WO2023284285A1 - 一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品 - Google Patents

一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品 Download PDF

Info

Publication number
WO2023284285A1
WO2023284285A1 PCT/CN2022/074273 CN2022074273W WO2023284285A1 WO 2023284285 A1 WO2023284285 A1 WO 2023284285A1 CN 2022074273 W CN2022074273 W CN 2022074273W WO 2023284285 A1 WO2023284285 A1 WO 2023284285A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
copolyamide
aromatic
temperature
monomer
Prior art date
Application number
PCT/CN2022/074273
Other languages
English (en)
French (fr)
Inventor
冯梧桐
赵元博
刘修才
Original Assignee
上海凯赛生物技术股份有限公司
Cibt美国公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海凯赛生物技术股份有限公司, Cibt美国公司 filed Critical 上海凯赛生物技术股份有限公司
Priority to EP22840931.4A priority Critical patent/EP4357391A1/en
Publication of WO2023284285A1 publication Critical patent/WO2023284285A1/zh
Priority to US18/412,986 priority patent/US20240150523A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention belongs to the field of macromolecular materials, and in particular relates to a high-temperature-resistant and low-aromatic copolyamide, a preparation method and a composition thereof.
  • SMT surface mount technology
  • the development trend of "replacing steel with plastic” in the automotive industry the market demand for high-temperature-resistant polyamides has increased dramatically.
  • SMT technology requires that the melting point of the material is not lower than 215°C, and lead-free solder puts forward higher requirements for the heat resistance of the material.
  • the increase in the combustion temperature of automobile fuel is conducive to the full combustion of fuel, reduces fuel consumption, and reduces the emission of carbon dioxide and other toxic gases, while the increase in fuel combustion temperature requires higher heat resistance for the peripheral parts of the automobile engine.
  • Traditional general-purpose plastics and common engineering plastics can no longer meet the market's demand for material heat resistance.
  • high-temperature-resistant polyamide is higher than 270°C, and it has excellent short-term and long-term heat resistance.
  • Common high-temperature-resistant polyamides include PA46, PA5T, PA6T, PA9T, PA10T, PA11T, PA12T, PA MXD6, PMIA, PPTA, etc.
  • PA10T the full name of polydecanediamine terephthalamide, the benzene ring structure of terephthalic acid endows it with high rigidity, high heat resistance, high mechanical strength and high dimensional stability.
  • PA10T with the advantages of melt processability and low water absorption, and 1,10-decanediamine can be obtained from biomass raw material castor oil through saponification cracking, ammoniation and other steps, so PA10T is a promising Bio-based high temperature resistant polyamide. Similar to other semi-aromatic high-temperature resistant polyamides, PA10T has the disadvantages of poor melt fluidity and narrow melt processing window, so other comonomers are often introduced to improve its melt fluidity and lower its melting point.
  • Patent CN101759853B provides a preparation method of semi-aromatic polyamide: first, monomers and auxiliary agents are added to the polymerization tank for condensation polymerization to obtain a prepolymer with a lower intrinsic viscosity, dry the water, and then transfer to the thickening equipment
  • this method uses many types of equipment and is complicated to operate.
  • the invention provides a high-temperature-resistant semi-aromatic copolyamide and its preparation method, composition and molded product.
  • the monomer raw materials of the copolyamide include diacid monomers and diamine monomers, and the diacid monomers include but are not limited to aromatic dibasic acids and/or derivatives thereof, aliphatic dibasic acids, and the dibasic dibasic acids Amine monomers include but not limited to decanediamine and pentamethylenediamine, and the molar ratio of the decanediamine to pentamethylenediamine is (1-30):1.
  • aromatic dibasic acids include, but are not limited to, amides of aromatic dibasic acids, and esters of aromatic dibasic acids, such as C1-C10 alkyl esters of aromatic dibasic acids.
  • the 1,10-decanediamine (decanediamine for short) in the monomer is 1,10-decanediamine derived from chemical sources or biological substances, preferably 1,10-decanediamine derived from biological substances.
  • the 1,5-pentanediamine (pentamethylenediamine for short) in the monomer is pentamethylenediamine derived from chemical sources or biological substances, preferably 1,5-pentanediamine derived from biological substances.
  • Biomass is a variety of organisms formed through photosynthesis. Biomass sources refer to preparations using these organisms through biological methods (eg, biofermentation). Chemically derived means prepared by chemical methods.
  • the molar ratio of the decanediamine to the aromatic dibasic acid is 1:(0.7-1.5), further 1:(0.8-1.2), for example 1:0.98, 1:0.95.
  • the molar ratio of decanediamine to pentamethylenediamine is (2-30):1, further (2-20):1, such as 19:1, 18:1, 10:1 , 6.5:1, 4:1.
  • the molar ratio of the diamine monomer to the diacid monomer is (1-1.3):1, further (1-1.1):1, and further (1-1.06):1 , further (1.01-1.04):1.
  • the total amount of the diamine monomer and the diacid monomer accounts for more than 85%, further more than 90%, and further more than 95% of the total amount of monomer raw materials of the copolyamide, Further more than 97%, said percentage is mole percentage.
  • the total amount of decanediamine and pentamethylenediamine accounts for more than 85% of the total amount of diamine monomers, further more than 90%, further more than 95%, and the percentage is mole percentage.
  • the total amount of the aromatic dibasic acid and/or its derivatives and the aliphatic dibasic acid accounts for more than 85% of the total amount of the diacid monomers, and is further more than 90%, Further more than 95%, said percentage is mole percentage.
  • the aromatic dibasic acid is any one or a combination of two or more of the diacids containing benzene rings with 8 or more carbon atoms, further including terephthalic acid, m-benzene One or a combination of two or more of dicarboxylic acid and phthalic acid.
  • the aromatic dibasic acid derivatives include, but are not limited to, one or a combination of two or more of phthaloyl chloride, dimethyl terephthalate and diethyl terephthalate.
  • the aliphatic dibasic acid is any one and combination of aliphatic dibasic acids with 2 to 18 carbon atoms, further including oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid Acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid One or a combination of two or more of basic acid, hexadecanedibasic acid, heptadecanedibasic acid and octadecanedibasic acid.
  • the copolyamide is PA10T/5T/5X/10X.
  • the X represents a structural unit derived from an aliphatic dibasic acid, especially the number of carbon atoms contained in the aliphatic dibasic acid, and the aliphatic dibasic acid has the same limitations as described above.
  • T stands for terephthalic acid.
  • copolyamide PA10T/5T/56/106 represents a copolyamide prepared from decanedidiamine, terephthalic acid, pentamethylenediamine, and adipic acid as monomers.
  • the raw material of the copolyamide also includes additives accounting for 0.01% to 3% of the total mass of the monomers, and the additives include but are not limited to end-capping agents, catalysts, flame retardants, antioxidants, Any one or a combination of two or more of ultraviolet absorbers, infrared absorbers, crystal nucleating agents, fluorescent whitening agents and antistatic agents.
  • the raw material of the copolyamide further includes 0.1% to 0.5% of an antioxidant, further 0.1% to 0.3% of an antioxidant, accounting for the total mass of monomers.
  • the antioxidant is selected from one or a combination of two or more of phenolic antioxidants, inorganic phosphate antioxidants, phosphite antioxidants and carbon free radical scavenger antioxidants.
  • the raw material of the copolyamide further includes 0-0.07% of catalyst, further 0.005-0.05% of catalyst, accounting for the total mass of monomers.
  • Described catalyst comprises phosphate, hypophosphite, further comprises the phosphate of alkali metal and/or alkaline earth metal, the hypophosphite of alkali metal and/or alkaline earth metal, further comprises potassium hypophosphite, sodium hypophosphite, One or a combination of calcium hypophosphite and magnesium hypophosphite.
  • the total mass of the phosphate and hypophosphite accounts for more than 85%, further more than 90%, and further more than 95% of the total mass of the catalyst.
  • the raw material of the copolyamide also includes 0-1% of the end-capping agent accounting for the total mass of monomers, further 0.1-0.5% of the end-capping agent, and further 0.15%-0.4% of the end-capping agent terminal agent.
  • the end-capping agent includes any one of C2-C16 aliphatic carboxylic acids, C7-C10 aromatic carboxylic acids and combinations thereof.
  • the structure of the aliphatic carboxylic acid end-capping agent is a monobasic acid with a straight chain, a branched chain or a cyclic structure, and a saturated monobasic acid with a straight chain, a branched chain or a cyclic structure.
  • aliphatic carboxylic acids with saturated cyclic structures has a better effect of reducing the YI value of polymers compared to aliphatic carboxylic acids with linear structures, mainly because aliphatic carboxylic acids with cyclic structures have larger steric positions
  • the resistance effect can destroy the coplanarity of atomic groups, reduce the superposition degree of ⁇ electrons, and shift the absorption spectrum to the short-wave direction.
  • the capping agent includes any one of C2-C10 aliphatic carboxylic acids and C7-C10 aromatic carboxylic acids and combinations thereof.
  • the number of carbon atoms of the end-capping agent is, for example, 3, 4, 5, 6, 7, 8, or 9.
  • the capping agent includes acetic acid, propionic acid, butyric acid, pentanoic acid, hexanoic acid, heptanoic acid, caprylic acid, nonanoic acid, decanoic acid, trimethylacetic acid, isobutyric acid, benzoic acid, cyclohexanecarboxylic acid , toluic acid, ⁇ -naphthoic acid, ⁇ -naphthoic acid, methylnaphthoic acid and phenylacetic acid in any one or a combination of two or more.
  • the total mass of the C2-C10 aliphatic carboxylic acids and C7-C10 aromatic carboxylic acids accounts for more than 85%, further more than 90%, and further more than 95% of the total mass of the end-capping agent.
  • the melting point of the copolyamide is above 270°C, further between 270°C and 310°C, such as 280°C, 290°C, 300°C, and 305°C.
  • the relative viscosity of the copolyamide is 1.6-3.2, further 2.2-3.0, further 2.2-2.6, for example 2.3, 2.4, 2.5.
  • the water absorption of the copolyamide is 0.1-1%, further 0.2-0.8%, such as 0.4%, 0.6% or 0.7%.
  • the tensile strength of the copolyamide is 50-140 MPa, more preferably 60-120 MPa, further 70-110 MPa, such as 80 MPa, 90 MPa, 95 MPa, 100 MPa or 105 MPa.
  • the flexural strength of the copolyamide is 70-130 MPa, further 85-130 MPa, further 90-130 MPa, such as 100 MPa, 105 MPa, 110 MPa, 115 MPa, 120 MPa or 125 MPa.
  • the heat distortion temperature of the copolyamide is 95-130°C, further 100-125°C, such as 105°C, 110°C, 115°C or 120°C.
  • the YI value of the copolyamide is 15 or less, further 13 or less, further 10 or less, further 7 or less, for example 2-7, 6 or 5.
  • the inventor found that the amino group belongs to a kind of chromogenic group, which can deepen the color of the polymer containing chromogenic group.
  • the use of the catalyst can reduce the terminal amino group concentration of the polymer, increase the molecular weight of the polymer, and obtain a polymer with better mechanical properties and a lower YI value.
  • the polymerization is prone to the problems of high polymer viscosity and poor melt fluidity.
  • the melt viscosity is generally reduced by increasing the temperature, increasing the shear rate, etc.
  • the increase in temperature will promote the yellowing of the polymer.
  • the addition of the end-capping agent can regulate the viscosity of the polymer melt, reduce the crosslinking of terminal amino groups under high temperature conditions, increase the fluidity of the polymer melt, and reduce the YI value of the polymer.
  • Another aspect of the present invention provides a method for preparing high temperature resistant semi-aromatic copolyamides, the method comprising the following steps:
  • the salt formed by the reaction of diamine and diacid is polyamide salt (also known as nylon salt), and the polyamide salt can be polycondensed to obtain polyamide or copolyamide.
  • the temperature raising process in step 1) is carried out in an inert gas atmosphere; the inert gas includes one or more of nitrogen, argon or helium.
  • the holding time in step 1) is 0.5-2 hours.
  • the drain water in step 2) is concentrated until the concentration of the polyamide salt is 40wt%-80wt%, further 55wt%-65wt%.
  • reaction time in step 2) is 0.5-2 hours, further 1-1.5 hours;
  • the pressure during the reaction in step 2) is kept at 2.5-3 MPa.
  • step 3) the depressurization of exhaust gas reduces the pressure in the reaction system to 0-0.2 MPa (gauge pressure).
  • the temperature of the reaction system after the decompression in step 3) is 315-335°C.
  • the method further includes step 4) vacuuming treatment: vacuuming to a degree of vacuum below -0.02MPa, further between -0.05MPa and -0.1MPa.
  • the vacuum treatment step before melting and discharging can avoid a small amount of small molecules such as water remaining in the reaction system when the pressure drops to 0 during the decompression stage. Problems that affect the properties of materials.
  • the time for maintaining the above vacuum degree is 0-300s, further 0-90s, and further 5-90s.
  • keeping the vacuum degree within the above range is beneficial to the quality of the product, and is also beneficial to the copolyamide melt discharge, thereby facilitating subsequent processing.
  • the method further includes step 5): discharging, strand drawing and pelletizing.
  • the method further includes adding additives at any stage of step 1), step 2), step 3), and step 4).
  • the additives are as defined above.
  • the preparation method of described high temperature resistant semi-aromatic copolyamide comprises the following steps:
  • Another aspect of the present invention provides a composition comprising the high temperature resistant semi-aromatic copolyamide described in any one of the above compositions.
  • Another aspect of the present invention provides a molded product prepared from the above-mentioned high-temperature-resistant semi-aromatic copolyamide as a raw material.
  • the copolyamide of the present invention can be molded by any molding method such as injection molding, extrusion molding, blow molding, vacuum molding, melt spinning, and film molding. These molded products can be molded into desired shapes, and can be used in resin molded products such as automobile parts and machine parts.
  • the implementation of the present invention has at least the following advantages:
  • the copolyamide synthesized by the present invention has the same comprehensive performance as polyamide, and can use the monomer pentamethylenediamine developed with independent intellectual property rights, avoiding the use of foreign monopoly monomer hexamethylenediamine.
  • copolyamide synthesized by the present invention has excellent mechanical properties, and its tensile properties, bending resistance and impact resistance are all comparable to polyamide products such as polyamide PA6 and polyamide PA66 used in the market.
  • the copolyamide synthesized by the present invention has lower water absorption, better dimensional stability, higher heat distortion temperature, and lower yellowness index, and can be used in more harsh use environments, expanding the range to a certain extent.
  • the scope of use of polyamide is not limited to a certain extent.
  • the preparation method of the copolyamide of the present invention is simple, the process parameters are easy to control, and it does not need the assistance of large instruments, so it is convenient for quantitative production.
  • Ubbelohde viscometer concentrated sulfuric acid method Accurately weigh 0.5 ⁇ 0.0002g of the dried polyamide sample, add 50mL concentrated sulfuric acid (98%) to dissolve, measure and record the flow time t0 of the solvent concentrated sulfuric acid in a constant temperature water bath at 25°C and the flow time t of the polyamide solution.
  • Bending strength test refers to standard ISO-178, test condition: 2mm/min;
  • Tensile strength test refers to standard ISO-572-2, test condition: 50mm/min;
  • the yellow index refers to the yellow value based on the CIE standard C light source and magnesium oxide.
  • the calculation method of the yellowness index YI is as follows:
  • YI (100(1.28X-1.06Z))/Y, where X, Y and Z are the measured tristimulus values respectively.
  • the detection temperature is 25 ⁇ 5°C; relative humidity: 50 ⁇ 20%.
  • Example 5 Basically the same as Example 3, the only difference between this Example 5 and Example 3 is that the raw materials for the preparation of the copolyamide PA10T/5T/56/106 in this Example 5 do not contain a catalyst.
  • Example 6 Basically the same as Example 3, the only difference between this Example 6 and Example 3 is that the raw materials for the preparation of the copolyamide PA10T/5T/56/106 in this Example 6 do not contain an end-capping agent.
  • the temperature of the post-reaction system is 325° C. to obtain a copolyamide melt; after discharge, the copolymer melt is subjected to strand cutting to obtain high temperature resistant semi-aromatic copolyamide PA10T/5T/56/106.
  • the mass concentration of nylon salt in the mixture is 50 wt %;
  • the temperature of the reaction system is raised to 130°C, and the drain water is concentrated until the mass concentration of nylon salt is 65wt%; the temperature is raised to 250°C again, and the pressure is maintained at 2.5MPa for 1 hour; the pressure in the reaction system is reduced to 0MPa (gauge pressure) by keeping the pressure at 250°C. , evacuate to make the pressure -0.07MPa, the vacuum time is 30s, and the reaction system is cooled to room temperature to obtain a solid prepolymer;
  • the copolyamide PA10T/5T/5X/10X is prepared by a one-step method in the examples, which has the advantage of easy operation.
  • Comparative Example 1 is prepared by a two-step method of prepolymerization and then solid phase thickening, which has low utilization rate of equipment and complicated operation.
  • Example 3 By comparing Example 3 with Comparative Example 1, it can be seen that the improvement of the pre-polymerization viscosity by solid-phase thickening is very limited, and the YI value of the sample is much higher than the YI value of the sample prepared by the one-step method. It is caused by factors such as uneven heating of the sample in the phase viscosification equipment. The yellowing of the sample indicates that the sample has undergone aging degradation, which leads to a corresponding decrease in mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

本发明公开了一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品。本发明所述的耐高温半芳香族共聚酰胺的单体原料包括二酸单体、二胺单体,所述二酸单体包括但不限于芳香族二元酸和/或其衍生物、脂肪族二元酸,所述二胺单体包括但不限于癸二胺、戊二胺,所述癸二胺和戊二胺的摩尔比为(1~30):1。本发明所提供的耐高温半芳香族共聚酰胺具有优异的耐热性、力学强度、低吸水率以及尺寸稳定性、较低的黄色指数。本发明使用以水为反应介质一步法制备共聚酰胺PA10T/5T/5X/10X,具备绿色环保、操作简便、成本低廉、生产效率高等优点。

Description

一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品 技术领域
本发明属于高分子材料领域,具体涉及一种耐高温低芳香族共聚酰胺及其制备方法和组合物。
背景技术
随着表面安装技术(SMT)的兴起和汽车行业“以塑代钢”强量化的发展趋势,耐高温聚酰胺的市场需求急剧增大。SMT技术要求材料的熔点不低于215℃,无铅焊锡对材料的耐热性提出了更高的要求。汽车燃油燃烧温度的提高有助于燃油的充分燃烧、降低油耗,减少二氧化碳及其它有毒气体的排放,而燃油燃烧温度的提高则要求汽车发动机周边部件具有更高的耐热性。传统的通用塑料以及普通的工程塑料已无法满足市场对材料耐热性的需求。耐高温聚酰胺的熔点高于270℃,具有优异的短期和长期耐热性,常见的耐高温聚酰胺有PA46、PA5T、PA6T、PA9T、PA10T、PA11T、PA12T、PA MXD6、PMIA、PPTA等。PA10T,全称聚对苯二甲酰癸二胺,对苯二甲酸的苯环结构赋予了其高刚性、高耐热性、高力学强度和高尺寸稳定性,1,10-癸二胺的长碳链结构赋予了PA10T可熔融加工性和低吸水率等优点,且1,10-癸二胺可由生物质原料蓖麻油经皂化裂解、氨化等步骤得到,因此PA10T是一种极具发展前景的生物基耐高温聚酰胺。同其他半芳香族耐高温聚酰胺相似,PA10T具有熔体流动性差、熔融加工窗口窄的缺点,故常引入其他共聚单体来改善其熔体流动性、降低熔点。
专利CN101759853B提供了一种半芳香族聚酰胺的制备方法:先将单体和助剂加入到聚合釜中缩合聚合,得到特性粘度较低的预聚物,烘干水分,然后转移至增粘设备中进行固相增粘,然而该方法使用的设备种类较多且操作复杂。
发明内容
为解决现有技术和产品的不足,本发明提供了一种耐高温半芳香族共聚酰胺及其制备方法、组合物和成型品。
所述共聚酰胺的单体原料包括二酸单体、二胺单体,所述二酸单体包括但不限于芳香族二元酸和/或其衍生物、脂肪族二元酸,所述二胺单体包括但不限于癸二胺、戊二胺,所述癸二胺和戊二胺的摩尔比为(1~30):1。
芳香族二元酸的衍生物包括但不限于芳香族二元酸的酰胺、和芳香族二元酸的酯,例如芳香族 二元酸的C1-C10烷基酯。
所述单体中的1,10-癸二胺(简称癸二胺)为化学来源或者生物物质来源的1,10-癸二胺,优选为生物物质来源的1,10-癸二胺。所述单体中的1,5-戊二胺(简称戊二胺)为化学来源或者生物物质来源的戊二胺,优选为生物物质来源的1,5-戊二胺。生物物质是通过光合作用而形成的各种有机体。生物物质来源指的是利用这些有机体通过生物法(例如生物发酵)制备得到的。化学来源的是指化学法制备得到的。
作为本发明的一个实施方式,所述癸二胺和芳香族二元酸的摩尔比为1:(0.7~1.5),进一步为1:(0.8~1.2),例如1:0.98,1:0.95。
作为本发明的一个实施方式,癸二胺和戊二胺的摩尔比为为(2~30):1,进一步为(2~20):1,例如19:1,18:1,10:1,6.5:1,4:1。
作为本发明的一个实施方式,所述二胺单体和二酸单体的摩尔比为(1~1.3):1,进一步为(1~1.1):1,进一步为(1~1.06):1,进一步为(1.01~1.04):1。
作为本发明的一个实施方式,所述二胺单体和二酸单体的总量占所述共聚酰胺的单体原料总量的85%以上,进一步为90%以上,进一步为95%以上,进一步为97%以上,所述百分比为摩尔百分比。
作为本发明的一个实施方式,所述癸二胺和戊二胺总量占所述二胺单体总量的85%以上,进一步为90%以上,进一步为95%以上,所述百分比为摩尔百分比。
作为本发明的一个实施方式,所述芳香族二元酸和/或其衍生物、脂肪族二元酸的总量占所述二酸单体总量的85%以上,进一步为90%以上,进一步为95%以上,所述百分比为摩尔百分比。
作为本发明的一个实施方式,所述芳香族二元酸为碳原子数为8以上的含有苯环的二酸中的任意一种或两种以上的组合,进一步包括对苯二甲酸、间苯二甲酸、邻苯二甲酸中的一种及或两种以上组合。所述芳香族二元酸衍生物包括但不限于苯二甲酰氯、对苯二甲酸二甲酯和对苯二甲酸二乙酯中的一种或两种以上的组合。
所述脂肪族二元酸为碳原子数为2~18的脂肪族二元酸中的任意一种及其组合,进一步包括乙二酸、丙二酸、丁二酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一碳二元酸、十二碳二元酸、十三碳二元酸、十四碳二元酸、十五碳二元酸、十六碳二元酸、十七碳二元酸和十八碳二元酸中的一种或者两种以上的组合。
作为本发明的一个实施方式,所述共聚酰胺为PA10T/5T/5X/10X。所述X代表来源于脂肪族二元酸的结构单元,特别是脂肪族二元酸所含的碳原子数,所述脂肪族二元酸具有同上文所述的限定。T代表对苯二甲酸。例如,共聚酰胺PA10T/5T/56/106表示由癸二胺、对苯二甲酸、戊二胺、己二酸为单体制备的共聚酰胺。
作为本发明的一个实施方式,所述共聚酰胺的原料中还包括占单体总质量0.01%~3%的添加剂,所述添加剂包括但不限于封端剂、催化剂、阻燃剂、抗氧化剂、紫外线吸收剂、红外线吸收剂、结晶成核剂、荧光增白剂和抗静电剂中的任意一种或两种以上的组合。
作为本发明的一个实施方式,所述共聚酰胺的原料中还包括占单体总质量0.1%~0.5%的抗氧剂、进一步为0.1%~0.3%的抗氧剂。所述抗氧剂选自酚类抗氧剂、无机磷酸盐类抗氧剂、亚磷酸酯类抗氧剂和碳自由基捕获剂类抗氧剂中的一种或两种以上的组合。
作为本发明的一个实施方式,所述共聚酰胺的原料中还包括占单体总质量0~0.07%的催化剂,进一步为0.005~0.05%的催化剂。所述催化剂包括磷酸盐、次亚磷酸盐,进一步包括碱金属和/或碱土金属的磷酸盐、碱金属和/或碱土金属的次亚磷酸盐,进一步包括次亚磷酸钾、次亚磷酸钠、次亚磷酸钙、次亚磷酸镁中的一种或两种以上的组合。进一步地,所述磷酸盐、次亚磷酸盐的总质量占催化剂总质量的85%以上,进一步为90%以上,进一步为95%以上。
作为本发明的一个实施方式,所述共聚酰胺的原料中还包括占单体总质量0~1%的封端剂,进一步0.1~0.5%的封端剂,进一步为0.15%~0.4%的封端剂。所述封端剂包括C2~C16的脂肪族羧酸、C7~C10的芳香族羧酸中任意一种及其组合。所述脂肪族羧酸封端剂的结构为直链、带有支链或含有环状结构的一元酸,进一步为直链、带有支链或含有环状结构的饱和的一元酸。使用含有饱和环状结构的脂肪族羧酸相对于直链结构的脂肪族羧酸具有更好的降低聚合物YI值的效果,主要是由于环状结构的脂肪族羧酸具有较大的空间位阻效应,能够破坏原子团的共平面性,使π电子的叠合程度降低,从而使吸收光谱向短波方向移动。
进一步地,所述封端剂包括C2~C10的脂肪族羧酸和C7~C10的芳香族羧酸中任意一种及其组合。所述封端剂的碳原子数例如为3、4、5、6、7、8、9。
进一步地,所述封端剂包括乙酸、丙酸、丁酸、戊酸、己酸、庚酸、辛酸、壬酸、癸酸、三甲基乙酸、异丁酸、苯甲酸、环己烷甲酸、甲苯甲酸、α-萘甲酸、β-萘甲酸、甲基萘甲酸以及苯基乙酸中的任意一种或两种以上的组合。
进一步地,所述C2~C10的脂肪族羧酸、C7~C10的芳香族羧酸的总质量占封端剂总质量的85%以上,进一步为90%以上,进一步为95%以上。
在本发明一些实施方式中,所述共聚酰胺的熔点为270℃以上,进一步为270℃~310℃,例如280℃、290℃、300℃、305℃。
所述共聚酰胺的相对粘度为1.6~3.2,进一步为2.2~3.0,进一步为2.2~2.6,例如2.3、2.4、2.5。
所述共聚酰胺的吸水率为0.1~1%,进一步为0.2~0.8%,例如0.4%、0.6%或0.7%。
所述共聚酰胺的拉伸强度为50~140MPa,进一步优选为60~120MPa,进一步为70~110MPa,例如80MPa、90MPa、95MPa、100MPa或105MPa。
在本发明一些实施方式中,所述共聚酰胺的弯曲强度为70~130MPa,进一步为85~130MPa,进一步为90~130MPa,例如100MPa、105MPa、110MPa、115MPa、120MPa或125MPa。
在本发明的一些实施方式中,所述共聚酰胺的热变形温度为95~130℃,进一步为100~125℃,例如105℃、110℃、115℃或120℃。
在本发明的一些实施方式中,所述共聚酰胺的黄色指数YI值为15以下,进一步为13以下,进一步为10以下,进一步为7以下,例如2~7、6或5。
发明人经过大量研究发现:氨基属于一种助色基,能使含有生色基的聚合物颜色加深。催化剂的使用能够降低聚合物的端氨基浓度,使聚合物的分子量增大,获得具有较好力学性能和较低YI值的聚合物。
此外,对于含有长碳链结构的半芳香族聚酰胺来说,聚合容易出现聚合物粘度过高、熔体流动性变差的问题。目前,针对聚合物粘度过高问题,一般通过提高温度、增大剪切速率等来降低其熔体粘度,然而温度的提高会促进聚合物发生黄变。封端剂的加入能够调控聚合物熔体的粘度,减少端氨基在高温条件下发生交联,增加聚合物熔体的流动性,并降低聚合物的YI值。
本发明另一方面,提供了一种用于制备耐高温半芳香族共聚酰胺的方法,所述方法包括以下步骤:
1)将癸二胺、戊二胺、芳香族二元酸和/或其衍生物、脂肪族二元酸加入到水中,升温至70~90℃,可选择地在70~90℃保温0.5~3h,形成包含聚酰胺盐的混合物;
2)将所述包含聚酰胺盐的混合物加热升温至120~140℃,排水浓缩,然后升温至240~255℃进行反应;以及
3)排气降压。
本领域技术人员知晓,二胺与二酸反应形成的盐为聚酰胺盐(又称尼龙盐),聚酰胺盐通过缩聚反应得到聚酰胺或共聚酰胺。
除非另有说明或者明显矛盾,本发明提及压力时均指表压。
在本发明的一些实施方式中,步骤1)所述升温过程在惰性气体氛围中进行;所述惰性气体包括氮气、氩气或氦气中的一种或几种。
在本发明的一些实施方式中,步骤1)所述的保温时间为0.5~2h。
在本发明的一些实施方式中,步骤2)所述排水浓缩至聚酰胺盐的浓度为40wt%~80wt%,进一步为55wt%~65wt%。
在本发明的一些实施方式中,步骤2)所述反应进行的时间为0.5~2h,进一步为1~1.5h;。
在本发明的一些实施方式中,步骤2)所述反应进行过程中压力保持为2.5~3MPa。
在本发明的一些实施方式中,步骤3)所述排气降压使反应体系内压力降至0~0.2MPa(表压)。
在本发明的一些实施方式中,步骤3)所述降压结束后反应体系的温度为315~335℃。
在本发明的一些实施方式中,所述方法还包括步骤4)抽真空处理:抽真空至真空度为-0.02MPa以下,进一步为-0.05MPa至-0.1MPa。熔融出料前的抽真空处理步骤,可以避免泄压阶段压力降为0时反应体系内仍残存的少量的小分子例如水,在高温环境下这些残存的小分子会促使聚合物发生降解,进而影响材料的性能的问题。
可选择的,在上述真空度保持的时间为0~300s,进一步为0~90s,更进一步为5~90s。
作为本发明的一个实施方式,保持真空度的时间在上述范围内对产品的质量有益,而且有利于共聚酰胺熔融出料,从而便于进行后续加工。
在本发明的一些实施方式中,所述方法还包括步骤5):出料,拉条和切粒。
在本发明的一些实施方式中,所述方法还包括在步骤1)、步骤2)、步骤3)、步骤4)的任意阶段加入添加剂。所述添加剂具有同上文所限定。
作为本发明的一个实施方式,所述耐高温半芳香族共聚酰胺的制备方法包括下述步骤:
1)将癸二胺、戊二胺、芳香族二元酸和/或其衍生物、脂肪族二元酸加入到水中,升温至70~90℃,在70~90℃进行保温0.5~3h以形成包含聚酰胺盐的混合物;
2)将所述包含聚酰胺盐的混合物加热升温至120~140℃,排水浓缩至聚酰胺盐的浓度为40wt%~80wt%,升温至240~255℃,压力保持为2.5~3MPa反应0.5~2h;
3)排气降压使反应体系内压力降至0~0.2MPa(表压),降压结束后反应体系的温度为315~335℃;
4)抽真空至真空度为-0.05MPa至-0.1MPa,保持该真空度的时间为0~300s;
5)出料,拉条切粒。所述的方法的参数具有同上文所进一步限定。
本发明另一方面,提供了一种组合物,所述组合物中包括以上任一项所述的耐高温半芳香族共聚酰胺。
本发明另一方面,提供了一种以上述耐高温半芳香族共聚酰胺为原料制备的成型品。
为了获得本发明的成型品,可以将本发明的共聚酰胺通过注射成型、挤出成型、吹塑成型、真空成型、熔融纺丝、膜成型等任意成型方法来成型。可以将这些成型品成型成所需形状,并可以在汽车部件、机械部件等的树脂成型品等中使用。
与现有技术相比,本发明的实施至少具有以下优势:
1、本发明所合成的共聚酰胺具有和聚酰胺一样的综合使用性能,且可以使用自主知识产权开发的单体戊二胺,避免了国外垄断单体己二胺的使用。
2、本发明所合成的共聚酰胺具有优异的力学性能,其拉伸性能、抗弯曲性能、抗冲击性能均能与市场上使用的聚酰胺PA6、聚酰胺PA66等聚酰胺产品相媲美。
3、本发明所合成的共聚酰胺具有较低的吸水率较好的尺寸稳定性,以及较高的热变形温度、较低的黄色指数,能在更加苛刻的使用环境中使用,一定程度上拓展了聚酰胺的使用范围。
4、本发明的共聚酰胺的制备方法简单,工艺参数易于控制,无需大型仪器协助,便于进行量化生产。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
1.相对粘度ηr的检测方法
乌氏粘度计浓硫酸法:准确称量干燥后的聚酰胺样品0.5±0.0002g,加入50mL浓硫酸(98%)溶解,在25℃恒温水浴槽中测量并记录溶剂浓硫酸的流经时间t0和聚酰胺溶液的流经时间t。
相对粘数计算公式:相对粘度ηr=t/t0,其中:t:聚酰胺溶液的流经时间;t0:溶剂浓硫酸的流经时间。
2.力学性能测试方法
弯曲强度测试参照标准ISO-178,测试条件:2mm/min;
拉伸强度测试参照标准ISO-572-2,测试条件:50mm/min;
3.吸水率测试:ISO-62:2008;
4.热变形温度测试:ASTM D648;
5.黄色指数测试
黄色指数为以国际照明委员会(CIE)标准C光源,以氧化镁为基准的黄色值。黄色指数YI的计算方法如下:
YI=(100(1.28X-1.06Z))/Y,其中,X、Y、Z分别为所测得的三刺激值。使用黄色指数仪检测,检测温度为25±5℃;相对湿度:50±20%。
实施例1
将9.45mol 1,10-癸二胺、9.36mol对苯二甲酸、0.54mol 1,5-戊二胺、0.53mol己二酸、9.9g抗氧剂H10(购自德国布吕格曼(BRUGGOLEN))、7.83g封端剂乙酸、0.66g催化剂次亚磷酸钠与水混合均匀,氮气气氛中升温至90℃并于该温度保持1h,制得包含聚酰胺盐(即,尼龙盐) 的混合物,混合物中尼龙盐质量浓度为50wt%;
加热使反应体系升温至130℃,排水浓缩至尼龙盐的质量浓度为65wt%;再次升温至250℃,压力保持2.5MPa反应1h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为335℃;抽真空使真空度为-0.07MPa,得到共聚酰胺熔体;出料,将共聚酰胺熔体进行拉条切粒,得到耐高温半芳香族共聚酰胺PA10T/5T/56/106。
实施例2
将9.09mol 1,10-癸二胺、9mol对苯二甲酸、1.01mol 1,5-戊二胺、1mol己二酸、9.9g抗氧剂H10、7.83g封端剂苯甲酸、0.66g催化剂次亚磷酸钠与水混合均匀,氮气气氛中升温至90℃并于该温度保持1h,制得包含聚酰胺盐的混合物,混合物中尼龙盐质量浓度为50wt%。
加热使反应体系升温至130℃,排水浓缩至尼龙盐的质量浓度为65wt%;再次升温至250℃,压力保持2.5MPa反应1h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为325℃;抽真空使压力为-0.07MPa,维持该真空度的时间为30s,得到共聚酰胺熔体;出料,将共聚酰胺熔体进行拉条切粒,得到耐高温半芳香族共聚酰胺PA10T/5T/56/106。
实施例3
将8.585mol 1,10-癸二胺、8.5mol对苯二甲酸、1.5mol 1,5-戊二胺、1.5mol己二酸、9.8g抗氧剂H10、0.65g催化剂次亚磷酸钠、7.83g封端剂乙酸与水混合均匀,氮气气氛中升温至90℃并于该温度保持1h,制得包含聚酰胺盐的混合物,混合物中尼龙盐质量浓度为50wt%。
加热使反应体系升温至130℃,排水浓缩至尼龙盐的质量浓度为65wt%;再次升温至250℃,压力保持2.5MPa反应1h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为325℃;抽真空使压力为-0.07MPa,维持该真空度的时间为30s,得到共聚酰胺熔体;出料,将共聚酰胺熔体进行拉条切粒,得到耐高温半芳香族共聚酰胺PA10T/5T/56/106。
实施例4
将8.08mol 1,10-癸二胺、8mol对苯二甲酸、2.02mol 1,5-戊二胺、2mol己二酸、9.8g抗氧剂H10、0.66g催化剂次亚磷酸钙、7.8g封端剂环己烷甲酸与水混合均匀,氮气气氛中升温至90℃并于该温度保持1h,制得包含聚酰胺盐的混合物,混合物中尼龙盐质量浓度为50wt%。
加热使反应体系升温至130℃,排水浓缩至尼龙盐的质量浓度为65wt%;再次升温至250℃,压力保持2.5MPa反应1h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为325℃;抽真空使压力为-0.07MPa,维持该真空度的时间为70s,得到共聚酰胺熔体;出 料,将共聚酰胺熔体进行拉条切粒,得到耐高温半芳香族共聚酰胺PA10T/5T/56/106。
实施例5
与实施例3基本相同,本实施例5与实施例3的区别仅仅在于:本实施例5的共聚酰胺PA10T/5T/56/106的制备原料中不含有催化剂。
实施例6
与实施例3基本相同,本实施例6与实施例3的区别仅仅在于:本实施例6共聚酰胺PA10T/5T/56/106的制备原料中不含有封端剂。
实施例7
将8.08mol 1,10-癸二胺、8mol对苯二甲酸、2.02mol 1,5-戊二胺、2mol十二碳二元酸、10.0g抗氧剂H10、0.70g催化剂次亚磷酸钠、8.3g封端剂环己烷甲酸与水混合均匀,氮气气氛中升温至90℃并于该温度保持1h,制得包含聚酰胺盐的混合物,混合物中尼龙盐质量浓度为50wt%。
加热使反应体系升温至130℃,排水浓缩至尼龙盐的质量浓度为65wt%;再次升温至250℃,压力保持2.5MPa反应1h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为325℃;抽真空使压力为-0.07MPa,维持该真空度的时间为60s,得到共聚酰胺熔体;出料,将共聚酰胺熔体进行拉条切粒,得到耐高温半芳香族共聚酰胺PA10T/5T/512/1012。
实施例8
将8.585mol 1,10-癸二胺、8.5mol对苯二甲酸、1.5mol 1,5-戊二胺、1.5mol十六碳二元酸、10.2g抗氧剂H10、0.72g催化剂次亚磷酸钙、8.2g封端剂乙酸与水混合均匀,氮气气氛中升温至90℃并于该温度保持1h,制得包含聚酰胺盐的混合物,混合物中尼龙盐质量浓度为50wt%。
加热使反应体系升温至130℃,排水浓缩至尼龙盐的质量浓度为65wt%;再次升温至250℃,压力保持2.5MPa反应1h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为325℃;抽真空使压力为-0.07MPa,维持该真空度的时间为30s,得到共聚酰胺熔体;出料,将共聚酰胺熔体进行拉条切粒,得到耐高温半芳香族共聚酰胺PA10T/5T/516/1016。
实施例9
将8.585mol 1,10-癸二胺、8.5mol对苯二甲酸、1.5mol 1,5-戊二胺、1.5mol己二酸、9.8g抗氧剂H10、0.65g催化剂次亚磷酸钠、7.83g封端剂乙酸与水混合均匀,氮气气氛中升温至90℃ 并于该温度保持1h,制得包含聚酰胺盐的混合物,混合物中尼龙盐质量浓度为50wt%。
加热使反应体系升温至130℃,排水浓缩至浓度为65wt%;再次升温至250℃,压力保持2.5MPa反应1h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为325℃,得到共聚酰胺熔体;出料,将共聚物熔体进行拉条切粒,得到耐高温半芳香族共聚酰胺PA10T/5T/56/106。
对比例1
(1)预聚合:将8.585mol 1,10-癸二胺、8.5mol对苯二甲酸、1.5mol 1,5-戊二胺、1.5mol己二酸、9.8g抗氧剂、0.65g催化剂次亚磷酸钠、7.83g封端剂乙酸与水混合均匀,氮气气氛中升温至90℃并于该温度保持1h,制得包含聚酰胺盐的混合物,混合物中尼龙盐质量浓度为50wt%;加热使反应体系升温至130℃,排水浓缩至尼龙盐质量浓度为65wt%;再次升温至250℃,压力保持2.5MPa反应1h;保持250℃排气降压使反应体系内压力降至0MPa(表压),抽真空使压力为-0.07MPa,抽真空时间为30s,待反应体系冷却至室温得到固体预聚物;
(2)固相增粘:将预聚物粉碎成颗粒大小约0.1mm的固体颗粒,放入真空转鼓中于250℃增粘8h,真空度为20~50Pa,然后冷却至室温得到共聚酰胺PA10T/5T/56/106。对实施例1~9、对比例1制备得到的共聚酰胺树脂进行相对粘度测试、拉伸强度、弯曲强度、吸水率、热变形温度、熔点、黄色指数YI值进行测试,测定结果见表1。
表1
Figure PCTCN2022074273-appb-000001
由表1可知,实施例均采用一步法制备共聚酰胺PA10T/5T/5X/10X,具有操作简便的优点。对比例1采用先预聚合后固相增粘的两步法制备,设备利用率低、操作复杂。通过实施例3与对比例 1对比,可以看到固相增粘对预聚合粘度的提升十分有限,同时样品的YI值比一步法制备的样品的YI值要高的多,这可能是由固相增粘设备中样品受热不均等因素导致的。样品黄变说明样品发生了老化降解,所以导致力学性能也相应降低。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种耐高温半芳香族共聚酰胺,其特征在于,所述共聚酰胺的单体原料包括二酸单体和二胺单体,所述二酸单体包括芳香族二元酸和/或其衍生物、和脂肪族二元酸,所述二胺单体包括癸二胺和戊二胺,所述癸二胺和戊二胺的摩尔比为(1~30):1。
  2. 如权利要求1所述的耐高温半芳香族共聚酰胺,其特征在于,所述单体中的癸二胺为化学来源或者生物物质来源的1,10-癸二胺,优选为生物物质来源的1,10-癸二胺;和/或,
    所述单体中的戊二胺为化学来源或者生物物质来源的戊二胺,优选为生物物质来源的1,5-戊二胺;和/或,
    所述癸二胺和芳香族二元酸的摩尔比为1:(0.7~1.5),进一步为1:(0.8~1.2);和/或,
    所述癸二胺和戊二胺的摩尔比为(2~30):1,进一步为(2~20):1;和/或,
    所述戊二胺和脂肪族二元酸的摩尔比为(1~1.3):1,进一步为(1~1.1):1,进一步为(1~1.06):1;和/或,
    所述二胺单体和二酸单体的摩尔比为(1~1.3):1,进一步为(1~1.1):1,进一步为(1~1.06):1,进一步为(1.01~1.04):1;和/或,
    所述二胺单体和二酸单体的总量占所述共聚酰胺的单体原料总量的85%以上,进一步为90%以上,进一步为95%以上,进一步为97%以上,所述百分比为摩尔百分比;和/或,
    所述癸二胺和戊二胺总量占所述二胺单体总量的85%以上,进一步为90%以上,进一步为95%以上,所述百分比为摩尔百分比;和/或,
    所述芳香族二元酸和/或其衍生物、脂肪族二元酸的总量占所述二酸单体总量的85%以上,进一步为90%以上,进一步为95%以上,所述百分比为摩尔百分比;和/或,
    所述共聚酰胺为PA10T/5T/5X/10X。
  3. 如权利要求1所述的耐高温半芳香族共聚酰胺,其特征在于,所述芳香族二元酸为碳原子数为8以上的含有苯环的二酸中的任意一种或两种以上的组合,进一步包括对苯二甲酸、间苯二甲酸和邻苯二甲酸中的一种及或两种以上组合;和/或,
    所述芳香族二元酸衍生物包括但不限于对苯二甲酰氯、对苯二甲酸二甲酯和对苯二甲酸二乙酯中的一种或两种以上的组合;和/或,
    所述脂肪族二元酸为碳原子数为2~18的脂肪族二酸中的任意一种及其组合,进一步包括乙二酸、丙二酸、丁二酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一碳二元酸、十二碳二元酸、十三碳二元酸、十四碳二元酸、十五碳二元酸、十六碳二元酸、十七碳二元酸、十八碳二元酸中的一种或者两种以上的组合。
  4. 如权利要求1所述的耐高温半芳香族共聚酰胺,其特征在于,所述共聚酰胺的原料中还包括占单体总质量0.01%~3%的添加剂,所述添加剂包括但不限于封端剂、催化剂、阻燃剂、抗氧化剂、紫外线吸收剂、红外线吸收剂、结晶成核剂、荧光增白剂和抗静电剂中的任意一种或两种以上的组合;和/或,
    所述共聚酰胺的原料中还包括占单体总质量0.1%~0.5%的抗氧剂,所述抗氧剂包括酚类抗氧剂、无机磷酸盐类抗氧剂、亚磷酸酯类抗氧剂和碳自由基捕获剂类抗氧剂中的一种或两种以上的组合;和/或,所述共聚酰胺的原料中还包括占单体总质量0~0.07%的催化剂,进一步为0.005~0.05%的催化剂,所述催化剂包括磷酸盐、次亚磷酸盐,进一步包括碱金属和/或碱土金属的磷酸盐、碱金属和/或碱土金属的次亚磷酸盐,进一步包括次亚磷酸钾、次亚磷酸钠、次亚磷酸钙、次亚磷酸镁中的一种或两种以上的组合;和/或,
    所述共聚酰胺的原料中还包括占单体总质量0~1%的封端剂,进一步0.1~0.5%的封端剂,所述封端剂包括C2~C16的脂肪族羧酸和C7~C10的芳香族羧酸中任意一种及其组合,进一步地,所述封端剂包括C2~C10的脂肪族羧酸和C7~C10的芳香族羧酸中任意一种及其组合,所述封端剂例如包括乙酸、丙酸、丁酸、戊酸、己酸、庚酸、辛酸、壬酸、癸酸、三甲基乙酸、异丁酸、苯甲酸、环己烷甲酸、甲苯甲酸、α-萘甲酸、β-萘甲酸、甲基萘甲酸以及苯基乙酸中的任意一种或两种以上的组合。
  5. 如权利要求1~4中任一项所述的耐高温半芳香族共聚酰胺,其特征在于,所述共聚酰胺的熔点为270℃以上,进一步为270℃~310℃;和/或,
    所述共聚酰胺的热变形温度为95~130℃,进一步为100~125℃;和/或,
    所述共聚酰胺的吸水率为0.1~1%,进一步为0.2~0.8%;和/或,
    所述共聚酰胺的相对粘度为1.0~3.2,进一步为2.2~3.0,进一步为2.2~2.6;和/或,
    所述共聚酰胺的拉伸强度为50~140MPa,进一步为60~120MPa,进一步为70~110MPa;和/或,
    所述共聚酰胺的弯曲强度为70~130MPa,进一步为85~130MPa,进一步为90~130MPa;和/或,
    所述共聚酰胺的黄色指数YI值为15以下,进一步为13以下,进一步为10以下,进一步为7以下。
  6. 一种制备耐高温半芳香族共聚酰胺的方法,其特征在于,所述方法包括以下步骤:
    1)将癸二胺、戊二胺、芳香族二元酸和/或其衍生物、以及脂肪族二元酸加入到水中,升温至 70~90℃,可选择地在70~90℃保温0.5~3h,形成包含聚酰胺盐的混合物;
    2)将所述包含聚酰胺盐的混合物加热升温至120~140℃,排水浓缩,然后升温至240~255℃进行反应;以及
    3)排气降压。
  7. 根据权利要求6所述的方法,其特征在于,步骤1)所述升温过程在惰性气体氛围中进行;和/或,
    步骤1)所述的保温时间为0.5~2h;和/或,
    步骤2)所述排水浓缩至聚酰胺盐的浓度为40wt%~80wt%,进一步为55wt%~65wt%;和/或,
    步骤2)所述反应进行的时间为0.5~2h,进一步为1~1.5h;和/或,
    步骤2)所述反应进行过程中压力保持为2.5~3MPa;和/或,
    步骤3)所述排气降压使反应体系内压力降至0~0.2MPa(表压);和/或,
    步骤3)所述降压结束后反应体系的温度为315~335℃;和/或,
    包括步骤4):抽真空处理:抽真空至真空度为-0.02MPa以下,进一步为-0.05MPa至-0.1MPa,可选择地,在该真空度保持的时间为0~300s,进一步为0~90s,更进一步为5~90s;和/或,
    包括步骤5):出料,拉条和切粒。
  8. 根据权利要求6或7所述的方法,其特征在于,包括在步骤1)、2)、3)和4)的任意阶段加入添加剂,所述添加剂占单体总质量的0.01%~3%,所述添加剂包括但不限于封端剂、催化剂、阻燃剂、抗氧化剂、紫外线吸收剂、红外线吸收剂、结晶成核剂、荧光增白剂和抗静电剂中的任意一种或两种以上的组合。
  9. 一种组合物,其特征在于,包括权利要求1-5中任一项所述的耐高温半芳香族共聚酰胺。
  10. 一种权利要求1-5中任一项所述的耐高温半芳香族共聚酰胺为原料制备的成型品。
PCT/CN2022/074273 2021-07-15 2022-01-27 一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品 WO2023284285A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22840931.4A EP4357391A1 (en) 2021-07-15 2022-01-27 High-temperature-resistant semi-aromatic copolyimide and preparation method therefor, composition, and molded article
US18/412,986 US20240150523A1 (en) 2021-07-15 2024-01-15 High temperature resistant semi-aromatic copolyimide, preparation method, compositions, and molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110799801.9A CN115612095A (zh) 2021-07-15 2021-07-15 一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品
CN202110799801.9 2021-07-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/412,986 Continuation US20240150523A1 (en) 2021-07-15 2024-01-15 High temperature resistant semi-aromatic copolyimide, preparation method, compositions, and molded product

Publications (1)

Publication Number Publication Date
WO2023284285A1 true WO2023284285A1 (zh) 2023-01-19

Family

ID=84855775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074273 WO2023284285A1 (zh) 2021-07-15 2022-01-27 一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品

Country Status (4)

Country Link
US (1) US20240150523A1 (zh)
EP (1) EP4357391A1 (zh)
CN (1) CN115612095A (zh)
WO (1) WO2023284285A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850692A (zh) * 2023-01-31 2023-03-28 富海(东营)新材料科技有限公司 耐高温尼龙及其制备方法与应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002113A (ja) * 2004-06-21 2006-01-05 Kuraray Co Ltd ポリアミド樹脂組成物およびその成形品
US20110189419A1 (en) * 2008-07-07 2011-08-04 Arkema France Polyamide, composition comprising such a polyamide and their uses
CN101759853B (zh) 2008-12-26 2012-04-18 金发科技股份有限公司 一种半芳香族聚酰胺的制备方法
CN103360598A (zh) * 2012-03-30 2013-10-23 上海杰事杰新材料(集团)股份有限公司 一种高分子量半芳香族尼龙及其制备方法
CN103387667A (zh) * 2013-07-31 2013-11-13 上海凯赛生物技术研发中心有限公司 一种半芳香族尼龙及其制备方法
CN103923313A (zh) * 2014-04-30 2014-07-16 株洲时代新材料科技股份有限公司 一种半芳香共聚尼龙的制备方法
JP2015178562A (ja) * 2014-03-19 2015-10-08 宇部興産株式会社 ポリアミド樹脂組成物
CN108383996A (zh) * 2018-01-10 2018-08-10 金发科技股份有限公司 一种高结晶速率聚酰胺及其制备方法和应用
CN110028665A (zh) * 2018-01-12 2019-07-19 上海凯赛生物技术研发中心有限公司 一种高耐热性、低吸水率半芳香族聚酰胺及其制备方法
CN110294842A (zh) * 2019-05-24 2019-10-01 金发科技股份有限公司 一种半芳香族聚酰胺及其合成方法和由其组成的聚酰胺模塑组合物
CN110885442A (zh) * 2019-12-17 2020-03-17 郑州大学 一种共聚半芳香尼龙的合成方法
CN110982063A (zh) * 2019-12-05 2020-04-10 中仑塑业(福建)有限公司 一种半芳香族聚酰胺树脂及其制备方法
CN112724400A (zh) * 2020-12-29 2021-04-30 南京开创新材料科技有限公司 一种高cti值的半芳香族聚酰胺树脂及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101581080B1 (ko) * 2011-12-29 2015-12-30 제일모직주식회사 박막 성형성을 비롯한 물성을 향상시킨 폴리아미드 수지 조성물
CN109517165B (zh) * 2017-09-18 2020-09-15 上海凯赛生物技术股份有限公司 一种半芳香族生物基聚酰胺及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002113A (ja) * 2004-06-21 2006-01-05 Kuraray Co Ltd ポリアミド樹脂組成物およびその成形品
US20110189419A1 (en) * 2008-07-07 2011-08-04 Arkema France Polyamide, composition comprising such a polyamide and their uses
CN101759853B (zh) 2008-12-26 2012-04-18 金发科技股份有限公司 一种半芳香族聚酰胺的制备方法
CN103360598A (zh) * 2012-03-30 2013-10-23 上海杰事杰新材料(集团)股份有限公司 一种高分子量半芳香族尼龙及其制备方法
CN103387667A (zh) * 2013-07-31 2013-11-13 上海凯赛生物技术研发中心有限公司 一种半芳香族尼龙及其制备方法
JP2015178562A (ja) * 2014-03-19 2015-10-08 宇部興産株式会社 ポリアミド樹脂組成物
CN103923313A (zh) * 2014-04-30 2014-07-16 株洲时代新材料科技股份有限公司 一种半芳香共聚尼龙的制备方法
CN108383996A (zh) * 2018-01-10 2018-08-10 金发科技股份有限公司 一种高结晶速率聚酰胺及其制备方法和应用
CN110028665A (zh) * 2018-01-12 2019-07-19 上海凯赛生物技术研发中心有限公司 一种高耐热性、低吸水率半芳香族聚酰胺及其制备方法
CN110294842A (zh) * 2019-05-24 2019-10-01 金发科技股份有限公司 一种半芳香族聚酰胺及其合成方法和由其组成的聚酰胺模塑组合物
CN110982063A (zh) * 2019-12-05 2020-04-10 中仑塑业(福建)有限公司 一种半芳香族聚酰胺树脂及其制备方法
CN110885442A (zh) * 2019-12-17 2020-03-17 郑州大学 一种共聚半芳香尼龙的合成方法
CN112724400A (zh) * 2020-12-29 2021-04-30 南京开创新材料科技有限公司 一种高cti值的半芳香族聚酰胺树脂及其制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850692A (zh) * 2023-01-31 2023-03-28 富海(东营)新材料科技有限公司 耐高温尼龙及其制备方法与应用

Also Published As

Publication number Publication date
CN115612095A (zh) 2023-01-17
EP4357391A1 (en) 2024-04-24
US20240150523A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
JP5174921B2 (ja) 半芳香族ポリアミド、及び、半芳香族ポリアミドの調製方法
JP4179703B2 (ja) ポリアミドの製造方法
TWI518109B (zh) 聚醯胺樹脂
EP2459639B1 (en) Heat resistant polyamide compositions having high amine ends
CN112661955A (zh) 一种半芳香族共聚聚酰胺的制备方法
US20240150523A1 (en) High temperature resistant semi-aromatic copolyimide, preparation method, compositions, and molded product
CN112029090A (zh) 一种耐高温低吸水的聚酰胺共聚物5xt及其制备方法
CN114181390A (zh) 一种生物基耐高温聚酰胺及其制备方法
CN114196011B (zh) 一种长效抗菌生物基尼龙树脂及其制备方法
US20240174806A1 (en) High temperature resistant semi-aromatic polyamide resin, preparation method, composition and article thereof
JP4329292B2 (ja) ポリアミドプレポリマーの製造方法およびポリアミドの製造方法
WO2020122170A1 (ja) 半芳香族ポリアミド樹脂、及びその製造方法
JP7279634B2 (ja) 半芳香族ポリアミド樹脂、及びその製造方法
JP2012149238A (ja) 半芳香族ポリアミド原料の製造方法および半芳香族ポリアミドの製造方法
JP5892065B2 (ja) ポリアミドの製造方法
JP3523316B2 (ja) 半芳香族ポリアミドの製造法
JP4258152B2 (ja) ポリアミドの製造方法
CN110845721A (zh) 一种半芳香族聚酰胺的制备方法
JP5686625B2 (ja) 半芳香族ポリアミド
CN115286785B (zh) 一种基于间苯二甲胺的耐高温尼龙及其制备方法
JPH08231711A (ja) ポリアミド樹脂
CN116376011A (zh) 一种聚酰胺树脂及其聚合方法和应用
JP2023142848A (ja) 半芳香族ポリアミド樹脂組成物及び成形体
CN116554463A (zh) 一种高韧性共聚酰胺6/66的制备方法
CN115010921A (zh) 一种分子量分布窄的高分子量半芳香族聚酰胺及其连续化制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/000536

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2024501830

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022840931

Country of ref document: EP

Ref document number: 22840931.4

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022840931

Country of ref document: EP

Effective date: 20240119

NENP Non-entry into the national phase

Ref country code: DE