French (fr)
Inventor
江胜林
龚彦峰
徐向东
李树鹏
张俊儒
焦齐柱
隗建波
颜志伟
孙文昊
郭海满
洪军
陈利杰
Original Assignee
中铁第四勘察设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410777881.8A external-priority patent/CN104405411B/zh
Priority claimed from CN201410776845.XA external-priority patent/CN104653197B/zh
Priority claimed from CN201420795169.6U external-priority patent/CN204436406U/zh
Priority claimed from CN201410777849.XA external-priority patent/CN104500100A/zh
Priority claimed from CN201420797002.3U external-priority patent/CN204327118U/zh
Application filed by 中铁第四勘察设计院集团有限公司 filed Critical 中铁第四勘察设计院集团有限公司
Publication of WO2016095629A1 publication Critical patent/WO2016095629A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/04Driving tunnels or galleries through loose materials; Apparatus therefor not otherwise provided for

Definitions

  • the invention relates to the field of mountain tunnel construction, and particularly relates to a super large variable section tunnel advanced supporting structure.
  • the advance support has many different forms, including the advanced pipe shed, the face surface spray concrete (front concrete spray), the face face anchor (front anchor) Rod), steel insert plate advanced support, freezing method, horizontal high pressure rotary spray method, pre-lining, advanced deep hole curtain grouting and so on.
  • the present invention provides an ultra-large variable-section tunnel advanced support structure, which ensures the safety of excavating a large-sized variable-section tunnel in a particularly weak surrounding rock, reduces the use of temporary support, increases the freedom of operation, and speeds up Construction Schedule.
  • the invention provides an oversized support structure for a super-large variable-section tunnel, comprising a surrounding rock of a main hole to be excavated, and the surrounding rock at the main tunnel arch to be excavated is arranged along the tunnel excavation contour line and arranged along the longitudinal direction of the tunnel.
  • the two-layer high-pressure horizontal jet grouting pile is embedded with a long tube shed arranged along the longitudinal direction of the tunnel between the two layers of jet grouting piles.
  • the arch portion of the main hole to be excavated is arranged along the tunnel excavation direction.
  • a high-pressure horizontal jet-jet pile arranged along the longitudinal direction of the tunnel, the core soil of the face of the main hole to be excavated is provided with a plurality of advanced glass fiber anchor pipes along the tunnel excavation direction.
  • the invention also includes surrounding rock of the side hole to be excavated on both sides of the main hole to be excavated, and the surrounding rock of the side hole arch to be excavated is arranged along the tunneling hole excavation outline with a layer of high pressure level arranged along the longitudinal direction of the tunnel.
  • the jet grouting pile, the surrounding rock between the side hole to be excavated and the main hole to be excavated, is provided with a plurality of high-pressure horizontal jet grouting piles arranged along the longitudinal direction of the tunnel.
  • the occlusal portion of the adjacent high-pressure horizontal jet grouting pile outside the side hole of the side hole to be excavated is provided with a leading small duct.
  • the occlusal portion of the adjacent high-pressure horizontal jet grouting pile outside the vault of the main hole to be excavated is provided with a leading small duct.
  • the plurality of high-pressure horizontal jet grouting piles located at the arch portion of the main cavity of the main hole to be excavated are divided into a plurality of layers along the tunnel excavation direction, and each layer of the high-pressure horizontal jet grouting piles is annularly arranged.
  • the plurality of advanced glass fiber anchor pipes located in the core soil of the main face of the main hole to be excavated are divided into multiple layers along the tunnel excavation direction, and the adjacent two-stage advanced glass fiber anchor pipes are arranged in a staggered manner.
  • the invention combines a variety of advanced support forms, is implemented in all directions and is combined with rigidity and flexibility.
  • the vertical and horizontal support system of the invention both soft and hard, not only fully exerts the characteristics of the respective combined support mechanics, but also works well together and achieves a good overall pre-supporting effect.
  • the longitudinal support is mainly composed of a rigid long tube shed located outside the contour of the main cave arch to be excavated, which is characterized by large longitudinal stiffness, longitudinal cantilever beam (longitudinal beam) and support scaffolding
  • the protective effect forms a longitudinal spatial effect, creating a vertical stability support system for the lower excavation;
  • the lateral support is mainly composed of multiple layers of horizontally distributed flexible jet-jet piles outside the main arch vault line to be excavated.
  • Rotary spray is convenient and bite to form a ring, thus forming a transverse flexible arch, which can effectively bear the upper pressure and transmit it to the surrounding rock layer through the large abutment, and at the same time effectively block the underwater seepage of the top of the hole to prevent softening of the surrounding rock.
  • the longitudinal rigidity of the large pipe shed and the horizontal flexible double-layer jet-jet pile are skillfully combined, and the mechanical properties of the respective support can be effectively exerted, and the force defects of the individual support can be effectively overcome, and the two work together, rigid and soft, mutual
  • it can better adapt to the complex formation environment and form a good pre-supporting effect, which satisfies the stability requirements of super-large section construction excavation under complex stress conditions.
  • the invention puts forward multi-level pre-supporting measures on the basis of fully considering the characteristics of large-section step-by-step construction, in which the portal adopts the "large pipe shed + jet grouting pile" three-dimensional pre-supporting structure with vertical and horizontal rigid-flexible combination;
  • the side hole vault outline adopts the jet-supporting pile and the advanced support method of the lead small pipe;
  • the double-layer jet grouting pile of the arch part to be excavated is partially applied as a lead small pipe;
  • the horizontal part of the arch is applied to the rotary jetting pile, and the core soil of the face is made of glass fiber anchor pipe to achieve pre-reinforcement, which fully considers the convenience of subsequent breaking and effectively controls the extrusion deformation of the face (ie, the longitudinal displacement along the axial direction of the tunnel).
  • the invention realizes the organic combination of the whole and the part, and works in different space segments and time periods,
  • the surrounding rock is reinforced, and the deformation of the surrounding rock under the next step is controlled.
  • the stability of the roof and the face is greatly increased, which can effectively reduce the use of temporary support, increase the freedom of excavation, and facilitate large-scale mechanical operations. Conducive to a reasonable acceleration of construction progress.
  • Figure 1 is a schematic view of the present invention
  • 1 - main hole to be excavated 1 - main hole to be excavated
  • 2 - side hole to be excavated 3-jet grouting pile
  • 4-long pipe shed 5-hand face arch
  • 6-core soil 7-glass fiber anchor pipe.
  • the invention provides a super large variable section tunnel advance supporting structure, which comprises a tunnel section composed of a main hole 1 to be excavated and a side hole 2 to be excavated, and the side hole 2 to be excavated is located in the main hole 1 to be excavated.
  • the surrounding rock of the main hole to be excavated is arranged along the tunnel excavation outline with two layers of high-pressure horizontal jet grouting piles 3 arranged along the longitudinal direction of the tunnel.
  • a long tube shed 4 arranged along the longitudinal direction of the tunnel, and a surrounding rock of the side hole 2 to be excavated is arranged along the tunnel excavation contour line with a layer of high-pressure horizontal jet grouting pile 3 arranged along the longitudinal direction of the tunnel, to be excavated
  • the surrounding rock between the side hole 2 and the main hole 1 to be excavated is provided with a plurality of high-pressure horizontal jet grouting piles 3 arranged along the longitudinal direction of the tunnel, and the side holes to be excavated are arranged along the tunnel excavation contour line.
  • the adjoining high pressure horizontal jet grouting pile 3 on the outer side of the vault is provided with a leading small duct.
  • a double-layer horizontal high-pressure jet grouting pile 3 is arranged on the vault of the main hole to be excavated, and a long long pipe shed 4 is embedded between the two layers, and the joint use of the two is used to increase the support rigidity and improve the longitudinal beam action.
  • a jet grouting pile 3 is added at the arch of the main hole 1 to be excavated and the measuring hole to be excavated, forming a large arched foot, increasing the bearing capacity of the arch, and preventing the arch supporting structure from sinking as a whole.
  • the strands of the adjacent high-pressure horizontal jet grouting piles 3 outside the vault of the main hole 1 to be excavated are provided with a leading small duct.
  • the single-layer horizontal high-pressure jet grouting pile 3 is used for the side hole of the side hole to be excavated.
  • the double-layer jet grouting pile 3 provided at the vault of the main hole 1 to be excavated is 500 mm in diameter
  • the center distance of the adjacent adjacent pile is 40 cm
  • the center and outer layer of the jet grouting pile 3 are 40 cm in center distance
  • the inner layer is close to the tunnel.
  • the center of the side jet grouting pile 3 is 46cm away from the excavation outer contour; the long long tube shed 4 adopts ⁇ 180mm steel flower tube.
  • the wall thickness is 10mm, the center distance of the adjacent pipe is 40cm, and the center of the pipe is 64cm away from the excavation.
  • the top hole of the side hole to be excavated adopts a single layer of ⁇ 500mm horizontal high-pressure jet grouting pile 3, and is arranged in close row. There is no overlap between adjacent jet-jet piles 3, that is, the center distance of adjacent jet-jet piles 3 is 500mm.
  • the rigid long tube shed located outside the contour of the main cave arch to be excavated is characterized by longitudinal support, which is characterized by large longitudinal stiffness, longitudinal cantilever beam (longitudinal beam) and support scaffolding.
  • the space effect creates a vertical stability support system for the lower excavation; the multi-layer laterally distributed flexible jet-jet piles on the outer side of the main cave vault line to be excavated are used as lateral support, and the rotary spray is convenient and bites each other.
  • the ring is synthesized to form a transverse flexible arch, which can effectively bear the upper pressure and transmit to the surrounding rock layer through the large abutment, and at the same time effectively block the underwater seepage of the top of the hole to prevent softening of the surrounding rock.
  • the face arch portion 5 of the main hole 1 to be excavated is provided with a plurality of high-pressure horizontal jet grouting piles 3 along the tunnel excavation direction.
  • the face arch portion 5 is advanced and pre-reinforced by the horizontal high-pressure jet grouting pile 3, which effectively controls the extrusion deformation of the face.
  • the plurality of high-pressure horizontal jet grouting piles 3 located in the main arch 1 of the main hole 1 to be excavated are divided into a plurality of layers along the tunnel excavation direction, and each layer of the high-pressure horizontal jet grouting piles 3 is annularly arranged.
  • the horizontal high-pressure jet grouting pile 3 of the face arch portion 5 is arranged in three layers, and the diameter of the jet grouting pile 3 is 500 mm, and the first layer is close to the tunnel wall and the center distance of the adjacent pile is 150 cm.
  • the center of the three-layer ring adjacent to the adjacent pile is 120cm; the center of the first layer of jet-jet pile 3 is 85cm away from the inner wall of the lining structure, and the center distance between the two adjacent layers is 150cm.
  • the core surface 6 of the main surface of the main hole 1 to be excavated is provided with a plurality of leading glass fiber anchor pipes 7 along the tunnel excavation direction.
  • the core soil 6 of the face is made of advanced glass fiber anchor pipe 7. Due to the excavation unloading of the arch soil, the protection of the arch support structure, and the improvement of the core soil 6 compared to the surrounding rock of the arch, the glass is used.
  • the fiber anchor pipe 7 replaces the horizontal high-pressure rotary spray form, and since the glass fiber material is used, the subsequent excavation is facilitated.
  • the plurality of lead glass fiber anchor pipes 7 located in the core soil 6 of the main hole 1 to be excavated are divided into a plurality of layers along the tunnel excavation direction, and the advancing glass fiber anchor pipes 7 of the adjacent two layers are arranged in a staggered manner.
  • the leading glass fiber anchor pipe 7 of the core face of the face is 6 horizontal plum blossoms
  • the diameter of the anchor pipe is 32 mm
  • the center distance of the upper and lower layers is 150 cm
  • the center distance of the adjacent anchor pipe is 150 cm
  • the adjacent layers are misaligned and projected to the same layer with a center-to-center distance of 75 cm.
  • the invention realizes the organic combination of the whole and the part, cooperates in different space segments and time periods, strengthens the surrounding rock on the one hand, controls the deformation of the surrounding rock in the next step excavation, and at the same time, the stability of the top and the face of the face
  • the increase is greatly reduced, which can effectively reduce the use of temporary support, increase the freedom of excavation, facilitate large-scale mechanical operations, and facilitate the reasonable acceleration of construction progress.
  • the construction of the anchor glass spray pipe of the advanced glass fiber anchor pipe of the core soil of the face can be completed first, and the surface of the face is swirled. Stability in the process.
  • the rotary jetting is carried out in the order of one hole at a time, and the holes are alternately arranged from bottom to top left and right.
  • Jumping into piles and balancing the strength on both sides can reduce the problem of low bite ratio between piles due to the deviation of the drill pipe.
  • the post-construction jet grouting pile must be drilled when the adjacent piles exceed the initial setting time and reach a certain strength to ensure that the adjacent piles are engaged with each other.
  • the double-layer rotary jet pre-reinforcement structure shall first construct the outer jet-jet pile, and then construct the inner-layer jet-spray pile.
  • a long long pipe shed is set up between the two layers of high-pressure horizontal jet grouting piles and grouted to form a horizontal swirling spray and a large pipe shed composite tunnel pre-supporting structure.
  • the occlusal position of the adjacent high-pressure horizontal jet grouting pile outside the side cave vault to be excavated and the adjacent high-pressure horizontal jet grouting pile outside the main cave vault to be excavated may be applied as a lead small pipe and grouted,
  • the small small guide pipe connects the piles in series to receive the whole force, and realizes the overall reinforcement of the jet grouting pile.
  • the vertical and horizontal rigid-flexible combined three-dimensional super large-section tunnel advanced support structure proposed by the invention has a simple use of a single advance support form, and the structural system emphasizes the combination of various advanced support forms, and implements all-round and multi-part
  • the combination of rigid and flexible, innovative technical ideas, originality mainly reflected in: (1) the vertical and horizontal combination of the overdraft support system, both soft and hard, the organic combination of the two, not only fully exert their respective support mechanics characteristics, but also very Good synergy and good overall pre-supporting effect.
  • the longitudinal support is mainly composed of rigid long pipe shed, which is characterized by large longitudinal stiffness, pre-supporting effect of longitudinal cantilever beam (longitudinal lifting beam) and supporting scaffolding, forming longitudinal space effect, creating for lower excavation
  • the vertical stability support system of the roof top is mainly composed of multi-layer horizontally distributed flexible rotary jetting piles.
  • the rotary spray is convenient to apply and bite into the ring to form a transverse flexible arch, which can effectively bear the upper pressure and pass
  • the large abutment is transmitted to the surrounding rock formations, and at the same time, it can effectively block the underwater seepage of the top of the cave to prevent softening of the surrounding rock.
  • the combination of the longitudinal rigid large pipe shed and the horizontal flexible rotary jetting pile can effectively exert the respective mechanical properties of the support, and effectively overcome the force defects of the individual support.
  • the two work together, and the two are complementary to each other.
  • the pre-support measures mainly include: "large pipe shed + jet grouting pile" three-dimensional pre-supporting structure with vertical and horizontal rigid-flexible joints; the small-conducting tunnel adopts jet-jet pile + advanced small pipe; the arch part is partially constructed during the tunnel construction Supplemental application of the small small catheter, the face of the horizontal jet grouting pile or glass fiber anchor pipe advanced pre-reinforcement (the pre-reinforcement material of the face is considered the convenience of subsequent removal), effectively controlling the extrusion deformation of the face (ie Longitudinal displacement along the
  • the above multi-level pre-support system realizes the organic combination of the whole and the part, and works together in different space segments and time periods.
  • the surrounding rock is strengthened, and the surrounding rock deformation controlled by the next step excavation is controlled, and at the same time, due to the top and the palm
  • the stability of the sub-surface is greatly increased, which can effectively reduce the use of temporary support and increase the excavation
  • the degree is convenient for large-scale mechanical operations, which is conducive to reasonably speeding up the construction progress.
  • the vertical and horizontal rigid-flexible combined three-dimensional super-large variable-section tunnel advanced support structure proposed by the invention has novel design concept, and solves the technical difficulties of the super-large-section tunnel pre-support under complicated conditions through technical innovation, thereby effectively ensuring the engineering Safety and structural reliability, the proposed innovative technical measures have been successfully tested in engineering practice.
  • the engineering practice proves that the advanced support system proposed by the present invention is reasonable and effective, reflects good innovation and reasonable and effective engineering technology, and has good performance. Engineering utility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

一种超大变断面隧道超前支护结构,包括由待挖掘的主洞(1)和待挖掘的侧洞(2)组成的隧道断面,待挖掘的侧洞位于待挖掘的主洞的两侧,待挖掘的主洞拱顶沿隧道开挖轮廓线外排列有两层高压水平旋喷桩(3),两层旋喷桩之间内嵌有超前长管棚(4),待挖掘的侧洞拱顶沿隧道开挖轮廓线外排列有一层高压水平旋喷桩(3),待挖掘的侧洞与待挖掘的主洞之间的拱脚沿隧道开挖轮廓线外设置有多根高压水平旋喷桩(3),待挖掘的主洞的掌子面拱部(5)沿隧道开挖方向设置有多个高压水平旋喷桩,待挖掘的主洞的掌子面核心土(6)沿隧道开挖方向设置有多个超前玻纤锚管(7)。该超前支护结构能确保在特别软弱围岩中开挖超大变断面隧道的安全性,同时减少临时支撑的使用,增加作业自由度,加快施工进度。

Description

超大变断面隧道超前支护结构 技术领域
本发明涉及山岭隧道施工领域,具体涉及一种超大变断面隧道超前支护结构。
背景技术
在隧道施工时,如果围岩完全不能自稳,施工是不可能的。自稳时间与围岩性质和隧道一次开挖跨度有关,围岩越差,一次开挖跨度越大,自稳时间越短,以致于开挖后缺少足够时间进行支护施工。超前支护正是为解决这一问题而发展起来的。根据地质工程环境、隧道开挖断面及施工工法等条件,超前支护又有多种不同形式,其中包括超前管棚、掌子面喷混凝土(正面喷混凝土)、掌子面锚杆(正面锚杆)、钢插板超前支护、冻结法、水平高压旋喷法、预衬砌、超前深孔帷幕注浆等等。对于特别软弱围岩中修建跨度达到20~30m的特大跨度隧道,若简单采用上述某一种超前支护形式,则会由于未考虑不同部位,不同施工工法而出现走极端,要么安全不能保证,要么某些部位过于保守。因此,为了确保超前支护的安全、经济、有效,有必要优化超前支护形式的交叉使用,非均衡设置各部位支护强度和刚度,有效提高各部超前支护结构利用率,另一方面也为简化临时支撑形式,优化开挖工序,加快施工进度提供条件。
发明内容
针对上述技术问题,本发明提供了一种超大变断面隧道超前支护结构,确保在特别软弱围岩中开挖超大变断面隧道的安全性,同时减少临时支撑的使用,增加作业自由度,加快施工进度。
本发明提供了一种超大变断面隧道超前支护结构,包括由待挖掘的主洞的围岩,待挖掘的主洞拱顶处围岩沿隧道开挖轮廓线外排列有沿隧道纵向方向布置的两层高压水平旋喷桩,两层旋喷桩之间内嵌有沿隧道纵向方向布置的超前长管棚,待挖掘的主洞的掌子面拱部沿隧道开挖方向设置有多个沿隧道纵向方向布置的高压水平旋喷桩,待挖掘的主洞的掌子面核心土沿隧道开挖方向设置有多个超前玻纤锚管。
本发明还包括位于待挖掘主洞两侧的待挖掘的侧洞的围岩,待挖掘的侧洞拱顶处围岩沿隧道测洞开挖轮廓线外排列有一层沿隧道纵向方向布置的高压水平旋喷桩,待挖掘的侧洞与待挖掘的主洞之间的拱脚处围岩沿隧道开挖轮廓线外设置有多根沿隧道纵向方向布置的高压水平旋喷桩。
所述待挖掘的侧洞拱顶外侧的相邻高压水平旋喷桩的咬合处设置有超前小导管。
所述待挖掘的主洞拱顶外侧的相邻高压水平旋喷桩的咬合处设置有超前小导管。
所述位于待挖掘的主洞掌子面拱部的多个高压水平旋喷桩沿隧道开挖方向上分为多层,每层高压水平旋喷桩均为环形布置。
所述位于待挖掘的主洞掌子面核心土的多个超前玻纤锚管沿隧道开挖方向分为多层,相邻两层的超前玻纤锚管为错落设置。
本发明联合使用多种超前支护形式,全方位多部位实施,刚性柔性相结合。本发明纵横向支护体系,软硬兼施,既充分发挥了各自的结合支护力学特点,又能很好的协同工作,取得良好的整体预支护效果。其中,纵向支护主要以位于待挖掘的主洞拱顶轮廓线外侧的刚性超前长管棚为主,其特点是纵向刚度大、具有纵向悬臂梁(纵抬梁)和支护棚架的预支护效应,形成纵向空间效应,为下部开挖创造了洞顶纵向稳定支护体系;横向支护主要以待挖掘的主洞拱顶轮廓线外侧的多层横向分布的柔性旋喷桩为主,旋喷施作方便、相互咬合成环,从而形成横向柔性拱,能有效承担上部压力并通过大拱座传递给周围岩层,同时能有效阻隔洞顶汇水下渗以防软化围岩。本发明纵向刚性抄起大管棚和横向柔性双层旋喷桩巧妙结合,能有效发挥各自的支护力学特性,也有效克服看单独支护的受力缺陷,两者协同工作,刚柔相济、互为补充,能更好的适应复杂地层环境,形成良好的预支护效果,满足了复杂受力条件下超大断面施工开挖的稳定要求。本发明在充分考虑大断面分步施工特点的基础上,提出了多层次的预支护措施,其中洞口采用了纵横向刚柔结合的“大管棚+旋喷桩”立体预支护结构;待挖掘的侧洞拱顶轮廓线外采用了旋喷桩辅以超前小导管的超前支护方式;待挖掘的主洞施工时拱部的双层旋喷桩局部补充施作超前小导管;掌子面拱部施水平旋喷桩,掌子面核心土采用玻纤锚管实现超前预加固,充分考虑了后续破除的便利性,有效控制掌子面挤出变形(即沿隧道轴向的纵向位移)。本发明实现了整体和局部的有机结合,在不同的空间段和时间段协同工作, 一方面加固了围岩、控制了下步开挖的围岩变形,同时由于洞顶和掌子面稳定性大大增加,可有效减少临时支撑的使用,增加开挖自由度,方便大型机械作业,有利于合理加快施工进度。
附图说明
图1为本发明示意图
其中,1-待挖掘的主洞,2-待挖掘的侧洞,3-旋喷桩,4-长管棚,5-掌子面拱部,6-核心土,7-玻纤锚管。
具体实施方式
下面结合说明书附图和具体实施例对本发明做进一步说明:
本发明提供了一种超大变断面隧道超前支护结构,包括由待挖掘的主洞1和待挖掘的侧洞2组成的隧道断面,所述待挖掘的侧洞2位于待挖掘的主洞1的两侧,待挖掘的主洞1拱顶处围岩沿隧道开挖轮廓线外排列有两层沿隧道纵向方向布置的高压水平旋喷桩3,两层旋喷桩3之间内嵌有沿隧道纵向方向布置的超前长管棚4,待挖掘的侧洞2拱顶处围岩沿隧道测洞开挖轮廓线外排列有沿隧道纵向方向布置的一层高压水平旋喷桩3,待挖掘的侧洞2与待挖掘的主洞1之间的拱脚处围岩沿隧道开挖轮廓线外设置有多根沿隧道纵向方向布置的高压水平旋喷桩3,所述待挖掘的侧洞2拱顶外侧的相邻高压水平旋喷桩3的咬合处设置有超前小导管。待挖掘的主洞1拱顶设置双层水平高压旋喷桩3,在两层之间内嵌超前长管棚4,通过两者的联合使用,增加支护刚度,提高纵向梁作用。同时在待挖掘的主洞1和待挖掘的测洞之间的拱脚处增设旋喷桩3,形成大拱脚,增大拱脚承载能力,防止拱部超前支护结构整体下沉。所述待挖掘的主洞1拱顶外侧的相邻高压水平旋喷桩3的绞合处设置有超前小导管。待挖掘的侧洞2洞顶采用单层水平高压旋喷桩3,施工时可根据围岩自稳条件和待挖掘的侧洞2大小可灵活选用是否加密旋喷桩3,使相邻桩加固区出现叠加。具体实施例中,待挖掘的主洞1拱顶设置的双层旋喷桩3直径为500mm,环向相邻桩中心距40cm,内、外层旋喷桩3中心距40cm,内层靠近隧道侧旋喷桩3中心距开挖外轮廓46cm;超前长管棚4采用φ180mm钢花管, 壁厚10mm,环向相邻管中心距40cm,管中心距开挖外轮廓64cm。待挖掘的侧洞2洞顶采用单层φ500mm水平高压旋喷桩3,且密排布置,相邻旋喷桩3之间未出现交叠,即相邻旋喷桩3中心距500mm。位于待挖掘的主洞拱顶轮廓线外侧的刚性超前长管棚作为,纵向支护其特点是纵向刚度大、具有纵向悬臂梁(纵抬梁)和支护棚架的预支护效应,形成纵向空间效应,为下部开挖创造了洞顶纵向稳定支护体系;待挖掘的主洞拱顶轮廓线外侧的多层横向分布的柔性旋喷桩作为横向支护,旋喷施作方便、相互咬合成环,从而形成横向柔性拱,能有效承担上部压力并通过大拱座传递给周围岩层,同时能有效阻隔洞顶汇水下渗以防软化围岩。
上述技术方案中,待挖掘的主洞1的掌子面拱部5沿隧道开挖方向设置有多个高压水平旋喷桩3。掌子面拱部5采用水平高压旋喷桩3形式进行超前预加固,有效控制掌子面挤出变形。所述位于待挖掘的主洞1掌子面拱部5的多个高压水平旋喷桩3沿隧道开挖方向上分为多层,每层高压水平旋喷桩3均为环形布置。具体实施例中,掌子面拱部5的水平高压旋喷桩3采用三层环形布置,旋喷桩3直径选用500mm,第一层靠近隧道壁环向相邻桩中心距150cm,第二、三层环向相邻桩中心距120cm;第一层旋喷桩3中心距衬砌结构内壁85cm,相邻两层之间桩中心距均为150cm。
上述技术方案中,待挖掘的主洞1的掌子面核心土6沿隧道开挖方向设置有多个超前玻纤锚管7。掌子面核心土6采用超前玻纤锚管7,由于拱部土体的开挖卸荷、拱部支护结构的保护、以及核心土6相比拱部围岩有所改善,因此采用玻纤锚管7代替水平高压旋喷形式,且由于采用玻璃纤维材料,方便后续开挖破除。所述位于待挖掘的主洞1掌子面核心土6的多个超前玻纤锚管7沿隧道开挖方向分为多层,相邻两层的超前玻纤锚管7为错落设置。具体实施例中,掌子面核心土6的超前玻纤锚管7为6层水平梅花形布置,锚管直径选用32mm,上下层中心距150cm,同一层相邻锚管中心距150cm;上下相邻层错位布置,投影到同一层相邻管中心距为75cm。
本发明实现了整体和局部的有机结合,在不同的空间段和时间段协同工作,一方面加固了围岩、控制了下步开挖的围岩变形,同时由于洞顶和掌子面稳定性大大增加,可有效减少临时支撑的使用,增加开挖自由度,方便大型机械作业,有利于合理加快施工进度。施工时,可先完成掌子面核心土的超前玻纤锚管的施工锚喷,保证掌子面在旋喷 过程中的稳定性。然后按照“先周边、后掌子面”顺序进行旋喷施工,周边按照每次间隔一孔,孔位从下到上左、右交替进行。跳跃式成桩,两边强度平衡,可以减少因钻杆偏移造成桩间咬合率低的问题。后施工的旋喷桩必须在相邻桩超过初凝时间,达到一定强度时才能开钻,确保相邻桩相互咬合。双层旋喷预加固结构应先施工外层旋喷桩,后施工内层旋喷桩。旋喷桩施作完成后,在两层高压水平旋喷桩之间打设超前长管棚并注浆,形成水平旋喷与大管棚复合隧道预支护结构。待挖掘的侧洞拱顶外侧的相邻高压水平旋喷桩的咬合处和待挖掘的主洞拱顶外侧的相邻高压水平旋喷桩的咬合处间隙可施作超前小导管并注浆,超前小导管将桩串联成整体受力,实现旋喷桩的整体加固。
本发明提出的纵横向刚柔结合式立体超大变断面隧道超前支护结构不同以往简单的使用单种超前支护形式,该结构体系着重强调多种超前支护形式联合使用,全方位多部位实施,刚性柔性相结合,技术思路新颖,具有原创性,主要体现在:(1)超期支护体系纵横向结合、软硬兼施,两者有机结合,既充分发挥了各自的支护力学特点,又能很好的协同工作,取得良好的整体预支护效果。其中,纵向支护主要以刚性长管棚为主,其特点是纵向刚度大、具有纵向悬臂梁(纵抬梁)和支护棚架的预支护效应,形成纵向空间效应,为下部开挖创造了洞顶纵向稳定支护体系;横向支护主要以多层横向分布的柔性旋喷桩为主,旋喷施作方便、相互咬合成环,从而形成横向柔性拱,能有效承担上部压力并通过大拱座传递给周围岩层,同时能有效阻隔洞顶汇水下渗以防软化围岩。将纵向刚性大管棚和横向柔性旋喷桩巧妙结合,能有效发挥各自的支护力学特性,也有效克服看单独支护的受力缺陷,两者协同工作,刚柔相济、互为补充,能更好的适应复杂地层环境,形成良好的预支护效果,满足了复杂受力条件下超大断面施工开挖的稳定要求;(2)在充分考虑大断面分步施工特点的基础上,提出了多层次的预支护措施,主要有:洞口纵横向刚柔结合的“大管棚+旋喷桩”立体预支护结构;小导洞超前施工采用旋喷桩+超前小导管;正洞施工时拱部局部补充施作超前小导管,掌子面施水平旋喷桩或玻纤锚管超前预加固(掌子面预加固材料均考虑了后续破除的便利性),有效控制掌子面挤出变形(即沿隧道轴向的纵向位移)。以上多层次预支护体系实现了整体和局部的有机结合,在不同的空间段和时间段协同工作,一方面加固了围岩、控制了下步开挖的围岩变形,同时由于洞顶和掌子面稳定性大大增加,可有效减少临时支撑的使用,增加开挖自 由度,方便大型机械作业,有利于合理加快施工进度。
由此可见,本发明提出的纵横向刚柔结合式立体超大变断面隧道超前支护结构,设计理念新颖,通过技术创新解决了复杂条件下超大断面隧道预支护的技术难点,有效保证了工程的安全和结构的可靠性,提出的创新技术措施在工程实践中得到成功检验,工程实践证明本发明提出的超前支护体系合理有效,体现了较好的创新性和工程技术合理有效性,具有良好的工程实用性。

Claims (6)

  1. 一种超大变断面隧道超前支护结构,包括待挖掘的主洞(1)的围岩,其特征在于待挖掘的主洞(1)拱顶处围岩沿隧道开挖轮廓线外排列有沿隧道纵向方向布置的两层高压水平旋喷桩(3),两层旋喷桩(3)之间内嵌有沿隧道纵向方向布置的超前长管棚(4),待挖掘的主洞(1)的掌子面拱部(5)沿隧道开挖方向设置有多个沿隧道纵向方向布置的高压水平旋喷桩(3),待挖掘的主洞(1)的掌子面核心土(6)沿隧道开挖方向设置有多个超前玻纤锚管(7)。
  2. 根据权利要求1所述的超大变断面隧道超前支护结构,其特征在于还包括位于待挖掘主洞两侧的待挖掘的侧洞(2)的围岩,待挖掘的侧洞(2)拱顶处围岩沿隧道开挖轮廓线外排列有一层沿隧道纵向方向布置的高压水平旋喷桩(3),待挖掘的侧洞(2)与待挖掘的主洞(1)之间的拱脚处围岩沿隧道开挖轮廓线外设置有多根沿隧道纵向方向布置的高压水平旋喷桩(3)。
  3. 根据权利要求1所述的超大变断面隧道超前支护结构,其特征在于待挖掘的侧洞(2)拱顶外侧的相邻高压水平旋喷桩(3)的咬合处设置有超前小导管。
  4. 根据权利要求1所述的超大变断面隧道超前支护结构,其特征在于待挖掘的主洞(1)拱顶外侧的相邻高压水平旋喷桩(3)的咬合处设置有超前小导管。
  5. 根据权利要求1所述的超大变断面隧道超前支护结构,其特征在于位于待挖掘的主洞(1)掌子面拱部(5)的多个高压水平旋喷桩(3)沿隧道开挖方向上分为多层,每层高压水平旋喷桩(3)均为环形布置。
  6. 根据权利要求1所述的超大变断面隧道超前支护结构,其特征在于位于待挖掘的 主洞(1)掌子面核心土(6)的多个超前玻纤锚管(7)沿隧道开挖方向分为多层,相邻两层的超前玻纤锚管(7)为错落设置。
PCT/CN2015/094284 2014-12-15 2015-11-11 超大变断面隧道超前支护结构 WO2016095629A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201410777881.8A CN104405411B (zh) 2014-12-15 2014-12-15 超大变断面隧道支护结构
CN201410776845.XA CN104653197B (zh) 2014-12-15 2014-12-15 超大变断面隧道施工方法
CN201410777849.X 2014-12-15
CN201410776845.X 2014-12-15
CN201420795169.6U CN204436406U (zh) 2014-12-15 2014-12-15 超大变断面隧道支护结构
CN201420795169.6 2014-12-15
CN201410777881.8 2014-12-15
CN201420797002.3 2014-12-15
CN201410777849.XA CN104500100A (zh) 2014-12-15 2014-12-15 超大变断面隧道超前支护结构
CN201420797002.3U CN204327118U (zh) 2014-12-15 2014-12-15 超大变断面隧道超前支护结构

Publications (1)

Publication Number Publication Date
WO2016095629A1 true WO2016095629A1 (zh) 2016-06-23

Family

ID=56125861

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2015/094284 WO2016095629A1 (zh) 2014-12-15 2015-11-11 超大变断面隧道超前支护结构
PCT/CN2015/094286 WO2016095631A1 (zh) 2014-12-15 2015-11-11 超大变断面隧道支护结构
PCT/CN2015/094285 WO2016095630A1 (zh) 2014-12-15 2015-11-11 超大变断面隧道施工方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/094286 WO2016095631A1 (zh) 2014-12-15 2015-11-11 超大变断面隧道支护结构
PCT/CN2015/094285 WO2016095630A1 (zh) 2014-12-15 2015-11-11 超大变断面隧道施工方法

Country Status (3)

Country Link
MY (2) MY198020A (zh)
SE (2) SE543647C2 (zh)
WO (3) WO2016095629A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106988750A (zh) * 2017-05-26 2017-07-28 中铁四局集团第三建设有限公司 一种大跨度区间隧道超近距离下穿既有站的实施方式
CN107447776A (zh) * 2017-05-11 2017-12-08 吴震 锚拉式垂直挡土墙结构及施工方法
CN107630706A (zh) * 2017-10-24 2018-01-26 中交第二航务工程局有限公司 一种消除高地压区隧道仰拱隆起的隧底结构及施工方法
CN108005675A (zh) * 2017-11-16 2018-05-08 中国电建集团昆明勘测设计研究院有限公司 一种断层破碎带巷道的动态迭加耦合支护方法及支护结构
CN108590704A (zh) * 2018-04-27 2018-09-28 中铁十二局集团有限公司 小断面超前小导管注浆的预支护方法
CN108645298A (zh) * 2018-07-20 2018-10-12 中铁十八局集团有限公司 短天窗点间隔临近既有隧道先行导洞微振爆破施工方法
CN108979659A (zh) * 2018-07-04 2018-12-11 中铁第勘察设计院集团有限公司 软土富水大断面隧道群下穿构筑物的加固结构及方法
CN109578014A (zh) * 2019-01-28 2019-04-05 中铁第六勘察设计院集团有限公司 一种抗突涌封底结构及施工方法
CN109667603A (zh) * 2018-12-28 2019-04-23 中铁第四勘察设计院集团有限公司 一种超浅埋隧道结构及修建方法
CN109882206A (zh) * 2019-04-09 2019-06-14 湖南科技大学 一种用于控制煤矿破碎围岩的多支护协同方法
CN109973100A (zh) * 2019-05-21 2019-07-05 中铁第六勘察设计院集团有限公司 一种实现矿山法隧道小半径转弯的支护形式及施工方法
CN110750820A (zh) * 2019-09-19 2020-02-04 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种基于能量突变的地下洞库开挖支护稳定判别方法
CN111125827A (zh) * 2020-02-28 2020-05-08 中国十七冶集团有限公司 一种基于bim技术的黄土隧道土方开挖及支护方法
CN111305219A (zh) * 2020-04-01 2020-06-19 中铁第一勘察设计院集团有限公司 基于基坑跳挖与拱盖转换的既有隧道跨越体系及施工方法
CN111472812A (zh) * 2020-04-24 2020-07-31 重庆交通建设(集团)有限责任公司 一种隧道仰拱填充浇筑混凝土施工方法
CN111691894A (zh) * 2020-06-22 2020-09-22 中铁十八局集团有限公司 一种洞口管棚施工工艺
CN112031814A (zh) * 2020-09-17 2020-12-04 攀钢集团工程技术有限公司 一种穿越浅层大载荷公路的进洞施工方法
CN112228117A (zh) * 2020-10-28 2021-01-15 中铁十二局集团有限公司 大断面初支大拱脚施工工法
CN112647985A (zh) * 2020-12-28 2021-04-13 中国科学院武汉岩土力学研究所 一种锁脚锚管/锚杆与钢拱架的联合支护装置及施工方法
CN113392449A (zh) * 2021-06-01 2021-09-14 中铁二院工程集团有限责任公司 一种大跨度拱座复合基础的优化设计方法
CN114320320A (zh) * 2021-12-31 2022-04-12 北京住总集团有限责任公司 一种适用于暗挖区段局部扩挖的支护结构及扩挖方法
CN114753401A (zh) * 2022-04-08 2022-07-15 中铁十九局集团第五工程有限公司 隧道底部溶洞处理的施工方法
CN115306442A (zh) * 2022-08-22 2022-11-08 中铁第一勘察设计院集团有限公司 砂质黄土地层的隧道预支护结构及施工方法
CN115306424A (zh) * 2022-08-29 2022-11-08 中国建筑第二工程局有限公司 一种大断面横通道马头门破除作业平台及施工方法

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130977B (zh) * 2017-06-27 2023-10-10 长江勘测规划设计研究有限责任公司 地下核反应堆洞室超大跨度穹顶中空导向开挖结构及开挖方法
CN107605493A (zh) * 2017-10-31 2018-01-19 淮矿西部煤矿投资管理有限公司 一种综掘快速施工系统以及方法
CN107605509A (zh) * 2017-11-08 2018-01-19 中铁十局集团有限公司 砂卵石地层小曲线半径浅埋隧道暗挖法超前支护施工方法
CN107916935B (zh) * 2017-11-13 2024-01-23 浙江大学城市学院 一种软土盾构穿越既有地铁的土体复合加固结构及施工方法
CN107893669A (zh) * 2017-12-20 2018-04-10 贵州大学 一种用于巷道支护的u型钢套棚结构
CN107939419A (zh) * 2017-12-20 2018-04-20 贵州大学 一种巷道u型钢套棚支护结构
CN108798720B (zh) * 2018-03-30 2023-08-01 中国建筑股份有限公司 用于地下工程拱盖法锚栅一体拱脚加固体系及其施工方法
CN108643934B (zh) * 2018-04-28 2024-04-02 中铁二院重庆勘察设计研究院有限责任公司 一种上下层重叠隧道内基于组合式台阶仰拱的工法
CN108561156B (zh) * 2018-04-30 2024-03-19 安徽省公路桥梁工程有限公司 分离式隧道换拱支护结构及其施工方法
CN109026057A (zh) * 2018-07-25 2018-12-18 西南交通大学 一种适用于风积沙地层的隧道组合支护结构
CN109404005B (zh) * 2018-11-09 2023-09-15 中铁第一勘察设计院集团有限公司 暗挖隧道小洞进大洞预加固体系及施工方法
CN109372521A (zh) * 2018-11-22 2019-02-22 中铁十四局集团有限公司 新管幕法施工技术及施工管支护装置
CN109538236B (zh) * 2018-12-07 2024-04-02 中铁十局集团有限公司 一种隧道进洞结构及隧道进洞施工方法
CN109538246A (zh) * 2018-12-26 2019-03-29 中铁科学研究院有限公司 拱盖法暗挖地铁车站拱脚加固结构及施工方法
CN109505630B (zh) * 2019-01-14 2023-09-08 中铁一局集团有限公司 全液压履带式自行栈桥及施工方法
CN109538250B (zh) * 2019-01-28 2023-09-15 中南大学 用于隧道初支带模喷射混凝土快速施工的装置及方法
CN109885329B (zh) * 2019-02-28 2023-04-07 新华三信息技术有限公司 一种升级方法、系统及电子设备
CN109763838B (zh) * 2019-03-13 2023-09-15 中铁第一勘察设计院集团有限公司 适用于钻爆法隧道的装配式仰拱结构及其拼装方法
CN109973111A (zh) * 2019-03-22 2019-07-05 北京城建集团有限责任公司 一种导洞蓄水系统及其施工方法
CN109869189A (zh) * 2019-03-22 2019-06-11 云南建投基础工程有限责任公司 一种隧道有害气体与地下水分离排放系统装置
CN110017149A (zh) * 2019-05-21 2019-07-16 成都市建筑设计研究院 一种拱盖暗挖顺筑地下结构及施工方法
CN112031831A (zh) * 2019-06-03 2020-12-04 甘肃路桥建设集团有限公司 一种隧道钢管拱初期支护结构及其支护方法
CN110230504A (zh) * 2019-06-25 2019-09-13 深圳市综合交通设计研究院有限公司 一种上软下硬复合地层全包防水抗水压复合衬砌结构及其施工方法
CN110307003B (zh) * 2019-08-12 2024-04-12 中铁二院工程集团有限责任公司 适用于预防隧道底部变形的泄压导洞及其施工方法
CN110700852A (zh) * 2019-10-14 2020-01-17 中铁第四勘察设计院集团有限公司 市域d型车限界设计的单洞双线带中隔墙矿山法隧道断面
CN111206943B (zh) * 2020-02-21 2024-06-25 上海市城市建设设计研究总院(集团)有限公司 微干扰的后补暗挖接口连接构件及其施工方法
CN112065443A (zh) * 2020-08-19 2020-12-11 中铁五局集团有限公司 基于溶洞暗河环境隧道施工的连续梁第二节段施工方法
CN114439481B (zh) * 2020-11-02 2024-06-07 上海宝冶集团有限公司 暗挖隧道中断面由小至大的变截面开挖方法
CN112627857B (zh) * 2020-12-07 2022-11-15 广东华隧建设集团股份有限公司 一种隧洞二次衬砌的施工方法
CN112682048B (zh) * 2020-12-31 2023-08-29 中铁大桥局集团第五工程有限公司 一种新建隧道小净距上跨既有隧道的置换加固施工方法
CN112682062B (zh) * 2020-12-31 2023-08-25 中铁大桥局集团第五工程有限公司 一种小净距立体交叉隧道的施工方法
CN112832785B (zh) * 2021-02-24 2024-05-24 中铁第六勘察设计院集团有限公司 一种盾构矿山组合工法隧道海底对接方法及微型拆机洞室
CN112855225B (zh) * 2021-03-01 2024-04-30 中铁上海工程局集团有限公司 一种安全性高的软岩隧道支护施工方法
CN112963177A (zh) * 2021-04-19 2021-06-15 山东建筑大学 一种软弱地层浅埋大断面隧道洞内有洞的支护方法及结构
CN113153317B (zh) * 2021-05-11 2024-06-21 北华航天工业学院 一种适用于软岩大断面隧道的施工方法及注浆装置
CN113309550B (zh) * 2021-05-19 2024-02-27 甘肃路桥建设集团有限公司 超大断面黄土隧道模块式临时支撑装配结构
CN113187514B (zh) * 2021-05-25 2024-02-23 中铁九局集团第七工程有限公司 一种市域铁路矿山法隧道燕尾段施工方法
CN115434709B (zh) * 2021-06-01 2024-06-07 上海宝冶集团有限公司 穿越隧道顺层地段坍塌体施工方法
CN113294175B (zh) * 2021-06-03 2023-12-29 中国建筑股份有限公司 一种隧道二衬结构的施工方法及隧道二衬结构
CN113338951B (zh) * 2021-06-30 2023-11-03 中交路桥建设有限公司 快速隧道交叉口三台阶挑顶施工方法
CN113565513A (zh) * 2021-07-13 2021-10-29 中交路桥华南工程有限公司 用于隧道开挖的上下台阶预留核心土开挖方法
CN113847050B (zh) * 2021-07-16 2023-08-22 中交投资南京有限公司 熔岩山区特长公路隧道的施工方法
CN113756868B (zh) * 2021-09-14 2024-06-25 东莞理工学院 一种岩土工程地下侧边墙施工方法
CN113803073B (zh) * 2021-09-27 2024-01-19 长江勘测规划设计研究有限责任公司 富水砂层人工清障的隧道结构的施工方法
CN114060063A (zh) * 2021-11-01 2022-02-18 中铁十九局集团第二工程有限公司 一种适应隧道大变形的双层型钢钢架喷混凝土初支结构及支护方法
CN114046162A (zh) * 2021-11-19 2022-02-15 中电建路桥集团有限公司 高地温隧道底板隔热结构
CN114086968B (zh) * 2021-11-27 2024-04-09 中铁广州工程局集团有限公司 一种下穿既有建筑暗挖隧道施工方法
CN114109421B (zh) * 2021-12-03 2024-01-30 中铁隧道局集团有限公司 敞开式tbm通过长大断层破碎带的施工方法
CN114183149A (zh) * 2021-12-14 2022-03-15 中铁工程装备集团有限公司 一种基于导洞扩挖地下空间机械化建造方法
CN114320340B (zh) * 2021-12-28 2023-09-12 中铁第六勘察设计院集团有限公司 基于超前导洞及对拉锚索的大跨无柱地下隧洞结构及方法
CN114233302B (zh) * 2021-12-29 2024-03-15 中铁四院集团西南勘察设计有限公司 一种适用于暗挖车站的拱盖施工工法
CN114320312A (zh) * 2022-01-06 2022-04-12 江西省交通设计研究院有限责任公司 一种初支贴壁法隧道进洞施工方法
CN114320314A (zh) * 2022-01-11 2022-04-12 龙元建设集团股份有限公司 用于小净距、超大断面公路隧道的分区开挖方法
CN114575877A (zh) * 2022-03-04 2022-06-03 中铁第一勘察设计院集团有限公司 一种隧道隔震结构的施工方法
CN114704297A (zh) * 2022-03-30 2022-07-05 中铁二十局集团第五工程有限公司 一种隧道整体式仰拱结构及其施工工艺
CN115142878B (zh) * 2022-07-04 2023-05-16 中铁十二局集团有限公司 一种上软下硬地层crd法分部联动快速化施工方法
CN115163125B (zh) * 2022-07-29 2024-05-14 中南大学 适用于非对称挤压性软岩隧道的差异分级控制方法及系统
CN115452219A (zh) * 2022-08-24 2022-12-09 珠海大横琴股份有限公司 一种二衬接触压力测试装置及其安装方法
CN115478880B (zh) * 2022-10-21 2024-05-31 中铁隧道局集团有限公司 一种降低喷射混凝土回弹率的施工方法
CN115961513A (zh) * 2022-11-22 2023-04-14 中铁二院工程集团有限责任公司 一种利用隧道工程对铁路进行四重立交疏解的方法
CN116163761A (zh) * 2023-04-06 2023-05-26 中交(广州)建设有限公司 一种暗挖隧道中洞法快速转换结构及快速转换开挖方法
CN117107777B (zh) * 2023-10-13 2024-04-05 中国铁路设计集团有限公司 一种从明挖放坡基坑施工暗挖地铁区间的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445723A (en) * 1982-07-26 1984-05-01 Mcquade Paul D Method of circle mining of ore
KR20060084203A (ko) * 2005-01-19 2006-07-24 주식회사 하이콘엔지니어링 철골 지보를 이용한 2-아치 터널 시공방법
CN103306687A (zh) * 2012-10-31 2013-09-18 王卓 软岩隧道长悬臂水平旋喷变形控制施工方法
CN104500100A (zh) * 2014-12-15 2015-04-08 中铁第四勘察设计院集团有限公司 超大变断面隧道超前支护结构
CN204327118U (zh) * 2014-12-15 2015-05-13 中铁第四勘察设计院集团有限公司 超大变断面隧道超前支护结构
CN104653197A (zh) * 2014-12-15 2015-05-27 中铁第四勘察设计院集团有限公司 超大变断面隧道施工方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2648051B2 (ja) * 1991-07-19 1997-08-27 株式会社フジタ トンネル先受工におけるアーチシエルの構築方法
JP2004052408A (ja) * 2002-07-22 2004-02-19 Maeda Corp トンネル掘削方法
CN101666232B (zh) * 2009-09-27 2012-08-22 中铁四局集团有限公司 超大断面隧道六部开挖的施工方法
JP2012036624A (ja) * 2010-08-06 2012-02-23 Taisei Corp トンネル構築方法
CN102182466B (zh) * 2011-04-08 2013-05-01 中铁上海设计院集团有限公司 隧道双侧壁导坑结合拱部跳挖开挖方法
CN102226398A (zh) * 2011-06-02 2011-10-26 中铁二院工程集团有限责任公司 软岩四线大跨隧道复合双侧壁撑索转换开挖施工方法
CN102345460A (zh) * 2011-06-21 2012-02-08 北京交通大学 一种浅埋大断面黄土隧道沉降控制方法
CN102797481B (zh) * 2012-08-13 2015-03-25 中铁一局集团有限公司 基于骨架梁的大跨度隧道拱部二次衬砌钢筋绑扎施工方法
CN103437783A (zh) * 2013-08-22 2013-12-11 天津市市政工程设计研究院 浅埋暗挖大跨度隧道导洞拱盖组合施工工法
CN103775095B (zh) * 2014-02-26 2015-10-28 中铁第一勘察设计院集团有限公司 山岭软基隧道超前双导洞及其施工方法
CN104405411B (zh) * 2014-12-15 2017-05-10 中铁第四勘察设计院集团有限公司 超大变断面隧道支护结构
CN204436406U (zh) * 2014-12-15 2015-07-01 中铁第四勘察设计院集团有限公司 超大变断面隧道支护结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445723A (en) * 1982-07-26 1984-05-01 Mcquade Paul D Method of circle mining of ore
KR20060084203A (ko) * 2005-01-19 2006-07-24 주식회사 하이콘엔지니어링 철골 지보를 이용한 2-아치 터널 시공방법
CN103306687A (zh) * 2012-10-31 2013-09-18 王卓 软岩隧道长悬臂水平旋喷变形控制施工方法
CN104500100A (zh) * 2014-12-15 2015-04-08 中铁第四勘察设计院集团有限公司 超大变断面隧道超前支护结构
CN204327118U (zh) * 2014-12-15 2015-05-13 中铁第四勘察设计院集团有限公司 超大变断面隧道超前支护结构
CN104653197A (zh) * 2014-12-15 2015-05-27 中铁第四勘察设计院集团有限公司 超大变断面隧道施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAN, CHUN: "Application of high pr essure horizontal rotary jet grouting pile in soft rock and large span tunnel", TECHNOLOGICAL DEVELOPMENT OF ENTERPRISE, vol. 33, no. 34, 1 December 2014 (2014-12-01), pages 19 - 21 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107447776A (zh) * 2017-05-11 2017-12-08 吴震 锚拉式垂直挡土墙结构及施工方法
CN106988750B (zh) * 2017-05-26 2023-07-14 中铁四局集团有限公司 一种大跨度区间隧道超近距离下穿既有站的实施方式
CN106988750A (zh) * 2017-05-26 2017-07-28 中铁四局集团第三建设有限公司 一种大跨度区间隧道超近距离下穿既有站的实施方式
CN107630706B (zh) * 2017-10-24 2023-05-26 中交第二航务工程局有限公司 一种消除高地压区隧道仰拱隆起的隧底结构及施工方法
CN107630706A (zh) * 2017-10-24 2018-01-26 中交第二航务工程局有限公司 一种消除高地压区隧道仰拱隆起的隧底结构及施工方法
CN108005675A (zh) * 2017-11-16 2018-05-08 中国电建集团昆明勘测设计研究院有限公司 一种断层破碎带巷道的动态迭加耦合支护方法及支护结构
CN108590704A (zh) * 2018-04-27 2018-09-28 中铁十二局集团有限公司 小断面超前小导管注浆的预支护方法
CN108979659A (zh) * 2018-07-04 2018-12-11 中铁第勘察设计院集团有限公司 软土富水大断面隧道群下穿构筑物的加固结构及方法
CN108645298A (zh) * 2018-07-20 2018-10-12 中铁十八局集团有限公司 短天窗点间隔临近既有隧道先行导洞微振爆破施工方法
CN109667603A (zh) * 2018-12-28 2019-04-23 中铁第四勘察设计院集团有限公司 一种超浅埋隧道结构及修建方法
CN109578014A (zh) * 2019-01-28 2019-04-05 中铁第六勘察设计院集团有限公司 一种抗突涌封底结构及施工方法
CN109578014B (zh) * 2019-01-28 2024-02-09 中铁第六勘察设计院集团有限公司 一种抗突涌封底结构及施工方法
CN109882206A (zh) * 2019-04-09 2019-06-14 湖南科技大学 一种用于控制煤矿破碎围岩的多支护协同方法
CN109973100A (zh) * 2019-05-21 2019-07-05 中铁第六勘察设计院集团有限公司 一种实现矿山法隧道小半径转弯的支护形式及施工方法
CN109973100B (zh) * 2019-05-21 2024-02-09 中铁第六勘察设计院集团有限公司 一种实现矿山法隧道小半径转弯的支护形式及施工方法
CN110750820A (zh) * 2019-09-19 2020-02-04 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种基于能量突变的地下洞库开挖支护稳定判别方法
CN110750820B (zh) * 2019-09-19 2023-03-28 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种基于能量突变的地下洞库开挖支护稳定判别方法
CN111125827A (zh) * 2020-02-28 2020-05-08 中国十七冶集团有限公司 一种基于bim技术的黄土隧道土方开挖及支护方法
CN111305219A (zh) * 2020-04-01 2020-06-19 中铁第一勘察设计院集团有限公司 基于基坑跳挖与拱盖转换的既有隧道跨越体系及施工方法
CN111472812A (zh) * 2020-04-24 2020-07-31 重庆交通建设(集团)有限责任公司 一种隧道仰拱填充浇筑混凝土施工方法
CN111691894A (zh) * 2020-06-22 2020-09-22 中铁十八局集团有限公司 一种洞口管棚施工工艺
CN112031814A (zh) * 2020-09-17 2020-12-04 攀钢集团工程技术有限公司 一种穿越浅层大载荷公路的进洞施工方法
CN112031814B (zh) * 2020-09-17 2022-07-29 攀钢集团工程技术有限公司 一种穿越浅层大载荷公路的进洞施工方法
CN112228117A (zh) * 2020-10-28 2021-01-15 中铁十二局集团有限公司 大断面初支大拱脚施工工法
CN112647985B (zh) * 2020-12-28 2022-08-12 中国科学院武汉岩土力学研究所 一种锁脚锚管/锚杆与钢拱架的联合支护装置及施工方法
CN112647985A (zh) * 2020-12-28 2021-04-13 中国科学院武汉岩土力学研究所 一种锁脚锚管/锚杆与钢拱架的联合支护装置及施工方法
CN113392449B (zh) * 2021-06-01 2022-12-30 中铁二院工程集团有限责任公司 一种大跨度拱座复合基础的优化设计方法
CN113392449A (zh) * 2021-06-01 2021-09-14 中铁二院工程集团有限责任公司 一种大跨度拱座复合基础的优化设计方法
CN114320320A (zh) * 2021-12-31 2022-04-12 北京住总集团有限责任公司 一种适用于暗挖区段局部扩挖的支护结构及扩挖方法
CN114753401A (zh) * 2022-04-08 2022-07-15 中铁十九局集团第五工程有限公司 隧道底部溶洞处理的施工方法
CN114753401B (zh) * 2022-04-08 2023-05-26 中铁十九局集团第五工程有限公司 隧道底部溶洞处理的施工方法
CN115306442A (zh) * 2022-08-22 2022-11-08 中铁第一勘察设计院集团有限公司 砂质黄土地层的隧道预支护结构及施工方法
CN115306424A (zh) * 2022-08-29 2022-11-08 中国建筑第二工程局有限公司 一种大断面横通道马头门破除作业平台及施工方法

Also Published As

Publication number Publication date
SE1750913A1 (en) 2017-07-12
SE543306C2 (en) 2020-11-24
MY198020A (en) 2023-07-26
WO2016095631A1 (zh) 2016-06-23
MY198470A (en) 2023-08-31
WO2016095630A1 (zh) 2016-06-23
SE1750912A1 (en) 2017-07-12
SE543647C2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2016095629A1 (zh) 超大变断面隧道超前支护结构
CN108533272A (zh) 一种极小净距隧道出洞施工方法
JP2022500579A (ja) 逆アーチを備えた2段階高速閉鎖トンネルの支持構造及びその施工方法
CN102021911B (zh) 边坡加固方法及加固结构
CN108442943A (zh) 一种渡线段隧道双侧壁导坑法施工方法
CN109372555A (zh) 一种断层破碎区巷道三维立体注浆支护方法
CN108756894B (zh) 隧道微三台阶上部核心土施工工法
CN104653187B (zh) 富水砂层地质大断面隧道开挖方法
CN109555528B (zh) 穿越高角度逆冲富水富砂断层隧道开挖及支护方法
CN106194196B (zh) 一种横穿隧道洞身的大型溶洞处理与开挖方法
CN107288653A (zh) 一种软弱围岩大断面隧道双侧壁导坑三台阶法开挖支护结构及施工方法
CN104533446A (zh) 一种大断面软弱围岩隧道双层初期支护预防地质灾害发生的施工方法及其结构
CN103899318B (zh) 中硬地层隧道铣挖及配套机械化施工工法
CN108798702B (zh) 一种大断面软岩大变形隧道的支护方法
CN203547773U (zh) 适用于缓倾层状岩体的隧道组合支护结构
CN104500100A (zh) 超大变断面隧道超前支护结构
CN106121675A (zh) 小型溶洞位于开挖隧道仰拱底时隧道开挖与溶洞处理方法
CN106869969A (zh) 一种软岩超大断面隧道的开挖支护施工方法
CN106246192A (zh) 一种隧道基础及底板下的大型溶洞处理及隧道开挖方法
CN106223967A (zh) 一种大埋深矩形或类矩形隧道盾构施工装置及方法
CN105937396A (zh) 一种岭脊段极高地应力软岩隧道施工变形控制的支护方法
CN106246191B (zh) 一种洞体深浚、充填丰满的大型溶洞处理及隧道开挖方法
CN108104821A (zh) 大断面切眼施工及其支护方法
CN103061778B (zh) 隧道拱脚环向高压喷射加固方法及施工设备
CN107747492A (zh) 可伸缩式十字初期支护结构及其变形动态控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869138

Country of ref document: EP

Kind code of ref document: A1