WO2016092697A9 - インプリント装置、インプリント方法及び物品の製造方法 - Google Patents

インプリント装置、インプリント方法及び物品の製造方法 Download PDF

Info

Publication number
WO2016092697A9
WO2016092697A9 PCT/JP2014/082972 JP2014082972W WO2016092697A9 WO 2016092697 A9 WO2016092697 A9 WO 2016092697A9 JP 2014082972 W JP2014082972 W JP 2014082972W WO 2016092697 A9 WO2016092697 A9 WO 2016092697A9
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
imprint
mold
light
imprint material
Prior art date
Application number
PCT/JP2014/082972
Other languages
English (en)
French (fr)
Other versions
WO2016092697A1 (ja
Inventor
泉太郎 相原
賢 箕田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to KR1020177018402A priority Critical patent/KR101980464B1/ko
Priority to JP2016563375A priority patent/JP6552521B2/ja
Priority to PCT/JP2014/082972 priority patent/WO2016092697A1/ja
Priority to US14/962,978 priority patent/US10416551B2/en
Publication of WO2016092697A1 publication Critical patent/WO2016092697A1/ja
Publication of WO2016092697A9 publication Critical patent/WO2016092697A9/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground

Definitions

  • the present invention relates to an imprint apparatus that detects a state of an imprint material on a substrate, an imprint method, and an article manufacturing method.
  • the imprint technique is a technique for transferring a pattern formed on a mold onto an imprint material supplied on a substrate, and has been proposed as one of techniques for manufacturing semiconductor devices and magnetic storage media.
  • the imprint apparatus contacts an imprint material (for example, a photo-curing resin) supplied on a substrate and a mold on which a pattern is formed, and cures the imprint material in the contacted state.
  • a pattern can be formed (transferred) on the imprint material on the substrate by widening the distance between the cured imprint material and the mold and separating the mold from the imprint material.
  • Patent Document 1 proposes a method of grasping the contact state between a mold and a substrate by observing the spread of droplets of the imprint material supplied onto the substrate when the mold and the imprint material are in contact with each other.
  • the imprint material When forming a pattern on a substrate with an imprint device, the imprint material is supplied to the substrate, the mold is pressed against the imprint material, the imprint material pattern is formed, etc.
  • the state of the imprint material changes according to the pattern formation process.
  • the manner in which the state of the imprint material changes varies in the process of forming a new pattern. For this reason, in the method of grasping the contact state of Patent Document 1, if the condition for detecting the state of the imprint material is constant, the detection condition does not match when the state of the imprint material changes in the process of pattern formation.
  • the imprint material state may not be correctly grasped.
  • An imprint apparatus is an imprint apparatus that forms a pattern of the imprint material on the substrate by bringing the imprint material on the substrate into contact with a mold, and irradiates the substrate with light. And a detection unit that detects a state of the imprint material on the substrate by optically detecting reflected light from the substrate and switches a detection condition during the imprint process.
  • FIG. 1 shows an imprint apparatus IMP according to the first embodiment.
  • the imprint apparatus IMP of this embodiment includes a substrate holding unit 1 that holds a substrate W, and a substrate stage 2 (substrate driving unit) that supports and moves the substrate holding unit 1.
  • the imprint apparatus IMP includes a mold holding unit 3 that holds the mold M on which the pattern P is formed, a mold stage 4 (a mold driving unit) that supports and moves the mold holding unit 3, and a substrate W.
  • a supply unit 11 (dispenser) for supplying the imprint material R is provided. However, when the imprint processing is performed by loading the substrate W supplied with the imprint material R into the imprint apparatus IMP, the supply unit 11 may not be provided in the imprint apparatus IMP.
  • the imprint apparatus IMP includes a control unit CNT that controls imprint processing, a console unit CONS that generates an operation screen of the imprint apparatus IMP, a display device 12 (output unit) that displays the operation screen, a keyboard, An input device 13 such as a mouse is provided.
  • the control unit CNT includes a calculation unit CAL.
  • the imprint apparatus IMP of the first embodiment will be described with reference to an apparatus to which a photocuring method for curing the imprint material R by irradiating light is applied. Therefore, the imprint material R uses a light curable resin (ultraviolet curable resin) that is cured when irradiated with light (ultraviolet rays).
  • the imprint apparatus IMP includes a light source 8 that emits light (ultraviolet rays 9).
  • the imprint apparatus IMP includes a mark detection unit 5 (alignment scope).
  • the mark detection unit 5 detects an alignment mark (substrate side mark 6) formed in the shot area on the substrate W and an alignment mark (mold side mark 7) formed on the mold M.
  • the imprint apparatus IMP uses light having a wavelength different from that of the light for curing the imprint material R (for example, visible light) to detect at least one of light from the shot area and the pattern P (detection light).
  • Part S is provided.
  • the imprint apparatus IMP includes an optical element 10 for separating light from the light source 8 and light incident on the detection unit S.
  • a dichroic mirror having a characteristic of reflecting the ultraviolet light 9 irradiated from the light source 8 and transmitting the detection light is used as the optical element 10.
  • FIG. 2 is a flowchart of imprint processing performed by the imprint apparatus IMP.
  • the substrate W carried into the imprint apparatus IMP is held by the substrate holding unit 1.
  • the substrate stage 2 moves to place the substrate W under the supply unit 11.
  • the imprint material R is supplied onto the substrate W by discharging the imprint material R from the supply unit 11 (S01: coating process).
  • the substrate stage 2 moves to place the substrate W under the mold M so that the imprint material R supplied onto the substrate W and the mold M are brought into contact (imprinted).
  • the imprint material R is filled into the pattern P of the mold M by narrowing the distance between the substrate W and the mold M and bringing the imprint material R and the mold M into contact with each other (S02: stamping step).
  • the mold M has a recess in a region larger than the region of the pattern P on the surface opposite to the surface on which the pattern P is formed.
  • a part through which the ultraviolet light 9 from the light source 8 passes is provided, and a sealed space (cavity part) is provided by the mold M and a seal glass (not shown).
  • a pressure control unit (not shown) is connected to the sealed space, and the pressure in the sealed space can be controlled in the stamping process.
  • the pressure control unit can increase the pressure in the sealed space to deform the mold M into a convex shape with respect to the substrate W.
  • the pressure control unit lowers the pressure in the sealed space so that the pattern P of the mold M and the imprint material R are in contact with each other.
  • the imprint apparatus IMP suppresses air bubbles from being sandwiched between the substrate W and the mold M by bringing the mold M and the imprint material R into contact with the mold M being deformed into a convex shape.
  • the calculation unit CAL of the control unit CNT obtains a relative displacement between the substrate W and the mold M from the detection result of the substrate side mark 6 and the mold side mark 7 detected by the mark detection unit 5.
  • the control unit CNT controls the substrate stage 2 and the mold stage 4 so as to reduce the displacement based on the obtained relative displacement result, and aligns the substrate W and the mold M.
  • the relative displacement includes a shift component, a magnification, a rotation component, and the like.
  • the imprint apparatus IMP can correct the shape of the pattern P (pattern area) of the mold M in accordance with the shot area formed on the substrate W (S03: alignment step).
  • the alignment process may start before or during the stamping process.
  • the imprint material R is cured by irradiating the imprint material R with the ultraviolet light 9 from the light source 8 (S04: curing process).
  • the imprint apparatus IMP can observe the state of the imprint material R by detecting light from the substrate W by the detection unit S when performing imprint processing.
  • the contact state between the mold M and the imprint material R is observed by detecting the state of the imprint material.
  • the detection unit S detects reflected light from the substrate W.
  • the detection unit S emits light for illuminating the substrate W.
  • the light that illuminates the substrate W is reflected by the surface of the substrate W and the pattern surface of the mold M, and the reflected light from the substrate W and the reflected light from the mold M are detected by the detection unit S as detection light. Since the mold M has a convex shape during the stamping process as described above, the distance between the mold M and the substrate W changes continuously from the portion where the mold M and the imprint material R are in contact with each other. For this reason, the detection unit S detects interference fringes (so-called Newton rings).
  • FIG. 3 shows cross sections of the mold M and the substrate W during the stamping process, and interference fringes detected by the detection unit S during the stamping process. From the detection result of the interference fringes, the control unit CNT can determine the quality of the imprint material. Further, by observing the contact state between the mold M and the imprint material R, the posture of the mold M and the substrate W when the mold M and the imprint material R are in contact can be detected.
  • the detection part S of 1st Embodiment should just be equipped with the optical system which can detect an interference fringe, without requiring the optical system of high optical performance.
  • the detection unit S can detect the interference fringes not only at the time of contact but also at the time of the mold release process for widening the distance between the mold M and the substrate W as in the case of the contact process. Therefore, by observing the contact state between the mold M and the imprint material R at the time of mold release, the posture of the mold M and the substrate W at the time of mold release can be detected.
  • FIG. 4 shows the detection unit S of the first embodiment.
  • the detection unit S includes an illumination unit 31 that illuminates the mold M and the substrate W.
  • the illumination unit 31 includes a light source 32 for illumination, and illumination light is emitted from the light source 32. Illumination light from the light source 32 is reflected by the beam splitter 33 and transmitted through the lens 34 to illuminate the substrate W.
  • the beam splitter 33 is, for example, a half mirror, and may be a cube type beam splitter as shown in FIG. 4 or a plate type beam splitter.
  • Illumination light from the illumination unit 31 is reflected by the substrate W, passes through the lens 34 and the beam splitter 33 as detection light, and forms an image on the light receiving surface of the imaging element 35 (imaging unit) by the lens 36.
  • the light receiving surface of the image pickup device 35 is configured to be optically conjugate with the pattern P of the mold M in contact with the imprint material R and the surface of the substrate W by the lens 34 and the lens 36.
  • the light receiving surface of the image sensor 35 is configured so that the entire shot region or a part thereof can be observed. Based on the image detected by the image sensor 35, the contact state between the substrate W and the imprint material R on the substrate W and the mold M can be observed.
  • the illumination unit 31 further includes a wavelength switching mechanism 37, a polarization switching mechanism 38, an illumination system switching mechanism 39, and an aperture stop 40.
  • the aperture stop 40 is disposed on the pupil plane of the lens 36, and the wavelength switching mechanism 37, the polarization switching mechanism 38, and the illumination system switching mechanism 39 are disposed between the light source 32 and the beam splitter 33. It is arranged on a plane conjugate with the pupil plane or in the vicinity thereof.
  • the detection condition of the detection unit S can be switched by the wavelength switching mechanism 37, the polarization switching mechanism 38, and the illumination system switching mechanism 39, and the image detected by the image sensor 35 can be adjusted.
  • the effects of these switching mechanisms will be described respectively.
  • the illumination light source 32 of the first embodiment is a radiation lamp such as a halogen lamp, a xenon lamp, or a metal halide lamp, and emits light having a wide wavelength band.
  • the detection unit S detects interference fringes formed by reflected light from the mold M and the substrate W.
  • the wavelength of the illumination light is ⁇
  • 2d m ⁇ (m is a natural number)
  • FIG. 5 shows the substrate W on which the base layer B is formed.
  • a plurality of base layers B may be formed on the substrate W in order to manufacture semiconductor devices.
  • FIG. 5 a case where a single base layer B is formed on the substrate W is considered. Similar to the interference fringes formed by the reflected light from the mold M and the substrate W, the interference between the reflected light from the substrate W and the reflected light from the surface of the base layer B is considered as shown in FIG. be able to.
  • the refractive index of the underlayer B is n and the thickness is t
  • the reflectivity of the entire substrate W varies depending on the optical film thickness nt of the base layer B.
  • Many layers are laminated on the actual underlayer B, and interference may be considered in each layer.
  • the interference layer differs depending on the wavelength of the illumination light, and the reflectance of the entire substrate W changes.
  • the reflectivity of the entire substrate W is lowered, the contrast of the interference fringes is lowered. Therefore, it is desirable to select a wavelength at which the reflectivity of the entire substrate W is increased.
  • the reflectance of the substrate W can only be considered as interference between the substrate W and the base layer B. That's fine.
  • FIG. 5A showing the interference state before contact and the interference state after the release are shown.
  • FIG. 5B the interference state changes before contact and after release. For this reason, since the wavelength at which the reflectance of the entire substrate W is maximized changes, it is desirable to switch the wavelength of the illumination light before contact and after release.
  • the detection unit S can observe the state of the pattern of the imprint material R formed on the substrate by detecting light from the substrate W after release. For example, the presence / absence of defects in the concavo-convex pattern transferred onto the substrate W can be detected to determine whether the pattern is good or bad.
  • the detection unit S of the first embodiment includes a wavelength switching mechanism 37 for selecting the wavelength of illumination light as an irradiation condition.
  • a wavelength switching mechanism 37 for selecting the wavelength of illumination light as an irradiation condition.
  • a bandpass filter or a long wavelength cut filter and a short wavelength cut filter are arranged in a turret or a slide mechanism (not shown). By switching the filter on the optical path of the illumination light, the light from the light source 32 is changed. Wavelength can be selected. Therefore, the detection unit S of the first embodiment can detect the detection light under the optimum conditions for the substrate W on which various bases are formed. Further, the detection light can be detected under optimum irradiation conditions before contact and after release.
  • the present invention is not limited by the type of the light source.
  • the light source may emit a narrow band light such as an LED.
  • the wavelength of the illumination light may be selected by selecting an LED to emit light from a light source in which a plurality of LEDs having different emission center wavelengths are arranged.
  • the illumination light of the detection unit S is visible light
  • it may be light that does not cure the imprint material R, and may be infrared light, for example.
  • a pattern may be formed on the base layer B formed on the substrate W.
  • a line and space (L / S) pattern extending in one direction is formed on the base layer B, and the pitch of the L / S pattern may be shorter than the wavelength of illumination light emitted from the detection unit S.
  • the effective refractive index of a pattern having a structure smaller than the wavelength of illumination light varies depending on the refractive index of the structure, the pitch, line width and depth of the structure, and the polarization direction of the incident light.
  • FIG. 7 shows reflected light when polarized light is incident on a pattern having a structure smaller than the wavelength of illumination light.
  • FIG. 7A shows a case where the pattern pitch direction (X-axis) is parallel to the oscillation direction (polarization direction) of the electric field vector of the illumination light.
  • FIG. 7B shows a case where the pattern pitch direction (X axis) and the polarization direction of illumination light (Y axis) are perpendicular.
  • the reflectance is higher when the pattern pitch direction and the polarization direction of the illumination light are parallel than when they are perpendicular.
  • the reflectance of the entire substrate W varies depending on the pitch direction of the L / S pattern and the polarization direction (polarization state) of the illumination light.
  • the polarization direction of the illumination light is determined according to the direction of the pitch of the L / S pattern formed in the base layer B. However, after a pattern different from the base layer B is formed by the imprint process, it is desirable to switch the polarization direction of the illumination light from the detection unit S according to the newly formed pattern.
  • the imprint apparatus includes a polarization switching mechanism 38 for switching the polarization direction of illumination light.
  • the light source 32 of the detection unit S of the first embodiment is a radiation lamp such as a halogen lamp, for example, and irradiates light with random polarization.
  • a plurality of polarizers that convert the polarization direction of illumination light into linearly polarized light are configured as a turret or a slide mechanism (not shown). By inserting and removing a polarizer on the optical path of the illumination light, the polarization direction of the illumination light can be converted into linearly polarized light in an arbitrary direction.
  • the polarizer which converts into linearly polarized light may be configured in the rotation mechanism so as to be rotatable around the optical axis of the illumination light.
  • a polarization direction changing unit including a polarizer disposed on the optical path of the illumination light and a half-wave plate rotatable around the optical axis can be used.
  • the detection unit S further includes a 1 ⁇ 4 wavelength plate (not shown) between the beam splitter 33 and the image sensor 35.
  • the illumination light converted into linearly polarized light by the polarization switching mechanism 38 is reflected by the beam splitter 33 and transmitted through the lens 34 to illuminate the substrate W.
  • the illumination light is reflected by the substrate W, passes through the beam splitter 33, and enters the quarter wavelength plate.
  • the linearly polarized light incident on the quarter-wave plate is converted into circularly polarized light, and is imaged on the light receiving surface of the image sensor 35 by the lens 36.
  • polarizer for example, a polarizing plate, a polarizing beam splitter using a dielectric multilayer film, a wire grid polarizer, a calcite prism, or the like is used, but the present invention is not limited by the type of the polarizer.
  • the polarization switching mechanism 38 of the first embodiment is arranged in the optical path of the illumination light
  • the polarization switching mechanism 38 may be arranged in the optical path of the detection light.
  • the polarization switching mechanism 38 is disposed in the vicinity of the pupil plane of the lens 36 between the beam splitter 33 and the image sensor 35, and converts detection light into linearly polarized light in an arbitrary polarization direction.
  • a quarter-wave plate is disposed between the polarization switching mechanism 38 and the image sensor 35, and the detection light converted into linearly polarized light is converted into circularly polarized light.
  • the polarization switching mechanism 38 When the light source 32 of the detection unit S is a light source that irradiates linearly polarized light such as a laser, the polarization switching mechanism 38 has a half-wave plate, and the direction of polarization from the light source and the half-wave plate Depending on the relationship with the direction of the slow axis, it is possible to switch to linearly polarized light having an arbitrary polarization direction. If it is desired to illuminate with circularly polarized light, a quarter wavelength plate may be inserted in the optical path of the illumination light instead of the half wavelength plate. Linearly polarized light from the light source 32 is converted into circularly polarized light by the quarter wavelength plate of the polarization switching mechanism 38. When it is desired to illuminate with randomly polarized light, for example, a depolarizing plate combining a wedge substrate made of a birefringent member such as quartz and a wedge substrate such as quartz may be used.
  • the substrate W on which various patterns are formed, and also from the imprint material R on the substrate W under the optimum conditions before and after the stamping. Can detect light. Therefore, the state of the imprint material R on the substrate W and the contact state between the imprint material R on the substrate W and the mold M can be accurately observed.
  • a base layer B that absorbs the illumination light of the detection unit S may be formed on the substrate W.
  • the reflectance of the substrate W is low. Therefore, the interference fringes formed by the reflected light from the mold M and the substrate W may not be detected.
  • the contact state between the mold M and the imprint material R can be observed by illuminating the substrate W by switching from bright field illumination to dark field illumination.
  • FIG. 8 shows a cross-sectional view of the substrate W and the mold M when the substrate W is dark-field illuminated and an example of an image detected by the detection unit S.
  • the detection unit S can detect scattered light from the dust G, so that the presence or absence of the dust G can be detected before the mold M and the imprint material R are brought into contact with each other.
  • the detection unit S is required to have a resolution sufficient to resolve the dust G.
  • dark field illumination it is not always necessary to resolve the dust G, and if scattered light can be detected. For this reason, it may be possible to detect dust that is smaller than in bright field illumination.
  • the detection unit S of the first embodiment includes an illumination method switching mechanism 39 for switching between bright field illumination and dark field illumination.
  • the illumination system switching mechanism 39 has an illumination stop arranged in a turret or slide mechanism (not shown).
  • the illumination stop is disposed on a surface optically conjugate with the pupil plane of the lens 36, and determines the shape of the illumination pupil.
  • the illumination stop transmits only light that is spatially smaller than the aperture stop 40 disposed on the pupil plane of the lens 36 and is larger than the aperture stop 40. Block out light.
  • the illumination stop transmits only light that is spatially larger than the aperture stop 40 and blocks light that is smaller than the aperture stop.
  • FIG. 9 shows an illumination method switching mechanism 39 when the illumination method (irradiation condition) of the detection unit S is dark field illumination.
  • the illumination light from the illumination unit 31 may be reflected by the lens 34 and directly enter the light receiving surface of the image sensor 35.
  • flare light causes the detected image to deteriorate.
  • flare light reflected at the center of the lens 34 cannot be shielded by a diaphragm or the like, it is difficult to prevent the occurrence of flare light.
  • the intensity of flare light is relatively high, which affects the detection result of the detection unit S.
  • flare light reflected at the center of the lens 34 is shielded by the aperture stop 40 or the like and does not enter the light receiving surface of the image sensor 35. Therefore, in the case of dark field illumination, the generation of flare light that affects the detection result can be reduced.
  • the detection part S of 1st Embodiment can switch an illumination system with bright field illumination and dark field illumination, it is type
  • the imprint material R can be detected.
  • the presence of the dust G on the substrate W can be detected before the mold M and the imprint material R are brought into contact with each other, the contact between the mold M and the dust G can be prevented.
  • the detection condition is not limited to the irradiation condition, and may be a light receiving condition for receiving reflected light from the substrate.
  • the aperture stop 40 by switching the aperture stop 40, different orders of diffracted light can be received by the light receiving element by passing the 0th order diffracted light or the 1st order diffracted light among the reflected light from the substrate.
  • the aperture stop 40 has a stop that passes specularly reflected light from the substrate and blocks diffracted light, and a stop that passes diffracted light and blocks specularly reflected light from the substrate, and drives the aperture stop.
  • the arrangement of the diaphragm is switched by the mechanism.
  • the detection unit S included in the imprint apparatus according to the first embodiment includes the wavelength switching mechanism 37, the polarization switching mechanism 38, and the illumination method switching mechanism 39. However, it is not necessary to provide all of these switching mechanisms in the detection unit S. At least one or more may be arranged. Therefore, the irradiation conditions of the light irradiating the substrate can be determined by combining wavelength switching, polarization switching, and illumination system switching.
  • FIG. 10 shows a change in the state of the surface of the substrate W corresponding to the imprint process (imprint process).
  • the imprint process is performed by driving the driving units of the substrate stage 2 and the mold stage 4. Therefore, the state of the imprint material on the substrate changes according to the drive sequence of the drive unit.
  • FIG. 10A shows the state of the surface of the substrate W when the imprint process is started, and the substrate W is in an unprocessed state.
  • FIG. 10B shows the state of the surface of the substrate W during the coating step S01 described in FIG. 2, and droplets of the imprint material R are coated on the substrate W.
  • FIG. 10C shows a state of the surface of the substrate W during the stamping process of S02 described in FIG.
  • the mold M is brought into contact with the imprint material R gradually from the center of the mold M toward the peripheral portion by bringing the mold M closer to the substrate W in a state where the center of the mold M is deformed into a convex shape. .
  • bubbles can be prevented from remaining between the mold M and the substrate W.
  • the mold M is deformed into a convex shape and pressed against the substrate W, so that the area where the mold M and the imprint material R are in contact with each other as shown in FIG. Interference fringes can be seen.
  • FIG. 10D shows the state of the surface of the substrate W during the curing step S04 described in FIG. 2, and the imprint material R is filled between the mold M and the substrate W.
  • FIG. 10E shows a state of the surface of the substrate W at the time of the release process of S05 described in FIG.
  • the mold M is removed from the substrate W while the center of the mold M is deformed into a convex shape in order to reduce the release force, which is a force for peeling the mold M from the cured imprint material R. Separated.
  • the substrate W may be deformed into a convex shape on the mold M side. For this reason, even during the mold release process of S05, as in the stamping process of S02, interference fringes due to light interference are seen in the area where the mold M and the imprint material R are in contact with each other as shown in FIG.
  • FIG. 10F shows the state of the surface of the substrate W when the imprint process is completed, and the pattern of the imprint material R is formed on the substrate W.
  • the state of the surface of the substrate W changes according to the steps included in the imprint step.
  • the conventional method for detecting the state of the surface of the substrate W is a detection in which the setting of the detection unit S is adapted to a specific process (for example, the stamping process of S02), even though the state of the surface of the substrate W changes. The conditions were fixed. Therefore, the state of the surface of the substrate W cannot be detected correctly in other processes (for example, processes other than the stamping process in S02).
  • FIG. 11 shows a flowchart of imprint processing according to the second embodiment.
  • the detection condition of the detection unit S is switched for each process of the imprint process.
  • the detection conditions are the detection unit subunits DS constituting the detection unit S such as the wavelength switching mechanism 37, the polarization switching mechanism 38, the illumination system switching mechanism 39, and the image sensor 35 shown in FIG. Is composed of a combination of settings. For this reason, the detection condition is switched by providing a detection mode in which the settings of the individual detection unit subunits DS are combined and switching the detection mode.
  • FIG. 12 shows an example of the contents of the detection mode.
  • Each detection mode has a setting for each detection unit subunit DS.
  • the number of detection unit subunits DS may be increased or decreased, and the detection mode settings that can be taken for each detection unit subunit may be increased or decreased.
  • the detection conditions suitable for the state of the substrate W can be efficiently switched.
  • the detection condition of the detection unit is switched (set) to the detection mode M1 in the switching step (detection mode M1) of S11.
  • the state of the surface of the substrate W in the coating step (S01) in which the imprint material R is applied onto the substrate W is detected.
  • the imprint material R may not be applied correctly due to clogging of the dispenser, and the droplets of the imprint material R may not be applied (arranged) at a predetermined position on the substrate W. .
  • the detection mode M1 in the imaging device 35 of the detection unit subunit DS, the size of the image to be detected is increased, and the resolution per unit pixel in the image is reduced, thereby applying the droplet application state of the imprint material R. It is easy to check. Further, the wavelength switching mechanism 37 makes it difficult to be affected by the size and shape of the droplets of the imprint material R by using a broadband wavelength.
  • the detection condition is switched to the detection mode M2 in the switching process of S12 (detection mode M2).
  • the detection condition of the detection unit is switched to the detection mode M2
  • the state of the surface of the substrate W in the stamping step (S02) in which the imprint material R and the mold M are brought into contact is detected.
  • the mold M may come into contact with the imprint material R on the substrate W while the posture of the mold M is inclined.
  • the pattern P formed on the mold M may not be correctly formed on the substrate W.
  • FIG. 13 shows the state of the cross section of the mold M and the substrate W and the state of the image picked up by the image sensor when the stamping process of S02 is observed in the detection mode M2.
  • the state of the image captured by the image sensor can be output to an output unit such as the display device 12, and the contact state between the imprint material R and the mold M can be confirmed.
  • the stamping step of S02 may include an alignment step (S03) for aligning the mold M and the substrate W using the detection result detected in the detection mode M2.
  • the detection condition is switched to the detection mode M3 in the switching process (detection mode M3) of S13.
  • the detection condition of the detection unit is switched to the detection mode M3
  • the state of the substrate W is detected in the curing step (S04) in which the imprint material R is cured by irradiating the imprint material R with light.
  • the curing process of S04 there is no dust G on the substrate W, and the imprint material R formed on the substrate W needs to be filled evenly over the entire shot region (pattern region of the mold M).
  • the illumination system switching mechanism 39 is set to dark field illumination, and the image size detected by the image sensor 35 is increased.
  • dark field illumination when dust G adheres to the surface of the substrate W, as shown in FIG. 8, scattered light is generated by the dust G, and the image sensor 35 detects the scattered light. The presence or absence of garbage G can be confirmed. Further, by increasing the image size of the image sensor 35, the resolution per pixel is increased, and a smaller dust G can be detected. If the imprint material R on the substrate W and the mold M are brought into contact with the surface of the substrate W with the dust G attached thereto, the pattern P of the mold M may be damaged by the dust G.
  • the imprinting operation can be stopped by detecting the dust G in advance before the mold M and the dust G come into contact with each other. That is, the presence or absence of dust G is detected in advance, and if the dust G is attached, the imprint operation is stopped, and if the dust G is not attached, the imprint operation is continued. . Contact between the mold M and the dust G can be prevented, and damage to the pattern P of the mold M can be prevented.
  • the detection condition is switched to the detection mode M4 in the switching process (detection mode M4) in S14.
  • the detection condition of the detection unit is switched to the detection mode M4
  • the state of the surface of the substrate W in the mold release step (S05) is detected. If the distance between the substrate W and the mold M is widened while the posture of the mold M is tilted in the mold release process of S05, imprint defects such as the pattern of the imprint material R formed on the substrate W falling may occur. There is. Therefore, when widening the distance between the substrate W and the mold M, it is necessary to keep the substrate W and the mold M in parallel.
  • the wavelength switching mechanism 37 uses a narrow-band wavelength at which the contrast of the interference fringes is increased, and the frame rate of the image detected by the image sensor 35 is set at a high speed.
  • the wavelength switching mechanism 37 sets the wavelength to a narrow band in order to observe interference fringes.
  • the imprint material R on the substrate W has no pattern formed thereon
  • the imprint material R on the substrate W has a pattern formed thereon. Therefore, the wavelength for observing the interference fringe may be different between the stamping step (S02) and the release step (S04).
  • the interference fringe pattern is present even when the pattern of the imprint material R exists. Narrow band wavelengths that increase contrast may be used. As described above, the narrow-band wavelength may differ depending on the presence or absence of the pattern on the substrate W.
  • FIG. 14 shows the state of the cross section of the mold M and the substrate W and the state of the image picked up by the image sensor when the release process of S04 is observed in the detection mode M4.
  • the state of the image picked up by the image pickup device can be output to an output unit such as the display device 12, and the release state between the imprint material R and the mold M can be confirmed.
  • the center position of the interference fringes appears to be shifted from the center position of the mold M (FIGS. 14A to 14D).
  • the center position of the interference fringes can be clearly specified, and the posture of the mold M can be confirmed. Further, when controlling the posture of the mold M from the center position of the interference fringes, the posture control of the mold M can be performed more frequently by increasing the frame rate of image acquisition by the image sensor 35.
  • the detection condition is switched to the detection mode M5 in the switching process of S15 (detection mode M5).
  • the detection condition of the detection unit is switched to the detection mode M5
  • the state of the surface of the substrate W at the end of the imprint process is detected.
  • it is desirable that the pattern layer made of the imprint material R is uniformly formed on the surface of the substrate W as shown in FIG.
  • the polarization switching mechanism 38 is set so that the pattern pitch direction and the vibration direction of the electric field vector of the illumination light are parallel. Further, the wavelength switching mechanism 37 uses a narrow-band wavelength at which interference caused by reflected light from the substrate W and reflected light from the pattern layer surface by the imprint material R becomes strong. Thereby, the image detected by the image sensor 35 can be clarified, and whether the pattern layer is formed without unevenness (imprint defect is detected) can be detected.
  • the state on the substrate can be detected (obtained) more accurately in each step.
  • the detection conditions of the detection unit S can be switched according to the drive sequence of the drive unit.
  • an imprint process is performed on the substrate W on which no pattern is formed. Even when imprint processing is performed on the substrate W on which the pattern is formed, by setting a detection mode according to the imprint processing step, the state on the different substrate in each step can be more accurately determined. It can be detected (understood).
  • the detection unit subunit DS of the detection unit S may be individually switched according to each step of the imprint process.
  • a process of removing the dust G on the substrate W is performed, or the location of the dust G on the substrate W is stored. Can be.
  • the imprint process is not performed on the corresponding shot, and the mold is not brought into contact with the region to which the dust G is adhered (the pattern is not formed). An imprint process is performed.
  • the detection mode editing screen 161 shown in FIG. 15 provides editing means for editing the detection conditions of the detection unit subunit DS for each detection mode.
  • the detection mode table 162 in FIG. 15 displays the registered detection modes and the settings of the detection unit subunit DS for each detection mode.
  • the row 163 of the detection mode table 162 displays the type of the detection mode, and the column 164 of the detection mode table 162 displays the setting for each detection unit subunit DS that constitutes the detection mode.
  • the detection mode editing screen 161 is generated by the console CONS in FIG. 1 and displayed on the display device 12.
  • the editing target is selected as shown in the item 166 by the input device 13 such as the keyboard and the mouse shown in FIG. 1 and then the operation button group 165 is operated.
  • the recipe editing screen 171 shown in FIG. 16 provides editing means for editing the detection mode for each process of imprint processing.
  • the detection mode setting table 172 for each process the detection mode for each process is displayed.
  • the row 173 of the detection mode setting table 172 for each process displays the type of the process constituting the imprint process, and the column 174 of the detection mode setting table 172 displays the detection mode used for each process.
  • the recipe editing screen 171 is generated by the console CONS in FIG. 1 and displayed on the display device 12.
  • an editing target is selected as in the item 176 using the input device 13 such as a keyboard or a mouse shown in FIG. 1 and then the operation button group 175 is operated.
  • the contents edited on the detection mode editing screen 161 and the recipe editing screen 171 are stored in a memory device DB such as a hard disk of the console CONS in FIG.
  • the control unit CNT switches the setting of the detection unit subunit DS constituting the detection unit S according to the information of the memory device DB.
  • FIG. 17 shows the camera monitor 181 displayed on the display device 12 of FIG. An image detected by the image sensor 35 is displayed in the image display area 182 of the camera monitor 181.
  • the camera monitor 181 displays the detection image in real time, so that it can be confirmed that the detection mode is switched in conjunction with the imprint process.
  • the imprint apparatus IMP an apparatus to which a photocuring method is applied, which is an imprint method for curing an imprint material (photocuring resin) by irradiating light (ultraviolet rays), is described. I have done it.
  • the present invention may be an apparatus to which the thermosetting method for curing the imprint material R by heat is applied as the imprint apparatus IMP.
  • the imprint material R uses a resin having thermoplasticity or thermosetting property.
  • the imprint apparatus IMP includes a heat source that supplies heat to the imprint material R.
  • the present invention is an imprint method using a thermal cycle method, as long as the detection unit S can detect a contact area where the imprint material supplied to the substrate and the mold are in contact with each other and an interference fringe around the contact area. Also good.
  • a method for manufacturing a device (semiconductor integrated circuit element, liquid crystal display element, etc.) as an article includes a step of forming a pattern on a substrate (wafer, glass plate, film-like substrate) using the above-described imprint apparatus. Furthermore, the manufacturing method may include a step of etching the substrate on which the pattern is formed. In the case of manufacturing other articles such as patterned media (recording media) and optical elements, the manufacturing method may include other processes for processing a substrate on which a pattern is formed instead of etching.
  • the article manufacturing method of this embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Mechanical Engineering (AREA)

Abstract

本発明は、基板の表面状態が変化しても、精度良く基板の表面状態を検出することができるインプリント装置を提供することを目的とする。 本発明のインプリント装置は、基板上のインプリント材と型を接触させ、前記基板上に前記インプリント材のパターンを形成するインプリント装置であって、前記基板に光を照射し、前記基板からの反射光を光学的に検出することにより前記基板上の前記インプリント材の状態を検出し、インプリント工程中に検出条件を切替える検出部を、有することを特徴とする。

Description

インプリント装置、インプリント方法及び物品の製造方法
 本発明は、基板上のインプリント材の状態を検出するインプリント装置、インプリント方法及び物品の製造方法に関する。
 インプリント技術は、型に形成されたパターンを基板上に供給されたインプリント材に転写する技術であり、半導体デバイスや磁気記憶媒体を製造する技術のひとつとして提案されている。インプリント装置は、基板上に供給されたインプリント材(例えば光硬化樹脂)とパターンが形成された型とを接触させ、接触させた状態でインプリント材を硬化させる。硬化したインプリント材と型との間隔を広げて、インプリント材から型を離すことで基板上のインプリント材にパターンを形成(転写)することができる。
 インプリント技術において、型とインプリント材(または基板)が接触するときの接触状態が形成したパターンの良否に影響を与えることが分かっている。特許文献1には、型とインプリント材との接触時に、基板上に供給されたインプリント材の液滴の広がりを見ることにより型と基板の接触状態を把握する方法が提案されている。
特表2006-514428号公報
 インプリント装置で基板上にパターンを形成する際には、基板にインプリント材が供給された状態、型をインプリント材に押しつけた状態、インプリント材のパターンが形成された状態などのように、パターン形成の過程に応じてインプリント材の状態が変化する。そのうえ、既にパターンが形成された基板と、パターンが形成されていない基板とを比較すると、新たなパターン形成の過程において、インプリント材の状態の変化の仕方が異なる。このため、特許文献1の接触状態を把握する方法において、インプリント材の状態を検出する条件が一定だと、パターン形成の過程でインプリント材の状態が変化した際に検出条件が合わなくなり、正しくインプリント材の状態を把握できない場合がある。
 本発明のインプリント装置は、基板上のインプリント材と型を接触させ、前記基板上に前記インプリント材のパターンを形成するインプリント装置であって、前記基板に光を照射し、前記基板からの反射光を光学的に検出することにより前記基板上の前記インプリント材の状態を検出し、インプリント工程中に検出条件を切替える検出部を、有することを特徴とする。
 基板上のインプリント材の状態が変化しても、精度良くインプリント材の状態を検出するインプリント装置を提供することができる。
第1実施形態のインプリント装置を示した図である。 インプリント処理のフローチャートを示した図である。 型と基板の断面と、検出器で検出される干渉縞を示した図である。 第1実施形態の検出部を示した図である。 基板と下地層からの反射光による干渉を示した図である。 光学膜厚と反射率の関係を示した図である。 照明光の偏光の違いによる反射光の違いを示した図である。 基板を暗視野照明した場合の散乱光と、検出画像を示した図である。 暗視野照明を用いた場合の検出部を示した図である。 インプリント処理の工程毎における基板表面の状態を示した図である。 第2実施形態のインプリント処理のフローチャートを示した図である。 第2実施形態の検出モードを示した図である。 押印工程における基板と型の断面と、検出される干渉縞を示した図である。 離型工程における基板と型の断面と、検出される干渉縞を示した図である。 第3実施形態の検出モード編集画面を説明する図である。 第3実施形態のレシピ編集画面を説明する図である。 第3実施形態のカメラモニタを説明する図である。
 以下、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
 (第1実施形態)
 (インプリント装置について)
 図1に第1実施形態のインプリント装置IMPを示す。本実施形態のインプリント装置IMPは、基板Wを保持する基板保持部1と、基板保持部1を支持して移動させる基板ステージ2(基板駆動部)を備える。また、インプリント装置IMPには、パターンPが形成された型Mを保持する型保持部3と、型保持部3を支持して移動させる型ステージ4(型駆動部)と、基板W上にインプリント材Rを供給する供給部11(ディスペンサ)を備える。ただし、インプリント装置IMPにインプリント材Rが供給された基板Wを搬入して、インプリント処理を行う場合には、供給部11はインプリント装置IMPに備えていなくても良い。また、インプリント装置IMPは、インプリント処理を制御する制御部CNTと、インプリント装置IMPの操作画面を生成するコンソール部CONSと、操作画面を表示する表示装置12(出力部)と、キーボードやマウスなどの入力デバイス13を備える。制御部CNTには演算部CALを含む。
 第1実施形態のインプリント装置IMPは、光を照射することでインプリント材Rを硬化させる光硬化法を適用した装置について説明する。そのため、インプリント材Rは光(紫外線)が照射されることで硬化する光硬化樹脂(紫外線硬化樹脂)を用いる。インプリント装置IMPには、光(紫外線9)を照射する光源8を備える。
 さらに、インプリント装置IMPは、マーク検出部5(アライメントスコープ)を備える。マーク検出部5は、基板W上のショット領域に形成されたアライメントマーク(基板側マーク6)と、型Mに形成されたアライメントマーク(型側マーク7)を検出する。
 さらに、インプリント装置IMPには、インプリント材Rを硬化させる光と異なる波長の光(例えば可視光)を用いて、ショット領域及びパターンPからの光(検出光)の少なくとも一方を検出する検出部Sを備える。また、インプリント装置IMPには、光源8からの光と検出部Sに入射する光を分けるための光学素子10を備える。図1に示すインプリント装置IMPでは、光学素子10として、光源8から照射される紫外線9を反射し、検出光を透過する特性を有する、ダイクロイックミラーを用いる。
 (インプリント処理について)
 次に、インプリント装置IMPで行われるインプリント処理について説明する。図2はインプリント装置IMPで行われるインプリント処理のフローチャートである。
 インプリント装置IMPに搬入された基板Wは基板保持部1に保持される。基板W上にインプリント材Rを供給(塗布)するために、基板ステージ2が移動して基板Wを供給部11の下に配置する。供給部11からインプリント材Rを吐出することで基板W上にインプリント材Rを供給する(S01:塗布工程)。
 基板W上に供給されたインプリント材Rと型Mを接触(押印)させるために、基板ステージ2が移動して基板Wを型Mの下に配置する。基板Wと型Mとの間隔を狭めて、インプリント材Rと型Mを接触させることによって、型MのパターンPにインプリント材Rを充填する(S02:押印工程)。
 型Mには、パターンPが形成されている面とは反対側の面に、パターンPの領域よりも大きな領域に凹部を有する。型保持部3の中心には、光源8からの紫外線9が通過する部分が設けられており、型Mと不図示のシールガラスによって密閉空間(キャビティ部)が設けられている。この密閉空間には不図示の圧力制御部が接続されており、押印工程では、密閉空間の圧力を制御できる。圧力制御部は、密閉空間の圧力を上げて型Mを基板Wに対して凸形状に変形させることができる。型Mとインプリント材Rが接触した後、圧力制御部は密閉空間の圧力を下げて、型MのパターンPとインプリント材Rが接触するようにする。インプリント装置IMPは、型Mを凸形状に変形させた状態で、型Mとインプリント材Rを接触させることにより、基板Wと型Mとの間に気泡が挟まれることを抑制する。
 制御部CNTの演算部CALは、マーク検出部5が検出した基板側マーク6と型側マーク7の検出結果から基板Wと型Mの相対的な位置ずれを求める。制御部CNTは、求めた相対的な位置ずれの結果に基づいて、位置ずれが低減するように基板ステージ2や型ステージ4を制御し、基板Wと型Mの位置合わせを行う。相対的な位置ずれには、シフト成分や倍率、回転成分などが含まれる。さらに、インプリント装置IMPは、基板W上に形成されているショット領域に合わせて、型MのパターンP(パターン領域)の形状を補正することができる(S03:アライメント工程)。アライメント工程の開始は、押印工程の前でも押印工程の途中でも良い。
 基板Wと型Mを位置合わせした後、光源8から紫外線9をインプリント材Rに照射することで、インプリント材Rを硬化させる(S04:硬化工程)。
 そして、硬化したインプリント材Rから型Mを引き離すことによって、基板W上のインプリント材にパターンが形成される(S05:離型工程)。これら一連のインプリント処理を繰り返すことによって基板W上の複数のショット領域にパターンを形成することができる。
 (接触状態の検出について)
 第1実施形態のインプリント装置IMPは、インプリント処理を行う際に、検出部Sによって基板Wからの光を検出することで、インプリント材Rの状態を観察することができる。ここではインプリント材の状態を検出することで、型Mとインプリント材Rの接触状態を観察する。以下、検出部Sが基板Wからの反射光を検出する方法について説明する。
 検出部Sは、基板Wを照明するための光を照射する。基板Wを照明した光は、基板Wの表面および型Mのパターン面で反射し、基板Wからの反射光と型Mからの反射光が検出光として検出部Sで検出される。前述のように押印工程の時に、型Mは凸形状になっているため、型Mとインプリント材Rとが接触した部分から、型Mと基板Wとの間隔が連続的に変化する。そのため、検出部Sでは干渉縞(いわゆるニュートンリング)が検出される。
 図3に、押印工程の時の型Mと基板Wの断面と、押印工程の時に検出部Sで検出される干渉縞を示す。この干渉縞の検出結果から、制御部CNTはインプリント材の状態の良否を判定することができる。また、型Mとインプリント材Rの接触状態を観察することで、型Mとインプリント材Rが接触するときの、型Mと基板Wの姿勢を検出することができる。第1実施形態の検出部Sは、高い光学性能の光学系を必要とせず、干渉縞を検出できる光学系を備えていれば良い。また、検出部Sでは、接触時に限らず、型Mと基板Wの間隔を広げる離型工程の時においても、接触工程の時と同様に干渉縞を検出することができる。そのため、離型時における型Mとインプリント材Rの接触状態を観察することで、離型する時の型Mと基板Wの姿勢を検出することができる。
 図4に、第1実施形態の検出部Sを示す。図4では、型保持部3、型ステージ4、光学素子10などが省略されている。検出部Sは、型Mと基板Wを照明する照明部31を備える。照明部31は照明用の光源32を有し、光源32から照明光が照射される。光源32からの照明光はビームスプリッタ33で反射、レンズ34を透過して基板W上を照明する。ビームスプリッタ33は、例えばハーフミラーであり、図4に示すようなキューブ型ビームスプリッタでもよいし、プレート型のビームスプリッタでもよい。照明部31からの照明光は基板Wで反射し、検出光としてレンズ34とビームスプリッタ33を透過して、レンズ36で撮像素子35(撮像部)の受光面に結像される。撮像素子35の受光面は、レンズ34およびレンズ36によって、インプリント材Rに接触した型MのパターンP及び基板Wの表面に対して光学的に共役になるように構成されている。また、撮像素子35の受光面は、ショット領域の全面もしくはその一部が観察できるように構成されている。撮像素子35で検出された画像に基づいて、基板Wや、基板W上のインプリント材Rと型Mの接触状態を観察できる。
 照明部31は更に波長切替機構37、偏光切替機構38、照明方式切替機構39と開口絞り40を有する。開口絞り40はレンズ36の瞳面に配置されており、波長切替機構37、偏光切替機構38および照明方式切替機構39は、光源32とビームスプリッタ33の間に配置されており、それぞれレンズ36の瞳面と共役な面もしくはその近傍に配置されている。波長切替機構37、偏光切替機構38および照明方式切替機構39によって、検出部Sの検出条件を切り替えることができ、撮像素子35で検出される画像を調整することができる。以下、これら切替機構の効果について、それぞれ説明する。
 (検出部の波長切替機構について)
 第1実施形態の照明用の光源32は例えばハロゲンランプやキセノンランプ、メタルハライドランプなどの放射ランプであり、波長帯域の広い光を放射する。検出部Sは、型Mとインプリント材Rとの接触状態を観察するために、型Mと基板Wの反射光により形成される干渉縞を検出している。型Mと基板Wとの間隔をd、照明光の波長をλとしたとき、2d=mλ(mは自然数)のときに型Mと基板Wの反射光が強め合って明リングが観察され、2d=(m+1/2)λのときには型Mと基板Wの反射光が打ち消し合って暗リングが観察される。型Mと基板Wを波長帯域の広い白色光で照明すると、観察される干渉縞のピッチが波長毎に少しずつずれて重なるため、干渉縞のコントラストが低下する。そのため、照明光の波長帯域は狭いことが望ましい。
 図5に、下地層Bが形成されている基板Wを示す。基板Wには、半導体デバイスを製造するために複数の下地層Bが形成されていることがある。図5では、基板Wに単層の下地層Bが形成されている場合を考える。型Mと基板Wからの反射光により形成される干渉縞のときと同様に、図5(A)のように基板Wからの反射光と、下地層Bの表面からの反射光の干渉を考えることができる。下地層Bの屈折率をn、厚みをtとすると、2nt=mλのときに基板Wからの反射光と下地層Bの表面からの反射光とが強め合うため、基板W全体の反射率は高くなる。一方で、2nt=(m+1/2)λのときには、基板Wからの反射光と下地層B表面からの反射光とが打ち消し合うため、基板W全体の反射率は低くなる。
 従って、図6に示すように基板W全体の反射率は、下地層Bの光学膜厚ntによって、変化する。実際の下地層Bには多数の層が積層されており、各層で干渉を考えてもよい。多数の層が積層されている下地層Bに対しては、照明光の波長によって干渉する層が異なり、基板W全体の反射率が変化することになる。基板W全体の反射率が低くなると、干渉縞のコントラストが低下してしまうため、基板W全体の反射率が高くなる波長を選択することが望ましい。
 また、型Mとインプリント材Rの接触前(押印工程前)は基板W上にインプリント材Rが広がっていないため、基板Wの反射率は、基板Wと下地層Bの干渉のみを考えればよい。しかし、型Mとインプリント材Rの離型後は基板W上にインプリント材Rが広がっているため、接触前の干渉状態を示す図5(A)と、離型後の干渉状態を示す図5(B)のように、接触前と離型後では干渉状態が変化する。そのため、基板W全体の反射率が最大となる波長が変化するので、接触前と離型後でも照明光の波長を切替えられることが望ましい。検出部Sは、離型後に基板Wからの光を検出することで基板上に形成されたインプリント材Rのパターンの状態を観察することができる。例えば、基板W上に転写された凹凸パターンの欠陥の有無を検出し、パターン形成の良否判定を行うことができる。
 第1実施形態の検出部Sは、照射条件として照明光の波長を選択するための波長切替機構37を備える。波長切替機構37はバンドパスフィルタもしくは長波長カットフィルタおよび短波長カットフィルタが不図示のターレットもしくはスライド機構に配置されており、照明光の光路上のフィルタを切り替えることによって、光源32からの光の波長を選択できる。従って、第1実施形態の検出部Sは様々な下地が形成された基板Wに対して、最適な条件で検出光を検出できる。また、接触前と離型後においても最適な照射条件で検出光を検出できる。
 第1実施形態では光源32から広帯域の光を放射するランプである場合について説明したが、本発明は光源の種類によって限定されるものではない。光源は例えばLEDなどの狭帯域の光を放射するものでもよい。波長切替機構37で照明光の波長を選択する代わりに、発光中心波長の異なるLEDを複数並べた光源から、発光させるLEDを選択することによって照明光の波長を選択してもよい。
 第1実施形態において、検出部Sの照明光は可視光の場合について説明したが、インプリント材Rを硬化させる光でなければ良く、例えば赤外光であってもよい。
 (検出部の偏光切替機構について)
 基板Wに形成された下地層Bにパターンが形成されている場合がある。例えば下地層Bに、一方向に伸びるラインアンドスペース(L/S)パターンが形成されており、L/Sパターンのピッチが検出部Sから照射される照明光の波長よりも短いことがある。このように照明光の波長よりも小さい構造物をもつパターンの有効屈折率は、構造物の屈折率と構造物のピッチや線幅、深さ、さらには入射光の偏光方向によって変化する。
 図7に照明光の波長よりも小さい構造物をもつパターンに偏光した光が入射したときの反射光を示す。図7(A)はパターンのピッチの方向(X軸)と、照明光の電場ベクトルの振動方向(偏光方向)が平行な場合を示す。図7(B)はパターンのピッチの方向(X軸)と、照明光の偏光方向(Y軸)が垂直な場合を示す。パターンのピッチの方向と照明光の偏光方向が平行である場合の方が、垂直である場合よりも反射率が高い。このようにL/Sパターンのピッチの方向と、照明光の偏光方向(偏光状態)により、基板W全体の反射率が変化する。
 従って、型Mによる反射光と基板Wの反射光により形成される干渉縞をコントラストよく検出するためには、基板W全体の反射率が最大となる偏光方向の光を照明することが望ましい。図7では下地層Bに形成されたL/Sパターンのピッチの方向に応じて照明光の偏光方向を決めた。しかし、インプリント処理により下地層Bとは別のパターンが形成された後は、新たに形成されたパターンに応じて検出部Sからの照明光の偏光方向を切替えることが望ましい。
 第1実施形態のインプリント装置には、照明光の偏光方向を切替えるための偏光切替機構38を備える。第1実施形態の検出部Sの光源32は、例えばハロゲンランプ等の放射ランプであり、ランダム偏光の光を照射する。偏光切替機構38は、照明光の偏光方向を直線偏光に変換する複数の偏光子が、不図示のターレットまたはスライド機構に構成されている。照明光の光路上で偏光子を出し入れすることで、照明光の偏光方向を任意の方向の直線偏光に変換することができる。さらに、直線偏光に変換する偏光子が、照明光の光軸を中心に回転可能に回転機構に構成されていてもよい。また、照明光の光路上に配置された偏光子と光軸を中心に回転可能な1/2波長板から成る偏光方向変更ユニットを使用することができる。検出部Sの光源32からのランダム偏光のまま照明したい場合には、照明光の光路上に偏光子が配置されないようにすればよい。基板に照射する光の偏光方向を切替えることにより、基板を照射する光の照射条件を切替えている。
 検出部Sはさらにビームスプリッタ33と撮像素子35の間に、不図示の1/4波長板を有する。偏光切替機構38で直線偏光に変換された照明光は、ビームスプリッタ33を反射、レンズ34を透過して、基板Wを照明する。照明光は基板Wで反射して、ビームスプリッタ33を透過し、1/4波長板に入射する。1/4波長板に入射した直線偏光は円偏光に変換され、レンズ36で撮像素子35の受光面に結像される。偏光子には、例えば偏光板や、誘電体多層膜による偏光ビームスプリッタ、ワイヤーグリッド偏光子、方解石プリズムなどが用いられるが、本発明は偏光子の種類によって限定されるものではない。
 また、第1実施形態の偏光切替機構38は照明光の光路に配置されている場合について説明したが、偏光切替機構38は検出光の光路に配置されていてもよい。この場合には、偏光切替機構38はビームスプリッタ33と撮像素子35の間のレンズ36の瞳面近傍に配置され、検出光から任意の偏光方向の直線偏光に変換する。偏光切替機構38と撮像素子35の間に1/4波長板を配置し、直線偏光に変換された検出光を円偏光に変換する。
 検出部Sの光源32が例えばレーザーのような直線偏光を照射する光源の場合には、偏光切替機構38は1/2波長板を有し、光源からの偏光の方向と1/2波長板の遅相軸の方向との関係によって、任意の偏光方向の直線偏光に切替えることができる。また、円偏光で照明したい場合には、1/2波長板の代わりに1/4波長板を照明光の光路中に挿入すればよい。光源32からの直線偏光は、偏光切替機構38の1/4波長板によって円偏光に変換される。また、ランダム偏光で照明したい場合には、例えば水晶などの複屈折部材で構成されたウェッジ基板と、石英などウェッジ基板とを組み合わせた偏光解消板を用いればよい。
 このようにして、第1実施形態の検出部Sでは様々なパターンが形成された基板Wに対しても、押印前及び離型後においても最適な条件で基板W上のインプリント材Rからの光を検出できる。そのため、基板W上のインプリント材Rの状態や、基板W上のインプリント材Rと型Mとの接触状態を精度よく観察することができる。
 (照明方式を切替える場合)
 基板Wには、検出部Sの照明光を吸収する下地層Bが形成されている場合がある。このような場合、基板Wの反射率は低い。そのため、型Mと基板Wの反射光により形成される干渉縞を検出することができないことがある。このような場合、基板Wを明視野照明から暗視野照明に切替えて照明することで型Mとインプリント材Rとの接触状態を観察できる場合がある。
 図8に、基板Wを暗視野照明した場合の基板Wと型Mの断面図と検出部Sで検出される画像の例を示す。暗視野照明で基板Wを照明することにより、型Mとインプリント材R(図8では基板W)の接触面の境界による散乱光が検出できるため、型Mとインプリント材Rとの接触状態を観察できる。また、基板W上にゴミGがある場合、検出部SでゴミGによる散乱光を検出できるため、型Mとインプリント材Rを接触させる前にゴミGの有無を検出することができる。明視野照明の場合には、ゴミGを解像するだけの解像力が検出部Sに求められるが、暗視野照明の場合には、必ずしもゴミGを解像する必要がなく、散乱光が検出できればよいため、明視野照明の場合よりも小さなゴミを検出できる場合がある。
[規則91に基づく訂正 01.02.2017] 
 第1実施形態の検出部Sは、明視野照明と暗視野照明を切り替えるための照明方式切替機構39が構成されている。照明方式切替機構39は不図示のターレットもしくはスライド機構に配置された照明絞りを有している。照明絞りはレンズ36の瞳面と光学的に共役な面に配置されており、照明瞳の形状を決める。図4に示すように、明視野照明を行う場合には、照明絞りは、レンズ36の瞳面に配置された開口絞り40よりも空間的に小さい光のみを透過させ、開口絞り40よりも大きな光を遮光する。暗視野照明を行う場合には、その逆に、照明絞りは、開口絞り40よりも空間的に大きい光のみを透過させ、開口絞りよりも小さな光を遮光する。
 図9に、検出部Sの照明方式(照射条件)を暗視野照明にした場合の照明方式切替機構39を示す。明視野照明の場合に、照明部31からの照明光がレンズ34で反射して、撮像素子35の受光面に直接入射してしまうことがある。このようなフレア光は、検出画像を劣化させる原因となる。特に、レンズ34の中心で反射するフレア光は絞りなどで遮光することができないため、フレア光の発生を防ぐことは困難である。基板Wの反射率が低い場合には、相対的にフレア光の強度が高くなり、検出部Sの検出結果に影響を及ぼす。
 暗視野照明の場合には、レンズ34の中心で反射するフレア光は開口絞り40などによって遮光され、撮像素子35の受光面に入射しない。従って、暗視野照明の場合には、検出結果に影響を及ぼすフレア光の発生を低減できる。
 このように、第1実施形態の検出部Sは照明方式を明視野照明と暗視野照明で切替えることができるため、反射率が異なる様々な種類の基板Wに対して、最適な条件で型Mとインプリント材Rの接触状態を検出することができる。また、型Mとインプリント材Rを接触させる前に基板W上のゴミGの存在を検出できるため、型MとゴミGとの接触を防ぐことができる。
 上述の実施形態では、基板上のインプリント材の状態を検出する検出条件として、基板に照射する光の照射条件を切替えるものを説明した。検出条件としては、照射条件に限られず基板からの反射光を受光する受光条件でもよい。例えば、開口絞り40を切替えることによって、基板からの反射光のうち0次回折光を通過させたり、1次回折光を通過させたりして、異なる次数の回折光を受光素子で受光することができる。開口絞り40は、基板からの反射光のうち正反射光を通過させ回折光を遮る絞りと、基板からの反射光のうち回折光を通過させ正反射光を遮る絞りを有し、開口絞り駆動機構によって絞りの配置を切替える。
 第1実施形態のインプリント装置に有する検出部Sには、波長切替機構37、偏光切替機構38および照明方式切替機構39を備えているが、これら切替機構を検出部Sにすべて備える必要は無く、少なくとも1つ以上配置されていれば良い。そのため、基板に照射する光の照射条件を、波長切換と偏光切換、照明方式切換を組み合わせて決めることができる。
 (第2実施形態)
 図10はインプリント処理(インプリント工程)に対応した、基板W表面の状態の変化を表している。基板ステージ2や型ステージ4の駆動部が駆動することによりインプリント処理が行われる。したがって、駆動部の駆動シーケンスに応じて、基板上のインプリント材の状態が変化する。図10(A)は、インプリント処理を開始した時の基板W表面の状態を示しており、基板W上は未処理の状態である。
 図10(B)は図2で説明したS01の塗布工程時の基板W表面の状態を示しており、インプリント材Rの液滴が基板W上に塗布されている。
 図10(C)は図2で説明したS02の押印工程時の基板W表面の状態を示している。S02の押印工程では、型Mの中心を凸形状に変形させた状態で、型Mを基板Wに近づけることで、徐々に型Mの中心部から周辺部に向けてインプリント材Rと接触させる。これにより、型Mと基板Wとの間に気泡が残留することを防ぐことができる。このためS02の押印工程では、型Mを凸形状で変形させて基板Wへ押し付けることで、図3のような型Mとインプリント材Rとが接触した領域と、その周囲に光の干渉による干渉縞が見られる。
 図10(D)は図2で説明したS04の硬化工程時の基板W表面の状態を示しており、型Mと基板Wの間にインプリント材Rが充填している。
[規則91に基づく訂正 01.02.2017] 
 図10(E)は図2で説明したS05の離型工程時の基板W表面の状態を示している。S05の離型工程では、型Mを硬化したインプリント材Rから剥がすための力である離型力を低減するために、型Mの中心を凸形状に変形させながら、型Mを基板Wから離している。この離型工程時に、基板Wを型M側に凸形状に変形させても良い。このためS05の離型工程時でも、S02の押印工程と同様に図3のような型Mとインプリント材Rとが接触した領域と、その周囲に光の干渉による干渉縞が見られる。
 図10(F)は、インプリント処理を終了したときの基板W表面の状態を示しており、基板W上にインプリント材Rのパターンが形成される。
 このように、インプリント工程に含まれる工程に応じて、基板W表面の状態(基板上のインプリント材の状態)は変化する。しかし、従来の基板W表面の状態を検出する方法は、基板W表面の状態が変化するにも関わらず、検出部Sの設定が、特定の工程(例えば、S02の押印工程)に合わせた検出条件に固定されていた。そのため、他の工程(例えば、S02の押印工程以外の工程)では正しく基板W表面の状態を検出できなかった。
 図11は第2実施形態のインプリント処理のフローチャートを示している。ここで図2に示した通常のインプリント処理に対して、インプリント処理の工程毎に、検出部Sの検出条件を切り替えている。
 検出条件は、図4に示した波長切替機構37、偏光切替機構38、照明方式切替機構39、撮像素子35などの検出部Sを構成する検出部サブユニットDSにおいて、個々の検出部サブユニットDSが有する設定の組み合わせから構成される。このため、個々の検出部サブユニットDSの設定を組み合わせた検出モードを設け、検出モードを切替えることにより、検出条件の切替えを行う。
 図12は、検出モードの内容の一例を示している。検出モード毎に個々の検出部サブユニットDSの設定を有している。検出部サブユニットDSは増減してもよいし、また、検出部サブユニット毎に取りえる検出モードの設定が増減してもよい。このように、検出モードを用意することで、基板Wの状態に適した検出条件を効率的に切替えることができる。
 以下、図11に示すフローチャートに従って、インプリント処理の工程毎に、検出モードを切替える場合について説明する。
 第2実施形態のインプリント方法は、インプリント処理を開始するとS11の切替え工程(検出モードM1)において、検出部の検出条件を検出モードM1に切替える(設定する)。検出部の検出条件を検出モードM1に切替えた後、インプリント材Rを基板W上に塗布する塗布工程(S01)における基板W表面の状態を検出している。S01の塗布工程では、ディスペンサの目詰まりなどにより、インプリント材Rの塗布が正しく行われず、基板W上の予め決められた位置にインプリント材Rの液滴が塗布(配置)されない場合がある。このため検出モードM1では、検出部サブユニットDSの撮像素子35において、検出する画像のサイズを大きくし、画像における単位画素当たりの分解能を細かくすることで、インプリント材Rの液滴の塗布状態を確認しやすくしている。また、波長切替機構37で、広帯域の波長を用いることで、インプリント材Rの液滴の大きさや形状の影響を受け難くしている。
 S01の塗布工程の後、S12の切替え工程(検出モードM2)において、検出条件を検出モードM2に切替える。検出部の検出条件を検出モードM2に切替えた後、インプリント材Rと型Mとを接触させる押印工程(S02)における基板W表面の状態を検出している。S02の押印工程では、型Mの姿勢が傾いた状態で、型Mが基板W上のインプリント材Rと接触する場合がある。型Mが傾いた状態でインプリント材Rに接触すると型Mに形成されるパターンPが正しく基板Wに形成されない場合がある。
 このため検出モードM2では、波長切替機構37において干渉縞のコントラストが高くなる狭帯域の波長を用いており、また、撮像素子35において、検出する画像のフレームレートを高速に設定している。S02の押印工程を検出モードM2で観察した際の、型Mと基板Wの断面の様子と撮像素子が撮像した画像の様子を図13に示す。撮像素子が撮像した画像の様子は表示装置12などの出力部に出力し、インプリント材Rと型Mとの接触状態を確認することができる。型Mが基板Wに対して傾いたままでインプリント材Rに接触すると、干渉縞の中心位置が型Mの中心位置からずれて見える(図13(A))。波長切替機構37で狭帯域の波長を用いることで、干渉縞の中心位置を明確に特定することができ、型Mの姿勢を確認することができる。また、干渉縞の中心位置から型Mの姿勢を制御する際に、撮像素子35での画像取得のフレームレートを高くすることで、より高頻度で型Mの姿勢制御を行うことができる。S02の押印工程には、検出モードM2で検出された検出結果を用いて型Mと基板Wの位置合わせを行うアライメント工程(S03)が含まれていても良い。
 S02の押印工程の後、S13の切替え工程(検出モードM3)において、検出条件を検出モードM3に切替える。検出部の検出条件を検出モードM3に切替えた後、インプリント材Rに光を照射することでインプリント材Rを硬化させる硬化工程(S04)において、基板Wの状態を検出している。S04の硬化工程では、基板W上にゴミGもなく、基板W上に形成されるインプリント材Rがショット領域(型Mのパターン領域)全面にムラなく充填している必要がある。
 このため検出モードM3では、照明方式切替機構39において暗視野照明に設定し、撮像素子35において検出する画像サイズを大きくしている。暗視野照明を用いることで、基板Wの表面にゴミGが付着している場合には、図8に記すように、ゴミGにより散乱光が生じ、撮像素子35で散乱光を検出することでゴミGの有無を確認することができる。また、撮像素子35の画像サイズを大きくすることで、画素当たりの分解能が大きくなり、より小さなゴミGの検出が可能となる。なお、基板Wの表面にゴミGが付着している状態で、基板W上のインプリント材Rと型Mとを接触させると、ゴミGにより型MのパターンPが破損する可能性がある。
 押印工程S02において、型MとゴミGとが接触する前に、ゴミGを事前に検出することでインプリント動作を停止することができる。つまり、事前にゴミGの有無を検出して、ゴミGが付着して場合はインプリント動作を停止し、ゴミGが付着していない場合はインプリント動作を継続する、判定を制御部で行う。型MとゴミGとの接触を防ぎ、型MのパターンPの破損を防ぐことができる。
 S04の硬化工程の後、S14の切替え工程(検出モードM4)において、検出条件を検出モードM4に切替える。検出部の検出条件を検出モードM4に切替えた後、離型工程(S05)における基板W表面の状態を検出している。S05の離型工程時に、型Mの姿勢が傾いたまま基板Wと型Mの間隔を広げると、基板W上に形成されたインプリント材Rのパターンが倒れるなどのインプリント不良が発生する恐れがある。そのため、基板Wと型Mの間隔を広げる際に、基板Wと型Mを平行に保つ必要がある。
 このため検出モードM4では、波長切替機構37において干渉縞のコントラストが高くなる狭帯域の波長を用いており、撮像素子35で検出する画像のフレームレートを高速に設定している。
 押印工程(S02)と離型工程(S04)では干渉縞を観測するために波長切替機構37で狭帯域の波長に設定している。押印工程(S02)では基板W上のインプリント材Rはパターンが未形成である一方、離型工程(S04)では基板W上のインプリント材Rはパターンが形成済みである。そのため、押印工程(S02)と離型工程(S04)では干渉縞を観測するための波長が異なることがあり、離型工程(S04)ではインプリント材Rのパターンが存在する状態でも干渉縞のコントラストが高くなる狭帯域の波長を用いることがある。このように基板W上のパターンの有無に応じて狭帯域の波長が異なる場合がある。
 S04の離型工程を検出モードM4で観察した際の、型Mと基板Wの断面の様子と撮像素子が撮像した画像の様子を図14に示す。撮像素子が撮像した画像の様子は表示装置12などの出力部に出力し、インプリント材Rと型Mとの離型状態を確認することができる。型Mが基板Wに対して傾いたままでインプリント材Rから離れると、干渉縞の中心位置が型Mの中心位置からずれて見える(図14(A)~(D))。波長切替機構37で狭帯域の波長を用いることで、干渉縞の中心位置を明確に特定することができ、型Mの姿勢を確認することができる。また、干渉縞の中心位置から型Mの姿勢を制御する際に、撮像素子35での画像取得のフレームレートを高くすることで、より高頻度で型Mの姿勢制御を行うことができる。
 S05の離型工程の後、S15の切替え工程(検出モードM5)において、検出条件を検出モードM5に切替える。検出部の検出条件を検出モードM5に切替えた後、インプリント処理終了時における基板W表面の状態を検出している。インプリント処理終了に、図10(F)に示すように基板W表面にインプリント材Rによるパターン層が、ムラなく形成されていることが望ましい。
 このため検出モードM5では、偏光切替機構38においてパターンのピッチ方向と照明光の電場ベクトルの振動方向が平行になるように設定している。また、波長切替機構37では、基板Wからの反射光とインプリント材Rによるパターン層表面からの反射光による干渉が強くなる狭帯域の波長を用いている。これにより、撮像素子35で検出する画像を明確にすることができ、パターン層がムラなく形成されているかを検出(インプリント不良を検出)することができる。
 このように、インプリント工程のそれぞれの工程で検出部Sの検出条件を切替えることにより、それぞれの工程で基板上の状態をより精度よく検出(把握)することができる。基板上の状態をインプリント工程に合わせて検出することで、インプリント不良の防止に効果的である。インプリント工程のそれぞれの工程は、図10で説明したインプリント装置の駆動部の駆動シーケンスに従って行われる。したがって、検出部Sの検出条件は駆動部の駆動シーケンスに応じて切替えることができる。
 図11のフローチャートは、パターン未形成の基板Wに対してインプリント処理を施すものであった。パターンが形成されている基板Wに対してインプリント処理を施す場合にも、インプリント処理の工程に応じた検出モードを設定することで、それぞれの工程で異なる基板上の状態を、より精度よく検出(把握)することができる。
 また、第2実施形態では、検出モードによる検出条件の切替えを記した。しかし、検出モードを用いずに、インプリント処理のそれぞれの工程に応じて検出部Sの検出部サブユニットDSを個別に切替えてもよい。
 なお、インプリント工程において、インプリント不良が発生していることがわかった場合には、基板W上のゴミGを除去する工程を行ったり、基板W上のゴミGの場所を記憶しておいたりすることができる。基板W上ゴミGが除去できない場合には、該当ショットに対してインプリント処理を行わなかったり、基板W上のゴミGが付着した領域に型を接触させたりしない(パターンを形成しない)ようにインプリント工程を行う。
 (第3実施形態)
 図15、図16に基づいて第3実施形態のインプリント方法について説明する。図15と図16は、図12に示した検出モードの編集手段を提供する。
[規則91に基づく訂正 01.02.2017] 
 図15に示す検出モード編集画面161では、検出モード毎に検出部サブユニットDSの検出条件を編集する編集手段を提供する。図15の検出モードテーブル162では、登録されている検出モードと、検出モード毎の検出部サブユニットDSの設定を表示している。検出モードテーブル162の行163には検出モードの種類、また、検出モードテーブル162の列164には検出モードを構成する検出部サブユニットDS毎の設定を表示している。検出モード編集画面161は、図1のコンソールCONSで生成されて表示装置12に表示される。検出モード編集画面161を編集する際には、図1のキーボードやマウスなどの入力デバイス13により、項目166のように編集対象を選択した後、操作ボタン群165を操作することで行う。
 図16に示すレシピ編集画面171では、インプリント処理の工程毎の検出モードを編集する編集手段を提供する。工程毎の検出モード設定テーブル172では、工程毎の検出モードを表示している。工程毎の検出モード設定テーブル172の行173には、インプリント処理を構成する工程の種類、また、検出モード設定テーブル172の列174には工程毎に用いる検出モードを表示している。レシピ編集画面171は、図1のコンソールCONSで生成されて表示装置12に表示される。レシピ編集画面171を編集する際には、図1のキーボードやマウスなどの入力デバイス13により、項目176のように編集対象を選択した後、操作ボタン群175を操作することで行う。
 検出モード編集画面161やレシピ編集画面171で編集した内容は、図1のコンソールCONSが有するハードディスクなどのメモリデバイスDBに記憶される。インプリント処理が実行される際に、制御部CNTがメモリデバイスDBの情報に従って、検出部Sを構成する検出部サブユニットDSの設定を切替える。
 図17に、図1の表示装置12に表示されるカメラモニタ181を示す。カメラモニタ181の画像表示エリア182には撮像素子35で検出された画像が表示される。カメラモニタ181では、リアルタイムに検出画像を表示することで、インプリント処理と連動して検出モードが切り替わっている様子を確認することができる。
 (その他の事項)
 また、上記何れの実施形態も、インプリント装置IMPとして、光(紫外線)を照射することでインプリント材(光硬化樹脂)を硬化させるインプリント方法である、光硬化法を適用した装置について説明してきた。しかし、本発明はインプリント装置IMPとして、熱によってインプリント材Rを硬化させる熱硬化法を適用した装置でもよい。この場合、インプリント材Rは熱可塑性もしくは熱硬化性を有する樹脂を用いる。インプリント装置IMPには、インプリント材Rに熱を供給する熱源を備える。本発明はインプリント工程の時に検出部Sで、基板に供給されたインプリント材と型が接触した接触領域やその周囲の干渉縞を検出できれば、熱サイクル法を用いたインプリント方法であっても良い。
 (デバイス製造方法)
 物品としてのデバイス(半導体集積回路素子、液晶表示素子等)の製造方法は、上述したインプリント装置を用いて基板(ウエハ、ガラスプレート、フィルム状基板)にパターンを形成する工程を含む。さらに、該製造方法は、パターンを形成された基板をエッチングする工程を含みうる。なお、パターンドメディア(記録媒体)や光学素子などの他の物品を製造する場合には、該製造方法は、エッチングの代わりに、パターンを形成された基板を加工する他の処理を含みうる。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも一つにおいて有利である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。

Claims (15)

  1.  基板上のインプリント材と型を接触させ、前記基板上に前記インプリント材のパターンを形成するインプリント装置であって、
     前記基板に光を照射し、前記基板からの反射光を光学的に検出することにより前記基板上の前記インプリント材の状態を検出し、インプリント工程中に検出条件を切替える検出部を、有することを特徴とするインプリント装置。
  2.  前記基板を保持する基板保持部と、
     前記型を保持する型保持部を、有し、
     前記基板保持部または前記型保持部の少なくとも一方は、前記基板上の前記インプリント材と前記型を接触させるように駆動し、
     前記インプリント材と前記型とが接触する前と接触する後で、前記検出条件を切替えることを特徴とする請求項1に記載のインプリント装置。
  3.  前記基板を保持する基板保持部と、
     前記型を保持する型保持部を、有し、
     前記基板保持部または前記型保持部の少なくとも一方は、前記基板と前記型の間隔を広げるように駆動し、
     前記インプリント材から前記型が離れる前と離れた後で、前記検出条件を切替えることを特徴とする請求項1に記載のインプリント装置。
  4.  前記検出条件は、前記基板に照射する光の照射条件であることを特徴とする請求項1から請求項3の何れか一項に記載のインプリント装置。
  5.  前記照射条件は、前記基板に照射する前記光の波長であることを特徴とする請求項4に記載のインプリント装置。
  6.  前記照射条件は、前記基板を明視野照明または暗視野照明で照明する照明方式の違いであることを特徴とする請求項4または請求項5に記載のインプリント装置。
  7.  前記照射条件は、前記基板に照射する前記光の偏光状態であることを特徴とする請求項4から請求項6の何れか一項に記載のインプリント装置。
  8.  前記検出条件は、前記基板からの反射光を受光する受光条件であることを特徴とする請求項1から請求項3の何れか一項に記載のインプリント装置。
  9.  前記受光条件は、前記基板からの反射光のうち正反射光を通過させ回折光を遮る開口絞りと、前記基板からの反射光のうち回折光を通過させ正反射光を遮る開口絞りを切替えることを特徴とする請求項8に記載のインプリント装置。
  10.  前記検出部が検出する前記インプリント材の状態を出力する出力部を、有し、
     前記出力部が出力する前記インプリント材の状態は、前記インプリント材と前記型の接触状態を含むことを特徴とする請求項1から請求項9の何れか一項に記載のインプリント装置。
  11.  前記インプリント装置の動作を制御する制御部を有し、
     前記制御部は、前記検出部が検出する前記インプリント材の状態の検出結果から、前記インプリント材と前記型の接触状態の良否を判定することを特徴とする請求項1から請求項9の何れか一項に記載のインプリント装置。
  12.  基板上のインプリント材と型を接触させ、前記基板上に前記インプリント材のパターンを形成するインプリント方法であって、
     前記インプリント材にパターンを形成するインプリント工程中に、前記基板に照射する光の照射条件を切替えて前記基板に光を照射する工程、
     前記基板からの反射光を検出する工程、
     前記反射光の検出結果から、前記基板上の前記インプリント材の状態を検出する工程を有することを特徴とするインプリント方法。
  13.  基板上のインプリント材と型を接触させ、前記基板上に前記インプリント材のパターンを形成するインプリント方法であって、
     前記基板に光を照射する工程、
     前記インプリント材にパターンを形成するインプリント工程中に、前記基板からの反射光を受光する受光条件を切替えて前記反射光を受光する工程、
     前記反射光の検出結果から、前記基板上の前記インプリント材の状態を検出する工程を有することを特徴とするインプリント方法。
  14.  基板上のインプリント材と型を接触させ、前記基板上に前記インプリント材のパターンを形成する際に、前記インプリント材の状態を検出する検出方法であって、
     前記基板に光を照射する照射工程、
     前記基板からの反射光を受光する受光工程、を有し、
     前記照射工程において前記基板に照射する光の照射条件、または、前記受光工程において前記基板からの反射光を受光する受光条件の少なくとも一方をインプリント工程中に切替えることを特徴とする検出方法。
  15.  請求項1から請求項11の何れか一項に記載のインプリント装置を用いて前記基板上にインプリント材のパターンを形成する工程と、
     前記工程でパターンが形成された基板を加工する工程と、
     を含むことを特徴とする物品の製造方法。
PCT/JP2014/082972 2014-12-12 2014-12-12 インプリント装置、インプリント方法及び物品の製造方法 WO2016092697A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177018402A KR101980464B1 (ko) 2014-12-12 2014-12-12 임프린트 장치, 임프린트 방법 및 물품의 제조 방법
JP2016563375A JP6552521B2 (ja) 2014-12-12 2014-12-12 インプリント装置、インプリント方法及び物品の製造方法
PCT/JP2014/082972 WO2016092697A1 (ja) 2014-12-12 2014-12-12 インプリント装置、インプリント方法及び物品の製造方法
US14/962,978 US10416551B2 (en) 2014-12-12 2015-12-08 Imprinting apparatus, imprinting method, and article manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/082972 WO2016092697A1 (ja) 2014-12-12 2014-12-12 インプリント装置、インプリント方法及び物品の製造方法

Publications (2)

Publication Number Publication Date
WO2016092697A1 WO2016092697A1 (ja) 2016-06-16
WO2016092697A9 true WO2016092697A9 (ja) 2017-05-04

Family

ID=56106941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082972 WO2016092697A1 (ja) 2014-12-12 2014-12-12 インプリント装置、インプリント方法及び物品の製造方法

Country Status (4)

Country Link
US (1) US10416551B2 (ja)
JP (1) JP6552521B2 (ja)
KR (1) KR101980464B1 (ja)
WO (1) WO2016092697A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328806B2 (ja) 2019-06-25 2023-08-17 キヤノン株式会社 計測装置、リソグラフィ装置、および物品の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6993782B2 (ja) * 2017-03-09 2022-01-14 キヤノン株式会社 インプリント装置および物品製造方法
US11681216B2 (en) * 2017-08-25 2023-06-20 Canon Kabushiki Kaisha Imprint apparatus, imprint method, article manufacturing method, molding apparatus, and molding method
JP7241493B2 (ja) * 2017-11-07 2023-03-17 キヤノン株式会社 インプリント装置、情報処理装置、及び物品の製造方法
JP6896036B2 (ja) 2019-09-30 2021-06-30 キヤノン株式会社 情報処理装置、判定方法、インプリント装置、リソグラフィシステム、物品の製造方法及びプログラム
JP7395307B2 (ja) * 2019-10-01 2023-12-11 キヤノン株式会社 インプリント方法、インプリント装置および物品の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871558B2 (en) 2002-12-12 2005-03-29 Molecular Imprints, Inc. Method for determining characteristics of substrate employing fluid geometries
JP4721393B2 (ja) * 2003-08-15 2011-07-13 キヤノン株式会社 近接場露光方法
WO2006020685A2 (en) * 2004-08-11 2006-02-23 Cornell Research Foundation, Inc. Modular fabrication systems and methods
JP5268239B2 (ja) * 2005-10-18 2013-08-21 キヤノン株式会社 パターン形成装置、パターン形成方法
JP4958614B2 (ja) * 2006-04-18 2012-06-20 キヤノン株式会社 パターン転写装置、インプリント装置、パターン転写方法および位置合わせ装置
JP4795300B2 (ja) * 2006-04-18 2011-10-19 キヤノン株式会社 位置合わせ方法、インプリント方法、位置合わせ装置、インプリント装置、及び位置計測方法
US7567344B2 (en) * 2006-05-12 2009-07-28 Corning Incorporated Apparatus and method for characterizing defects in a transparent substrate
JP2008141087A (ja) * 2006-12-05 2008-06-19 Canon Inc 近接場露光方法、近接場露光装置
JP5666082B2 (ja) * 2008-05-30 2015-02-12 東芝機械株式会社 転写装置およびプレス装置
NL2006454A (en) * 2010-05-03 2011-11-07 Asml Netherlands Bv Imprint lithography method and apparatus.
JP2012018096A (ja) * 2010-07-08 2012-01-26 Fujifilm Corp 欠陥検査装置
JP4814403B1 (ja) * 2011-06-17 2011-11-16 民朗 金辺 メタン製造装置
JP5713961B2 (ja) * 2011-06-21 2015-05-07 キヤノン株式会社 位置検出装置、インプリント装置及び位置検出方法
JP5706861B2 (ja) * 2011-10-21 2015-04-22 キヤノン株式会社 検出器、検出方法、インプリント装置及び物品製造方法
JP5930699B2 (ja) * 2011-12-20 2016-06-08 キヤノン株式会社 インプリント装置、インプリント方法およびデバイスの製造方法
JP2013178231A (ja) * 2012-02-01 2013-09-09 Canon Inc 検査装置、検査方法、リソグラフィ装置及びインプリント装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328806B2 (ja) 2019-06-25 2023-08-17 キヤノン株式会社 計測装置、リソグラフィ装置、および物品の製造方法

Also Published As

Publication number Publication date
JPWO2016092697A1 (ja) 2017-09-21
US20160167261A1 (en) 2016-06-16
KR20170092649A (ko) 2017-08-11
KR101980464B1 (ko) 2019-05-20
WO2016092697A1 (ja) 2016-06-16
US10416551B2 (en) 2019-09-17
JP6552521B2 (ja) 2019-07-31

Similar Documents

Publication Publication Date Title
JP6552521B2 (ja) インプリント装置、インプリント方法及び物品の製造方法
KR101879549B1 (ko) 임프린트 장치, 임프린트 방법, 검출 방법 그리고 디바이스를 제조하는 방법
TWI654422B (zh) 測量裝置、壓印設備、製造產品的方法、光量確定方法及光量調整方法
TWI651762B (zh) 對位裝置,對位方法,光蝕刻裝置,及物品製造方法
JP2020096195A (ja) 装置及びインプリント装置
JP5938218B2 (ja) インプリント装置、物品の製造方法およびインプリント方法
CN104849956A (zh) 检测装置、压印装置及物品的制造方法
CN112130430B (zh) 测量装置、光刻装置和制造物品的方法
CN105759566B (zh) 压印装置、压印方法以及物品的制造方法
JP2019140288A (ja) 検出装置、リソグラフィ装置、および物品の製造方法
JP2018152374A (ja) インプリント装置および物品製造方法
JP6758967B2 (ja) インプリント装置、インプリント方法、及び物品の製造方法
KR20220027034A (ko) 임프린트 장치 및 물품 제조 방법
JP7030569B2 (ja) 位置検出装置、位置検出方法、インプリント装置及び物品の製造方法
US12023850B2 (en) Position detection apparatus, imprint apparatus, and article manufacturing method
US20230294351A1 (en) Object alignment method, imprint method, article manufacturing method, detection apparatus, imprint apparatus, mold, and substrate
JP2020092179A (ja) インプリント装置、および物品製造方法
JP7387666B2 (ja) チップ部品除去装置
US12098913B2 (en) Detector that detects relative positions of marks while blocking non-interference light
JPWO2002049026A1 (ja) 多層ディスク製造装置及び多層ディスク貼り合わせ方法
JP2020077850A (ja) インプリント装置、および物品の製造方法
JP2012156431A (ja) 偏光撮像装置の製造方法、及び製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563375

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177018402

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14907801

Country of ref document: EP

Kind code of ref document: A1