WO2016093054A1 - ダイヤフラム及びそれを用いたパルセーションダンパ - Google Patents

ダイヤフラム及びそれを用いたパルセーションダンパ Download PDF

Info

Publication number
WO2016093054A1
WO2016093054A1 PCT/JP2015/082936 JP2015082936W WO2016093054A1 WO 2016093054 A1 WO2016093054 A1 WO 2016093054A1 JP 2015082936 W JP2015082936 W JP 2015082936W WO 2016093054 A1 WO2016093054 A1 WO 2016093054A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
pulsation damper
protrusion
pressure
curvature
Prior art date
Application number
PCT/JP2015/082936
Other languages
English (en)
French (fr)
Inventor
真弘 冨塚
真 吉田
真 須藤
南部 晶紀
修 菱沼
浩敦 山田
Original Assignee
株式会社不二工機
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二工機, 株式会社デンソー filed Critical 株式会社不二工機
Priority to CN201580066432.5A priority Critical patent/CN107002615B/zh
Priority to US15/533,209 priority patent/US10480466B2/en
Publication of WO2016093054A1 publication Critical patent/WO2016093054A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0041Means for damping pressure pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston

Definitions

  • the present invention relates to a diaphragm and a pulsation damper using the diaphragm, and more particularly to a diaphragm capable of effectively reducing pulsation generated in a fuel pump and a pulsation damper using the diaphragm.
  • a pulsation of fluid sucked into the pressurization chamber from the suction passage is absorbed and reduced by a diaphragm provided in a low-pressure fuel passage that supplies fuel to the pressurization chamber of the housing body.
  • a session damper is known (see, for example, Patent Document 1).
  • the diaphragm has a protruding portion in one direction using a metal plate such as stainless steel, and the ceiling portion (center portion) of the protruding portion is a flange on the outer periphery thereof. Is formed by pressing so as to be a plane parallel to the surface. Then, this diaphragm is welded all around a predetermined flat plate (metal plate), or a flat plate is sandwiched between two diaphragms, and this metal plate and diaphragm are welded all around, or 2 without using a metal plate.
  • a pulsation damper is constructed by arranging a pair of diaphragms directly facing each other and welding them all around. At this time, an inert gas such as helium or nitrogen is sealed at a predetermined pressure in a space defined by the diaphragm and the metal plate, or a space defined between the two diaphragms.
  • an object of the present invention is to provide a diaphragm capable of obtaining a large pulsation reduction effect when applied to a fuel pump, and a pulsation damper using the diaphragm.
  • the diaphragm of the present invention has a flange portion and a protruding portion provided to protrude to one side of the flange portion, and the protruding portion is a pressure on the outer wall side of the protruding portion.
  • the protruding portion is a pressure on the outer wall side of the protruding portion.
  • at least two annular curved portions provided annularly on the radially outer side of the ceiling portion in a state where the pressure on the inner wall side and the pressure on the inner wall side are the same, at least two of the annular curved portions are formed on the diaphragm.
  • each is formed so as to be curved, and the respective centers of curvature are arranged at different positions on the side opposite to the protruding direction of the protruding portion, and are formed by a thin metal plate. It is characterized by that. That is, in the diaphragm described in Patent Document 1, the ceiling surface of the protruding portion is a plane parallel to the outer peripheral surface of the diaphragm, and the bottom outer peripheral portion (bottom contour portion) is a single annular curve forming portion.
  • the present inventors have intensively studied whether large pressure fluctuations can be absorbed by changing the shape of the diaphragm, and have reached the present invention.
  • the protruding portion has a connecting portion that connects at least two of the annular curved portions, and the connecting portion has the same pressure on the outer wall side and the inner wall side of the protruding portion.
  • the cross section taken along a virtual plane including the center line of the diaphragm may be formed in a straight line inclined with respect to the ceiling portion.
  • at least two of the annular curved portions may have different radii of curvature in a cross section cut along a virtual plane including a center line of the diaphragm.
  • another diaphragm of the present invention has a flange portion and a protrusion portion provided so as to protrude to one side of the flange portion, and the protrusion portion is a radially outer side of the central curved portion and the central curved portion.
  • At least one annular curved portion provided annularly, and the central curved portion and the at least one annular curved portion have the same pressure when the pressure on the outer wall side and the pressure on the inner wall side of the projecting portion are the same.
  • each is formed so as to be curved, the center of curvature thereof is located on the side opposite to the protruding direction of the protruding portion, and the curvature of the central bending portion
  • the center is located on the center line of the diaphragm and is characterized by being formed of a thin metal plate.
  • the diaphragm of the present invention can be applied as a pulsation damper by forming a closed space by joining with other members.
  • the closed space is filled with an inert gas.
  • the other member may be a diaphragm having the same shape, a diaphragm having a different shape, a flat plate, or the like.
  • the volume change with respect to pressure fluctuation can be increased, so that a great pulsation reduction effect can be obtained.
  • FIG. 1 is a cross-sectional view of the diaphragm according to the first embodiment of the present invention cut along a virtual plane including its center line.
  • FIG. 2 is a plan view of the diaphragm shown in FIG.
  • FIG. 3 is a cross-sectional view of the diaphragm according to the second embodiment of the present invention cut along a virtual plane including its center line.
  • FIG. 4 is a plan view of the diaphragm shown in FIG.
  • FIG. 5 is a cross-sectional view showing an example in which the diaphragm according to the first embodiment of the present invention is applied to a pulsation damper.
  • FIG. 1 is a cross-sectional view of the diaphragm according to the first embodiment of the present invention cut along a virtual plane including its center line.
  • FIG. 2 is a plan view of the diaphragm shown in FIG.
  • FIG. 3 is a cross-sectional view of the diaphragm according to the second embodiment of the present
  • FIG. 6 is a cross-sectional view showing an example in which the diaphragm according to the second embodiment of the present invention is applied to a pulsation damper.
  • FIG. 7 is a cross-sectional view showing a modification when the diaphragm according to the first embodiment of the present invention is applied to a pulsation damper.
  • FIG. 8 is a cross-sectional view showing another modification when the diaphragm according to the first embodiment of the present invention is applied to a pulsation damper.
  • FIG. 9 is a cross-sectional view showing still another modification when the diaphragm according to the first embodiment of the present invention is applied to a pulsation damper.
  • FIG. 7 is a cross-sectional view showing a modification when the diaphragm according to the first embodiment of the present invention is applied to a pulsation damper.
  • FIG. 8 is a cross-sectional view showing another modification when the diaphragm according to the first embodiment of the present invention
  • FIG. 10 is a cross-sectional view showing still another modification when the diaphragm according to the first embodiment of the present invention is applied to a pulsation damper.
  • FIG. 11 is a cross-sectional view showing still another modification when the diaphragm according to the first embodiment of the present invention is applied to a pulsation damper.
  • FIG. 12 is a graph showing characteristics of a pulsation damper using the diaphragms according to the first and second embodiments of the present invention shown in FIGS. 1 and 3.
  • FIG. 1 is a cross-sectional view of a diaphragm 10 according to a first embodiment of the present invention cut along a virtual plane including a center line (vertical line) O1
  • FIG. 2 is a plan view of the diaphragm 10 shown in FIG. It is.
  • a cross section cut along a virtual plane as shown in FIG. 1 is referred to as a “central cross section”.
  • the pulsation damper is used in a state in which an inert gas or the like is sealed in the protruding portion of the diaphragm at a pressure higher than the atmospheric pressure.
  • gas is sealed in the protruding portion 10A.
  • the pressure on the outer wall side (projecting side) of the protruding portion 10A and the pressure on the inner wall side are the same.
  • the diaphragm 10 of the first embodiment is formed by performing plastic working such as pressing on a thin metal plate such as a stainless steel plate so that the outer shape becomes circular (the horizontal cross section of each part is circular). To be formed).
  • the diaphragm 10 includes a first annular curved portion 11 having a curvature R11C and a radius of curvature R11 in the center section, and a second curvature radius R12 having a curvature R12C and a center of curvature in the center section.
  • An annular curved portion 12 is formed, and a central portion (ceiling portion 10S) surrounded by the first annular curved portion 11 is formed in a planar shape, whereby the diaphragm 10 includes a protruding portion 10A protruding in one direction.
  • a recess 10B is formed on the side opposite to the protrusion 10A (the inner wall side of the protrusion 10A).
  • the first annular curved portion 11 and the second annular curved portion 12 are formed as two-stage annular curved portions that are annularly provided on the outer side in the radial direction of the ceiling portion 10 ⁇ / b> S that is flat on the appearance of the diaphragm 10.
  • An annular flange portion 10C is formed on the outer periphery of the protruding portion 10A, and the protruding portion 10A protrudes to one side of the annular flange portion 10C.
  • the center of curvature R11C of the first annular curved portion 11 and the center of curvature R12C of the second annular curved portion 12 are respectively different positions on the side opposite to the projecting direction of the projecting portion 10A (the inner wall side of the projecting portion 10A). Is provided.
  • the connecting portion 10R that connects the first annular curved portion 11 and the second annular curved portion 12 is substantially linear in the central cross section, and is connected to the ceiling portion. It is formed to be inclined.
  • first annular curved portion 11 and second annular curved portion 12 are formed in the central cross section. Therefore, as shown in FIG. 1, when the radius of curvature R11 of the first annular curved portion 11 and the radius of curvature R12 of the second annular curved portion 12 have different dimensions, the connecting portion 10R is particularly provided. It is not necessary. In this case, the curvature centers R11C and R12C are at different positions. In addition, when the radius of curvature R11 of the first annular curved portion 11 and the radius of curvature R12 of the second annular curved portion 12 have the same dimensions, a linear inclined surface (connecting portion 10R) is provided, and the curvature is also provided. The centers R11C and R12C are at different positions. In the first embodiment, two annular curved portions are formed, but three or more annular curved portions may be formed.
  • FIG. 3 is a cross-sectional view of the diaphragm 20 according to the second embodiment of the present invention cut along a virtual plane including the center line O2
  • FIG. 4 is a plan view of the diaphragm 20 shown in FIG. 3 and 4, similarly to FIGS. 1 and 2, no gas is sealed inside the protrusion 20 ⁇ / b> A, and the pressure on the outer wall side and the pressure on the inner wall side of the protrusion 20 ⁇ / b> A are the same. The case of a state is shown.
  • the diaphragm 20 is formed such that a horizontal cross section of each part becomes circular by performing plastic working such as pressing on a thin metal plate such as a stainless steel plate.
  • the diaphragm 20 is provided around the central curved portion 25 with one central curved portion 25 having a central radius of curvature R25C and a large radius of curvature R25 at the central portion of the central cross section.
  • An annular curved portion 22 having a center of curvature and a radius of curvature of R22 (but smaller than R25) is formed.
  • the annular curved portion 22 is annularly provided on the outer side in the radial direction of the central curved portion 25 in the appearance of the diaphragm 20. That is, the diaphragm 20 includes a protruding portion 20A including a single-stage (one) annular bent portion (annular curved portion 22) and a ceiling portion having a dome shape. An annular flange portion 20C is formed on the outer periphery of the protruding portion 20A, and the protruding portion 20A protrudes to one side of the annular flange portion 20C.
  • the center of curvature R25C of the central curved portion 25 and the center of curvature R22C of the annular curved portion 22 are both on the side opposite to the projecting direction of the projecting portion 20A (the inner wall side of the projecting portion 20A).
  • the curvature center R25C of the central bending portion 25 is positioned on the center line O2 of the diaphragm 20.
  • one central curved portion and one annular curved portion are formed, but one central curved portion and two or more annular curved portions (that is, for example, FIG. 1 and FIG. 1).
  • a central curved portion may be added.
  • FIG. 5 is a diagram showing an example in which the diaphragm according to the first embodiment of the present invention shown in FIGS. 1 and 2 is applied to a pulsation damper, and the pulsation damper includes its center line O3. It is sectional drawing cut
  • the pulsation damper 100 uses two diaphragms 10 shown in FIGS. 1 and 2, and overlaps the respective flange portions 10 ⁇ / b> C so as to face the concave portion 10 ⁇ / b> B, and helium, nitrogen, etc. After the inert gas is sealed at a predetermined pressure, the flange portion 10C is integrated by welding all around by laser welding or the like.
  • FIG. 5 is a diagram showing an example in which the diaphragm according to the first embodiment of the present invention shown in FIGS. 1 and 2 is applied to a pulsation damper, and the pulsation damper includes its center line O3. It is sectional drawing cut
  • FIG 5 shows a state in which the internal pressure of the pulsation damper 100 (inert gas filling pressure) is equal to the external pressure.
  • the pulsation damper 100 illustrated in FIG. 5 can be used for the purpose of reducing pressure pulsation in a pump by being attached to a fuel passage such as a fuel pump as described in Patent Document 1 described above, for example.
  • a fuel passage such as a fuel pump as described in Patent Document 1 described above, for example.
  • the operation of the pulsation damper is compared with the case where there is one annular curved portion as shown in Patent Document 1.
  • the amount of deformation at the time increases, and the pulsation preventing effect of the pulsation damper is improved.
  • the plurality of annular curved portions are arranged so that the center of curvature is alternately positioned in both the protruding direction of the diaphragm protruding portion (outer wall direction) and the direction opposite to the protruding direction (inner wall direction) (that is, the diaphragm is uneven)
  • the pulsation damper is in operation, especially when the external pressure is higher than the inert gas sealing pressure, the curved portion whose center of curvature is in the protruding direction of the diaphragm Then, there is a concern that the curvature becomes large (that is, the radius of curvature becomes small), stress concentrates on these annular curved portions, and the durability of the pulsation damper decreases.
  • FIG. 6 is a diagram showing an example in which the diaphragm according to the second embodiment of the present invention shown in FIGS. 3 and 4 is applied to a pulsation damper, and the pulsation damper includes its center line O4. It is sectional drawing cut
  • the pulsation damper 200 uses two diaphragms 20 shown in FIGS. 3 and 4 and is overlapped by the respective flange portions 20C so as to face the recesses 20B, and an inert gas such as helium or nitrogen is given inside the diaphragm 20B. After sealing by pressure, the flange portion 20C is integrated by welding all around by laser welding or the like.
  • FIG. 6 also shows a state where the internal pressure of the pulsation damper 200 is equal to the external pressure.
  • the pulsation damper 200 When the pulsation damper 200 is placed in the atmosphere, it is indicated by a broken line 20P. It becomes the shape where the center which swelled is swollen.
  • the pulsation damper 200 having such a configuration can also be used for a purpose of reducing pressure pulsation in the pump by being attached to a fuel passage such as a fuel pump.
  • a fuel passage such as a fuel pump.
  • the diaphragm central part is compared with the case of Patent Document 1 where the flat part is flat,
  • the amount of deformation (the amount of change in the volume inside the pulsation damper) is small, and when the external pressure is greater than the enclosed pressure, the diaphragm curves in the direction opposite to the direction in which it is curved outward. For this reason, at least the volume that is curved outward in advance has a large volume change amount.
  • the pulsation prevention effect is high. Therefore, by adjusting the sealing pressure of the inert gas sealed inside the pulsation damper 200, a predetermined amount can be obtained. The pulsation prevention effect according to the pulsation pressure can be further improved.
  • FIGS. 7 to 11 are views showing modifications when the diaphragm according to the first embodiment of the present invention is applied to a pulsation damper, and each of the pulsation dampers includes virtual planes including center lines O5 to O9. It is sectional drawing cut
  • the flange portion 10C and the outer peripheral portion 50C of the support plate 50 are integrally welded by laser welding or the like.
  • the pulsation damper 400 shown in FIG. 8 is formed with a recess 60A in the center of a disk-shaped flat support plate 60, and the recess 60A enters the recess 10B of the diaphragm 10 with the support plate 60.
  • an inert gas such as helium or nitrogen at a predetermined pressure therein
  • the flange portion 10C and the outer peripheral portion 60C of the support plate 60 are welded all around by laser welding or the like. It is integrated.
  • the internal volume of the pulsation damper 300 shown in FIG. 7 is reduced, and the pulsation damper is used while the common diaphragm 10 is used only by adjusting the shape of the recess 60A, that is, the volume.
  • the characteristics required for 400 can be obtained.
  • the pulsation damper 500 shown in FIG. 9 has a convex portion 70A formed at the center of a disc-shaped flat support plate 70, and the convex portion 70A is located on the opposite side of the concave portion 10B of the diaphragm 10.
  • the support plate 70 and the diaphragm 10 are overlapped, and an inert gas such as helium or nitrogen is sealed therein with a predetermined pressure, and then the flange portion 10C and the outer peripheral portion 70C of the support plate 70 are bonded by laser welding or the like. It is integrated by welding all around.
  • the internal volume of the pulsation damper 300 shown in FIG. 7 is increased.
  • the characteristics required for the pulsation damper 500 can be obtained using the common diaphragm 10 only by changing the volume of the convex portion 70A.
  • the pulsation damper 600 shown in FIG. 10 has the diaphragm 10 shown in FIGS. 1 and 2 disposed on both sides of the support plate 50 shown in FIG. After an inert gas such as nitrogen or nitrogen is sealed at a predetermined pressure, the flange portion 10C of each diaphragm 10 and the outer peripheral portion 50C of the support plate 50 are integrated by laser welding or the like.
  • This modification is equivalent to a configuration in which two sets of pulsation dampers 300 in FIG. This modification can also be adopted according to the characteristics required for the pulsation damper.
  • a pulsation damper can be comprised using the diaphragm 10 and a flat plate.
  • a pulsation damper 700 shown in FIG. 11 is configured using the diaphragm 10 shown in FIGS. 1 and 2 and a diaphragm 90 having a shape different from that of the diaphragm 10. That is, the diaphragm 90 is provided with only one annular curved portion 91.
  • the central portion of the projecting portion 90A of the diaphragm 90 (the annular curved portion 91 The enclosed area is a plane.
  • the flange portion 10C of the diaphragm 10 and the flange portion 90C of the diaphragm 90 are overlapped to face the recesses 10B and 90B, and an inert gas such as helium or nitrogen is sealed therein with a predetermined pressure.
  • the diaphragms 10 and 90 are integrated by welding the entire circumference of 90C and 90C by laser welding or the like. This modification can also be adopted according to the characteristics required for the pulsation damper.
  • FIG. 12 shows characteristics of the pulsation damper shown in FIGS. 5 and 6 constructed using the diaphragms (shown in FIGS. 1 and 3) of the first and second embodiments of the present invention, and a conventional one.
  • 6 is a graph showing the characteristics of the pulsation damper, in which the solid line indicates the characteristics of the pulsation damper shown in FIG. 5, the one-dot chain line indicates the characteristics of the pulsation damper shown in FIG. 6, and the broken line indicates the characteristics of the conventional pulsation damper. Is shown.
  • the characteristic of the conventional product is that the area (ceiling part) surrounded by one annular curved part and the annular curved part is flat.
  • the measurement was carried out by applying a predetermined repeated fluctuation pressurization (pulsation pressure) to the pulsation damper and measuring the amount of change in the volume of the pulsation damper that occurs when the repeated fluctuation pressurization is applied.
  • the characteristics of the pulsation damper obtained by such a measuring method are judged to have a higher evaluation, for example, when the volume change amount is larger with respect to the same external pressure value.
  • the external pressure is in the range of about 0.4 to 1.0 MPa. Since all of the pulsation dampers shown in No. 6 were larger than the volume change amount of the conventional product, the performance as a damper was highly evaluated. In particular, in the range where the external pressure is 0.8 MPa or more, the pulsation damper shown in FIG. 5 having two annular curved portions has a volume approximately 1.8 times that of the conventional pulsation damper having only one annular curved portion. In the pulsation damper of FIG. 6 in which one central curved portion and one annular curved portion are formed around the central curved portion, a volume variation amount of about 1.5 times can be obtained. Recognize.
  • the volume change amount and the change characteristics of the pulsation damper can be appropriately changed by changing the position of the center of curvature of the annular curved portion, the radius of curvature, etc. It was also found that it can be adjusted (results not shown). From these facts, when the diaphragm is applied to a pulsation damper by appropriately selecting the number of annular curved portions, the position of the center of curvature, the radius of curvature, etc. of the diaphragm of the present invention, the required volume change amount and durability Sex can be obtained.

Abstract

 フランジ部及び前記フランジ部の一方の側に突出するよう設けられた突出部を有し、前記突出部は、前記突出部の外壁側の圧力と内壁側の圧力とが同じ状態において平面状の天井部及び前記天井部の径方向外側に環状に設けられる少なくとも2つの環状湾曲部を有し、少なくとも2つの前記環状湾曲部は、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、いずれも湾曲するように形成されており、それぞれの曲率中心が前記突出部の突出方向とは反対側の異なる位置に配置され、金属薄板により成形されたダイヤフラム。

Description

ダイヤフラム及びそれを用いたパルセーションダンパ
 本発明は、ダイヤフラム及びそれを用いたパルセーションダンパに関し、特に燃料ポンプに生じる脈動を効果的に低減することのできるダイヤフラム及びそれを用いたパルセーションダンパに関する。
 従来の高圧燃料ポンプ等において、ハウジング本体の加圧室へ燃料を供給する低圧燃料通路に設けられたダイヤフラムにより、吸入通路から当該加圧室に吸入される流体の脈動を吸収して低減させるパルセーションダンパが知られている(例えば、特許文献1参照)。
 このような従来のパルセーションダンパにおいては、ダイヤフラムは、例えばステンレススチール等の金属板を用いて一方向に突出部を有するように、かつその突出部の天井部分(中央部)がその外周のフランジと平行な平面となるように、プレス加工により形成されている。
 そして、このダイヤフラムを所定の平板(金属板)に全周溶接したり、あるいは2枚のダイヤフラムに平板を挟み、この金属板とダイヤフラムとを全周溶接したり、あるいは金属板を用いずに2枚のダイヤフラムを直接向い合せに配置してそれらを全周溶接することにより、パルセーションダンパが構成されている。
 このとき、ダイヤフラムと金属板とで画定される空間、あるいは2枚のダイヤフラムの間で画定される空間には、ヘリウムや窒素等の不活性ガスが所定の圧力で封入される。
特開2007-309118号公報
 しかし、特許文献1に記載されているようなパルセーションダンパにおいては、パルセーションダンパの外部からの圧力負荷に対して容積変化量が十分に大きくないため、適用される高圧ポンプによっては脈動(高圧に起因する大きな圧力変動)を吸収しきれない懸念があった。
 そこで本発明の目的は、燃料ポンプに適用した場合に大きな脈動低減効果が得られるダイヤフラム及びそれを用いたパルセーションダンパを提供することにある。
 上記目的を達成するために、本発明のダイヤフラムは、フランジ部及び前記フランジ部の一方の側に突出するよう設けられた突出部を有し、前記突出部は、前記突出部の外壁側の圧力と内壁側の圧力とが同じ状態において平面状の天井部及び前記天井部の径方向外側に環状に設けられる少なくとも2つの環状湾曲部を有し、少なくとも2つの前記環状湾曲部は、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、いずれも湾曲するように形成されており、それぞれの曲率中心が前記突出部の突出方向とは反対側の異なる位置に配置され、金属薄板により成形されたことを特徴とする。
 すなわち、特許文献1に記載されたダイヤフラムにおいて、突出部の天井面がダイヤフラム外周面と平行な平面であり、かつその底部外周部(底部輪郭部)がただ1つの環状の湾曲形成部となっている点に着目し、ダイヤフラムの形状を変更することにより大きな圧力変動を吸収することができないかと鋭意検討し、本発明に至ったものである。
 また、前記ダイヤフラムにおいて、前記突出部は、少なくとも2つの前記環状湾曲部同士を接続する接続部を有し、前記接続部は、前記突出部の外壁側の圧力と内壁側の圧力とが同じ状態のとき、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、前記天井部に対し傾斜する直線状となるよう形成されても良い。
 また、前記ダイヤフラムにおいて、少なくとも2つの前記環状湾曲部は、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、それぞれ曲率半径が異なるようにしても良い。
 また、本発明の別のダイヤフラムは、フランジ部及び前記フランジ部の一方の側に突出するよう設けられた突出部を有し、前記突出部は、中央湾曲部及び前記中央湾曲部の径方向外側に環状に設けられる少なくとも1つの環状湾曲部を有し、前記中央湾曲部と少なくとも1つの前記環状湾曲部は、前記突出部の外壁側の圧力と内壁側の圧力とが同じ状態のとき、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、いずれも湾曲するように形成されており、その曲率中心が前記突出部の突出方向とは反対側に位置し、かつ前記中央湾曲部の曲率中心は当該ダイヤフラムの中心線上に位置し、金属薄板により成形されたことを特徴とする。
 本発明のダイヤフラムは、他の部材と接合して閉空間を形成することにより、パルセーションダンパとして適用できる。また、上記閉空間には、不活性ガスが充填されている。
 このとき、上記他の部材は、同一形状のダイヤフラム、異なる形状のダイヤフラム、又は平板等のいずれであってもよい。
 本発明のダイヤフラムを用いたパルセーションダンパによれば、燃料ポンプに適用した場合に圧力変動に対する容積変化量を増加させることができるため、大きな脈動低減効果が得られる。
図1は、本発明の第1の実施形態に係るダイヤフラムをその中心線を含む仮想平面で切断した断面図である。 図2は、図1に示されたダイヤフラムの平面図である。 図3は、本発明の第2の実施形態に係るダイヤフラムをその中心線を含む仮想平面で切断した断面図である。 図4は、図3に示されたダイヤフラムの平面図である。 図5は、本発明の第1の実施形態に係るダイヤフラムをパルセーションダンパに適用した場合の一例を示す断面図である。 図6は、本発明の第2の実施形態に係るダイヤフラムをパルセーションダンパに適用した場合の一例を示す断面図である。 図7は、本発明の第1の実施形態に係るダイヤフラムをパルセーションダンパに適用した場合の変形例を示す断面図である。 図8は、本発明の第1の実施形態に係るダイヤフラムをパルセーションダンパに適用した場合の他の変形例を示す断面図である。 図9は、本発明の第1の実施形態に係るダイヤフラムをパルセーションダンパに適用した場合のさらに他の変形例を示す断面図である。 図10は、本発明の第1の実施形態に係るダイヤフラムをパルセーションダンパに適用した場合のさらに他の変形例を示す断面図である。 図11は、本発明の第1の実施形態に係るダイヤフラムをパルセーションダンパに適用した場合のさらに他の変形例を示す断面図である。 図12は、図1及び図3に示された本発明の第1及び第2の実施形態に係るダイヤフラムを使用したパルセーションダンパの特性を示すグラフである。
図1は、本発明の第1の実施形態に係るダイヤフラム10をその中心線(垂直線)O1を含む仮想平面で切断した断面図、図2は、図1に示されたダイヤフラム10の平面図である。以下の説明において、図1のような仮想平面で切断した断面を「中心断面」という。
 一般にパルセーションダンパは、ダイヤフラムの突出部内部に大気圧よりも高い圧力で不活性ガス等を封入した状態で用いられるが、図1及び図2は、突出部10Aの内部にはガスは封入されておらず、該突出部10Aの外壁側(突出側)の圧力と内壁側の圧力とが同じ状態の場合を示している。
 図1及び図2に示すとおり、第1の実施形態のダイヤフラム10は、ステンレス鋼板等の金属薄板にプレス等の塑性加工を行うことにより、外形が円形となるように(各部の水平断面が円形となるように)形成される。
 また、ダイヤフラム10には、中心断面において符号R11Cを曲率中心とし曲率半径がR11である第1の環状湾曲部11と、同じく中心断面において符号R12Cを曲率中心とし曲率半径がR12である第2の環状湾曲部12とが形成され、また第1の環状湾曲部11で囲まれた中央部(天井部10S)は平面状とされ、これにより当該ダイヤフラム10は一方向に突出した突出部10Aを備え、当該突出部10Aと反対側(突出部10Aの内壁側)には凹部10Bが形成されている。
 これら第1の環状湾曲部11及び第2の環状湾曲部12は、ダイヤフラム10の外観上では、平面状とされた天井部10Sの径方向外側に環状に設けられる2段の環状湾曲部として形成されている。
 また、突出部10Aの外周には、環状のフランジ部10Cが形成されており、突出部10Aが環状のフランジ部10Cの一方の側に突出する形態とされている。
 第1の環状湾曲部11の曲率中心R11C及び第2の環状湾曲部12の曲率中心R12Cは、いずれも突出部10Aの突出方向とは反対側(突出部10Aの内壁側)において、それぞれ異なる位置に設けられている。
また、第1の実施形態において、第1の環状湾曲部11及び第2の環状湾曲部12を接続する接続部10Rは、その中心断面においてほぼ直線状となるように、かつ天井部に対して傾斜するように形成されている。
 この第1の実施形態は、中心断面において2種の環状湾曲部(第1の環状湾曲部11及び第2の環状湾曲部12)を形成するものである。したがって、図1に示したように、第1の環状湾曲部11の曲率半径R11と第2の環状湾曲部12の曲率半径R12とを異なる寸法とする場合には、接続部10Rは特に設けられなくても良い。この場合、曲率中心R11C及びR12Cは異なる位置となる。
 また、第1の環状湾曲部11の曲率半径R11と第2の環状湾曲部12の曲率半径R12とを同一寸法とする場合には、直線状の傾斜面(接続部10R)を設け、また曲率中心R11C及びR12Cは異なる位置とされる。
 なお、この第1の実施形態においては2つの環状湾曲部が形成されているが、3つ以上の環状湾曲部を形成してもよい。
 図3は、本発明の第2の実施形態に係るダイヤフラム20をその中心線O2を含む仮想平面で切断した断面図、図4は、図3に示されたダイヤフラム20の平面図である。この図3及び図4においても、図1及び図2と同様に、突出部20Aの内部にはガスは封入されておらず、該突出部20Aの外壁側の圧力と内壁側の圧力とが同じ状態の場合を示している。
 このダイヤフラム20は、第1の実施形態に係るダイヤフラム10と同様にステンレス鋼板等の金属薄板にプレス等の塑性加工を行うことにより、各部の水平断面が円形となるように形成されている。
 また、ダイヤフラム20には、中心断面の中央部に符号R25Cを曲率中心とし大きな曲率半径R25を持つ1つの中央湾曲部25と、該中央湾曲部25の周囲に設けられ、中心断面において符号R22Cを曲率中心とし曲率半径がR22(ただしR25よりも小)である環状湾曲部22とが形成されている。
 ここで、環状湾曲部22は、ダイヤフラム20の外観上では中央湾曲部25の径方向外側に環状で設けられている。つまり、ダイヤフラム20は、1段(1つ)の円環状の屈曲部(環状湾曲部22)を備え、天井部がドーム状とされた突出部20Aを備えている。
 また、突出部20Aの外周には、環状のフランジ部20Cが形成されており、突出部20Aが上記環状のフランジ部20Cの一方の側に突出する形態とされている。
 図3及び4に示すように、中央湾曲部25の曲率中心R25Cと環状湾曲部22の曲率中心R22Cとは、いずれも突出部20Aの突出方向とは反対側(突出部20Aの内壁側)において、それぞれ異なる位置に設けられており、かつ中央湾曲部25の曲率中心R25Cは当該ダイヤフラム20の中心線O2上に位置するようにされている。
 なお、この第2の実施形態においては、1つの中央湾曲部と1つの環状湾曲部とが形成されているが、1つの中央湾曲部と2つ以上の環状湾曲部(すなわち、例えば図1及び2のダイヤフラム10の構成に加えて中央湾曲部を追加したもの)を形成してもよい。
 図5は、図1及び2に示された本発明の第1の実施形態に係るダイヤフラムをパルセーションダンパに適用した場合の一例を示す図であり、該パルセーションダンパをその中心線O3を含む仮想平面で切断した断面図である。
 図5に示すように、パルセーションダンパ100は、図1及び2に示されたダイヤフラム10を2枚用い、それぞれのフランジ部10Cで重ね合わせて凹部10Bを対向させ、その内部にヘリウムや窒素等の不活性ガスを所定の圧力で封入した後、上記フランジ部10Cをレーザ溶接等で全周溶接することにより一体化されている。
 図5は、当該パルセーションダンパ100の内部の圧力(不活性ガスの封入圧力)と外部の圧力とが等しいときの状態を示しており、当該パルセーションダンパ100が大気中に置かれた場合(すなわち、パルセーションダンパ100の内部の圧力よりも外部の圧力の方が低い場合)には、符号10Pの破線で示されたような中央が膨らんだ形状となる。
 図5に例示されるパルセーションダンパ100は、例えば上述の特許文献1に示されたように、燃料ポンプ等の燃料通路に取り付けてポンプ内の圧力脈動を低減させる用途に用いることができる。
 この場合、図5の実施形態においては、複数の環状湾曲部が形成されているので、特許文献1に示されたような環状湾曲部が1つの場合に比較して、当該パルセーションダンパの動作時(脈動による変形時)における変形量が増大し、当該パルセーションダンパの脈動防止効果が向上する。
 ここで、複数の環状湾曲部を、その曲率中心がダイヤフラム突出部の突出方向(外壁方向)と突出方向とは逆方向(内壁方向)との双方に交互に位置するように(すなわちダイヤフラムが凹凸を有して湾曲するように)形成する場合には、当該パルセーションダンパの動作時、特に外部圧力が不活性ガスの封入圧力よりも高い場合に、曲率中心がダイヤフラムの突出方向にある湾曲部では曲率が大きくなり(すなわち曲率半径が小さくなり)、これら環状湾曲部に応力が集中して、当該パルセーションダンパの耐久性が低下する懸念がある。
 しかし、図5に示された実施形態では、複数の環状湾曲部11、12の曲率中心が共にダイヤフラム突出部の突出方向とは逆方向にあるため、外部圧力が不活性ガスの封入圧力よりも高い状態においても環状湾曲部11、12の曲率半径が小さくなることもなく、当該パルセーションダンパの脈動防止効果の向上を図りつつ、その耐久性も向上することとなる。
 図6は、図3及び4に示された本発明の第2の実施形態に係るダイヤフラムをパルセーションダンパに適用した場合の一例を示す図であり、該パルセーションダンパをその中心線O4を含む仮想平面で切断した断面図である。
 パルセーションダンパ200は、図3及び4に示されたダイヤフラム20を2枚用い、それぞれのフランジ部20Cで重ね合わせて凹部20Bを対向させ、その内部にヘリウムや窒素等の不活性ガスを所定の圧力で封入した後、上記フランジ部20Cをレーザ溶接等で全周溶接することにより一体化されている。
 図6も、当該パルセーションダンパ200の内部の圧力と外部の圧力とが等しいときの状態を示しており、当該パルセーションダンパ200が大気中に置かれた場合には、符号20Pの破線で示されたような中央が膨らんだ形状となる。
 このような構成のパルセーションダンパ200においても、燃料ポンプ等の燃料通路に取り付けてポンプ内の圧力脈動を低減させる用途に用いることができる。この場合、図6の実施形態においては、1つの環状湾曲部22とその中央に1つの中央湾曲部25が形成されているので、図5の実施形態と同様、特許文献1の事例に比較して当該パルセーションダンパの動作時における変形量が増大し、当該パルセーションダンパの脈動防止効果が向上する。
 また、このパルセーションダンパ200においては、ダイヤフラム20の突出部20Aが中央湾曲部25を備えており予め外側に湾曲しているので、ダイヤフラム中央部が平坦な特許文献1の事例に比較して、外圧が封入圧力よりも小さい状態ではその変形量(パルセーションダンパ内部の容積の変化量)は小さく、また外圧が封入圧力よりも大きい状態ではダイヤフラムは予め外側に湾曲した方向とは逆方向に湾曲する為、少なくとも予め外側に湾曲した容積分は容積の変化量が大きくなる。
 所定圧力以上の脈動が生じた場合に当該パルセーションダンパの変化量を大きくすると脈動防止効果が高いので、パルセーションダンパ200の内部に封入される不活性ガスの封入圧力を調整することにより、所定の脈動圧に応じた脈動防止効果をさらに向上させることができる。
 図7~図11は、本発明の第1の実施形態に係るダイヤフラムをパルセーションダンパに適用した場合の変形例を示す図であり、それぞれパルセーションダンパをその中心線O5~O9を含む仮想平面で切断した断面図である。図7~図11において、図1及び2と同一の符号は、同一又は同等部分を示している。また、図7~図11も、図5及び図6と同様に、当該パルセーションダンパの内部の圧力と外部の圧力とが等しいときの状態を示しており、当該パルセーションダンパが大気中に置かれた場合には、符号10P、90Pの破線で示されたような中央が膨らんだ形状となる。
 図7に示されたパルセーションダンパ300は、図1及び2に示されたダイヤフラム10と、ステンレス鋼板等により成形された円板状平板の支持板50とを重ね合わせ、その内部にヘリウムや窒素等の不活性ガスを所定の圧力で封入した後、フランジ部10Cと支持板50の外周部50Cとをレーザ溶接等で全周溶接することにより一体化されている。
 図8に示されたパルセーションダンパ400は、円板状平板の支持板60の中央に凹部60Aを形成し、該凹部60Aがダイヤフラム10の凹部10B内に入り込むようにした状態で支持板60とダイヤフラム10とを重ね合わせ、その内部にヘリウムや窒素等の不活性ガスを所定の圧力で封入した後、フランジ部10Cと支持板60の外周部60Cとをレーザ溶接等で全周溶接することにより一体化されている。
 この変形例は、図7に示されたパルセーションダンパ300の内部容積を減少させたものであり、凹部60Aの形状すなわち容積を調整するだけで、共通のダイヤフラム10を用いながら、当該パルセーションダンパ400に必要とされる特性(脈動吸収特性)を得ることができる。
 図9に示されたパルセーションダンパ500は、円板状平板の支持板70の中央に凸部70Aを形成し、該凸部70Aがダイヤフラム10の凹部10Bとは反対側に位置するようにした状態で支持板70とダイヤフラム10とを重ね合わせ、その内部にヘリウムや窒素等の不活性ガスを所定の圧力で封入した後、フランジ部10Cと支持板70の外周部70Cとをレーザ溶接等で全周溶接することにより一体化されている。
 この変形例は、図8の事例とは逆に、図7に示されたパルセーションダンパ300の内部容積を増加させたものである。この変形例においても、凸部70Aの容積を変更するだけで、共通のダイヤフラム10を用いながら、当該パルセーションダンパ500に必要とされる特性を得ることができる。
 図10に示されたパルセーションダンパ600は、図7に示された支持板50の両側に、図1及び2に示されたダイヤフラム10をそれぞれ1枚ずつ配置して重ね合わせ、その内部にヘリウムや窒素等の不活性ガスを所定の圧力で封入した後、各ダイヤフラム10のフランジ部10Cと支持板50の外周部50Cとをレーザ溶接等で全周溶接することにより一体化されている。
 この変形例は、図7のパルセーションダンパ300を2組重ね合わせて構成したものと同等である。この変形例も、当該パルセーションダンパに必要とされる特性に応じて採用することができる。
 このように、ダイヤフラム10と平板とを用いてパルセーションダンパを構成することができる。
 図11に示されたパルセーションダンパ700は、図1及び図2に示されたダイヤフラム10と、それとは異なる形状のダイヤフラム90とを用いて構成されたものである。すなわち、ダイヤフラム90には環状湾曲部91は1つだけ設けられており、当該パルセーションダンパ内の圧力と外部の圧力とが等しいときはダイヤフラム90の突出部90Aの中央部(環状湾曲部91で囲まれた領域)は平面である。
 ダイヤフラム10のフランジ部10Cとダイヤフラム90のフランジ部90Cとを重ね合わせて凹部10B及び90Bを対向させ、その内部にヘリウムや窒素等の不活性ガスを所定の圧力で封入した後、上記フランジ部10C及び90Cをレーザ溶接等で全周溶接することにより各ダイヤフラム10、90は一体化されている。
 この変形例も、当該パルセーションダンパに必要とされる特性に応じて採用することができる。
 なお、図7~図11の事例は、いずれも図1及び図2に示されたダイヤフラム10を用いたものであるが、ダイヤフラム10の代わりに図3及び図4に示されたダイヤフラム20を用いても良いことは当然である。
 また、図1及び図2に示されたダイヤフラム10と、図3及び図4に示されたダイヤフラム20とを溶接してパルセーションダンパを構成しても良いことも当然である。
 図12は、本発明の第1及び第2の実施形態のダイヤフラム(図1及び図3に図示)を用いて構成された図5及び図6に示されたパルセーションダンパの特性、並びに従来のパルセーションダンパの特性を表すグラフであり、実線が図5に示されたパルセーションダンパの特性、一点鎖線が図6に示されたパルセーションダンパの特性、そして破線が従来のパルセーションダンパの特性を示している。
 従来品の特性は、環状湾曲部が1つで環状湾曲部で囲まれた領域(天井部)が平面状とされたものとした。また、測定は、パルセーションダンパに所定の繰り返し変動加圧(脈動圧力)を負荷し、当該繰り返し変動加圧の負荷時に生じるパルセーションダンパの容積の変化量を測定することによって実施した。
 このような測定方法によって得られたパルセーションダンパの特性は、例えば同一の外圧値に対して容積変化量が大きい方が、評価が高いと判断される。
図12に示すように、横軸をパルセーションダンパの周囲の外圧、縦軸をパルセーションダンパの容積変化量としたとき、外圧が約0.4~1.0MPaの範囲において、図5及び図6に示されたパルセーションダンパは、いずれも従来品の容積変化量よりも大きくなるため、ダンパとしての性能が高く評価された。
 特に、外圧が0.8MPa以上の範囲において、2つの環状湾曲部を有する図5のパルセーションダンパにおいては1つの環状湾曲部のみを有する従来のパルセーションダンパに比べて約1.8倍の容積変化量を得ることができ、また1つの中央湾曲部及びその周囲に1つの環状湾曲部が形成された図6のパルセーションダンパにおいては約1.5倍の容積変化量を得ることができることがわかる。
 また、追加の試験により、環状湾曲部の数が同一であっても、該環状湾曲部の曲率中心の位置や曲率半径等を変更することにより、パルセーションダンパの容積変化量や変化特性を適宜調節し得ることもわかった(結果については図示せず)。
 これらのことから、本発明のダイヤフラムの環状湾曲部の数、曲率中心の位置、曲率半径等を適宜選択することにより、当該ダイヤフラムをパルセーションダンパに適用した場合に、必要な容積変化量や耐久性を得ることができる。
10、20、90 ダイヤフラム
10A、20A、90A 突出部
10B、20B、90B 凹部
10C、20C、90C フランジ部
11、12 第1及び第2の環状湾曲部
22 環状湾曲部
25 中央湾曲部
100、200、300、400、500、600、700 パルセーションダンパ
R11、R12 第1及び第2の環状湾曲部の曲率半径
R11C、R12C 第1及び第2の環状湾曲部の曲率中心
R22 環状湾曲部の曲率半径
R22C 環状湾曲部の曲率中心
R25 中央湾曲部の曲率半径
R25C 中央湾曲部の曲率中心

Claims (16)

  1.  フランジ部及び前記フランジ部の一方の側に突出するよう設けられた突出部を有し、
     前記突出部は、前記突出部の外壁側の圧力と内壁側の圧力とが同じ状態において平面状の天井部及び前記天井部の径方向外側に環状に設けられる少なくとも2つの環状湾曲部を有し、
     少なくとも2つの前記環状湾曲部は、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、いずれも湾曲するように形成されており、それぞれの曲率中心が前記突出部の突出方向とは反対側の異なる位置に配置され、
    金属薄板により成形されたダイヤフラム。
  2.  前記突出部は、少なくとも2つの前記環状湾曲部同士を接続する接続部を有し、
     前記接続部は、前記突出部の外壁側の圧力と内壁側の圧力とが同じ状態のとき、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、前記天井部に対し傾斜する直線状となるよう形成されている、
    請求項1記載のダイヤフラム。
  3.  少なくとも2つの前記環状湾曲部は、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、それぞれ曲率半径が異なる、
    請求項2に記載のダイヤフラム。
  4.  フランジ部及び前記フランジ部の一方の側に突出するよう設けられた突出部を有し、
     前記突出部は、中央湾曲部及び前記中央湾曲部の径方向外側に環状に設けられる少なくとも1つの環状湾曲部を有し、
     前記中央湾曲部と少なくとも1つの前記環状湾曲部は、前記突出部の外壁側の圧力と内壁側の圧力とが同じ状態のとき、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、いずれも湾曲するように形成されており、その曲率中心が前記突出部の突出方向とは反対側に位置し、かつ前記中央湾曲部の曲率中心は当該ダイヤフラムの中心線上に位置し、
    金属薄板により成形されたダイヤフラム。
  5.  フランジ部及び前記フランジ部の一方の側に突出するよう設けられた突出部を有し、金属薄板により成形された2つのダイヤフラムが、前記フランジ部で接合されて閉空間を形成したパルセーションダンパであって、
     前記突出部は、前記突出部の外壁側の圧力と内壁側の圧力とが同じ状態において平面状の天井部及び前記天井部の径方向外側に環状に設けられる少なくとも2つの環状湾曲部を有し、
     少なくとも2つの前記環状湾曲部は、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、いずれも湾曲するように形成されており、それぞれの曲率中心が前記突出部の突出方向とは反対側の異なる位置に配置された、パルセーションダンパ。
  6.  前記2つのダイヤフラムは、互いに異なる形状のダイヤフラムである、
    請求項5に記載のパルセーションダンパ。
  7.  前記閉空間には、不活性ガスが充填されている、
    請求項6に記載のパルセーションダンパ。
  8.  フランジ部及び前記フランジ部の一方の側に突出するよう設けられた突出部を有し、金属薄板により成形された2つのダイヤフラムが、前記フランジ部で接合されて閉空間を形成したパルセーションダンパであって、
     前記突出部は、中央湾曲部及び前記中央湾曲部の径方向外側に環状に設けられる少なくとも1つの環状湾曲部を有し、
     前記中央湾曲部と少なくとも1つの前記環状湾曲部は、前記突出部の外壁側の圧力と内壁側の圧力とが同じ状態のとき、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、いずれも湾曲するように形成されており、その曲率中心が前記突出部の突出方向とは反対側に位置し、かつ前記中央湾曲部の曲率中心は当該ダイヤフラムの中心線上に位置する、パルセーションダンパ。
  9.  前記2つのダイヤフラムは、互いに異なる形状のダイヤフラムである、
    請求項8に記載のパルセーションダンパ。
  10.  前記閉空間には、不活性ガスが充填されている、
    請求項9に記載のパルセーションダンパ。
  11.  フランジ部及び前記フランジ部の一方の側に突出するよう設けられた突出部を有し、金属薄板により成形されたダイヤフラムと前記ダイヤフラムとは異なる他の部材とを、前記フランジ部で重ね接合されて閉空間を形成したパルセーションダンパであって、
     前記突出部は、前記突出部の外壁側の圧力と内壁側の圧力とが同じ状態において平面状の天井部及び前記天井部の径方向外側に環状に設けられる少なくとも2つの環状湾曲部を有し、
     少なくとも2つの前記環状湾曲部は、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、いずれも湾曲するように形成されており、それぞれの曲率中心が前記突出部の突出方向とは反対側の異なる位置に配置された、パルセーションダンパ。
  12.  前記他の部材は、平板である、
    請求項11に記載のパルセーションダンパ。
  13.  前記閉空間には、不活性ガスが充填されている、
    請求項12に記載のパルセーションダンパ。
  14.  フランジ部及び前記フランジ部の一方の側に突出するよう設けられた突出部を有し、金属薄板により成形されたダイヤフラムと前記ダイヤフラムとは異なる他の部材とを、前記フランジ部で重ね接合されて閉空間を形成したパルセーションダンパであって、
     前記突出部は、中央湾曲部及び前記中央湾曲部の径方向外側に環状に設けられる少なくとも1つの環状湾曲部を有し、
     前記中央湾曲部と少なくとも1つの前記環状湾曲部は、前記突出部の外壁側の圧力と内壁側の圧力とが同じ状態のとき、前記ダイヤフラムの中心線を含む仮想平面で切断した断面において、いずれも湾曲するように形成されており、その曲率中心が前記突出部の突出方向とは反対側に位置し、かつ前記中央湾曲部の曲率中心は当該ダイヤフラムの中心線上に位置する、パルセーションダンパ。
  15.  前記他の部材は、平板である、
    請求項14に記載のパルセーションダンパ。
  16.  前記閉空間には、不活性ガスが充填されている、
    請求項15に記載のパルセーションダンパ。
PCT/JP2015/082936 2014-12-12 2015-11-24 ダイヤフラム及びそれを用いたパルセーションダンパ WO2016093054A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580066432.5A CN107002615B (zh) 2014-12-12 2015-11-24 膜片以及采用该膜片的脉动阻尼器
US15/533,209 US10480466B2 (en) 2014-12-12 2015-11-24 Diaphragm and pulsation damper using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-251675 2014-12-12
JP2014251675A JP6527689B2 (ja) 2014-12-12 2014-12-12 ダイヤフラム及びそれを用いたパルセーションダンパ

Publications (1)

Publication Number Publication Date
WO2016093054A1 true WO2016093054A1 (ja) 2016-06-16

Family

ID=56107244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082936 WO2016093054A1 (ja) 2014-12-12 2015-11-24 ダイヤフラム及びそれを用いたパルセーションダンパ

Country Status (4)

Country Link
US (1) US10480466B2 (ja)
JP (1) JP6527689B2 (ja)
CN (1) CN107002615B (ja)
WO (1) WO2016093054A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11231138B2 (en) * 2016-09-26 2022-01-25 Eagle Industry Co., Ltd. Metal diaphragm damper

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6919314B2 (ja) * 2017-05-11 2021-08-18 株式会社デンソー パルセーションダンパおよび燃料ポンプ装置
EP3715617A4 (en) 2017-11-24 2021-07-14 Eagle Industry Co., Ltd. METAL DIAPHRAGM DAMPER AND METHOD OF ITS MANUFACTURING
US11220987B2 (en) 2017-11-24 2022-01-11 Eagle Industry Co., Ltd. Metal diaphragm damper
KR20200130452A (ko) 2018-05-18 2020-11-18 이구루코교 가부시기가이샤 댐퍼 유닛
JP7074563B2 (ja) 2018-05-18 2022-05-24 イーグル工業株式会社 ダンパ装置
JP7258448B2 (ja) 2018-05-18 2023-04-17 イーグル工業株式会社 ダンパ装置
US11326568B2 (en) 2018-05-25 2022-05-10 Eagle Industry Co., Ltd. Damper device
JP7041956B2 (ja) * 2018-09-20 2022-03-25 株式会社不二工機 パルセーションダンパー
JP7373453B2 (ja) 2020-04-10 2023-11-02 株式会社Ihiエアロスペース 液体推進薬供給装置と衛星用推進装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505181A (en) * 1995-02-13 1996-04-09 Siemens Automotive Corporation Integral pressure damper
JP2003083199A (ja) * 2001-09-05 2003-03-19 Piolax Inc 燃料デリバリパイプ用パルセーションダンパ
JP2003254191A (ja) * 2002-03-04 2003-09-10 Hitachi Ltd 燃料供給システム及び燃料供給装置
JP2004138071A (ja) * 2002-10-19 2004-05-13 Robert Bosch Gmbh 流体システム内の圧力脈動を減衰するための装置
JP2007138805A (ja) * 2005-11-17 2007-06-07 Denso Corp 高圧燃料ポンプ
JP2012197732A (ja) * 2011-03-22 2012-10-18 Denso Corp パルセーションダンパおよびこれを備えた高圧ポンプ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628573A (en) * 1970-07-21 1971-12-21 Alpura Ag Diaphragm chamber-damping device for damping fluid shocks in pipe systems
US3862708A (en) * 1973-10-11 1975-01-28 Horix Mfg Co Container filling device with flow control
US4077882A (en) * 1976-09-27 1978-03-07 Ronald Gangemi Isolating and blood pressure transmitting apparatus for extracorporeal blood treatment system
US4315527A (en) * 1980-01-14 1982-02-16 Tmi Sales Corporation Expansion tanks for pressurized fluids and diaphragms therefor
DE4432635A1 (de) * 1994-09-14 1996-03-21 Bosch Gmbh Robert Brennstoffeinspritzvorrichtung für eine Zweitakt-Brennkraftmaschine
US6901964B2 (en) * 2001-03-30 2005-06-07 Saturn Electronics & Engineering, Inc. Vehicle fuel pulse damper
JP2007113654A (ja) * 2005-10-19 2007-05-10 Tokyo Institute Of Technology 微細中空構造体ダイアフラムおよびその応用素子
JP4650793B2 (ja) 2006-05-16 2011-03-16 株式会社デンソー パルセーションダンパ
DE102006027780A1 (de) * 2006-06-16 2007-12-20 Robert Bosch Gmbh Kraftstoffinjektor
JP4686501B2 (ja) * 2007-05-21 2011-05-25 日立オートモティブシステムズ株式会社 液体脈動ダンパ機構、および液体脈動ダンパ機構を備えた高圧燃料供給ポンプ
DE102008047303A1 (de) * 2008-02-18 2009-08-20 Continental Teves Ag & Co. Ohg Pulsationsdämpfungskapsel
JP4678065B2 (ja) * 2009-02-25 2011-04-27 株式会社デンソー ダンパ装置、それを用いた高圧ポンプおよびその製造方法
CN102348886B (zh) * 2009-03-17 2013-09-18 丰田自动车株式会社 脉动阻尼器
JP2012184757A (ja) * 2011-03-08 2012-09-27 Denso Corp ダンパ装置およびこれを備えた高圧ポンプ
DE102011113028B4 (de) * 2011-09-10 2019-01-10 Winkelmann Sp. Z.O.O. Membrandruckausdehnungsgefäß
JP2013146389A (ja) * 2012-01-19 2013-08-01 Panasonic Corp 手乾燥装置
JP5854005B2 (ja) 2013-07-12 2016-02-09 株式会社デンソー パルセーションダンパ及びそれを備えた高圧ポンプ
JP6135437B2 (ja) * 2013-10-07 2017-05-31 トヨタ自動車株式会社 高圧燃料ポンプ
US10294907B2 (en) * 2014-08-28 2019-05-21 Hitachi Automotive Systems, Ltd. High pressure fuel supply pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505181A (en) * 1995-02-13 1996-04-09 Siemens Automotive Corporation Integral pressure damper
JP2003083199A (ja) * 2001-09-05 2003-03-19 Piolax Inc 燃料デリバリパイプ用パルセーションダンパ
JP2003254191A (ja) * 2002-03-04 2003-09-10 Hitachi Ltd 燃料供給システム及び燃料供給装置
JP2004138071A (ja) * 2002-10-19 2004-05-13 Robert Bosch Gmbh 流体システム内の圧力脈動を減衰するための装置
JP2007138805A (ja) * 2005-11-17 2007-06-07 Denso Corp 高圧燃料ポンプ
JP2012197732A (ja) * 2011-03-22 2012-10-18 Denso Corp パルセーションダンパおよびこれを備えた高圧ポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11231138B2 (en) * 2016-09-26 2022-01-25 Eagle Industry Co., Ltd. Metal diaphragm damper

Also Published As

Publication number Publication date
US20170335810A1 (en) 2017-11-23
JP2016113922A (ja) 2016-06-23
JP6527689B2 (ja) 2019-06-05
US10480466B2 (en) 2019-11-19
CN107002615A (zh) 2017-08-01
CN107002615B (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2016093054A1 (ja) ダイヤフラム及びそれを用いたパルセーションダンパ
JP6413017B2 (ja) パルセーションダンパ
JP2016113922A5 (ja)
JP5695032B2 (ja) 流体圧式アキュムレータ
US10495042B2 (en) Diaphragm damper
JP2004138071A (ja) 流体システム内の圧力脈動を減衰するための装置
US20140220395A1 (en) Lid for a battery case
US20190152455A1 (en) Pressure Pulsation Reducing Device and Pulsation Damping Member of Hydraulic System
KR20180118188A (ko) 댐퍼 캡슐, 압력 변동 댐퍼 및 고압 연료 펌프
US5449003A (en) Undulated container for undulated diaphragm and diaphragm device
WO2018056109A1 (ja) メタルダイアフラムダンパ
JPWO2019221259A1 (ja) メタルダイアフラムダンパの取付構造
CN107709868A (zh) 用于压缩空气的两部分式容器组件
JPH01260270A (ja) 密封容器
CN111356833B (zh) 金属膜片阻尼器及其制造方法
US11220987B2 (en) Metal diaphragm damper
US20190107167A1 (en) Metal diaphragm damper
JP2018035711A (ja) 圧縮機ユニット
JP2006070991A (ja) 緩衝器のバルブ構造
JP2016114212A (ja) ナックルブラケット及び緩衝器
US8984750B2 (en) Static gasket with wire compression limiter
JP2013224736A (ja) バルブハウジングおよびその製造方法
JP2015021461A (ja) 圧力容器および圧力容器の製造方法
JP2020084697A (ja) 柱部材
CN106030166A (zh) 具有半止挡件的垫圈组件及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867067

Country of ref document: EP

Kind code of ref document: A1