WO2016095137A1 - 一种尼龙盐及其制备方法 - Google Patents

一种尼龙盐及其制备方法 Download PDF

Info

Publication number
WO2016095137A1
WO2016095137A1 PCT/CN2014/094126 CN2014094126W WO2016095137A1 WO 2016095137 A1 WO2016095137 A1 WO 2016095137A1 CN 2014094126 W CN2014094126 W CN 2014094126W WO 2016095137 A1 WO2016095137 A1 WO 2016095137A1
Authority
WO
WIPO (PCT)
Prior art keywords
nylon salt
pentanediamine
dibasic acid
acid
salt
Prior art date
Application number
PCT/CN2014/094126
Other languages
English (en)
French (fr)
Inventor
杨晨
秦兵兵
郑毅
刘驰
李乃强
刘修才
Original Assignee
上海凯赛生物技术研发中心有限公司
凯赛生物产业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海凯赛生物技术研发中心有限公司, 凯赛生物产业有限公司 filed Critical 上海凯赛生物技术研发中心有限公司
Priority to CN201480083869.5A priority Critical patent/CN107001625B/zh
Priority to US15/536,906 priority patent/US10487176B2/en
Priority to JP2017550968A priority patent/JP6410959B2/ja
Priority to PCT/CN2014/094126 priority patent/WO2016095137A1/zh
Priority to EP14908172.1A priority patent/EP3235851A4/en
Publication of WO2016095137A1 publication Critical patent/WO2016095137A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids

Definitions

  • the invention relates to a nylon salt and a preparation method thereof, in particular to a preparation method of a nylon salt with less residual amount of diamine and diacid.
  • the prior art mainly synthesizes nylon by polycondensation reaction of dibasic acid and diamine.
  • the dibasic acid and the diamine are usually made into nylon salt. Then do the polycondensation.
  • the quality of nylon salts has a huge impact on the quality of nylon polymers. Qualified nylon salts are a prerequisite for the production of high quality nylon polymers.
  • Nylon salts currently on the market include nylon salt aqueous solutions and nylon salt solids. Because of the high water content, nylon salt aqueous solution is economically uneconomical and has poor stability and is gradually being replaced by nylon salt solids. Nylon salt solids are stable and low in transportation cost. It is the main variety of nylon salt sales in the international and domestic markets.
  • the preparation of the existing nylon salt is usually carried out by a solution method, that is, the dibasic acid and the diamine are separately dissolved or dispersed in water, and then the two are mixed for neutralization reaction, and the reaction end point is determined by the pH value of the mixed solution, to be reacted. After completion, the nylon salt is obtained by separation, purification, drying and the like.
  • a nylon salt is mixed with an equimolar amount of a dibasic acid and a diamine to form a nylon salt.
  • the free-state diamine gradually decreases until the salt-forming reaction ends. If the mixing of the dibasic acid and the diamine is not uniform during the reaction, the content of the unreacted free-state diamine in the produced nylon salt product is excessive, which has a serious influence on the quality of the nylon salt.
  • the amine is unstable in the air, it is prone to side reactions when exposed to heat, resulting in deterioration of the quality of the nylon salt and yellowing of the color, which in turn has a fatal effect on the polymerization of the nylon. Therefore, in order to obtain a high quality nylon salt, it is necessary to ensure that the residual free diamine content in the nylon salt is low or even in the absence of diamine residue.
  • Patent CN1887841A discloses the use of water as a solvent for solution formation.
  • an organic solvent such as ethanol or dimethylformamide (DMF) may be used as a solvent for forming a salt by a solution method.
  • Patent CN 101456804A uses N-methylpyrrolidone or DMF as a solvent to form a salt by solution; and patent CN 101880235A uses a solution of dimethyl sulfoxide (DMSO) as a solvent to form a salt.
  • DMSO dimethyl sulfoxide
  • nylon salt has the following problems: when the nylon salt solution is prepared by using water as a solvent, since the solubility of the nylon salt in the aqueous solution is relatively large, it is difficult to obtain the nylon salt efficiently by means of cooling and crystallization. Solid, and if concentrated crystallization is used, it will cause the nylon salt to deteriorate due to high temperature. Thus, the preparation of nylon salts by aqueous solutions of nylon salts is costly and unstable. When an organic solvent is used to prepare a solid nylon salt, it is easy to cause residual organic solvent and involves recovery of organic solvent, high energy consumption, high pollution, and high cost, and is not an ideal process.
  • Patent application CN 103201314A discloses a method for preparing a nylon salt by reacting a liquid diamine with a powdery solid diacid under conditions of low water content, however, the method requires 100 to 210 of the diamine and diacid above the melting point of pentanediamine. The reaction is carried out between °C and the reaction conditions are not mild, and the nylon salt obtained under the high temperature reaction causes yellowing of the nylon in the subsequent polymerization, which affects the color of the nylon.
  • the preparation method has limitations on the reaction system, the stirring mode, the reaction temperature, the diacid addition mode, and the like, and the process is cumbersome, and is limited by the liquid-solid reaction mode, and the amine still remains in the finally obtained product.
  • the present invention provides a method for preparing a nylon salt, comprising the steps of: mixing 1,5-pentanediamine, water, and a dibasic acid at 65 to 120 ° C to obtain the nylon salt.
  • the weight of the water is from 2 to 12% by weight based on the total weight of the 1,5-pentanediamine and the dibasic acid.
  • the method comprises: a) mixing the 1,5-pentanediamine with the water to obtain a mixed solution; b) heating the mixture to 65 to 120 ° C And c) adding the dibasic acid to the mixed liquid after heating to obtain the nylon salt; wherein the weight of the water is the 1,5-pentanediamine and the dibasic acid 2 to 12% by weight of the total weight.
  • the weight of the water is from 3 to 8 wt% of the total weight of the 1,5-pentanediamine and the dibasic acid.
  • the weight of the water is 4 to 5 wt% of the total weight of the 1,5-pentanediamine and the dibasic acid.
  • step b) comprises heating the mixture to 70 to 100 °C.
  • step b) comprises heating the mixture to 80 to 90 °C.
  • step c) comprises: adding a dibasic acid to the mixed liquid after heating, the dibasic acid reacting with the 1,5-pentanediamine, and reacting The resulting product was cooled to 20 to 40 ° C to obtain the nylon salt.
  • the inert gas is One or more selected from the group consisting of nitrogen, helium, neon, and argon.
  • the molar ratio of the 1,5-pentanediamine to the dibasic acid is 1: (0.9 to 1.2).
  • the dibasic acid is one or more selected from the group consisting of an aliphatic dibasic acid, an aromatic dibasic acid, and a heterocyclic dibasic acid.
  • the dibasic acid is one selected from the group consisting of succinic acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, terephthalic acid, and furan dicarboxylic acid. Or a variety.
  • the present invention also provides a nylon salt which is produced according to the method of any of the above.
  • the preparation method of the nylon salt provided by the invention avoids the incomplete reaction of the 1,5-pentanediamine and the dibasic acid due to the solid state of the nylon salt in the preparation process, and significantly accelerates the neutralization reaction of the diamine and the diacid.
  • the rate of the reaction greatly shortens the reaction time and significantly increases the degree of reaction.
  • the degree of reaction is substantially 100%, so the residual amount of diamine and diacid in the nylon salt is extremely low, thereby avoiding the residue of the diamine and finally obtaining
  • the nylon salt product is solid and convenient for storage and transportation of nylon salt products.
  • a method for preparing a nylon salt comprises the steps of: mixing 1,5-pentanediamine, water and a dibasic acid at 65 to 120 ° C to obtain the nylon salt, wherein the water The weight is from 2 to 12% by weight based on the total weight of the 1,5-pentanediamine and the dibasic acid.
  • the present invention produces a nylon salt having a small free amine content by adding a specific amount of water in the preparation of a nylon salt.
  • the nylon salt cannot be sufficiently mixed and reacted, and the residual amine is excessive, which affects the quality of the nylon. If the water is added too much, after the salt formation is finished, the nylon salt solid cannot be directly obtained after the temperature is lowered, or the obtained solid is easily knotted, which causes transportation difficulty.
  • the amount of water causes the nylon salt to be in a molten state at 65 to 120 °C.
  • This preparation method does not limit the order of addition and the manner of addition of water, dibasic acid, 1,5-pentanediamine. It may be that a certain amount of water is added to the 1,5-pentanediamine, and then the dibasic acid is added; or a certain amount of water may be added to the dibasic acid, and then the dibasic acid may be added; or 1,5 may be added. After the mixture of pentamethylenediamine and dibasic acid, a certain amount of water is added; or a dibasic acid, 1,5-pentanediamine and a certain amount of water may be simultaneously mixed.
  • the method for adding a diamine or a dibasic acid is not limited, and may be gradually added at a certain rate, or all dibasic acids or 1,5-pentanediamine may be added at one time, and the manner of addition may be, but not limited to,
  • the present invention is not limited to the state in which the dibasic acid is added, and may be a granule, a powder, or a mixture of the above.
  • the amount of water mixed with 1,5-pentanediamine or a dibasic acid should be appropriate.
  • the molten nylon salt will require a higher temperature, thereby reducing the stability in the salt formation reaction, and may increase side reactions and by-products;
  • the water content of the nylon salt is too high, it will The nylon salt is close to or in a solution state, so that the solid nylon salt cannot be directly prepared, or the water content of the prepared nylon salt is too high, and it is easy to be kneaded during long-distance transportation.
  • the present invention it is preferred to add 3 to 8 wt% of water to 1,5-pentanediamine, and further preferably to add 4 to 5 wt% of water to 1,5-pentanediamine, wherein the amount of water added is nylon.
  • the sum of the weights of the salt-forming salt raw materials 1,5-pentanediamine and the dibasic acid is based on.
  • the method for preparing a nylon salt of the present invention comprises adding a specific amount of water to the salt, so that the nylon salt formed by the 1,5-pentanediamine and the dibasic acid can be molten at a temperature of 65 to 120 ° C, thereby avoiding
  • the reaction of 1,5-pentanediamine with dibasic acid is incomplete due to the solid state of the nylon salt during the preparation process, which significantly accelerates the reaction rate, greatly shortens the reaction time, and makes the residual amount of diamine in the nylon salt extremely low.
  • the nylon salt product is solid, and the obtained nylon salt product is easy to store and transport.
  • the order of adding the water of the invention can be adjusted, that is, the nylon salt can be mixed with the diamine first, or the nylon salt can be mixed with the dibasic acid, or after the diamine and the dibasic acid are mixed.
  • the reaction is carried out by adding water, and it is also possible to carry out a reaction of a nylon salt after mixing with a diamine and a dibasic acid, respectively. As long as the amount of water added during the reaction of the nylon salt is controlled to meet the requirements of the present invention, it is within the scope of application of the name of the present law.
  • the temperature of the 1,5-pentanediamine mixed solution is maintained at 65 to 120 ° C, preferably 70 to 100 ° C, and more preferably 80 to 90 ° C during the salt formation.
  • the reaction temperature is too low, the produced nylon salt cannot be in a molten state, and if the temperature is too high, the reaction conditions are not mild, and the reaction may be unstable and a side reaction may occur.
  • the 1,5-pentanediamine and the dibasic acid participating in the reaction are not limited to the equimolar ratio, and the added 1,5-pentanediamine may be a salt as long as it can react with the dibasic acid, and the preferred molar ratio is 1: (1 to 1.2), more preferably 1: (1 to 1.05).
  • the dibasic acid may be added in slightly more than 1,5-pentanediamine.
  • the dibasic acid in the present invention may be a dibasic acid or a mixture of two or more dibasic acids, and the above-mentioned dibasic acid mole number is the total number of moles of all dibasic acids. .
  • the form of the dibasic acid to be added is not limited in the present invention, and for example, it may be in the form of a powder, a granule or a flaky crystal.
  • the 1,5-pentanediamine and the dibasic acid are neutralized to form a salt at a temperature of 65 to 120 ° C, and after the reaction is completed, the temperature of the product nylon salt can be lowered to 20 to 40 ° C, preferably to a temperature drop to Around 30 °C.
  • the method for producing a nylon salt of the present invention may further comprise adding 2 to 12% by weight (based on the total weight of the 1,5-pentanediamine and the dibasic acid) of water to the 1,5-pentanediamine to obtain a Mixing liquid; heating the mixture to 65-120 ° C; adding a dibasic acid to the heated mixture after stirring, the dibasic acid reacting with the 1,5-pentanediamine a salt, the product after the reaction is cooled to 20 to 40 ° C, to obtain the nylon salt solid; wherein each of the above steps is in an inert gas Under protection.
  • inert gas is a gas that does not react with any of the substances in the reaction system under the conditions, including but not limited to nitrogen, helium, neon, argon, and the like.
  • the source of the raw material 1,5-pentanediamine is not particularly limited, and it can be produced by a chemical method.
  • Shoushan Zheng et al. (Decarboxylation method for lysine (Fourth Edition), Journal of Pharmaceutical Sciences (Deuterated Hydrate (4th ed.), Journal of Pharmaceutical Sciences), Vol. 85 (6), P531-533, 1965)
  • Patent No. 60-23328 discloses the use of a 2-cyclovinyl ester ketene as a catalyst.
  • a method in which lysine is used as a raw material to produce pentanediamine.
  • 1,5-pentanediamine can also be prepared by a biological method, for example, by lysine decarboxylase acting on a lysine reaction to obtain an enzyme conversion solution, thereby extracting 1,5-pentanediamine (refer to JP 200400114A);
  • lysine decarboxylase acting on a lysine reaction to obtain an enzyme conversion solution, thereby extracting 1,5-pentanediamine (refer to JP 200400114A);
  • the expression of lysine decarboxylase can be up-regulated in a strain capable of producing lysine, or the lysine decarboxylase can be recombinantly expressed, and the produced lysine can be simultaneously converted into 1,5 during fermentation.
  • the dibasic acid of the present invention can be prepared by biological or chemical methods.
  • the dibasic acid may be an aliphatic dibasic acid and a derivative thereof, an aromatic dibasic acid and a derivative thereof, and a heterocyclic dibasic acid and a derivative thereof.
  • Aliphatic dibasic acids and derivatives thereof include, but are not limited to, short carbon chain dibasic acids (i.e., dibasic acids having a carbon number of less than 10 on the carbon chain) and long carbon chain dibasic acids.
  • Short carbon chain diacids include, but are not limited to, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, preferably adipic acid.
  • Long carbon chain dibasic acids include, but are not limited to, undecyl dibasic acid, dodecane dibasic acid, tridecane dibasic acid, tetradecane dibasic acid, fifteen carbon dibasic acid, and sixteen carbon binary An acid, a heptadecyl dibasic acid, an octadecyl dibasic acid, a maleic acid, a ⁇ 9-1,18-octadecene dibasic acid, preferably a dodecene dibasic acid.
  • Aromatic dibasic acids and derivatives thereof include, but are not limited to, terephthalic acid.
  • Heterocyclic dibasic acids and derivatives thereof include, but are not limited to, furan dicarboxylic acid.
  • Derivatives of dibasic acids include, but are not limited to, acid chlorides.
  • the invention can also dry, slice, granulate and the like after the prepared nylon salt solids according to actual needs, so as to be convenient for packaging, storage and transportation.
  • the preparation method of the nylon salt of the invention has the advantages of mild reaction condition, low energy consumption, heat transfer and uniform mixing of the liquid phase reaction system, and does not limit the manner of stirring in the production, the form and addition mode of the diacid, The addition speed is also not limited, and the reaction degree is complete, and the finally obtained nylon salt product has uniform morphology, high purity, no amine residue, simple subsequent treatment, no three wastes are produced; and the prepared solid nylon salt containing a small amount of water is dried, After pulverization, high-purity, low-diamine residual nylon salt powder can be obtained without additional purification, and the nylon salt can be directly used in the subsequent polymerization process. It can produce polyamide products with good quality, light color and no yellowing.
  • the preparation method of the nylon salt of the present invention will be described in detail below by way of examples.
  • concentrations in the present invention are all percentage by weight unless otherwise specified.
  • the room temperature stability of the nylon salt is also detected. By tracking the change of the absorption value of the nylon salt, the color of the nylon salt is ensured to meet the national standard, and the requirement for the polymer can be achieved.
  • a nylon salt sample was taken, diluted with water to a concentration of 10%, and the pH of the solution was measured at 25 °C.
  • the nylon salt product was taken at room temperature, and after being subjected to a pressure of 10 kg for 24 hours, it was observed whether the state of the nylon salt was knotted.
  • the 100-liter enamel salt-forming kettle was replaced with air three times by vacuuming and nitrogen-protected, and 22 kg of 1,5-pentanediamine (purity 99.5%) and 1.3 kg of water (accounting for 1) were added to the salt-forming kettle.
  • a mixture of pentaamine and water was heated to 112 ° C, and 31.6 kg of adipic acid (China Petroleum Liaoyang Petrochemical Company) was added thereto to maintain the above temperature.
  • adipic acid China Petroleum Liaoyang Petrochemical Company
  • the polymerization vessel was filled with nitrogen gas to a pressure of 0.2 MPa (gauge pressure), and the melt discharge was started, and the slicer was cooled to slice, and the sample was free from the characteristic odor of pentamethylenediamine.
  • the 500 ml three-necked flask was replaced with air three times by vacuuming and nitrogen-protected, and 110 g of 1,5-pentanediamine (Shandong Kaisai Biotech Material Co., Ltd.) and 8 g of water were added to the salt-forming kettle.
  • 3% of the total weight of 1,5-pentanediamine and adipic acid at 158 ° C, add 158g of adipic acid (Liaoyang Petrochemical Company of PetroChina), keep the above temperature and stir vigorously, the reaction system becomes thick
  • the salt formation reaction was completed, and the nylon salt product was a viscous paste.
  • the reaction product was poured out, cooled to room temperature, and sliced to obtain a solid nylon salt product. The sample was free from the characteristic odor of pentamethylenediamine.
  • the 100 liter enamel salt kettle was replaced by vacuuming nitrogen gas three times and protected with nitrogen. 22 kg of 1,5-pentanediamine (purity 99.5%) and 31.6 kg of adipic acid were added to the salt-forming kettle. PetroChina Liaoyang Petrochemical Company), heating, then adding 2.1kg of water (accounting for 4% of the total weight of 1,5-pentanediamine and adipic acid), controlling the temperature to 85 ° C, maintaining the above temperature and stirring vigorously, the reaction system It became viscous, stirring was continued for half an hour, and the acid and amine were added in a small amount to adjust the pH of the final nylon salt to 7.0.
  • the polymerization vessel was filled with nitrogen gas to a pressure of 0.2 MPa (gauge pressure), and the melt discharge was started, and the chips were cooled by a microtome, and the sample was free from the characteristic odor of pentamethylenediamine.
  • the 100 liter enamel salt kettle was replaced by vacuuming nitrogen gas three times and protected with nitrogen. 22 kg of 1,5-pentanediamine (purity 99.5%) and 31.6 kg of adipic acid were added to the salt-forming kettle. PetroChina Liaoyang Petrochemical Company), heating, then adding 2.7kg of water (accounting for 5% of the total weight of 1,5-pentanediamine and adipic acid), controlling the temperature to 85 ° C, maintaining the above temperature and stirring vigorously, the reaction system It became viscous, stirring was continued for half an hour, and the acid and amine were added in a small amount to adjust the pH of the final nylon salt to 7.2.
  • the polymerization vessel was filled with nitrogen gas to a pressure of 0.2 MPa (gauge pressure), and the melt discharge was started, and the chips were cooled by a microtome, and the sample was free from the characteristic odor of pentamethylenediamine.
  • the 100 liter enamel salt kettle was replaced by vacuuming nitrogen gas three times and protected with nitrogen. 22 kg of 1,5-pentanediamine (purity 99.5%) was added to the salt-forming kettle and heated to 60 ° C. Within 1 hour, a total of 34.8 kg of adipic acid (China Petroleum Liaoyang Petrochemical Company) solid slurry was slowly added to the salt-forming kettle (containing 3.2 kg of water). After the addition was completed, the temperature was controlled to 90 ° C, and the above temperature was maintained and stirred vigorously. The reaction system became viscous, stirring was continued for 2 hours, and the acid and the amine were added in a small amount to adjust the pH of the final nylon salt to 7.2.
  • adipic acid China Petroleum Liaoyang Petrochemical Company
  • the polymerization vessel was filled with nitrogen gas to a pressure of 0.2 MPa (gauge pressure), and the melt discharge was started, and the chips were cooled by a microtome, and the sample was free from the characteristic odor of pentamethylenediamine.
  • the 100 liter enamel salt kettle was replaced by vacuuming nitrogen gas three times and protected with nitrogen. 22 kg of 1,5-pentanediamine (purity 99.5%) and 31.6 kg of adipic acid were added to the salt-forming kettle. PetroChina Liaoyang Petrochemical Company), 4.3kg water (accounting for 8% of the total weight of 1,5-pentanediamine and adipic acid), heated to 70 ° C, maintaining the above temperature and stirring vigorously, the reaction system becomes viscous, Stirring was continued for half an hour, and the acid and amine were added in a small amount to give a final nylon salt pH of 8.3.
  • the polymerization vessel was filled with nitrogen gas to a pressure of 0.2 MPa (gauge pressure), and the melt discharge was started, and the chips were cooled by a microtome, and the sample was free from the characteristic odor of pentamethylenediamine.
  • the 100 liter enamel salt kettle was replaced by vacuuming nitrogen gas three times and protected with nitrogen. 22 kg of 1,5-pentanediamine (purity 99.5%) and 31.6 kg of adipic acid were added to the salt-forming kettle.
  • PetroChina Liaoyang Petrochemical Company 6.4kg of water (12% of the total weight of 1,5-pentanediamine and adipic acid), heated to 70 ° C, maintaining the above temperature and stirring vigorously, the reaction system becomes viscous, Stirring was continued for half an hour, and the acid and amine were added in a small amount to give a final nylon salt pH of 8.5.
  • the polymerization vessel was filled with nitrogen gas to a pressure of 0.2 MPa (gauge pressure), and the melt discharge was started, and the chips were cooled by a microtome, and the sample was free from the characteristic odor of pentamethylenediamine.
  • the 100 liter enamel salt kettle was replaced by vacuuming nitrogen gas three times and protected with nitrogen.
  • To the salt-forming kettle was added 20 kg of 1,5-pentanediamine (purity 99.5%), 2 kg of caprolactam, 28.5 kg.
  • Adipic acid China Petroleum Liaoyang Petrochemical Company
  • 4 kg of water added to the salt kettle, after the completion of the feed, control the temperature to 89 ° C, maintain the above temperature and strong agitation, the reaction system becomes viscous, continuous stirring for 1.5 hours
  • the acid and amine were added in small amounts to adjust the final nylon salt pH to 7.8.
  • the polymerization vessel was filled with nitrogen gas to a pressure of 0.2 MPa (gauge pressure), and the melt discharge was started, and the chips were cooled by a microtome, and the sample was free from the characteristic odor of pentamethylenediamine.
  • the 100 liter enamel salt kettle was replaced with air three times by vacuuming and nitrogen gas, and 20 kg of 1,5-pentanediamine (purity 99.5%) and 34.3 kg of adipic acid were added to the salt-forming kettle.
  • PetroChina Liaoyang Petrochemical Company solid and 5.4 kg of water were added to the salt-forming kettle. After the addition was completed, the temperature was controlled to 95 ° C. The temperature was maintained at the above temperature and stirred vigorously. The reaction system became viscous, stirring was continued for 1.5 hours, and the reaction was completed.
  • the polymerization vessel was filled with nitrogen gas to a pressure of 0.2 MPa (gauge pressure), and the melt discharge was started, and the chips were cooled by a microtome, and the sample was free from the characteristic odor of pentamethylenediamine.
  • the 100-liter enamel salt-forming kettle was replaced with air three times by vacuuming and nitrogen-protected, and 11 kg of 1,5-pentanediamine (purity 99.2%) and 1.6 kg of water (accounting for 1) were added to the salt-forming kettle.
  • pentanediamine 6% of the total weight of sebacic acid, at 90 ° C, adding azelaic acid (Hebei Hengshui Dongfeng Chemical Co., Ltd.), maintaining the above temperature and stirring, the reaction system becomes viscous, Stirring for half an hour, adjusting the amount of acid and amine added, so that the final nylon salt pH is 7.3, salt formation
  • the nylon salt product was a viscous paste.
  • the polymerization vessel was filled with nitrogen gas to a pressure of 0.2 MPa (gauge pressure), and the melt discharge was started, and the chips were cooled by a microtome, and the sample was free from the characteristic odor of pentamethylenediamine.
  • the 100-liter enamel salt-forming kettle was replaced with air three times by vacuuming and nitrogen-protected, and 0.5 kg of pure water (2% by weight of the final total material) was added to the salt-forming kettle, and then 10 kg of pentylene was added.
  • Amine purity: 99.2%
  • a mixed solution was formed, and the mixture was heated to 85 ° C, stirred, and then 16 kg of terephthalic acid was added thereto.
  • the temperature was maintained at the above temperature and stirred vigorously, and the reaction system became viscous and stirring was continued. After half an hour, the salt solution of the nylon salt solution was completed, and the nylon salt product was a viscous paste.
  • the polymerization vessel was filled with nitrogen to melt the discharge, and the slice was cooled by a microtome, and the sample was free from the characteristic odor of pentamethylenediamine.
  • the 500 ml three-necked flask was replaced with air three times by vacuuming and nitrogen-protected, and 100 g of 1,5-pentanediamine (purity: 99.5%) was added to the salt-forming kettle, and 142 was added at 80 ° C.
  • Adipic acid China Petroleum Liaoyang Petrochemical Company
  • the reaction system became viscous and stirring could not proceed.
  • the temperature was raised to 120 degrees, the reaction system was thick, and still could not be stirred.
  • the solid mixture was poured out of the flask, and the mixture had a strong amine taste and the salt formation reaction was incomplete.
  • nylon salt samples obtained in the above examples and comparative examples were placed in a plastic sample bag, 200 kg of metal blocks were placed above the sample bag, and stored in a 55-degree oven for 6 hours or more, and then cooled at room temperature to detect the sample.
  • the knot see Table 1 for details.
  • the nylon salt prepared by the embodiment of the present invention is completely reacted with the diacid as compared with the comparative example 1, and the UV index of the nylon salt is significantly reduced without affecting the stability of the nylon salt. .
  • the nylon salt prepared by the examples of the present invention controlled the water content, and significantly improved the stability of the nylon salt during transportation and storage without affecting the UV index of the nylon salt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

本发明提供了一种尼龙盐的制备方法,包括以下步骤:将1,5-戊二胺、水以及二元酸在65~120℃混合,制得所述尼龙盐,其中所述水的重量为所述1,5-戊二胺和所述二元酸总重量的2~12wt%。本发明还提供了一种尼龙盐。本发明提供的尼龙盐的制备方法,避免了因制备过程中尼龙盐呈固态而造成1,5-戊二胺与二元酸的混合反应不完全,显著加快了反应速率,大大缩短了反应时间,使尼龙盐中二胺和二酸的残留量极低,且可使最终得到的尼龙盐产物呈固态,便于尼龙盐产品的储存和运输。

Description

一种尼龙盐及其制备方法 技术领域
本发明涉及一种尼龙盐及其制备方法,具体为一种二胺与二酸残留量少的尼龙盐的制备方法。
背景技术
现有技术主要以二元酸与二元胺的缩聚反应合成尼龙,为了尽可能的保证二元酸和二元胺原料的等摩尔比,通常先将二元酸和二元胺制成尼龙盐,然后再进行缩聚。因而,作为尼龙聚合物的前体,尼龙盐的产品质量对尼龙聚合物的品质有着巨大的影响。合格的尼龙盐是生产高品质尼龙聚合物的基本前提。
目前市场上销售的尼龙盐,包括尼龙盐水溶液和尼龙盐固体。尼龙盐水溶液因水含量高,长途运输经济上不划算,同时稳定性差,正逐渐被尼龙盐固体取代。尼龙盐固体稳定、运输成本低,是国际国内市场上尼龙盐销售的主要品种。
现有尼龙盐的制备通常采用溶液法,即先将二元酸与二元胺分别溶解或分散在水中,再将两者混合进行中和反应,以混合液的pH值判定反应终点,待反应完成后经分离、提纯、干燥等工艺得到尼龙盐。
尼龙盐在成盐过程中,等摩尔量的二元酸和二元胺混合后反应生成尼龙盐。随着反应的进行,自由态二元胺逐渐减少,直至成盐反应结束。若反应过程中二元酸和二元胺的混合不均匀,则会导致所生成的尼龙盐产物中未反应的自由态二元胺的含量过多,对尼龙盐的品质有严重的影响。另外,因胺在空气中不稳定,遇热遇氧气容易发生副反应,导致尼龙盐的品质恶化,颜色发黄,而这些变化又会对尼龙聚合产生致命的影响。因此,为了得到高质量的尼龙盐,需要确保尼龙盐中残留的自由二胺含量很低甚至不存在二胺残留。
专利CN1887841A公开了以水为溶剂进行溶液法成盐。除水以外,还可以用乙醇或二甲基甲酰胺(DMF)等有机溶剂作为溶液法成盐的溶剂。专利CN 101456804A采用N-甲基吡咯烷酮或DMF作为溶剂进行溶液法成盐;专利CN 101880235A以二甲基亚砜(DMSO)为溶剂进行溶液法成盐。
然而,上述现有的溶液法尼龙盐制备技术存在以下问题:当以水为溶剂制备尼龙盐溶液时,因尼龙盐在水溶液中溶解度比较大,很难通过降温结晶等手段有效的得到尼龙盐 固体,而如果采用浓缩结晶,又会导致尼龙盐因高温而产品质量恶化。因而通过尼龙盐的水溶液制备尼龙盐成本高且质量不稳定。而当使用有机溶剂来制备固体尼龙盐时,容易造成有机溶剂残留并且牵涉到有机溶剂的回收,能耗高、污染大、成本高,也不是一条非常理想的工艺。
专利申请CN 103201314A公开了低含水量的条件下,液态二胺与粉末状固态二酸反应制备尼龙盐的方法,然而该方法需将二胺与二酸在戊二胺熔点之上的100~210℃的温度范围间进行反应,反应条件不温和,且高温反应下得到的尼龙盐在后续的聚合中会使尼龙产生黄变现象,影响尼龙颜色。另外,该制备方法对反应体系、搅拌方式、反应温度、二酸加入方式等都有限制,工艺繁琐,且受限于其液-固反应方式,最终得到的产物中仍然有胺残留。
综上所述,现有的尼龙盐制备方法都难以直接得到低二胺和二酸残留且对后续尼龙聚合无影响的尼龙盐。
发明内容
为了解决上述技术问题,本发明提供了一种尼龙盐的制备方法,包括以下步骤:将1,5-戊二胺、水以及二元酸在65~120℃混合,制得所述尼龙盐,其中所述水的重量为所述1,5-戊二胺和所述二元酸总重量的2~12wt%。
根据本发明的一实施方式,其中所述方法包括:a)将所述1,5-戊二胺与所述水混合,得到一混合液;b)将所述混合液加热至65~120℃;及c)向加热后的所述混合液中添加所述二元酸,制得所述尼龙盐;其中,所述水的重量为所述1,5-戊二胺和所述二元酸总重量的2~12wt%。
根据本发明的另一实施方式,其中所述水的重量为所述1,5-戊二胺和所述二元酸总重量的3~8wt%。
根据本发明的另一实施方式,其中所述水的重量为所述1,5-戊二胺和所述二元酸总重量的4~5wt%。
根据本发明的另一实施方式,其中所述步骤b)包括:将所述混合液加热至70~100℃。
根据本发明的另一实施方式,其中所述步骤b)包括:将所述混合液加热至80~90℃。
根据本发明的另一实施方式,其中所述步骤c)包括:向加热后的所述混合液中添加二元酸,所述二元酸与所述1,5-戊二胺反应,将反应后的所得物降温至20~40℃,制得所述尼龙盐。
根据本发明的另一实施方式,其中所述方法在惰性气体保护下进行,所述惰性气体为 选自氮气、氦气、氖气和氩气中的一种或多种。
根据本发明的另一实施方式,其中所述1,5-戊二胺与所述二元酸的摩尔比为1:(0.9~1.2)。
根据本发明的另一实施方式,其中所述二元酸为选自脂肪族二元酸、芳香族二元酸以及杂环二元酸中的一种或多种。
根据本发明的另一实施方式,其中所述二元酸为选自丁二酸、己二酸、癸二酸、十二碳二羧酸、对苯二甲酸以及呋喃二羧酸中的一种或多种。
本发明还提供了一种尼龙盐,其是根据上述任一项的方法制得。
本发明提供的尼龙盐的制备方法,避免了因制备过程中尼龙盐呈固态而造成1,5-戊二胺与二元酸的混合反应不完全,显著加快了二胺与二酸中和反应的速率,大大缩短了反应时间,显著提高了反应程度,其反应程度基本上为100%,因而尼龙盐中二胺和二酸的残留量极低,从而避免了二胺的残留,且最终得到的尼龙盐产物呈固态,便于尼龙盐产品的储存和运输。
具体实施方式
体现本发明特征与优点的典型实施例将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施例上具有各种的变化,其皆不脱离本发明的范围,且其中的描述在本质上是当作说明之用,而非用以限制本发明。
为了达到上述目的,一种尼龙盐的制备方法,包括以下步骤:将1,5-戊二胺、水以及二元酸在65~120℃混合,制得所述尼龙盐,其中所述水的重量为所述1,5-戊二胺和所述二元酸总重量的2~12wt%。
本发明通过在制备尼龙盐时,加入特定量的水制得游离胺含量少的尼龙盐。水加入过少,尼龙盐无法充分混合和反应,残留胺过多,影响尼龙品质。水加入过多,成盐结束后,降温后无法直接得到尼龙盐固体,或得到的固体容易板结,造成运输困难。
其中,水的量使得尼龙盐在65~120℃下处于熔融状态。该制备方法并不限制水、二元酸、1,5-戊二胺的加入顺序和加入方式。可以是向1,5-戊二胺中加入一定量水后,再加入二元酸;也可以是向二元酸中加入一定量水后,再加入二元酸;也可以是将1,5-戊二胺和二元酸混合后,再加入一定量水;还可以是将二元酸、1,5-戊二胺以及一定量水同时混合。本发明对加入二元胺或二元酸的方式没有限制,可以是以一定速率逐渐加入,也可以是将所有二元酸或1,5-戊二胺一次性加入,加入方式可以但不限于直接倒入、或喷雾状等;本发明对二元酸加入时的状态没有限制,可以是颗粒、粉体,也可以是上述状态的混合物。
本发明中,与1,5-戊二胺、二元酸混合的水的量应适当。当水的含量过低时,熔融尼龙盐会需要更高的温度,从而降低成盐反应中的稳定性,并可能增加副反应和副产物;当尼龙盐中水的含量过高时,会使得该尼龙盐接近或处于溶液状态,从而无法直接制备得到固态尼龙盐,或使制备得到的尼龙盐中含水量过高,在长途运输过程中容易板结。本发明中,优选为向1,5-戊二胺中添加3~8wt%的水,进一步优选为向1,5-戊二胺中添加4~5wt%的水,其中水的添加量以尼龙盐成盐原料1,5-戊二胺和二元酸的重量之和为基准。
本发明的尼龙盐的制备方法通过成盐中加入特定量的水,使得1,5-戊二胺与二元酸形成的尼龙盐在65~120℃的温度下便可呈熔融状态,避免了因制备过程中尼龙盐呈固态造成的1,5-戊二胺与二元酸的反应不完全,显著加快了反应速率,大大缩短了反应时间,使尼龙盐中二胺的残留量极低,反应结束后,降到室温后,尼龙盐产物呈固态,得到的尼龙盐产品便于储存和运输。
本发明水的加入顺序可以调整,即可以与二元胺先混合后进行尼龙盐反应,也可以与二元酸先混合后进行尼龙盐反应,也可以在二元胺与二元酸混合后再加入水进行反应,还可以分别与二元胺、二元酸混合后再进行尼龙盐反应。只要控制在进行尼龙盐反应时水的加入量符合本发明的要求,均在本法名的适用范围内。
本发明中,1,5-戊二胺混合液的温度在成盐期间保持在65~120℃,优选为70~100℃,更优选为80~90℃。反应温度过低,则生成的尼龙盐无法成熔融态,温度过高会因反应条件不温和,有可能引起反应不稳定而产生副反应。
本发明中,参与反应的1,5-戊二胺与二元酸不限于等摩尔比,加入的1,5-戊二胺只要能与二元酸反应成盐即可,优选的摩尔比为1:(1~1.2),更优选为1:(1~1.05)。为了反应完全,二元酸的加入量可稍多于1,5-戊二胺。本发明中的二元酸,可以是一种二元酸,也可以是两种或两种以上的二元酸组成的混合物,且上述的二元酸摩尔数为所有二元酸的总摩尔数。本发明对所添加的二元酸的形态没有限定,例如其可以为粉末状、颗粒状或片状结晶。
本发明中,1,5-戊二胺和二元酸在65~120℃的温度下中和反应成盐,反应结束后可将产物尼龙盐的温度降至20~40℃,优选为降温至30℃左右。
本发明的尼龙盐的制备方法可进一步包括,向1,5-戊二胺中添加2~12wt%(以1,5-戊二胺和二元酸的总重量为基准)的水,得到一混合液;将所述混合液加热至65~120℃;搅拌作用下,向加热后的所述混合液中添加二元酸,所述二元酸与所述1,5-戊二胺反应成盐,将反应后的产物降温至20~40℃,制得所述尼龙盐固体;其中,上述各步骤均在惰性气体 保护下进行。
在本发明的一实施方式中,为避免反应液中的1,5-戊二胺被空气中的氧气氧化,所有步骤均在惰性气体保护下进行。所述的惰性气体为在所述条件下不与反应体系中任一物质发生反应的气体,包括但不限于氮气、氦气、氖气、氩气等。
本发明对原料1,5-戊二胺的来源没有特别的限制,其可以通过化学法制备。例如须山正等人(赖氨酸的脱羧方法(第四版),药学杂志(アミノ酸の脱炭酸(第4報),藥學雜誌),Vol.85(6),P531-533,1965)公开了用赖氨酸在含四氢化萘过氧化物的环己醇中经煮沸制备戊二胺;专利特开昭60-23328公开了以2-环乙烯酯类的乙烯酮类化合物为催化剂,由赖氨酸作为原料来制造戊二胺的方法。
1,5-戊二胺还可以通过生物法来制备,例如通过赖氨酸脱羧酶作用于赖氨酸反应得到酶转化液,进而提取出1,5-戊二胺(可参考JP 200400114A);又例如通过基因技术,在能够生成赖氨酸的菌株中上调赖氨酸脱羧酶的表达,或重组表达赖氨酸脱羧酶,可以在发酵过程中使产生的赖氨酸同步转化为1,5-戊二胺,直接发酵得到戊二胺发酵液(可参考一步法生产1,5-戊二胺谷氨酸棒杆菌基因工程菌的构建,牛涛等,中国生物工程杂志,2010,30(8):3-99)。
本发明的二元酸可以由生物法或化学法制备而成。二元酸可以为脂肪族二元酸及其衍生物、芳香族二元酸及其衍生物和杂环二元酸及其衍生物。脂肪族二元酸及其衍生物包括但不限于短碳链二元酸(即碳链上碳原子数小于10的二元酸)和长碳链二元酸。短碳链二元酸包括但不限于丁二酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸,优选为己二酸。长碳链二元酸包括但不限于十一碳二元酸、十二碳二元酸、十三碳二元酸、十四碳二元酸、十五碳二元酸、十六碳二元酸、十七碳二元酸、十八碳二元酸、马来酸、△9-1,18-十八烯二元酸,优选为十二碳二元酸。芳香族二元酸及其衍生物包括但不限于对苯二甲酸。杂环二元酸及其衍生物包括但不限于呋喃二羧酸。二元酸的衍生物包括但不限于酰氯。
本发明还可根据实际需求,对所制得的尼龙盐固体进行干燥、切片、造粒等后处理,以便于包装、储藏、运输。
本发明的尼龙盐的制备方法,反应条件温和、能耗低,具有液相反应体系的传热、混合均匀的特点,在生产中也不限制搅拌的方式,对二酸的形态和加入方式、加入速度也没有限制,且反应程度完全、最终得到的尼龙盐产物形态均一、纯度高、无胺残留,生产后续处理简单,无三废产生;且制得的含少量水的固体尼龙盐经干燥、粉碎后,无需另外纯化,即可得到高纯度、低二胺残留的尼龙盐粉末,该尼龙盐可直接用于后续的聚合工艺, 能够制得质量好、颜色浅、无黄变的聚酰胺产品。
需特别指出说明书提及的参考文献包括专利文献、非专利文献应视为本发明的一部分。
下面通过实施例对本发明的尼龙盐的制备方法进行详细说明。如无特别说明,本发明中的浓度均为重量百分比浓度。本发明实施例中,还对尼龙盐的室温稳定性进行检测,通过跟踪尼龙盐的吸光值的变化,确保尼龙盐的颜色符合国家标准,能够达到对聚合物的要求。
实施例和比较例中所用的试样等物质的制备方法和测定方法如下所述:
1、尼龙盐pH测定
取尼龙盐样品,加水稀释至10%浓度,在25℃下测定溶液的pH值。
2、尼龙盐UV指数检测:
SH/T 1498.7-1997
3、稳定性测试:
在室温下,取制得的尼龙盐产品,加以10kg压力24小时后,观察尼龙盐的状态是否板结。
实施例1
将100升搪瓷成盐釜通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入22kg 1,5-戊二胺(纯度99.5%)和1.3kg水(占1,5-戊二胺、己二酸总重量的2.4%),将戊二胺与水的混合溶液加热至112℃,向其中加入31.6kg己二酸(中石油辽阳石油化工公司),保持上述温度并强力搅拌下,反应体系变得粘稠,连续搅拌3小时,微量加入酸和胺,使最终尼龙盐pH为7.3。
向聚合釜内充入氮气至压力0.2MPa(表压),开始熔融出料,并切片机冷却切片,样品不存在戊二胺特征气味。
实施例2
将500毫升三口烧瓶通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入110g 1,5-戊二胺(山东凯赛生物科技材料有限公司)和8g水(占1,5-戊二胺、己二酸总重量的3%),80℃下,加入158g己二酸(中石油辽阳石油化工公司),保持上述温度并强力搅拌下,反应体系变得粘稠,连续搅拌1小时成盐反应结束,尼龙盐产物呈粘稠膏状物,将反应产物倒出,静置冷却至室温,切片,得到固体尼龙盐产品,样品不存在戊二胺特征气味。
实施例3
将100升搪瓷成盐釜通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入22kg 1,5-戊二胺(纯度99.5%)和31.6kg己二酸(中石油辽阳石油化工公司),加热,然后加入2.1kg水(占1,5-戊二胺、己二酸总重量的4%),控制温度至85℃,保持上述温度并强力搅拌下,反应体系变得粘稠,连续搅拌半小时,微量加入酸和胺,调节最终尼龙盐pH为7.0。
向聚合釜内充入氮气至压力0.2MPa(表压),开始熔融出料,并利用切片机冷却切片,样品不存在戊二胺特征气味。
实施例4
将100升搪瓷成盐釜通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入22kg 1,5-戊二胺(纯度99.5%)和31.6kg己二酸(中石油辽阳石油化工公司),加热,然后加入2.7kg水(占1,5-戊二胺、己二酸总重量的5%),控制温度至85℃,保持上述温度并强力搅拌下,反应体系变得粘稠,连续搅拌半小时,微量加入酸和胺,调节最终尼龙盐pH为7.2。
向聚合釜内充入氮气至压力0.2MPa(表压),开始熔融出料,并利用切片机冷却切片,样品不存在戊二胺特征气味。
实施例5
将100升搪瓷成盐釜通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入22kg 1,5-戊二胺(纯度99.5%),加热到60℃,在1小时内,将己二酸(中石油辽阳石油化工公司)固体浆共34.8kg慢慢加入成盐釜(含有3.2kg水),加料完毕后,控制温度至90℃,保持上述温度并强力搅拌下,反应体系变得粘稠,连续搅拌2小时,微量加入酸和胺,调节最终尼龙盐pH为7.2。
向聚合釜内充入氮气至压力0.2MPa(表压),开始熔融出料,并利用切片机冷却切片,样品不存在戊二胺特征气味。
实施例6
将100升搪瓷成盐釜通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入22kg 1,5-戊二胺(纯度99.5%)和31.6kg己二酸(中石油辽阳石油化工公司),4.3kg水(占1,5-戊二胺、己二酸总重量的8%),加热至70℃,保持上述温度并强力搅拌下,反应体系变得粘稠,连续搅拌半小时,微量加入酸和胺,使最终尼龙盐pH为8.3。
向聚合釜内充入氮气至压力0.2MPa(表压),开始熔融出料,并利用切片机冷却切片,样品不存在戊二胺特征气味。
实施例7
将100升搪瓷成盐釜通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入22kg 1,5-戊二胺(纯度99.5%)和31.6kg己二酸(中石油辽阳石油化工公司),6.4kg水(占1,5-戊二胺、己二酸总重量的12%),加热至70℃,保持上述温度并强力搅拌下,反应体系变得粘稠,连续搅拌半小时,微量加入酸和胺,使最终尼龙盐pH为8.5。
向聚合釜内充入氮气至压力0.2MPa(表压),开始熔融出料,并利用切片机冷却切片,样品不存在戊二胺特征气味。
实施例8
将100升搪瓷成盐釜通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入20kg 1,5-戊二胺(纯度99.5%),2公斤己内酰胺,28.5公斤己二酸(中石油辽阳石油化工公司)固体和4公斤水,加入成盐釜,加料完毕后,控制温度至89℃,保持上述温度并强力搅拌下,反应体系变得粘稠,连续搅拌1.5小时,微量加入酸和胺,调节最终尼龙盐pH为7.8。
向聚合釜内充入氮气至压力0.2MPa(表压),开始熔融出料,并利用切片机冷却切片,样品不存在戊二胺特征气味。
实施例9
将100升搪瓷成盐釜通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入20kg 1,5-戊二胺(纯度99.5%),34.3公斤己二酸(中石油辽阳石油化工公司)固体和5.4公斤水,加入成盐釜,加料完毕后,控制温度至95℃,保持上述温度并强力搅拌下,反应体系变得粘稠,连续搅拌1.5小时,反应结束。
向聚合釜内充入氮气至压力0.2MPa(表压),开始熔融出料,并利用切片机冷却切片,样品不存在戊二胺特征气味。
实施例10
将100升搪瓷成盐釜通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入11kg 1,5-戊二胺(纯度99.2%)和1.6kg水(占1,5-戊二胺、癸二酸总重量的6%),90℃下,加入癸二酸(河北衡水东风化工有限责任公司),保持上述温度并强力搅拌下,反应体系变得粘稠,连续搅拌半小时,调节酸和胺的加入量,使最终尼龙盐pH为7.3,成盐 反应结束,尼龙盐产物呈粘稠膏状物。
向聚合釜内充入氮气至压力0.2MPa(表压),开始熔融出料,并利用切片机冷却切片,样品不存在戊二胺特征气味。
实施例11
将100升搪瓷成盐釜通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入0.5kg纯水(占最终总物料重量的2%),然后加入10kg戊二胺(纯度99.2%),形成混合液,并将该混合液加热到85℃,搅拌,然后向其中加入16kg对苯二甲酸,保持上述温度并强力搅拌下,反应体系变得粘稠,继续搅拌半小时,制得尼龙盐水溶液成盐反应结束,尼龙盐产物呈粘稠膏状物。
向聚合釜内充入氮气熔融出料,并利用切片机冷却切片,样品不存在戊二胺特征气味。
对比例1
将500毫升三口烧瓶内通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入100克1,5-戊二胺(纯度99.5%),80℃下,加入142克己二酸(中石油辽阳石油化工公司),保持上述温度并强力搅拌下,反应体系变得粘稠,搅拌无法进行。升高温度至120度,反应体系粘稠,仍然无法搅拌。将固体混合物倒出烧瓶,混合物有浓重的胺味,成盐反应不完全。
对比例2
将500毫升三口烧瓶内通过抽真空充氮气的方式置换其中空气三遍,并用氮气保护,向成盐釜中加入100克戊二胺(纯度99.5%)和43克水,80℃下,加入142克己二酸(中石油辽阳石油化工公司),保持上述温度并强力搅拌下,反应体系变得粘稠,搅拌可以进行,维持搅拌2小时。反应结束后,将固体混合物倒出烧瓶,冷却到室温,取尼龙盐样品,样品基本没有戊二胺的特征气味。
应用例1
将上述实施例及对比例取得的尼龙盐样品放置在空气中,室温保存。3天后,测定样品的UV指数,具体参见表1。
应用例2
将上述实施例及对比例取得的尼龙盐样品,各取200克放置在塑料样品袋内,样品袋上方放置5公斤金属块,在55度烘箱内保存6小时以上,然后室温冷却,检测样品的板结情况,具体参见表1。
表1
  尼龙盐UV指数*10-3 保存稳定性
实施例1 0.12 片状,无黏结
实施例2 0.09 片状,无黏结
实施例3 0.25 片状,无黏结
实施例4 0.06 片状,基本无黏结
实施例5 0.08 片状,无黏结
实施例6 0.09 片状,无黏结
实施例7 0.05 片状,无黏结
实施例8 0.06 片状,无黏结
实施例9 0.06 片状,无黏结
实施例10 0.05 片状,无黏结
实施例11 0.07 片状,无黏结
对比例1 3.5 片状粉状,无黏结
对比例2 0.06 片状,有明显黏结
从上表可以得出,与对比例1相比,由本发明实施例制备得到的尼龙盐由于二胺与二酸反应完全,在不影响尼龙盐稳定性的情况下,尼龙盐UV指数明显大幅降低。与对比例2相比,由本发明实施例制备得到的尼龙盐控制了水的含量,在不影响尼龙盐UV指数的情况下,显著的提高了尼龙盐在运输和存放中的稳定性。
除非特别限定,本发明所用术语均为本领域技术人员通常理解的含义。
本发明所描述的实施方式仅出于示例性目的,并非用以限制本发明的保护范围,本领域技术人员可在本发明的范围内作出各种其他替换、改变和改进,因而,本发明不限于上述实施方式,而仅由权利要求限定。

Claims (12)

  1. 一种尼龙盐的制备方法,包括以下步骤:
    将1,5-戊二胺、水以及二元酸在65~120℃混合,制得所述尼龙盐,其中所述水的重量为所述1,5-戊二胺和所述二元酸总重量的2~12wt%。
  2. 根据权利要求1所述的方法,其中所述方法包括:
    a)将所述1,5-戊二胺与所述水混合,得到一混合液;
    b)将所述混合液加热至65~120℃;及
    c)向加热后的所述混合液中添加所述二元酸,制得所述尼龙盐;
    其中,所述水的重量为所述1,5-戊二胺和所述二元酸总重量的2~12wt%。
  3. 根据权利要求1所述的方法,其中所述水的重量为所述1,5-戊二胺和所述二元酸总重量的3~8wt%。
  4. 根据权利要求1所述的方法,其中所述水的重量为所述1,5-戊二胺和所述二元酸总重量的4~5wt%。
  5. 根据权利要求2所述的方法,其中所述步骤b)包括:将所述混合液加热至70~100℃。
  6. 根据权利要求2所述的方法,其中所述步骤b)包括:将所述混合液加热至80~90℃。
  7. 根据权利要求2所述的方法,其中所述步骤c)包括:向加热后的所述混合液中添加二元酸,所述二元酸与所述1,5-戊二胺反应,将反应后的所得物降温至20~40℃,制得所述尼龙盐。
  8. 根据权利要求1所述的方法,其中所述方法在惰性气体保护下进行,所述惰性气体为选自氮气、氦气、氖气和氩气中的一种或多种。
  9. 根据权利要求1至8中任一项所述的方法,其中所述1,5-戊二胺与所述二元酸的摩尔比为1:(0.9~1.2)。
  10. 根据权利要求9所述的方法,其中所述二元酸为选自脂肪族二元酸、芳香族二元酸以及杂环二元酸中的一种或多种。
  11. 根据权利要求10所述的方法,其中所述二元酸为选自丁二酸、己二酸、癸二酸、十二碳二羧酸、对苯二甲酸以及呋喃二羧酸中的一种或多种。
  12. 一种尼龙盐,其是根据权利要求1至11中任一项的方法制得。
PCT/CN2014/094126 2014-12-17 2014-12-17 一种尼龙盐及其制备方法 WO2016095137A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480083869.5A CN107001625B (zh) 2014-12-17 2014-12-17 一种尼龙盐及其制备方法
US15/536,906 US10487176B2 (en) 2014-12-17 2014-12-17 Nylon salt and preparation method therefor
JP2017550968A JP6410959B2 (ja) 2014-12-17 2014-12-17 ナイロン塩及びその製造方法
PCT/CN2014/094126 WO2016095137A1 (zh) 2014-12-17 2014-12-17 一种尼龙盐及其制备方法
EP14908172.1A EP3235851A4 (en) 2014-12-17 2014-12-17 Nylon salt and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094126 WO2016095137A1 (zh) 2014-12-17 2014-12-17 一种尼龙盐及其制备方法

Publications (1)

Publication Number Publication Date
WO2016095137A1 true WO2016095137A1 (zh) 2016-06-23

Family

ID=56125601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094126 WO2016095137A1 (zh) 2014-12-17 2014-12-17 一种尼龙盐及其制备方法

Country Status (5)

Country Link
US (1) US10487176B2 (zh)
EP (1) EP3235851A4 (zh)
JP (1) JP6410959B2 (zh)
CN (1) CN107001625B (zh)
WO (1) WO2016095137A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107353198A (zh) * 2017-08-25 2017-11-17 南京工业大学 戊二胺己二酸盐及其晶体
WO2019196132A1 (zh) * 2018-04-13 2019-10-17 南京工业大学 戊二胺癸二酸盐及其晶体
CN111592454A (zh) * 2019-02-21 2020-08-28 上海凯赛生物技术股份有限公司 二元酸胺盐的制备方法、二元酸胺盐溶液、二元酸胺盐和聚合物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461537A (zh) * 2021-06-30 2021-10-01 江苏扬农化工集团有限公司 一种微通道反应器连续化合成尼龙盐溶液的方法
CN115707728B (zh) * 2021-08-20 2024-09-24 中国石油化工股份有限公司 一种长碳链尼龙的制备方法及长碳链尼龙
CN113698288B (zh) * 2021-08-27 2023-01-10 郑州大学 一种连续制备粉末状尼龙盐的新方法及配套装置
CN115850092B (zh) * 2022-12-20 2024-04-30 南京工业大学 尼龙511盐晶体及其制备方法
CN116354829A (zh) * 2023-04-07 2023-06-30 中国科学院长春应用化学研究所 一种戊二胺己二酸盐的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201314A (zh) * 2010-11-26 2013-07-10 尤尼吉可株式会社 尼龙盐粉末的制造方法及尼龙的制造方法
CN103724209A (zh) * 2014-01-16 2014-04-16 郑州大学 一种长碳链半芳香族尼龙盐的制备方法
CN103980486A (zh) * 2013-02-07 2014-08-13 上海凯赛生物技术研发中心有限公司 一种尼龙的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801278A (en) * 1997-03-07 1998-09-01 E. I. Du Pont De Nemours And Companh Low water diamine-dicarboxylic acid salt preparation
AT506617B1 (de) 2008-02-27 2011-03-15 Isiqiri Interface Tech Gmbh Anzeigefläche und damit kombinierte steuervorrichtung
ES2405580T3 (es) 2008-03-26 2013-05-31 Toray Industries, Inc. Filamento de poliamida 56, y estructura de fibra y tela base de airbag que comprende cada uno
JPWO2010113736A1 (ja) * 2009-03-30 2012-10-11 東レ株式会社 ポリアミド樹脂、ポリアミド樹脂組成物およびこれらからなる成形品
CN101768266B (zh) * 2009-12-25 2011-10-05 郑州大学 一种半芳香尼龙的制备方法
WO2011118441A1 (ja) * 2010-03-26 2011-09-29 ユニチカ株式会社 半芳香族ポリアミド、およびその製造方法
RU2730455C2 (ru) * 2011-07-26 2020-08-24 ДСМ АйПи АССЕТС Б.В. Способ получения соли диамина/дикарбоновой кислоты
CN111393634A (zh) * 2013-01-30 2020-07-10 帝斯曼知识产权资产管理有限公司 制备聚酰胺的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201314A (zh) * 2010-11-26 2013-07-10 尤尼吉可株式会社 尼龙盐粉末的制造方法及尼龙的制造方法
CN103980486A (zh) * 2013-02-07 2014-08-13 上海凯赛生物技术研发中心有限公司 一种尼龙的制备方法
CN103724209A (zh) * 2014-01-16 2014-04-16 郑州大学 一种长碳链半芳香族尼龙盐的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3235851A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107353198A (zh) * 2017-08-25 2017-11-17 南京工业大学 戊二胺己二酸盐及其晶体
WO2019037438A1 (zh) * 2017-08-25 2019-02-28 南京工业大学 戊二胺己二酸盐及其晶体
CN107353198B (zh) * 2017-08-25 2020-11-06 南京工业大学 戊二胺己二酸盐及其晶体
WO2019196132A1 (zh) * 2018-04-13 2019-10-17 南京工业大学 戊二胺癸二酸盐及其晶体
CN111592454A (zh) * 2019-02-21 2020-08-28 上海凯赛生物技术股份有限公司 二元酸胺盐的制备方法、二元酸胺盐溶液、二元酸胺盐和聚合物
CN111592454B (zh) * 2019-02-21 2023-08-08 上海凯赛生物技术股份有限公司 二元酸胺盐的制备方法、二元酸胺盐溶液、二元酸胺盐和聚合物

Also Published As

Publication number Publication date
JP6410959B2 (ja) 2018-10-24
US20170349705A1 (en) 2017-12-07
CN107001625A (zh) 2017-08-01
CN107001625B (zh) 2020-06-19
US10487176B2 (en) 2019-11-26
EP3235851A1 (en) 2017-10-25
JP2018501389A (ja) 2018-01-18
EP3235851A4 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
WO2016095137A1 (zh) 一种尼龙盐及其制备方法
US8802810B2 (en) Process for the manufacture of a solution of salts of diacids/diamine(s)
KR101699558B1 (ko) 폴리아미드를 제조하기 위한 회분식 방법
WO2018120702A1 (zh) 半芳香族聚酰胺生产方法及半芳香族聚酰胺
CN103724209B (zh) 一种长碳链半芳香族尼龙盐的制备方法
JP2015500360A (ja) ポリアミドの調製方法
CN105777553A (zh) 一种尼龙盐的制备方法
JP2016535129A (ja) バイオマス・クレアチニン触媒作用法によるポリ(ブチレンサクシネート−co−アジピン酸)(PBSA)合成プロセス方法
JP5481776B2 (ja) ポリアミドの製造方法
CN108178831B (zh) PA(66-co-6T)共聚物的制备方法
KR100799037B1 (ko) 폴리아미드의 제조방법
CN104530421A (zh) 半芳香族聚酰胺的制备方法
JP2008081634A (ja) ポリアミドプレポリマーおよびポリアミドの製造方法
US6489435B2 (en) Process for producing polyamide
CN111057233A (zh) 一种共聚半芳香族聚酰胺及其制备方法
WO2023284285A1 (zh) 一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品
CN103910878B (zh) 一种赖氨酸合成半芳香族尼龙及其制备方法
JP2001200053A (ja) ポリアミドの製造方法
US9534083B2 (en) Production of polyamides by polycondensation
JP2001200052A (ja) ポリアミドの連続製造方法
US5371174A (en) Process for the production of polytetramethylene adipamides
JP2003082096A (ja) ポリアミドプレポリマーおよびポリアミド、ならびにそれらの製造方法
WO2014073373A1 (ja) ポリアミドの製造方法
JP5103755B2 (ja) ポリアミドの製造方法
JP2007231048A (ja) ポリアミドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908172

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15536906

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017550968

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014908172

Country of ref document: EP