WO2016088486A1 - 生体分子測定装置及び生体分子測定方法 - Google Patents

生体分子測定装置及び生体分子測定方法 Download PDF

Info

Publication number
WO2016088486A1
WO2016088486A1 PCT/JP2015/080402 JP2015080402W WO2016088486A1 WO 2016088486 A1 WO2016088486 A1 WO 2016088486A1 JP 2015080402 W JP2015080402 W JP 2015080402W WO 2016088486 A1 WO2016088486 A1 WO 2016088486A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomolecule
nanopore
fixing member
thin film
driving
Prior art date
Application number
PCT/JP2015/080402
Other languages
English (en)
French (fr)
Inventor
玲奈 赤堀
至 柳
武田 健一
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US15/531,500 priority Critical patent/US10294525B2/en
Priority to CN201580064266.5A priority patent/CN107002009B/zh
Priority to DE112015005465.0T priority patent/DE112015005465B4/de
Priority to GB1708677.8A priority patent/GB2549860B/en
Publication of WO2016088486A1 publication Critical patent/WO2016088486A1/ja
Priority to US16/395,708 priority patent/US11169139B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a biomolecule measuring apparatus and a biomolecule measuring method using nanopores provided in a thin film.
  • next-generation DNA sequencer As a next-generation DNA sequencer, a technique for directly measuring the DNA base sequence without performing an extension reaction or a fluorescent label has been attracting attention.
  • a nanopore DNA sequencing method in which a DNA fragment is directly measured and a base sequence is determined without using a reagent has been actively promoted. This method is based on the principle of sequentially identifying the base species by directly measuring the difference between the individual base species contained in the DNA strand with the amount of blocking current when the DNA strand passes through the nanopore. Since the template DNA is not amplified by an enzyme and a label such as a phosphor is not used, this method is expected to lead to high throughput, low running cost, and long base length decoding.
  • One of the problems with the nanopore method is the control of DNA transport through the nanopore.
  • the nanopore passage speed of DNA In order to measure the difference between individual base species contained in DNA strands by the amount of blocking current, it is necessary to set the nanopore passage speed of DNA to 100 ⁇ s or more per base from the current noise during measurement and the time constant of DNA molecule fluctuation. There are thought to be.
  • a potential gradient is formed using electrodes positioned above and below the nanopore, and negatively charged DNA is passed through the nanopore.
  • the nanopore passage speed of DNA is usually as fast as 1 ⁇ s or less per base, and it is difficult to sufficiently measure the blocking current derived from each base.
  • Non-Patent Documents 1 and 2 DNA was immobilized at the probe tip of an atomic force microscope (AFM), and the DNA was introduced into the nanopore. Since DNA is negatively charged in an aqueous solution, it receives a force due to a potential difference generated in the vicinity of the nanopore and is introduced into the nanopore.
  • AFM atomic force microscope
  • the DNA is fixed to the AFM probe by using an atomic force microscope
  • the DNA is attracted by an electric field in the vicinity of the nanopore due to the deflection of the probe caused by the AFM probe being pulled by the DNA. Can be monitored.
  • the ionic current flowing up and down through the nanopore it is possible to obtain a blocking signal when DNA passes through the nanopore. By confirming that these signals are synchronized, it was shown that both dsDNA and ssDNA can be introduced into and extracted from the nanopore.
  • the present invention proposes a system for transporting biomolecules using a fixed probe whose biomolecule fixing region is not less than the size of a thin film having nanopores.
  • the density of the biomolecule fixed to the fixed probe is controlled to a density at which at least one biomolecule enters the electric field region around the nanopore when the fixed probe approaches the nanopore device.
  • the above configuration eliminates the need for driving control in the in-plane direction of the thin film when searching for the position of the nanopore from a wide area of the thin film and introducing biomolecules into the nanopore, thereby increasing the measurement throughput.
  • DNA feed control accuracy is improved and single base resolution is achieved.
  • the biomolecule measuring apparatus supports, as an example, a first liquid tank filled with an electrolyte solution, a second liquid tank filled with an electrolyte solution, and a thin film having nanopores, and the first via the nanopores.
  • the nanopore device provided between the first liquid tank and the second liquid tank so as to communicate with the second liquid tank and the second liquid tank, and disposed in the first liquid tank, having a size larger than that of the thin film.
  • the biomolecule measuring method of the present invention includes, as an example, a step of applying a voltage to a thin film having nanopores arranged in an electrolyte solution through the nanopore to generate an electric field around the nanopore, and a size larger than that of the thin film. And driving the biomolecule fixing member having a plurality of biomolecules fixed on the lower surface in the electrolyte solution in a direction approaching the thin film, and stopping the driving when the biomolecule immobilization member approaches the thin film to a predetermined distance.
  • a step of confirming that a biomolecule has entered the nanopore from a change in the ionic current flowing through the nanopore a step of measuring the ionic current while driving the biomolecule-immobilized member away from the thin film, Obtaining information for identifying the molecules constituting the biomolecule from the measured ionic current.
  • biomolecules can be introduced into the nanopore without confirming the position of the nanopore in the thin film. Further, it is possible to secure displacement stability and to obtain a stable block signal.
  • the cross-sectional schematic diagram explaining the structural example of a biomolecule measuring apparatus The electric field produced
  • tip of a biomolecule The cross-sectional schematic diagram of a part of a biomolecule measuring apparatus and the top schematic diagram of a drive mechanism. The enlarged view of the nanopore vicinity.
  • Explanatory drawing which shows the example of the method of reading the base sequence of DNA.
  • the cross-sectional schematic diagram which shows the example of the biomolecule measuring apparatus which has the nanopore device paralleled.
  • the nanopore described in each example is a nano-sized hole penetrating the front and back provided in the thin film.
  • the thin film is mainly formed of an inorganic material. Examples of the thin film material include SiN, SiO 2 , Graphene, Graphite, Si, and the like, but other organic materials and polymer materials can also be included.
  • the nanopore thin film having nanopores is formed on a part of the nanopore device, and has a structure that does not have a support film on the top and bottom and is supported by the nanopore device and floats in the air.
  • Biomolecules referred to in this specification include nucleic acids, proteins, amino acids, long-chain polymers, and the like.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration example of a biomolecule measuring apparatus.
  • the biomolecule measuring apparatus 100 of the present embodiment has two upper and lower liquid tanks separated by a nanopore device 101, and each liquid tank is filled with an electrolyte solution 102.
  • an electrolyte solution KCl, NaCl, LiCl, MgCl 2 or the like is used.
  • KCl, NaCl, LiCl, MgCl 2 or the like is used.
  • a buffering agent can be mixed for the stabilization of biomolecules.
  • TE TE, PBS or the like is used.
  • a thin film 113 is formed in the nanopore device 101, and the nanopore 112 is formed at any position in the thin film 113.
  • the two upper and lower liquid tanks communicate with each other through the nanopore 112 of the thin film 113 supported by the nanopore device 101.
  • Ag / AgCl electrodes 103a and 103b are arranged in contact with the electrolyte solution 102, and a power source 104 and an ammeter 109 are connected between the electrodes 103a and 103b.
  • the ammeter 109 is connected to the ADC and PC 110 and can record the acquired current value.
  • a driving mechanism 105 is installed in the upper liquid tank and is connected to the driving mechanism control unit 106.
  • a biomolecule fixing member (hereinafter simply referred to as a fixing member) 107 is connected to the driving mechanism 105 by a connecting member 111.
  • the fixing member 107 has a size larger than that of the thin film 113, and the biomolecule 108 is fixed to the flat lower surface of the fixing member 107.
  • the stop means of the present embodiment is a space forming member 114 that surrounds the periphery of the nanopore device 101 outside the thin film 113 like a bank and forms a space between the fixing member 107 and the thin film 113.
  • a thin film 113 having nanopores 112 is disposed in a circular space formed at the center of the space forming member 114, and the dimension of the thin film 113 is smaller than the dimension of the fixing member 107.
  • the fixing member 107 that has moved toward the nanopore device 101 stops against the space forming member 114 before coming into contact with the thin film 113 and does not come into contact with the thin film 113 to be destroyed.
  • the size of the thin film needs to be an area where it is difficult to form two or more holes when forming a hole by thin film strength and voltage application.
  • a film thickness of about 1 nm capable of forming nanopores having an effective film thickness equivalent to one base is appropriate, and the film thickness of the space forming member is to maintain the strength of the thin film or to fix the biomolecule on the surface of the biomolecule fixing member. Considering fluctuations, about 200 to 500 nm is appropriate.
  • the thin film 113 has a diameter of 500 nm and the space forming member 114 has a thickness of 250 nm.
  • a method for forming a nanopore device and a method for forming a nanopore are known and described in, for example, Itaru Yanagi et al., Sci. Rep. 4, 5000 (2014).
  • a thin film for forming nanopores was produced by the following procedure. First, the surface 8-inch Si wafer 725 ⁇ m thickness was 112nm deposited Si 3 N 4 and Si 3 N 4 / SiO 2 / Si 3 N 4 12nm / 250nm / 100nm, the rear surface. Next, the surface top the Si 3 N 4 to 500nm square, and 1038 ⁇ m square back surface the Si 3 N 4, and each reactive ion etching.
  • the Si substrate exposed by etching on the back surface was etched with TMAH (Tetramethylammonium hydroxide).
  • TMAH Tetramethylammonium hydroxide
  • the wafer surface was covered with a protective film (ProTEK TM B3primer and ProTEK TM B3, Brewer Science, Inc.) in order to prevent etching of the front-side SiO.
  • Formation of nanopores on the thin film exposed to the nanopore device was performed by the following procedure using a pulse voltage.
  • the Si 3 N 4 thin film is made hydrophilic by Ar / O 2 plasma (SAMCO Inc., Japan) under the conditions of 10 W, 20 sccm, 20 Pa, 45 sec. Turned into.
  • 1M KCl, 1 mM Tris-10 mM EDTA, pH 7.5 solution is filled, and each tank is filled with Ag / AgCl. An electrode was introduced.
  • the voltage application for forming the nanopore and the measurement of the ion current flowing through the nanopore after the nanopore is formed are performed between the Ag / AgCl electrodes.
  • the lower tank was called the cis tank
  • the upper tank was called the trans tank
  • the voltage V cis on the cis tank electrode side was set to 0 V
  • the voltage V trans on the trans tank electrode side was selected.
  • the selected voltage was applied with a pulse generator (41501B SMU AND Pulse Generator Expander, Agilent Technologies, Inc.).
  • the current value after applying each pulse was read with a current amplifier (4156B PRECISION SEMICONDUCTOR ANALYZER, Agilent Technologies, Inc.).
  • the process of voltage application and ion current reading for nanopore formation was controlled by a self-made program (Excel VBA, Visual Basic for Applications).
  • the pulse voltage application condition by selecting the current value condition (threshold current) acquired according to the pore diameter formed in the thin film before applying the pulse voltage, the pore diameter is sequentially increased, and the target pore diameter is set. Obtained. The pore diameter was estimated from the ion current value.
  • the criteria for condition selection are as shown in Table 1.
  • Nanopores can be formed not only by applying a pulse voltage but also by electron beam irradiation using TEM (A.AJ. Storm et al., Nat. Mat. 2 (2003)).
  • the displacement of the biomolecule 108 is the length of one base, that is, 0.34 nm. It is necessary that the configuration does not change as described above.
  • F is the force applied to the system
  • S is the area of the material
  • L is the length of the material
  • ⁇ L is the amount of displacement when receiving the applied force. It has been found that when 1 mV is applied vertically through the nanopore, the force applied to DNA is 0.24 pN (Ulrich F. Keyser et al., Nat. Phys. 2, 473-477 (2006)). . Since fluctuation of the applied voltage during the analysis can occur about 0.1 mV, it is necessary that the displacement does not exceed 0.34 nm. Therefore, the Young's modulus of the fixing member 107, the drive mechanism 105, and the connecting member 111 needs to be 0.07 (L / S) [ ⁇ N / mm 2 ] or more.
  • the measurement system is thermally stable. Even when there is no heat source, the space is known to have a fluctuation of 0.1 degree. Therefore, the temperature change of the distance between the nanopore device and the biomolecule-immobilized substrate calculated from the entire material used in the system needs to be 0.34 nm or less per 0.1 ° C.
  • the fixing member 107 can be fixed to the drive mechanism 105 by vacuum suction or pressure bonding.
  • the drive mechanism 105 is formed of a piezoelectric material typified by a piezo element, and can be driven at 0.1 nm / s or more.
  • the piezoelectric material barium titanate (BaTiO 3 ), lead zirconate titanate (PZT), zinc oxide (ZnO), or the like is used.
  • the end of the biomolecule 108 and the surface of the fixing member 107 can be bonded to each other by a covalent bond, an ionic bond, an electrostatic interaction, a magnetic force, or the like.
  • DNA when DNA is immobilized by a covalent bond, DNA whose end has been modified with APTES or glutaraldehyde can be immobilized.
  • the fixing member 107 uses Si or SiO serving as a scaffold for APTES in order to use the above-described coupling.
  • a gold thiol bond can be used as another covalent bonding method.
  • the 5 'end of the DNA is thiol-modified, and the surface of the fixing member 107 is gold-deposited.
  • Ag, Pt, and Ti capable of binding thiol can be used as the metal species to be deposited on the fixing member 107.
  • the method using ionic bond is a method of immobilizing a negatively charged biomolecule on the surface of a positively charged fixing member by performing a process of positively charging the fixing member in a solution by surface modification.
  • the cationic polymer polyaniline or polylysine is used.
  • electrostatic interaction is used, the amino-terminal modified DNA can be directly immobilized on the surface of the APTES-modified fixing member 107.
  • the substrate surface a nitrocellulose film, a polyvinylidene fluoride film, a nylon film, or a polystyrene substrate is widely used. In particular, nitrocellulose membranes are used in microarray technology.
  • DNA is immobilized in advance on the surface of the magnetic beads, for example, using the above-described bonds. Further, by using a magnetic material as the fixing member 107, the magnetic beads having DNA immobilized thereon interact with the fixing member 107, thereby realizing attraction of the DNA-immobilized magnetic beads by magnetic force.
  • a magnetic material iron, silicon steel, amorphous magnetic alloy, nanocrystal magnetic alloy, or the like is used.
  • the specific binding site can be similarly modified and bound to a fixed substrate by the same method. This makes it possible to specify the binding site in the protein and obtain amino acid sequence information.
  • FIG. 2 is a schematic diagram showing an example of introducing an electric field generated around a nanopore and a biomolecule into the nanopore.
  • the potential gradient 201 spreading around the nanopore 112 includes a distance L from the nanopore 112, a nanopore diameter d, a thin film thickness t, and an applied voltage ⁇ V.
  • the range in which the biomolecule is confined in this electric field and introduced into the nanopore is determined. If the range is L diff , it is expressed by the following equation.
  • the distance when the fixing member 107 comes closest to the thin film 113 is l.
  • the biomolecule fixed pitch a is as follows.
  • a biomolecule (DNA) 108 is immobilized in a mixed manner with a terminal-modified short chain polymer 206, so that a DNA immobilization member having an effective low target DNA immobilization density can be produced.
  • a fixing member is prepared using a DNA solution containing 20% of polymer (dA) 75%, the phenomenon of multiple DNAs entering one pore is eliminated using nanopores having a pore diameter of 2.5 to 3 nm. I have confirmed that I can do it. That is, it is considered that the pitch can be fixed at about 100 nm pitch.
  • the length of the short chain polymer to be mixed is not necessarily about 2 nm.
  • FIG. 4 is a schematic diagram illustrating an example of a procedure for binding a biomolecule to a fixing member and a procedure for installing the fixing member on a biomolecule measuring apparatus.
  • the electrodes are not shown.
  • the pre-measurement preparation process shown in FIG. 4 includes three processes. In the first step shown in FIG. 4A, the biomolecule 108 is fixed on the fixing member 107. In the second step shown in FIG. 4B, the fixing member 107 and the drive mechanism 105 are connected and inserted into the upper tank of the biomolecule measuring apparatus. In the third step shown in FIG. 4C, the electrolyte solution 102 is introduced into the space above and below the nanopore device 101.
  • FIG. 5 is a schematic diagram showing another example of a procedure for binding a biomolecule to a fixing member.
  • the electrodes are not shown.
  • the pre-measurement preparation step shown in FIG. 5 includes two steps. In the first step shown in FIG. 5A, the fixing member 107 is connected to the drive mechanism 105 and inserted into the upper tank of the biomolecule measuring device. In the second step shown in FIG. 5B, the biomolecule mixed electrolyte solution 403 in which the biomolecule 108 in a state capable of binding to the fixing member 107 is dissolved is poured into the upper and lower tanks of the biomolecule measuring apparatus.
  • the binding material for binding the biomolecule to the surface of the fixing member minimizes nonspecific adsorption as much as possible, and increases the density at which the target binding is performed on the surface of the fixing member in advance. It is necessary to modify the surface.
  • the binding material refers to APTES and glutaraldehyde, for example, when a biomolecule is immobilized using a covalent bond via APTES glutaraldehyde. When immobilizing biomolecules using ionic bonds, it refers to an organic material on the substrate surface.
  • the biomolecule is a long-chain DNA, particularly in a sequence in which a plurality of guanines are continuously arranged, strong folding of DNA becomes a problem.
  • DNA is folded, a phenomenon such as clogging near the nanopore and not passing through the nanopore may occur. Therefore, it is preferable to heat the immobilizing member on which DNA is immobilized at 60 ° C. to 98 ° C. for 10 to 120 minutes in water and rapidly cool to 4 ° C. Then measure in KCl solution at 4 ° C. or room temperature.
  • FIG. 6 is a schematic diagram showing a driving procedure of the fixing member.
  • the electrodes are not shown.
  • the driving method of the fixing member includes three steps shown in FIG. FIG. 6 (a) shows the procedure shown in FIG. 4 or FIG. 5, in which a fixing member 107, on which the biomolecule 108 to be measured is fixed on the lower surface, is inserted into the upper liquid tank of the biomolecule measuring apparatus. The electrolyte solution is introduced into the tank and the measurement is ready.
  • the driving mechanism 105 is driven and controlled by the driving mechanism control unit 106, and the fixing member 107 is driven below the z axis to fix the living body fixed to the fixing member 107.
  • the molecules 108 are placed in the potential gradient 201 generated in the vicinity of the nanopore 112 of the thin film 113.
  • the biomolecule 108 receives a force from the electric field and passes through the nanopore 112 from the free end where the biomolecule 108 is not fixed. Try to move to the tank.
  • the biomolecule 108 passes through the nanopore 112 and is stretched between the portion located in the potential gradient 201 and the end fixed on the fixing member 107.
  • the introduction of a biomolecule into the nanopore 112 can be monitored from the ionic current.
  • the driving mechanism 105 further drives the fixing member 107 downward in the z-axis direction to contact the space forming member 114 formed on the nanopore device 101, where the driving mechanism The movement of the fixing member 107 by 105 is stopped. Since the space forming member 114 exists above the thin film 113, the contact between the fixing member 107 and the thin film 113 can be avoided, and the thin film 113 can be prevented from being destroyed.
  • the introduction probability can be increased by stopping the driving mechanism 105 for a certain period of time.
  • 6C also shows a schematic side view of the drive mechanism 105 and a schematic bottom view of the fixing member 107.
  • a slit 507 is provided on the lower surface of the fixing member 107, and even when the fixing member 107 is in contact with the space forming member 114, a current path is secured between the electrodes arranged in the upper and lower tanks. It is like that.
  • the drive mechanism 105 is driven in a direction away from the nanopore device 101 by the drive mechanism control unit 106.
  • the biomolecule 108 is pulled by the fixing member 107 while being stretched by the electric field, and moves upward in the nanopore 112.
  • the arrangement of the biomolecule is read from the amount of change in the ionic current.
  • the signal value read by the ammeter 109 is amplified as necessary and recorded in the PC 110.
  • the time point when the fixing member 107 contacts the space forming member 114 in the second step is the analysis start point of the biomolecule characteristic analysis performed in the third step. Therefore, a region corresponding to the height of the space forming member 114 from the fixed point in the entire length of the biomolecule does not pass through the nanopore 112 and cannot be analyzed.
  • the biomolecule 108 is fixed to the fixing member 107, the biomolecule 108 is bonded to the fixing member 107 via the linker 901 corresponding to the height of the space forming member 114. All sequences can be read.
  • FIG. 8 is a schematic diagram showing an example of detection of an ion current signal.
  • a schematic diagram of the positional relationship of the fixing member with respect to the nanopore device is shown in the upper stage, a graph of ion current signal change is shown in the middle stage, and a graph of drive mechanism displacement is shown in the lower stage.
  • the lower drive mechanism displacement z corresponds to the distance between the nanopore device and the fixed member.
  • the positional relationship between the fixing member corresponding to the feature point in the ion current signal and the nanopore device is indicated by an arrow.
  • an ion current signal I 0 corresponding to the nanopore diameter is obtained.
  • the amount of ion current decreases according to the average diameter of the biomolecule.
  • the speed at which the biomolecule passes through the nanopore is not the driving speed of the fixing member but the speed of free electrophoresis of the biomolecule. This is because when the biomolecule enters the electric field from outside the electric field, the biomolecule is folded and bent, so that it is not affected by the fact that the end is fixed to the fixing member.
  • the ion current value acquired will indicate the average current value I b that depends on the biomolecule average diameter.
  • the transport speed of the biomolecule when pulling up the biomolecule by the drive mechanism 105 is equal to the moving speed of the fixing member 105.
  • the DNA nanopore passage speed is set to 100 ⁇ s or more per base from the current noise at the time of measurement and the time constant of DNA molecule fluctuation. It is considered necessary. Therefore, by controlling the driving mechanism 105 and moving the fixing member 107 upward at a speed slower than 100 ⁇ s per base, a signal reflecting the base sequence of the biomolecule can be obtained.
  • the driving mechanism preferably drives the biomolecule fixing member at a speed between 34 nm / sec and 34 ⁇ m / sec.
  • the method of acquiring data indicating the arrangement of biomolecules is not limited to the amount of change in ion current.
  • the arrangement of biomolecules can be analyzed by changing the tunnel current (Makusu Tsutsui et at, Nat. Nanotechnol. 5 , 286-290 (2010)).
  • the arrangement can be analyzed from the change in charge amount.
  • analysis using light is also possible.
  • the arrangement of biomolecules can be analyzed from the amount of absorption, reflection, emission wavelength, etc. (Ping Xie et al., Nat. Nanotechnol. 7, -119- 125 (2012)).
  • biomolecules moving in the nanopore 112 may be analyzed using these known methods.
  • FIG. 9 is a schematic diagram showing another example of stop means for preventing contact between the fixing member and the thin film.
  • FIG. 9 also shows a schematic side view of the fixing member 107 including the driving mechanism 105 and a bottom view having the slit 603.
  • the space forming member 601 is processed so as to protrude downward from the lower surface of the fixing member 107 rather than on the nanopore device 101.
  • the space forming member 601 is formed on the outer periphery of the lower surface of the fixing member 107 or on the four corners of the lower surface or on two opposite sides so as to contact the nanopore device 101 at a position outside the thin film 113.
  • the space forming member 601 is provided at least at a part outside the region facing the thin film 113 on the lower surface of the fixing member 107.
  • FIG. 10 is a schematic view showing another example of stop means for preventing contact between the fixing member and the thin film.
  • FIG. 10A shows a state before the fixing member contacts the nanopore device
  • FIG. 10B shows a state after the fixing member contacts the nanopore device.
  • the stop means only needs to create a space between the fixing member 107 and the thin film 113 so as to avoid contact between the two.
  • an electrode 702a and an electrode 702b are respectively disposed on at least a part of the upper surface of the nanopore device 101 and an area corresponding to the thin film on the lower surface of the fixing member 107, and electrostatic between the electrodes 702a and 702b is arranged.
  • the relative distance between the fixed member 107 and the nanopore device 101 is detected from the change in capacity, and the contact between the two is monitored.
  • the voltage applied between the electrodes 702a and 702b is selected according to the assumed current amount and the measurement current.
  • the fixing member 107 is driven in the direction of the nanopore device 101, and when the nanopore device 101 and the fixing member 107 approach each other, the distance between the two is detected based on the signal change acquired from the electrodes 702a and 702b. Stop driving. Instead of acquiring a capacitance change signal, it is also possible to monitor contact from a short circuit. While a voltage is applied between the electrodes 702a and 702b constituting the stop means, no voltage is applied to the measurement electrodes 103a and 103b.
  • FIG. 11 is a schematic diagram showing another example of stop means for preventing contact between the fixing member and the thin film.
  • the electrodes 801 and 802 are arranged only on the nanopore device 101 and the electrodes are wired, and the fixing member 107 is detected from a change in the amount of current when the fixing member 107 comes close to the nanopore device 101. And the relative distance between the nanopore device 101 is detected.
  • the electrodes 801 and 802 are arranged at the outer periphery, four corners, or two opposite sides of the region outside the thin film 113 on the upper surface of the nanopore device 101. In the example shown in FIG.
  • electrodes 803 and 804 are arranged on the lower surface of the fixing member 107 and the electrodes are wired, and the relative distance between the fixing member 107 and the nanopore device 101 is detected by the same mechanism.
  • the electrodes 803 and 804 may be disposed at the four corners outside the region corresponding to the thin film 113 or the two opposite sides of the lower surface of the fixing member 107.
  • the drive mechanism 105 When four electrodes are arranged at the four corners, it can be used for balancing the fixing member 107.
  • the drive mechanism 105 is provided with a tilt adjustment function, and the tilt of the drive mechanism 105 is adjusted so that the current values acquired from the four locations are substantially the same.
  • independent goniometers are provided at four corners, and are adjusted manually or automatically based on current values acquired from four locations.
  • FIG. 12 is a schematic top view showing an example of electrode arrangement on the nanopore device 101 shown in FIG.
  • FIG. 12A is a layout diagram of the thin film 113, the sensor wiring 806, and the electrode lead-out wiring 807 on the nanopore device 101.
  • 12 (b) and 12 (c) are enlarged views of the sensor wiring, FIG. 12 (b) shows an example of a kind of counter electrode, and FIG. 12 (c) shows a ring shape at four locations around the thin film 113.
  • positioned the counter electrode 808 is shown.
  • a voltage of 1 V is applied between electrodes designed with an electrode length L of 10 ⁇ m and an electrode interval s of 0.4 ⁇ m to 2 ⁇ m shown in FIG. The current change between the electrodes was monitored when the two were brought close to each other.
  • FIG. 13 is a graph showing the relationship between the distance h and the amount of current normalized by the amount of current flowing when the distance h between the fixing member and the nanopore device is 10 ⁇ m. As shown in FIG. 13, when the distance between the fixing member and the nanopore device is 7 ⁇ m or more, there is almost no dependency of the current amount on the distance h. Therefore, the height of the fixing member can be adjusted by acquiring the correlation between the distance h and the current amount.
  • FIG. 14 and FIG. 15 are schematic cross-sectional views showing examples of the driving method of the fixing member by the biomolecule measuring apparatus having the biomolecule pre-stretching mechanism.
  • the biomolecule measuring apparatus of this example includes electrodes 1202a and 1202b on the fixing member 107 and the nanopore device 101, respectively.
  • the circuit conversion controller 1206 connects a power source to the circuit 1207 connected to the electrodes 1202 a and 1202 b, thereby creating a potential gradient 1203 between the fixing member 107 and the nanopore device 101.
  • the potential gradient 1203 due to the potential gradient 1203, the negatively charged biomolecule 108 is stretched between the fixing member 107 and the nanopore device 101.
  • the drive mechanism 105 is driven to drive downward until the fixing member 107 contacts the space forming member 114 of the nanopore device 101.
  • the biomolecule 108 is within the range of the assumed electric field 1209 that should be generated around the nanopore. Put in.
  • FIG. 15A when the fixing member 107 comes into contact with the space forming member 114 of the nanopore device 101, an electric field is formed around the nanopore from the circuit 1207 connected to the electrodes 1202a and 1202b.
  • the connection of the power source is switched to the circuit 1208.
  • FIG. 15B the tip of the biomolecule is inserted into the nanopore by forming a potential gradient 201 around the nanopore.
  • the tip of the biomolecule does not enter the nanopore, and the tip enters the nanopore as shown in the enlarged view of FIG. Exists. Only when the tip enters the electric field region without entering the nanopore, the base can be read from the tip of the biomolecule.
  • FIG. 16 is a schematic diagram showing an example of a signal read from the tip of a biomolecule.
  • the graph of the ion current signal change is shown in the middle, and the graph of the drive mechanism displacement is shown in the lower.
  • the lower drive mechanism displacement z corresponds to the distance between the nanopore device and the fixed member.
  • the correspondence between the fixing member and the nanopore device shown in the upper part is indicated by an arrow.
  • an ion current signal I 0 corresponding to the nanopore diameter is obtained.
  • the power supply is connected to the electrodes 103a and 103b and the potential gradient 201 is formed around the nanopore, the tip of the biomolecule 108 is in the potential gradient 201. Therefore, when the drive mechanism 105 is driven below the z axis, The molecules 108 are sequentially introduced into the nanopore 112 from the free end. At this time, since there is no deflection in the biomolecule 108, the biomolecule is driven at the speed set by the drive mechanism control unit 106, and the characteristic analysis corresponding to each arrangement of the biomolecule is possible.
  • the signal read in the time until it exits from the nanopore 112 becomes a symmetric signal with respect to the contact time as shown in FIG.
  • FIG. 17 is a schematic sectional view of a part of the biomolecule measuring apparatus and a schematic top view of the drive mechanism 105. As shown in the schematic top view, by driving the drive mechanism 105 in the xy direction, that is, in the direction parallel to the surface of the thin film 113, another biomolecule can be passed through the nanopore 112, and a plurality of the biomolecules on the fixing member 107 can be passed. Analysis of biomolecules is realized.
  • FIG. 18A is a schematic cross-sectional view showing the positional relationship between the fixing member 107 and the thin film 113 having the nanopore 112 when the characteristic analysis of the first biomolecule 1405 is performed.
  • the driving member 105 moves the fixing member 107 in parallel to the surface of the nanopore thin film 113 by the same distance as the diameter of the potential gradient 201.
  • FIG. 18B is a schematic cross-sectional view showing the positional relationship between the thin film 113 having the nanopore 112 after movement and the fixing member 107.
  • Example 2 Examples of procedures for measuring biomolecules using the biomolecule measuring apparatus of the present invention will be described below.
  • the ionic current I flowing through the nanopore is measured through an amplifier.
  • a constant voltage is applied between the pair of Ag / AgCl electrodes respectively inserted into the upper and lower liquid tanks, and the ion current amount I 0 corresponding to the size of the nanopore is acquired.
  • FIG. 19 is an explanatory diagram showing an example of a method for reading the base sequence of DNA as a biomolecule.
  • the upper part of FIG. 19 shows two typical positional relationships between the fixing member and the nanopore device during DNA base sequence analysis.
  • the middle part of FIG. 19 shows changes in ion current, and the lower part shows displacement of the fixing member 107.
  • the lower displacement z corresponds to the distance between the fixing member 107 and the nanopore device 101.
  • the driving direction of the fixing member 107 by the driving mechanism 105 is changed, the positional relationship between the fixing member 107 and the nanopore device 101 at that time is shown in the drawing.
  • the middle black arrow indicates that the first positional relationship illustrated on the upper left side is taken, and the white arrow indicates that the second positional relationship illustrated on the upper right side is taken.
  • the fixing member 107 When the fixing member 107 is driven below the z-axis by the driving mechanism 105, the free end of the biomolecule 108 enters the nanopore, and the biomolecule is stretched between the end fixed to the fixing member and the nanopore. At this time, the ionic current decreases according to the average diameter size of the biomolecule 108 and becomes I b .
  • the biomolecule enters the electric potential gradient 201 from the outside, the biomolecule is folded, so that it passes through the nanopore at the speed of free electrophoresis of the biomolecule, not at the moving speed of the fixing member. ion current value of is not the current value from each base will exhibit an average current value I b that depends on the biomolecule average diameter.
  • the fixing member 107 is further driven below the z-axis by the drive mechanism 105, but the space-forming member 114 prevents the movement below the z-axis and stops the movement.
  • the positional relationship among the fixing member 107, the biomolecule 108, and the nanopore device 101 at this time is shown as the first positional relationship on the upper left in FIG.
  • the transport speed of the biomolecule when pulling up the biomolecule is equal to the driving speed of the fixing member 107, so that the biomolecule can be transported at a speed required for single base decomposition ( ⁇ 3.4 nm / ms). Therefore, a signal reflecting the base sequence of the biomolecule is obtained.
  • the sequence information of the biomolecule 108 that moves in the nanopore 112 can be read. While the free end of the biomolecule 108 that is not fixed exits from the nanopore 112 and enters the potential gradient 201 around the nanopore, the biomolecule 108 is reversed from both the fixing member 107 and the potential gradient 201 around the nanopore.
  • the driving mechanism 105 drives the fixing member 107 downward in the z-axis to pass the biomolecule 108 from the free end through the nanopore, while reading the base sequence of the biomolecule 108.
  • the biomolecule 108 is stretched as a whole. Therefore, since the signal to be read passes through the nanopore from the free end at the driving speed by the driving mechanism 105, high-precision reading is possible.
  • the array read while being driven above the z-axis is read from the opposite direction, and an ion current that changes symmetrically is reflected.
  • the displacement 1505 from the position where the fixing member 107 and the nanopore device 101 contact to the position where the ionic current value becomes I 0 reflects the length of the biomolecule.
  • Example 3 Next, an embodiment in which biomolecule measuring devices are arranged in parallel will be described.
  • the biomolecule measuring apparatus of the present invention has good affinity with paralleled nanopore devices. Since parallel biomolecules of the same kind can be measured simultaneously, the throughput can be improved.
  • three types of examples for parallelization are shown.
  • FIG. 20 (a) is a schematic cross-sectional view showing a first example of a biomolecule measuring device having nanopore devices arranged in parallel.
  • a plurality of nanopore devices 1604 are arranged adjacent to each other in the lateral direction, and one common driving mechanism 105 and fixing member 107 are arranged on top of the plurality of nanopore devices 1604.
  • the fixing member 107 has an area enough to cover the entire plurality of nanopore devices.
  • Each of the plurality of nanopore devices 1604 arranged in parallel has an independent liquid tank, and one of the array electrodes 1608 is arranged in the liquid tank of each nanopore device, and each of the array electrodes 1608 is connected to an amplifier.
  • One liquid tank is provided in common above the plurality of nanopore devices 1604 arranged in parallel, and a common counter electrode (common electrode) 1609 is disposed in the liquid tank with respect to the array electrode 1608.
  • a space forming member 1610 common to the plurality of nanopore devices is provided on the side of the paralleled nanopore devices.
  • the liquid tank provided in each nanopore device 1604 communicates with the upper liquid tank via each nanopore provided in the nanopore device 1604.
  • a plurality of biomolecules 108 are bonded to the lower surface of the fixing member 107.
  • the drive mechanism 105 is lowered below the z-axis, the biomolecule 108 on the fixing member 107 passes through the nanopores provided in each nanopore device.
  • a plurality of biomolecules can be measured in parallel using a plurality of nanopores, so that the measurement throughput is increased.
  • FIG. 20B is a schematic cross-sectional view showing a second example of a biomolecule measuring apparatus having nanopore devices arranged in parallel.
  • one drive mechanism 105 is arranged on the top of a plurality of arranged nanopore devices 1604.
  • An array electrode 1608 is connected to the nanopore device 1604.
  • One liquid tank is provided in common above the plurality of nanopore devices 1604, and a common counter electrode 1609 is arranged for each array electrode.
  • a space forming member 1610 common to the plurality of nanopore devices is provided on the side of the paralleled nanopore devices 1604.
  • a plurality of fixing members are connected to the drive mechanism 105, and different types of biomolecules are fixed thereto. This makes it possible to simultaneously analyze the characteristics of different biomolecules.
  • two biomolecule fixing members a first fixing member 107 and a second fixing member 1605, are connected to the driving mechanism 105, and the first biomolecule 108 is bound to the first fixing member.
  • the second biomolecule 1606 is bound to the second fixing member 1605.
  • FIG. 20 (c) is a schematic cross-sectional view showing a third example of a biomolecule measuring apparatus having nanopore devices arranged in parallel.
  • a plurality of drive mechanisms are arranged above the plurality of arranged nanopore devices 1604.
  • a fixing member is connected to each driving mechanism, and different types of biomolecules are fixed to each driving mechanism.
  • a space forming member can also be provided for each fixed member.
  • the first driving mechanism 105 and the second driving mechanism 1607 are arranged, the first biomolecule 108 is bonded to the first fixing member 107, and the second fixing member 1605 is connected to the second driving mechanism 1607.
  • Biomolecule 1606 is bound.
  • a first space forming member 1611 is provided for the first fixing member 107, and a second space forming member 1612 is provided for the second fixing member 1605.
  • the first space forming member 1611 and the second space forming member 1612 have different film thicknesses. Thereby, independent height adjustment is possible even for biomolecules having different lengths.
  • a slit or the like is formed in the space forming member formed in the nanopore device, and when the fixing member descends and contacts the space forming member, the solution filling the top of the nanopore does not become independent for each sample. It has become a structure. As a result, only the common electrode 1609 may be disposed on the nanopore.
  • the size relationship between the number of nanopores a and the number of biomolecules b on the fixing member is a ⁇ b, and the biomolecules are tightly coupled to the fixing member, thereby fixing the fixing member to the nanopore. Biomolecules are always introduced into the nanopores when lowered vertically toward the device.
  • Example 4 An embodiment using magnetic beads as another means for fixing a biomolecule to a fixing member will be described.
  • the fixing member is made of a magnet material.
  • FIG. 21 is a schematic cross-sectional view illustrating a procedure for measuring a biomolecule fixed to a fixing member using magnetic beads. Biomolecules prepared in advance on magnetic beads are prepared.
  • a voltage is applied between the Ag / AgCl electrode 1608 and the common electrode 1609 arranged in the paralleled nanopore device 1604 in the electrolyte solution around each nanopore. Then, an electric field is generated, the biomolecule 1704 fixed to the magnetic beads is migrated by electrophoresis, and the biomolecule is introduced into the nanopores of the nanopore device 1604 arranged in parallel.
  • the ionic current derived from each nanopore can be monitored, and the effective nanopore device in which the biomolecule has entered the nanopore can be confirmed from the rate of change of the ionic current.
  • the fixing member 107 is directed toward the nanopore device 1604 by the drive mechanism 105 as indicated by an arrow.
  • the magnetic beads are attracted to and fixed to the fixing member 107 by magnetic force.
  • the driving mechanism 105 drives the fixing member 107 at a speed controlled in a direction away from the nanopore device 1604 as indicated by an arrow, and moves in the nanopore. Ion currents that change due to biomolecules are detected with an ammeter and recorded on a PC.
  • the drive mechanism 105 made of a piezoelectric element can drive the fixing member 107 at an arbitrary speed. Particularly when reading the DNA sequence, the DNA immobilized on the magnetic beads is read at a speed of 3.4 nm / ms or less. High precision reading is possible by moving inside the nanopore.
  • the initial alignment between the nanopore and the biomolecule is unnecessary.
  • it is possible to introduce biomolecules into the nanopores by diffusing into the electric field generated in the vicinity of the nanopores it is possible to reduce the probability that there are nanopores that do not pass through the biomolecules in the paralleled nanopores. it can.
  • FIG. 22 is a diagram illustrating how the blocking current is eliminated when the fixing member is driven by the driving mechanism.
  • a fixing member in which ss-poly (dA) having a chain length of 5 k was fixed to the surface modified with APTES / glutaraldehyde was brought close to the nanopore of the nanopore device.
  • FIG. 22A shows a blocking signal, and when the fixing member was separated from the nanopore device, the blocking signal was eliminated.
  • FIG. 22B shows the trajectory of the fixed member at the same time as FIG. As the counter displacement increases, the nanopore device and the securing member are in close proximity.
  • the driving of the fixing member by the driving mechanism was stopped. About 10 seconds later, the distance between the nanopore device and the fixing member started to increase, and when the ion current increased again (after 30 seconds had elapsed), the driving by the driving mechanism was stopped again. This is because the ionic current decreases when the fixing member on which the DNA is fixed is brought close to the nanopore, and returns to the original current value by moving away from the nanopore, so that the DNA is introduced into the nanopore by driving the fixing member by the drive mechanism , Indicating that withdrawal has occurred.
  • the time from when the driving mechanism is started to separate the fixing member from the nanopore device to the time when the blocking signal is canceled is defined as t out as shown in FIG.
  • the moving speed of the fixed member was obtained from the relationship with the counter speed corresponding to the set speed of the drive mechanism.
  • FIG. 23 shows the relationship between the DNA driving time (t out ) acquired with respect to the moving speed of each fixing member.
  • the plots in the figure are experimental values.
  • the DNA driving distance that is, the maximum length introduced into the DNA nanopore is determined by the position where the driving of the fixing member stops after the nanopore is blocked by DNA.
  • the driving of the fixing member by the driving mechanism is to visually check the blocking signal indicating that DNA has entered the nanopore, and is manually stopped, so until the driving of the fixing member stops after the DNA actually enters the nanopore, It is thought that it takes about 1 second at the shortest. Therefore, DNA of about 60-100 nm is surely entered into the nanopore at the shortest.
  • the solid line is the calculated value of the maximum DNA driving time obtained from the length of the fixed DNA.
  • the broken line is a calculated value of the minimum DNA driving time required when 60 nm of DNA enters. Since the experimentally measured DNA driving time is within the range from the solid line to the broken line, the obtained blocking signal is derived from the DNA on the fixing member, and the measured value is reasonable. It is believed that there is. Further, the actually measured DNA driving time is distributed in a direction in which the DNA driving time becomes longer as the moving speed of the fixing member becomes slower. This is considered to be a result indicating that the DNA on the fixing member is transported through the nanopore depending on the driving speed of the driving mechanism.
  • FIG. 24 is a diagram showing a result of measurement in which a molecule ((dA50dC50) m) obtained by repeatedly stretching a dA50dC50 polymer was similarly bonded to a fixing member.
  • a blocking signal as obtained in FIG. 22 was confirmed. Analyzing the current after blockade, we obtained a two-level signal. As described above, it is possible to measure the state in which the blocking signal intensity varies depending on the molecular species by binding the biomolecule to the fixing member and decreasing the molecular passage speed.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 ナノポアの薄膜内位置確認をせずに生体分子のナノポア内導入を実現する。また、変位安定性を確保し、安定した封鎖信号の取得を実現する。ナノポア112を有する薄膜113のサイズより大きな生体分子固定部材107を用い、生体分子固定部材107がナノポアデバイス101に近接した際にナノポア周辺の電場領域に少なくとも一本の生体分子108が入る密度で生体分子を固定する。

Description

生体分子測定装置及び生体分子測定方法
 本発明は、薄膜に設けられたナノポアを用いる生体分子測定装置及び生体分子測定方法に関する。
 次世代DNAシーケンサとして、伸長反応や蛍光ラベルは行わずにDNAの塩基配列を電気的に直接計測する手法が注目を浴びている。これを実現するため、試薬を用いずDNA断片を直接計測して塩基配列を決定するナノポアDNAシーケンシング方式の研究開発が活発に進められている。この方式は、DNA鎖がナノポアを通過する際にDNA鎖に含まれる個々の塩基種の違いを封鎖電流量で直接計測することで、塩基種を順次同定するという原理に基づく。鋳型DNAの酵素による増幅を行わない上に、蛍光体等の標識物を用いないため、本方式は、高スループット、低ランニングコスト、長塩基長解読につながると期待されている。
 ナノポア方式の課題の1つとして、ナノポアを通過するDNAの搬送制御が挙げられる。DNA鎖に含まれる個々の塩基種の違いを封鎖電流量で計測するには、計測時の電流ノイズ及びDNA分子の揺らぎの時定数から、DNAのナノポア通過速度を1塩基辺り100μs以上にする必要があると考えられている。ナノポアを用いてDNAをシーケンシングする際、ナノポア上下に位置する電極を用いて電位勾配を形成し、負電荷を持つDNAをナノポアへ通過させる。しかし、DNAのナノポア通過速度は通常1塩基当たり1μs以下と速く、各塩基由来の封鎖電流を十分に計測することが困難である。
 搬送制御法の一つとして、プローブの先端に読取り対象のDNA末端を固定し、プローブの微小変位を外部駆動機構(モーターならびにピエゾ素子)で制御することで、ナノポアを通過するDNAの運動を制御するものがある。非特許文献1,2は原子間力顕微鏡(AFM)のプローブ先端にDNAを固定し、DNAをナノポアに導入した。DNAは水溶液中で負に帯電しているため、ナノポア近傍に発生した電位差により力を受けて、ナノポアに導入される。ここで、原子間力顕微鏡を用いることで、DNAがAFMプローブに固定されているため、AFMプローブがDNAに引っ張られることで生じるプローブのたわみから、DNAがナノポア近傍の電界から引力を受けていることをモニタすることが出来る。同時に、ナノポアを介して上下に流れるイオン電流をモニタすることで、DNAがナノポアを通過した際の封鎖信号を取得することが出来る。これらの信号が同期していることを確認することで、dsDNA,ssDNAともナノポアへの導入、引出が可能であることを示した。
US 2006/0057585 A1
Hyun C. et al., 2013 Nano 7, 7, 5892-5900 Nelson E. M. et al., 2014 Nano 8, 6, 5484-5493
 上記システムでは、プローブでナノポアを探し出した後に、そのナノポアにDNAを導入する仕組みとなっている。これは一辺数百nmから数十μm以上のナノポア薄膜の中に形成された1.4nm程度のナノポアの位置を探すことになるため、スループットが低い。また、ナノポアを探すためにナノポア薄膜とカンチレバー間の原子間力を測定しているため、AFMプローブは剛性が低くならざるを得ない。これはDNAをナノポア内に導入した後の配列解析において、DNA送り制御精度が悪くなり、封鎖信号揺らぎの原因となっている。
 上記課題の解決のため、本発明は、生体分子固定領域がナノポアを有する薄膜のサイズ以上である固定プローブを用いて生体分子を搬送する系を提案する。固定プローブに対する生体分子固定密度は、固定プローブがナノポアデバイスに近接した際にナノポア周辺の電場領域に少なくとも一本の生体分子が入る密度に制御する。
 上記構成により、薄膜の広い領域からナノポアの位置を探すことや、生体分子をナノポアに導入する際に薄膜の面内方向の駆動制御が不要となり、測定スループットを上げることが可能となる。また、剛性の高い固定プローブ設置構造を取ることで、DNAの送り制御精度を高め、一塩基分解能を達成する。
 本発明による生体分子測定装置は、一例として、電解質溶液が満たされる第1の液槽と、電解質溶液が満たされる第2の液槽と、ナノポアを有する薄膜を支持し、ナノポアを介して第1の液槽と第2の液槽を連通するように第1の液槽と第2の液槽の間に設けられたナノポアデバイスと、第1の液槽に配置され、薄膜より大きなサイズを有し、生体分子が固定される生体分子固定部材と、生体分子固定部材を薄膜に対して近づく方向あるいは遠ざかる方向に駆動する駆動機構と、駆動機構を制御する制御ユニットと、第1の液槽に設けられた第1の電極と、第2の液槽に設けられた第2の電極と、生体分子固定部材と薄膜との接触を防止するストップ手段と、第1の電極と第2の電極との間に電圧を印加する電源と、第1の電極と第2の電極の間に流れるイオン電流を計測する測定部とを有し、前記測定部は、一端が生体分子固定部材に固定された生体分子がナノポアを通過するとき計測されるイオン電流により当該生体分子の配列情報を取得するものである。
 また、本発明の生体分子測定方法は、一例として、電解質溶液中に配置されたナノポアを有する薄膜にナノポアを介して電圧を印加し、ナノポアの周囲に電場を発生させる工程と、薄膜より大きなサイズを有し下面に複数の生体分子が固定された生体分子固定部材を電解質溶液中で薄膜に近づく方向に駆動する工程と、生体分子固定化部材が薄膜に所定距離まで近づいたときに駆動を止める工程と、ナノポアを介して流れるイオン電流の変化から生体分子がナノポア内に入ったことを確認する工程と、生体分子固定化部材を薄膜から遠ざかる方向に駆動しながらイオン電流を計測する工程と、計測したイオン電流から生体分子を構成する分子を識別する情報を取得する工程と、を有するものである。
 本発明によると、ナノポアの薄膜内位置確認をせずに生体分子のナノポア内導入を実現できる。また、変位安定性を確保し、安定した封鎖信号の取得を実現できる。
 上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
生体分子測定装置の構成例を説明する断面模式図。 ナノポア周辺に生成される電場とナノポアへの生体分子の導入例を示す模式図。 ナノポア周辺に生成される電場とナノポアへの生体分子の導入例を示す模式図。 生体分子固定部材への生体分子の結合手順及び固定部材の生体分子測定装置への設置手順の例を説明する模式図。 生体分子固定部材への生体分子の結合手順の他の例を示す模式図。 生体分子固定部材の駆動手順を示す模式図。 リンカーを介した結合の例を示す模式図。 イオン電流信号の検出例を示す模式図。 ストップ手段の例を示す模式図。 ストップ手段の例を示す模式図。 ストップ手段の例を示す模式図。 ナノポアデバイス上への電極配置例を示す上面模式図。 生体分子固定部材-ナノポアデバイス間距離hと電流量の関係を示すグラフ。 生体分子事前引き伸ばし機構を有する生体分子測定装置の例を示す断面模式図。 生体分子事前引き伸ばし機構を有する生体分子測定装置の例を示す断面模式図。 生体分子の先端から読み取られた信号の例を示す模式図。 生体分子測定装置の一部の断面模式図及び駆動機構の上面模式図。 ナノポア近傍の拡大図。 DNAの塩基配列を読み取る方法の例を示す説明図。 並列化したナノポアデバイスを有する生体分子測定装置の例を示す断面模式図。 磁気ビーズを用いた測定手順を説明する断面模式図。 生体分子固定部材の駆動に伴う封鎖電流解消の様子を示す図。 生体分子固定部材の移動速度とDNA駆動時間の関係を示す図。 二種ポリマ混合分子((dA50dC50)m)のイオン電流トレース例を示す図。
 以下、図面を参照して本発明の実施形態を説明する。各実施例で述べるナノポアとは、薄膜に設けられた表裏を貫通するナノサイズの孔である。薄膜は主に無機材料によって形成される。薄膜材料の例としてはSiN,SiO2,Graphene,Graphite,Siなどがあるが、他に有機物質、高分子材料などを含むこともできる。ナノポアを有するナノポア薄膜は、ナノポアデバイス上の一部に形成されており、上下に支持膜を持たず縁部がナノポアデバイスに支持されて宙に浮いた構造を有する。本明細書で云う生体分子には、核酸、タンパク質、アミノ酸、長鎖高分子等が含まれる。
<実施例1>
 本発明の搬送制御機構を有する生体分子測定装置、及びその装置を用いた生体分子の配列読取の例について説明する。図1は、生体分子測定装置の構成例を説明する断面模式図である。
 本実施例の生体分子測定装置100は、ナノポアデバイス101により隔てられた上下2つの液槽を有し、各液槽には電解質溶液102が満たされている。電解質溶液としてはKCl,NaCl,LiCl,MgCl2などが用いられる。またこれらの溶液に対して、生体分子のフォールディング抑制のために4M以上のUreaを混在することも可能である。また、生体分子の安定化のため、緩衝剤を混在させることも可能である。緩衝剤としては、TEやPBSなどが用いられる。ナノポアデバイス101には薄膜113が形成されており、薄膜113中のいずれかの位置にナノポア112が形成されている。上下2つの液槽は、ナノポアデバイス101に支持された薄膜113のナノポア112を介して連通している。2つの液槽には各々Ag/AgCl電極103a,103bが電解質溶液102に接触するようにして配置されており、電極103a,103b間には電源104及び電流計109が接続されている。電流計109は、ADC、PC110に接続され、取得された電流値を記録できる。一方で、上部の液槽には、駆動機構105が設置され、駆動機構制御ユニット106に接続されている。駆動機構105には接続部材111により生体分子固定部材(以下、単に固定部材という)107が連結している。固定部材107は薄膜113より大きなサイズを有し、固定部材107の平坦な下面には生体分子108が固定される。
 ナノポア112が形成された薄膜113に固定部材107が接触すると、薄膜113が破壊される恐れがある。そのため、駆動機構105によって駆動された固定部材107がナノポアデバイス101に向かって降下するときに、固定部材107と薄膜113との接触を防止するためにストップ手段が設けられている。本実施例のストップ手段は、ナノポアデバイス101の薄膜113より外側の周囲を土手のように囲み、固定部材107と薄膜113の間に空間を形成する空間形成部材114である。空間形成部材114の中心に形成された円形空間の中にナノポア112を有する薄膜113が配置され、薄膜113の寸法は固定部材107の寸法より小さい。従って、ナノポアデバイス101に向けて移動してきた固定部材107は、薄膜113に接触する前に空間形成部材114に突き当って停止し、薄膜113に接触して破壊することがない。薄膜の寸法は、薄膜強度及び電圧印加による穴形成の際に二個以上の穴が形成されにくい面積である必要があるため直径で100~500nm程度、DNA一塩基分解能を達成するためには、一塩基相当の実効膜厚を有するナノポアを形成可能な膜厚1nm程度が適当であり、空間形成部材の膜厚は薄膜の強度を保つことや、生体分子固定部材表面の生体分子の固定高さ揺らぎを考慮すると200~500nm程度が適当である。本実施例では、薄膜113の寸法は直径500nm、空間形成部材114の膜厚は250nmである。
 ナノポアデバイスの作成法及びナノポアの形成法は既知であり、例えばItaru Yanagi et al., Sci. Rep. 4, 5000 (2014) に記載されている。本実施例では、ナノポアを形成する薄膜を以下の手順で作製した。まず、725μm厚の8インチSiウエハの表面に、Si34/SiO2/Si34を12nm/250nm/100nm、裏面にSi34を112nm成膜した。次に、表面最上部のSi34を500nm四方、及び裏面のSi34を1038μm四方、それぞれ反応性イオンエッチングした。さらに裏面のエッチングにより露出したSi基板をTMAH(Tetramethylammonium hydroxide)にてエッチングした。Siエッチングの間は、表面側SiOのエッチングを防ぐためウエハ表面を保護膜(ProTEKTMB3primer and ProTEKTMB3, Brewer Science, Inc.)で覆った。保護膜を取り除いた後、500nm四方で露出しているSiO層をBHF溶液(HF/NH4F=1/60、8min)にて取り除いた。これにより、膜厚12nmの薄膜Si34が露出したナノポアデバイスが得られる。この段階では、薄膜にナノポアは設けられていない。
 ナノポアデバイスに露出した薄膜へのナノポア形成は、パルス電圧により以下の手順で行った。上記のようにして作成したナノポアデバイスを生体分子測定装置にセットする前に、Ar/O2 plasma(SAMCO Inc., Japan)によって10W、20sccm、20Pa、45secの条件でSi34薄膜を親水化した。次に、ナノポアデバイスを介して上下2槽に分離する構成の生体分子測定装置にナノポアデバイスをセットした後、1M KCl、1mM Tris-10mM EDTA、pH7.5溶液を満たし、各槽にAg/AgCl電極を導入した。
 ナノポアを形成するための電圧印加及びナノポアが形成された後にナノポアを介して流れるイオン電流計測はこのAg/AgCl電極間で行われる。下槽をcis槽、上槽をtrans槽と呼び、cis槽電極側の電圧Vcisを0Vに設定し、trans槽電極側の電圧Vtransを選択した。選択された電圧は、パルス発生器(41501B SMU AND Pulse Generator Expander, Agilent Technologies, Inc.)で印加した。各パルス印加後の電流値は電流アンプ(4156B PRECISION SEMICONDUCTOR ANALYZER, Agilent Technologies, Inc.)で読み取った。ナノポア形成のための電圧印加及びイオン電流読取のプロセスは自作プログラム(Excel VBA, Visual Basic for Applications)で制御した。パルス電圧印加条件は、パルス電圧印加前に薄膜に形成されているポア径に応じて取得される電流値条件(閾値電流)を選択することで、順次ポア径を大きくし、目的のポア径を得た。ポア径はイオン電流値から見積もった。条件選択の基準は表1の通りである。ここでn番目のパルス電圧印加時間は
     tn=10-3+(1/6)(n-1)-10-3+(1/6)(n-2)  for n>2
で決定される。
[表1]
Figure JPOXMLDOC01-appb-I000001
 ナノポアの形成はパルス電圧印加による以外に、TEMによる電子線照射によっても可能である(A. J. Storm et al., Nat. Mat. 2 (2003))。
 図1に戻り、Ag/AgCl電極103a,103bを介して電源104から上下2槽の液槽に電圧が印加されると、ナノポア112の近傍に電場が生じ、液中で負に帯電した生体分子108はナノポア112内を通過する。一方で、生体分子108の末端は固定部材107に固定されているため、電場により生体分子108を介して固定部材107や駆動機構105が下槽の方向に引っ張られる。
 ここで、例えばDNAの塩基配列を精度よく読み取るためには、駆動機構の出力揺らぎ、及び外乱由来の振動が起きた際に、生体分子108の変位が1塩基分の長さ、すなわち0.34nm以上変化しない構成である必要がある。
 次に、この要件を満たすための条件について検討する。ヤング率Eとすると、Eは次のように表される。
[式1]
Figure JPOXMLDOC01-appb-I000002
 ここで、Fは系に印加される力、Sは材料の面積、Lは材料の長さ、ΔLは印加された力を受けた際の変位量である。ナノポアを介して、上下に1mV印加した際に、DNAにかかる力は0.24pNであることが分かっている(Ulrich F. Keyser et al., Nat. Phys. 2, 473-477 (2006))。解析中の印加電圧の揺らぎが0.1mV程度起こりうることから、その際0.34nm以上変位しないことが必要である。従って、固定部材107と駆動機構105及びその接続部材111のヤング率は、0.07(L/S)[μN/mm2]以上を有する必要がある。
 また、計測システムが熱的に安定であることも重要である。熱源がない場合でも、空間は0.1度の揺らぎを持つことが知られている。したがって、系に用いた材料全体から算出される、ナノポアデバイス-生体分子固定基板間の距離の温度変化が0.1℃あたり0.34nm以下である必要がある。
 そのため、接続部材111にはステンレス製もしくはインバーなどを用いて作製されたネジ等を用いるのが良い。あるいは、固定部材107を駆動機構105に真空吸着あるいは圧着して固定することも可能である。駆動機構105はピエゾ素子に代表される圧電材料で形成されており、0.1nm/s以上の駆動が可能である。圧電材料としては、チタン酸バリウム(BaTiO3)や、チタン酸ジルコン酸鉛(PZT)、酸化亜鉛(ZnO)などが用いられる。
 生体分子108の末端と固定部材107の表面は互いに共有結合、イオン結合、静電相互作用、磁気力などで結合することができる。例えば、共有結合でDNAを固定する際には、APTES、グルタルアルデヒドを介してDNA末端修飾されたDNAを固定することができる。固定部材107は上記結合を利用するために、APTESの足場となるSi,SiOが利用される。他の共有結合法としては、金チオール結合が利用できる。DNAの5’末端をチオール修飾し、固定部材107の表面は金蒸着する。固定部材107に蒸着する金属種は他にも、チオールが結合可能なAg,Pt,Tiを利用できる。
 イオン結合を利用する方法は、固定部材を表面修飾により溶液中で正に帯電する処理を施すことにより、正に帯電した固定部材表面に負に帯電した生体分子を固定する方法である。カチオン性のポリマとしては、ポリアニリンやポリリシンが用いられる。静電相互作用を利用する場合には、APTES修飾した固定部材107の表面に直接アミノ末端修飾されたDNAを固定することができる。また、基板表面として、ニトロセルロース膜、ポリフッ化ビニリデン膜、ナイロン膜、ポリスチレン基板が広く利用される。特にニトロセルロース膜は、マイクロアレイ技術に利用されている。磁気力を利用する際には、例えば磁気ビーズ表面に上記のような結合を利用して、DNAを予め固定化しておく。さらに固定部材107として磁石材料を用いることで、DNAを固定化した磁気ビーズと固定部材107を相互作用させ、磁力によるDNA固定化磁気ビーズの吸引を実現する。磁性材料としては、鉄、ケイ素鋼、アモルファス磁性合金、ナノクリスタル磁性合金などが用いられる。
 生体分子としてタンパク質やアミノ酸を測定する場合においても同様に、特異結合部位への修飾を施し、同様の手法にて固定基板に結合させることが出来る。これによってタンパク質中の結合部位の特定、及びアミノ酸の配列情報を得ることが出来る。
 固定部材107上の生体分子108の固定密度は、ナノポア112周辺に形成される電場の広がり量で決める。図2は、ナノポア周辺に生成される電場とナノポアへの生体分子の導入例を示す模式図である。図2に示すように、ナノポア112の周辺に広がる電位勾配201は、ナノポア112からの距離L、ナノポア径d、薄膜の厚みt、印加した電圧ΔVの間に、
[式2]
Figure JPOXMLDOC01-appb-I000003
の関係があり、例えば、膜厚2.5nmの薄膜に形成された直径1.4nmのナノポアを挟んで100mVの電圧を印加した場合、ナノポアから100nmの領域で、0.1[V/μm]の電場が伝播している。
 ここで、生体分子の電気的移動度μや拡散係数Dから、生体分子がこの電場に閉じ込められてナノポアに導入される範囲が求まる。その範囲をLdiffとすると次式で表される。
[式3]
Figure JPOXMLDOC01-appb-I000004
 固定部材107が薄膜113に最も近づいた際の距離をlとする。また、生体分子の溶液中での実効長さをbとすると、以上から、生体分子固定ピッチaは次のようになる。
[式4]
Figure JPOXMLDOC01-appb-I000005
 上記を実現するため、例えば固定部材107上にDNAを修飾する際、目的のDNA以外に、末端修飾された短鎖長ポリマ206を混在させたDNA溶液を用いると、図3に示すように、生体分子(DNA)108が末端修飾された短鎖長ポリマ206と混在して固定され、目的のDNA固定密度が実効的に低いDNA固定部材を作製できる。例えば、20mer poly(dA)を75%含むDNA溶液を用いて固定部材を用意すると、2.5~3nmのポア径を有するナノポアを用いて、一つのポアに複数本のDNAが入る現象を排除できることを確認している。つまり約100nmピッチで固定できていると考えられる。混合する短鎖ポリマの長さは、2nm程度とは限らない。
 図4は、固定部材への生体分子の結合手順及び固定部材の生体分子測定装置への設置手順の例を説明する模式図である。電極は図示を省略している。図4に示した測定前の準備工程は3つの工程からなる。図4(a)に示す第1の工程では、固定部材107上に生体分子108を固定する。図4(b)に示す第2の工程では、固定部材107と駆動機構105を接続し、生体分子測定装置の上槽に挿入する。図4(c)に示す第3の工程では、ナノポアデバイス101の上下の空間に電解質溶液102を導入する。
 図5は、固定部材への生体分子の結合手順の他の例を示す模式図である。電極は図示を省略している。図5に示した測定前の準備工程は2つの工程からなる。図5(a)に示す第1の工程では、固定部材107を駆動機構105に接続し、生体分子測定装置の上槽に挿入する。図5(b)に示す第2の工程では、固定部材107に結合しうる状態の生体分子108が溶解している生体分子混合電解質溶液403を生体分子測定装置の上槽と下槽に流し込む。
 ここで生体分子を固定部材の表面に結合するための結合材料は、非特異的な吸着を極力少なくし、固定部材の表面上で目的の結合が行われる密度を高めるために、予め固定部材の表面に修飾しておくことが必要である。結合材料とは、例えば、APTESグルタルアルデヒドを介した共有結合を利用して生体分子を固定する場合、APTES及びグルタルアルデヒドのことを指す。イオン結合を利用して生体分子を固定する場合、基板表面の有機材料のことを指す。
 生体分子が長鎖DNAである場合、特に複数のグアニンが続けて並んでいるような配列においては、DNAの強固なフォールディングが問題になる。DNAがフォールディングを起こしていると、ナノポア近傍で詰まり、ナノポアを通過しないなどの現象が起きうる。そのため、高温、特に60℃から98℃で10分から120分、DNAを固定した固定部材を水中で加熱し、4℃まで急冷する処理を施すのが良い。その後、4℃又は室温のKCl溶液中で測定する。
 図6は、固定部材の駆動手順を示す模式図である。電極は図示を省略している。固定部材の駆動法は図6に示す三つの工程からなる。図6(a)は、図4あるいは図5に示した手順により、測定すべき生体分子108が下面に固定された固定部材107が生体分子測定装置の上部の液槽に挿入され、上下の液槽に電解質溶液が導入されて測定準備ができた状態を示している。
 図6(b)に示す固定部材駆動の第1の工程では、駆動機構制御ユニット106により駆動機構105を駆動制御し、固定部材107をz軸下方に駆動し、固定部材107に固定された生体分子108を、薄膜113のナノポア112の近傍に生成した電位勾配201内に入れる。このとき、生体分子108が負に帯電していれば、もしくは負に帯電する修飾をした場合、電場からの力を受け、生体分子108は固定されていない自由末端からナノポア112を通り下部の液槽に移動しようとする。生体分子108は、ナノポア112を通過して電位勾配201内に位置する部分と固定部材107上に固定されている末端の間で引き伸ばされた状態となる。ナノポア112内に生体分子が導入されたことはイオン電流からモニタできる。
 図6(c)に示す第2の工程では、駆動機構105により更に固定部材107をz軸方向下方に駆動し、ナノポアデバイス101上に形成された空間形成部材114に接触させ、ここで駆動機構105による固定部材107の移動を止める。薄膜113の上方に空間形成部材114が存在することにより、固定部材107と薄膜113の接触が避けられ、薄膜113が破壊されるのを防ぐことができる。第2の工程を完了した時点で、薄膜113のナノポア112内に生体分子108が入っていない場合には、一定時間、駆動機構105の駆動を停止することで導入確率を上げることができる。図6(c)には、駆動機構105の側面模式図と固定部材107の下面模式図も合わせて示した。固定部材107の下面には図示するようにスリット507が設けてあり、固定部材107が空間形成部材114に接触した状態においても、上下の槽に配置された電極の間に電流路が確保されるようになっている。
 図6(d)に示す第3の工程では、駆動機構制御ユニット106により駆動機構105をナノポアデバイス101から離れる方向に駆動する。このとき生体分子108は電場で引き伸ばされながら、固定部材107に引っ張られてナノポア112内を上方向に移動することになり、この間に生体分子の配列が、イオン電流の変化量から読み取られる。電流計109で読み取られた信号値は必要に応じて増幅され、PC110に記録される。
 第2の工程で固定部材107が空間形成部材114に接触した時点が、第3の工程で行う生体分子特性解析の解析開始点となる。従って、生体分子の全長のうち、固定点から空間形成部材114の高さ分の領域は、ナノポア112内を通過せず解析できないことになる。ここで図7に示すように、固定部材107に生体分子108を固定する際に、空間形成部材114の高さ分のリンカー901を介して固定部材107と結合させることで、生体分子108中の全ての配列を読み取ることが可能となる。
 図8は、イオン電流信号の検出例を示す模式図である。ナノポアデバイスに対する固定部材の位置関係の模式図を上段に、イオン電流信号変化のグラフを中段に、駆動機構変位のグラフを下段に示した。下段の駆動機構変位zは、ナノポアデバイスと固定部材の間の距離に対応する。また、イオン電流信号中の特徴点に対応する固定部材とナノポアデバイスの位置関係を矢印で示した。
 図8を参照すると、固定部材107がナノポアデバイスに近接する前は、ナノポア径に応じたイオン電流信号I0が得られている。生体分子108がナノポア112に入った際に、生体分子の平均直径に応じたイオン電流量の減少が起きる。このとき生体分子がナノポアを通過する速度は、固定部材の駆動速度ではなく、生体分子の自由電気泳動のスピードである。これは、生体分子が電場外から電場内に入る際、生体分子はフォールディングし撓んでいるため、端部が固定部材に固定されていることによる影響を受けないからである。この際、測定分解能を得られず、取得されるイオン電流値は、生体分子平均直径に依存した平均的な電流値Ibを示すことになる。
 固定部材107がナノポアデバイスの空間形成部材114と接触した後に、駆動機構105によって生体分子を引き上げる際の生体分子の運搬速度は、固定部材105の移動速度に等しくなるため、特性分解能に必要な速度で運搬できる。例えばDNA鎖に含まれる個々の塩基種の違いを封鎖電流量で計測するには、計測時の電流ノイズ及びDNA分子の揺らぎの時定数から、DNAのナノポア通過速度を1塩基あたり100μs以上にする必要があると考えられる。従って駆動機構105を制御して固定部材107を1塩基あたり100μs以上より遅い速度で上方に移動させることにより、生体分子の塩基配列を反映した信号が得られる。一方で、解析スループットは高く維持されている必要があるため、一塩基あたり10ms以上かからないことが望まれる。すなわち、駆動機構は生体分子固定部材を34nm/sec~34μm/secの間の速度で駆動するのが好ましい。
 ここで生体分子の配列を示すデータの取得方法は、イオン電流の変化量に限られない。ナノポアデバイス上にトンネル電流用電極が形成され、その近傍にナノポアが形成された場合には、トンネル電流量変化により生体分子の配列を解析することができる(Makusu Tsutsui et at, Nat. Nanotechnol. 5, 286-290 (2010))。また、FETデバイスにナノポアが形成された場合は、電荷量変化から配列を解析することができる。あるいは、光を用いた解析も可能であり、この場合、吸収量、反射量、発光波長等から生体分子の配列を解析することができる(Ping Xie et al., Nat. Nanotechnol. 7, 119-125 (2012))。本発明では、イオン電流に代えて、これらの既知の方法を用いてナノポア112内を移動する生体分子を解析してもよい。
 図9は、固定部材と薄膜との接触を防止するストップ手段の他の例を示す模式図である。図9には駆動機構105を含む固定部材107の側面模式図、及びスリット603を有する下面図も合わせて示した。この例では、ナノポアデバイス101の上にではなく、固定部材107の下面から下方に突出するように空間形成部材601を加工した。空間形成部材601は、薄膜113より外側の位置でナノポアデバイス101と接触するように、固定部材107の下面外周、あるいは下面四隅又は対向する二辺に形成されている。すなわち、空間形成部材601は固定部材107の下面の薄膜113に対向する領域より外側の少なくとも一部に設けられている。固定部材107がナノポアデバイス101の方向に移動するとき、空間形成部材601により固定部材107と薄膜113の間に空間が形成され、薄膜113が固定部材107との接触により破壊されるのを防止する。
 図10は、固定部材と薄膜との接触を防止するストップ手段の他の例を示す模式図である。図10(a)は、固定部材がナノポアデバイスに接触する前の状態を示し、図10(b)は固定部材がナノポアデバイスに接触した後の状態を示している。ストップ手段は、固定部材107と薄膜113の間に両者の接触を避けるための空間を作ることができればよい。本例のストップ手段は、ナノポアデバイス101の上面と、固定部材107の下面の薄膜に対応する領域の外側の少なくとも一部にそれぞれ電極702aと電極702bを配置し、電極702a,702b間の静電容量変化から固定部材107とナノポアデバイス101間の相対距離を検出し、両者が接触したことをモニタする。電極702a,702b間に印加する電圧は、想定電流量及び計測電流に応じて選択する。また、電極の腐食や酸化を防ぐため、パルス電圧印加により計測することも可能である。固定部材107をナノポアデバイス101の方向に駆動させ、ナノポアデバイス101と固定部材107が近接した際に電極702a,702bから取得される信号変化を元に両者間の距離を検出し、駆動機構105の駆動を停止する。静電容量変化の信号を取得する代わりに、短絡から接触をモニタすることも可能である。ストップ手段を構成する電極702a,702b間に電圧を印加している間は、計測用電極103a,103bには電圧を印加しない。
 図11は、固定部材と薄膜との接触を防止するストップ手段の他の例を示す模式図である。図11(a)に示した例では、電極801,802をナノポアデバイス101上にのみ配置して電極間を配線し、固定部材107がナノポアデバイス101に近接した際の電流量変化から固定部材107とナノポアデバイス101間の相対距離を検出する。電極801,802は、ナノポアデバイス101の上面の薄膜113の外側の領域の外周、四隅又は対向する二辺に配置する。図11(b)に示した例では、固定部材107の下面に電極803,804を配置して電極間を配線し、同様のメカニズムで固定部材107とナノポアデバイス101間の相対距離を検出する。電極803,804は、固定部材107の下面のうち薄膜113に対応する領域の外側の四隅又は対向する二辺に配置すればよい。
 電極を四隅に4個配置した場合、固定部材107の平衡出しに利用することも可能である。その場合、駆動機構105に傾き調整機能を持たせ、4箇所から取得される電流値がほぼ一致するように、駆動機構105の傾きを調整する。例えば、4隅に独立のゴニオメータが設けられ、それを4箇所から取得した電流値に基づいて手動又は自動で調整する。
 図12は、図11(a)に示したナノポアデバイス101上への電極配置例を示す上面模式図である。図12(a)は、ナノポアデバイス101上の薄膜113、センサ配線806、及び電極取り出し配線807の配置図である。図12(b)、図12(c)はセンサ配線拡大図であり、図12(b)は対向電極一種の例を示し、図12(c)は薄膜113の周辺部の4箇所にリング状に対向電極808を配置した例を示している。ここで、図12(b)に示す電極長さLが10μm、電極間隔sが0.4μm~2μmとして設計された電極間に、1Vの電圧を印加した上で、ナノポアデバイス101に固定部材107を近接させた際の電極間電流変化をモニタした。
 図13は、固定部材-ナノポアデバイス間距離hが10μmの時に流れる電流量で規格化して示した距離hと電流量の関係を示すグラフである。図13に示すように、固定部材とナノポアデバイス間距離が7μm以上離れると、電流量の距離h依存性は殆どないが、それ以下では距離と電流減少量に相関があることが分かった。従って、このような距離hと電流量の相関関係を取得することによって、固定部材の高さ調整が可能となる。
 固定部材の駆動法の他の例として、固定部材107上の生体分子108を事前に引き伸ばしつつ、ナノポア近傍にアプローチする方法もある。図14、図15は、生体分子の事前引き伸ばし機構を有する生体分子測定装置による固定部材の駆動法の例を示す断面模式図である。
 図14(a)に示すように、本例の生体分子測定装置は、固定部材107と、ナノポアデバイス101にそれぞれ電極1202a,1202bを備える。最初に、回路変換コントローラ1206により、電極1202a,1202bに接続された回路1207に電源を接続し、固定部材107とナノポアデバイス101の間に電位勾配1203を作る。すると、電位勾配1203によって、負に帯電した生体分子108は、固定部材107とナノポアデバイス101の間で引き伸ばされる。
 次に、図14(b)に示すように、駆動機構105を駆動して固定部材107がナノポアデバイス101の空間形成部材114に接触するまで下方に駆動する。このとき、図14(c)の拡大図に示すように、電源が電極103a,103bにつながる回路1208に接続された際にナノポア周辺に生成するはずの想定電場1209の範囲内に生体分子108を入れる。
 次に、図15(a)に示すように、固定部材107がナノポアデバイス101の空間形成部材114に接触した際に、電極1202a,1202bに接続された回路1207から、ナノポア周辺に電場を形成する回路1208へと電源の接続を切り替える。図15(b)に示すように、ナノポア周辺に電位勾配201を形成することにより、生体分子の先端はナノポアに挿入される。
 図14(b)に示した工程を経た後、生体分子の先端がナノポア内に入らない場合と、確率は小さいながら図14(d)の拡大図に示すように、先端がナノポアに入る場合が存在する。先端がナノポア内に入らず電場領域内に入った場合のみ、生体分子の先端から塩基の読取が可能となる。
 図16は、生体分子の先端から読み取られた信号の例を示す模式図である。イオン電流信号変化のグラフを中段に、駆動機構変位のグラフを下段に示した。下段の駆動機構変位zは、ナノポアデバイスと固定部材の間の距離に対応する。また、イオン電流信号中の特徴点に関して、上段に示した固定部材とナノポアデバイスとの対応を矢印で示した。
 固定部材がナノポアデバイスに近接する前は、ナノポア径に応じたイオン電流信号I0が得られている。電源を電極103a,103bに接続してナノポアの周囲に電位勾配201を形成したとき生体分子108の先端が電位勾配201内に入っているため、駆動機構105をz軸下方に駆動させると、生体分子108は自由末端から順次ナノポア112内に導入される。このとき生体分子108には撓みが存在しないため、駆動機構制御ユニット106にて設定した速度で生体分子が駆動され、生体分子の各配列に応じた特性解析が可能となる。従って、生体分子108がナノポア112に導入されてから固定部材107とナノポアデバイス101が接触するまでの時間に読み取られた信号と、駆動機構105をz軸上方向に駆動し始めてから生体分子末端がナノポア112から抜け出るまでの時間に読み取られた信号は、図16のように、接触した時間を中心に対称な信号となる。
 固定部材107に固定された生体分子のうち、最初に測定した生体分子とは異なる生体分子の読み取りは、xy方向に駆動機構105を駆動させることによって実現できる。図17は、生体分子測定装置の一部の断面模式図及び駆動機構105の上面模式図である。上面模式図に示すように、駆動機構105をxy方向、すなわち薄膜113の面に平行な方向へ駆動することにより、ナノポア112に別の生体分子を通過させることができ、固定部材107上の複数の生体分子の解析が実現される。
 複数の生体分子の解析を実現するための条件を、図18に示すナノポア近傍の拡大図を用いて説明する。図18(a)は、第1の生体分子1405の特性解析を行った際のナノポア112を有する薄膜113と、固定部材107の位置関係を示す断面模式図である。ここで第2の生体分子1406を解析する場合、駆動機構105により固定部材107を電位勾配201の直径と同じ距離だけナノポア薄膜113の面に平行に移動させる。図18(b)は、移動後のナノポア112を有する薄膜113と固定部材107の位置関係を示す断面模式図である。この移動により、電位勾配201の範囲内には、第1の生体分子1405は必ず入らない状態を作り出すことができる。その後、駆動機構105により固定部材107を薄膜113に向けて駆動することによって、第2の生体分子1406をナノポア112に導入して解析することが可能になる。
<実施例2>
 本発明の生体分子測定装置を用いて生体分子を測定する手順の実施例を以下に述べる。以下の全ての工程において、ナノポアを介して流れるイオン電流Iは増幅器を通して計測されている。また、上下2槽の液槽に各々挿入された一対のAg/AgCl電極間には一定の電圧が印加されており、ナノポアのサイズに応じたイオン電流量I0が取得されている。
 図19は、生体分子としてのDNAの塩基配列を読み取る方法の例を示す説明図である。図19の上段には、DNA塩基配列解析中の固定部材及びナノポアデバイスの代表的な2つの位置関係を示す。図19の中段にはイオン電流変化を、下段には固定部材107の変位を示す。下段の変位zは、固定部材107とナノポアデバイス101の間の距離に対応する。また、駆動機構105による固定部材107の駆動方向を変えた時点、及びその際の固定部材107とナノポアデバイス101の位置関係を図中に示す。中段の黒矢印は上段左側に図示した第1の位置関係を取ることを示し、白矢印は上段右側に図示した第2の位置関係を取ることを示している。
 駆動機構105によりz軸下方に固定部材107を駆動すると、生体分子108の自由な末端がナノポアの中に入り、生体分子は固定部材に固定された末端とナノポアの間で引き伸ばされる。このとき、イオン電流は生体分子108の平均直径サイズに応じて減少しIbとなる。生体分子が外から電位勾配201内に入る際、生体分子はフォールディングしているため、固定部材の移動速度ではなく、生体分子の自由電気泳動のスピードでナノポア内を通過することになり、その際のイオン電流値は、各塩基由来の電流値ではなく、生体分子平均直径に依存した平均的な電流値Ibを示すことになる。
 その後、固定部材107は駆動機構105により更にz軸下方に駆動されるが、空間形成部材114によってz軸下方への移動が妨げられて移動が停止する。このときの固定部材107、生体分子108、ナノポアデバイス101の位置関係を第1の位置関係として図19上段左に示す。
 その後に生体分子を引き上げる際の生体分子の運搬速度は、固定部材107の駆動速度に等しくなるため、一塩基分解に必要な速度(<3.4nm/ms)で生体分子を運搬できる。従って生体分子の塩基配列を反映した信号が得られることになる。こうして駆動機構105により固定部材107をz軸上方に駆動する過程では、ナノポア112中を移動する生体分子108の配列情報を読み取ることができる。生体分子108のうち固定されていない自由末端がナノポア112から抜け、かつナノポア周辺の電位勾配201中に入っている間は、生体分子108は固定部材107とナノポア周辺の電位勾配201の双方から逆方向の力を受け、引き伸ばされている。このときの固定部材107、生体分子108、ナノポアデバイス101の関係を図19上段右に示す。また、生体分子108はナノポア112から抜けるため、イオン電流量はI0に戻る。この電流値の変化を検知し、駆動機構105による固定部材107の駆動を止める。
 再び駆動機構105により固定部材107をz軸下方に駆動して生体分子108を自由端からナノポアに通し、その間に生体分子108の塩基配列を読む。このとき、末端が固定部材107に固定された状態で、生体分子108の他方の自由末端が電位勾配201内に入っているため、生体分子108は全体として引き伸ばされている。従って、読み取られる信号は、ナノポア中を自由末端から駆動機構105による駆動速度で通過するため高精度な読み取りが可能となる。また、z軸上方に駆動していた間に読み取られた配列を逆方向から読み取ることになり、それを反映して対称に変化するイオン電流が計測される。再び固定部材107が空間形成部材114に接触した際に、固定部材107の駆動が止まる。
 以降は上昇下降の繰り返しにより、必要な配列読取精度が出るまで反復して読み続ける。固定部材107とナノポアデバイス101が接触した位置からイオン電流値がI0になる位置までの変位1505は、生体分子の長さを反映している。
<実施例3>
 次に、生体分子測定装置を並列化した実施例について説明する。本発明の生体分子測定装置は、並列化したナノポアデバイスとの親和性が良い。並列化により同種の生体分子を同時に測定可能となるため、スループットの向上を測ることが可能となる。ここでは、並列化に対する3種類の例を示す。
 図20(a)は、並列化したナノポアデバイスを有する生体分子測定装置の第1例を示す断面模式図である。この例では、複数のナノポアデバイス1604が横方向に隣接して配置され、複数のナノポアデバイス1604の上部に、共通の1つの駆動機構105と固定部材107が配置されている。固定部材107は複数のナノポアデバイスの全体を覆うだけの面積を有する。並列化された複数のナノポアデバイス1604はそれぞれ独立した液槽を備え、各ナノポアデバイスの液槽にはアレイ電極1608の一つが配置され、アレイ電極1608はそれぞれ増幅器に接続されている。並列化された複数のナノポアデバイス1604の上部には1つの液槽が共通に設けられ、その液槽にはアレイ電極1608に対して共通の対向電極(共通電極)1609が配置されている。並列化されたナノポアデバイスの側方には、複数のナノポアデバイスに共通の空間形成部材1610が設けられている。個々のナノポアデバイス1604が備える液槽は、そのナノポアデバイス1604に設けられたそれぞれのナノポアを介して上部の液槽に連通している。
 固定部材107の下面には複数の生体分子108が結合している。駆動機構105をz軸下方に降下させると、固定部材107上の生体分子108が各ナノポアデバイスに設けられたナノポア中を通過する。本形態により複数のナノポアを用いて複数の生体分子の計測が同時並行にて可能となるため、計測スループットが上がる。
 図20(b)は、並列化したナノポアデバイスを有する生体分子測定装置の第2例を示す断面模式図である。この例では、複数並べられたナノポアデバイス1604の上部に、一つの駆動機構105が配置されている。ナノポアデバイス1604にはアレイ電極1608が接続している。複数のナノポアデバイス1604の上部には1つの液槽が共通に設けられ、各アレイ電極に対して共通の対向電極1609が配置されている。並列化されたナノポアデバイス1604の側方には、複数のナノポアデバイスに共通の空間形成部材1610が設けられている。駆動機構105には、複数の固定部材が接続されており、各々別種の生体分子が固定されている。これにより、同時に異なる生体分子の特性解析が実現可能となる。
 図示した例では、駆動機構105に第1の固定部材107と第2の固定部材1605の2つの生体分子固定部材が接続されており、第1の固定部材には第1の生体分子108が結合され、第2の固定部材1605には第2の生体分子1606が結合されている。本形態により、一種類のサンプルにつき複数のナノポアを用いることが可能のみならず、複数種類のサンプルを同時に計測することが可能となり、計測スループットが上がる。
 図20(c)は、並列化したナノポアデバイスを有する生体分子測定装置の第3例を示す断面模式図である。この例では、複数並べられたナノポアデバイス1604の上部に、複数の駆動機構が配置されている。各々の駆動機構にはそれぞれ固定部材が接続しており、各々別種の生体分子が固定されている。空間形成部材も固定部材ごとに設けることが可能である。
 図示した例では第1の駆動機構105及び第2の駆動機構1607が配置されており、第1の固定部材107に第1の生体分子108が結合され、第2の固定部材1605に第2の生体分子1606が結合されている。第1の固定部材107に対して第1の空間形成部材1611が設けられ、第2の固定部材1605に対して第2の空間形成部材1612が設けられている。第1の空間形成部材1611と第2の空間形成部材1612とは膜厚が異なる。これにより長さの異なる生体分子であっても、独立の高さ調整が可能となる。ナノポアデバイスに形成された空間形成部材中にはスリット等が形成されており、固定部材が下降し、空間形成部材に接触した際に、ナノポア上部を満たしている溶液がサンプル毎に独立にならないような構成となっている。これによりナノポア上部に配置する電極は共通電極1609のみでよい。
 いずれの例においても、ナノポアの個数aと固定部材上の生体分子の数bの大小関係はa<bとなっており、生体分子を密に固定部材上に結合することによって、固定部材をナノポアデバイスに向かって垂直に降下させた際に、必ずナノポア内に生体分子が導入される。
<実施例4>
 生体分子を固定部材に固定するための他の手段として磁気ビーズを用いた実施例を示す。ここでは、生体分子測定装置として図20(a)に示した装置を用いる例によって説明する。ただし、固定部材は磁石材料によって構成する。
 図21は、磁気ビーズを用いて生体分子を固定部材に固定し、測定する手順を説明する断面模式図である。生体分子は予め磁気ビーズに固定化したものを用意する。
 第1の工程では、図21(a)に示すように、並列化したナノポアデバイス1604に配置されたAg/AgCl電極1608と共通電極1609間に電圧を印加して各ナノポアの周囲の電解質溶液中に電場を生成し、磁気ビーズに固定された生体分子1704を電気泳動により泳動させ、並列化されたナノポアデバイス1604のナノポアに生体分子を導入する。ここで、各ナノポア由来のイオン電流をモニタし、イオン電流の変化率から、ナノポアに生体分子が入り込んでいる有効なナノポアデバイスを確認できる。
 第2の工程では、図21(b)に示すように、第1の工程におけるナノポアを介した電圧印加を継続しつつ、駆動機構105によって固定部材107を矢印で示すようにナノポアデバイス1604に向けて駆動し、磁力によって磁気ビーズを固定部材107に引き付けて固定させる。
 第3の工程では、図21(c)に示すように、駆動機構105によって固定部材107を矢印で示すようにナノポアデバイス1604から離れる方向に制御された速度で駆動し、ナノポアの中を移動する生体分子に起因して変化するイオン電流を電流計で検出し、PCに記録する。圧電素子からなる駆動機構105は任意の速度で固定部材107を駆動することができ、特にDNAの配列を読む場合には、磁気ビーズに固定化されたDNAを3.4nm/ms以下の速度でナノポア内を移動させることにより高精度な読み取りが可能となる。
 本実施例によると、ナノポアと生体分子の初期の位置合わせが不要である。また、ナノポア近傍に生成した電場内に拡散させてナノポア内に生体分子を導入することが可能であるため、並列化したナノポア内のうち生体分子が通過しないナノポアが存在する確率を低減することができる。
<実施例5>
 図22は、駆動機構による固定部材の駆動に伴う封鎖電流解消の様子を示す図である。
 図1に示した生体分子測定装置を用い、APTES/グルタルアルデヒド修飾した表面に鎖長5kのss-poly(dA)を固定した固定部材をナノポアデバイスのナノポア近傍まで近づけた。その結果、図22(a)に示すように、封鎖信号が確認され、固定部材をナノポアデバイスから離すと、封鎖信号が解消した。図22(b)に、図22(a)と同一時間での固定部材の軌跡を示す。カウンタ変位が増えるにつれ、ナノポアデバイスと固定部材は近接する。イオン電流の減少を確認してから約1秒後に、駆動機構による固定部材の駆動を停止した。約10秒後に、ナノポアデバイスと固定部材の距離を離し始め、再び、イオン電流が増大した時点で(30秒経過後に)再び駆動機構による駆動を停止させた。これは、DNAを固定した固定部材をナノポアに近づけるとイオン電流が減少し、ナノポアから遠ざけることで元の電流値に戻ったことから、駆動機構による固定部材の駆動により、DNAのナノポアへの導入、引き抜きが生じたことを示している。
 固定部材をナノポアデバイスから離すために駆動機構を駆動し始めた時間から、封鎖信号が解消された時間まで(DNA駆動時間)を、図22(b)に示すようにtoutと定義する。一方、駆動機構の設定速度に応じたカウンタ速度との関係から固定部材の移動速度を求めた。各固定部材の移動速度に対して取得されたDNA駆動時間(tout)の関係を図23に示す。図中のプロットは実験値である。ここで、各計測における、DNA駆動距離すなわちDNAのナノポア内に導入される最大長は、DNAによりナノポアが封鎖されてから固定部材の駆動が止まった位置で決まる。駆動機構による固定部材の駆動は、ナノポアにDNAに入った事を示す封鎖信号を目視で確認し、手動で止めているため、実際にDNAがナノポアに入ってから固定部材の駆動が止まるまで、最短約一秒程度かかっていると考えられる。従って、最短でも60-100nm程度のDNAが必ずナノポアに入ることになる。
 図23において、実線は固定したDNAの長さから求められる最大DNA駆動時間の計算値である。また、破線は60nmのDNAが入った際にかかる最小DNA駆動時間の計算値である。実験的に計測されたDNA駆動時間は、実線から破線までの範囲内に入っていることから、取得された封鎖信号は固定部材上のDNA由来のものであることを示し、実測値は妥当であると考えられる。また実測されたDNA駆動時間は固定部材の移動速度が遅くなるほど、DNA駆動時間が長くなる方向に分布している。これは固定部材上のDNAが駆動機構の駆動速度に依存してナノポア内を搬送されていることを示す結果と考えられる。
 図24は、dA50dC50のポリマが繰り返し伸張した分子((dA50dC50)m)を同様に固定部材に結合し計測した結果を示す図である。固定部材をナノポアデバイスに近接させると、図22で取得したような封鎖信号を確認した。封鎖後の電流を解析すると、二準位の信号を得た。このように、生体分子を固定部材に結合させ、分子通過速度を下げることによって、分子種に応じた封鎖信号強度が異なる様子を計測することが可能となった。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
100 生体分子特性解析装置
101 ナノポアデバイス
102 電解質溶液
103a,103b Ag/AgCl電極
104 電源
105 駆動機構
106 駆動機構制御ユニット
107 生体分子固定部材
108 生体分子
109 電流計
110 PC
111 接続部材
112 ナノポア
113 薄膜
114 空間形成部材
201 電位勾配
403 生体分子を含む電解質溶液
601 空間形成部材
702a,702b 電極
801~804 電極
901 リンカー
1206 回路変換コントローラ
1704 ビーズが固定された生体分子
 

Claims (20)

  1.  電解質溶液が満たされる第1の液槽と、
     電解質溶液が満たされる第2の液槽と、
     ナノポアを有する薄膜を支持し、前記ナノポアを介して前記第1の液槽と前記第2の液槽を連通するように前記第1の液槽と前記第2の液槽の間に設けられたナノポアデバイスと、
     前記第1の液槽に配置され、前記薄膜より大きなサイズを有し、生体分子が固定される生体分子固定部材と、
     前記生体分子固定部材を前記薄膜に対して近づく方向あるいは遠ざかる方向に駆動する駆動機構と、
     前記駆動機構を制御する制御ユニットと、
     前記第1の液槽に設けられた第1の電極と、
     前記第2の液槽に設けられた第2の電極と、
     前記生体分子固定部材と前記薄膜との接触を防止するストップ手段と、
     前記第1の電極と前記第2の電極との間に電圧を印加する電源と、
     前記第1の電極と前記第2の電極の間に流れるイオン電流を計測する測定部とを有し、
     前記測定部は、一端が前記生体分子固定部材に固定された生体分子が前記ナノポアを通過するとき計測されるイオン電流により当該生体分子の配列情報を取得することを特徴とする生体分子測定装置。
  2.  請求項1に記載の生体分子測定装置において、
     前記生体分子固定部材に複数の生体分子が固定されていることを特徴とする生体分子測定装置。
  3.  請求項1に記載の生体分子測定装置において、
     前記生体分子固定部材及び前記駆動部は、240nNの力を受けた際に0.3nm以上変形しないことを特徴とする生体分子測定装置。
  4.  請求項1に記載の生体分子測定装置において、
     前記生体分子固定部材及び前記駆動機構のヤング率は、部材の断面積S、部材の長さLとすると、0.007(L/S)[N/mm2]以上であることを特徴とする生体分子測定装置。
  5.  請求項1に記載の生体分子測定装置において、
     前記生体分子固定部材の材料はSi,SiO,SiN,Au,Ag,Pt,Ti,TiN、又は磁性材料であることを特徴とする生体分子測定装置。
  6.  請求項1に記載の生体分子測定装置において、
     生体分子は、前記生体分子固定部材と有機分子による共有結合、イオン結合、又は静電相互作用により直接固定されていることを特徴とする生体分子測定装置。
  7.  請求項6に記載の生体分子測定装置において、
     共有結合にはSi/APTES/グルタルアルデヒド/amino修飾生体分子、又は金チオール結合、イオン結合には、biotin-SA、静電相互作用にはAPTES/amino修飾生体分子を用いて結合していることを特徴とする生体分子測定装置。
  8.  請求項1に記載の生体分子測定装置において、
     生体分子は核酸又はタンパク質であることを特徴とする生体分子測定装置。
  9.  請求項1に記載の生体分子測定装置において、
     前記生体分子固定部材に生体分子が末端修飾された短鎖長ポリマと混在して固定されていることを特徴とする生体分子測定装置。
  10.  請求項1に記載の生体分子測定装置において、
     前記ストップ手段は、前記ナノポアデバイスの前記薄膜より外側又は前記生体分子固定部材の下面の前記薄膜に対向する領域より外側の少なくとも一部に設けられ、前記生体分子固定部材と前記薄膜の間に空間を形成する空間形成部材であることを特徴とする生体分子測定装置。
  11.  請求項1に記載の生体分子測定装置において、
     前記ストップ手段は、前記ナノポアデバイスの上面又は前記生体分子固定部材の下面の、前記薄膜に対応する領域の外側の少なくとも一部に設けられた一対の電極であることを特徴とする生体分子測定装置。
  12.  請求項1に記載の生体分子測定装置において、
     前記駆動機構は前記生体分子固定部材を34nm/sec~34μm/secの間の速度で駆動することを特徴とする生体分子測定装置。
  13.  請求項1に記載の生体分子測定装置において、
     前記駆動機構は圧電素子を備えることを特徴とする生体分子測定装置。
  14.  請求項1に記載の生体分子測定装置において、
     前記ナノポアデバイスが横方向に複数隣接して配置され、
     前記第2の液槽、前記第2の電極及び前記測定部は、前記複数のナノポアデバイスに各々対応して複数設けられ、
     前記第1の液槽、前記生体分子固定部材、前記駆動機構、前記第1の電極、前記ストップ手段は前記複数のナノポアデバイスに対して共通に設けられていることを特徴とする生体分子測定装置。
  15.  請求項1に記載の生体分子測定装置において、
     前記ナノポアデバイスが横方向に複数隣接して配置され、
     前記第2の液槽、前記第2の電極及び前記測定部は、前記複数のナノポアデバイスに各々対応して複数設けられ、
     前記生体分子固定部材を複数備え、
     前記第1の液槽、前記駆動機構、前記第1の電極、前記ストップ手段は前記複数のナノポアデバイスに対して共通に設けられていることを特徴とする生体分子測定装置。
  16.  請求項1に記載の生体分子測定装置において、
     前記ナノポアデバイスが横方向に複数隣接して配置され、
     前記第2の液槽、前記第2の電極及び前記測定部は、前記複数のナノポアデバイスに各々対応して複数設けられ、
     前記生体分子固定部材とそれを駆動する前記駆動機構、及び前記ストップ手段の組を複数備え、
     前記第1の液槽及び前記第1の電極は、前記複数のナノポアデバイスに対して共通に設けられていることを特徴とする生体分子測定装置。
  17.  電解質溶液中に配置されたナノポアを有する薄膜に前記ナノポアを介して電圧を印加し、前記ナノポアの周囲に電場を発生させる工程と、
     前記薄膜より大きなサイズを有し下面に複数の生体分子が固定された生体分子固定部材を前記電解質溶液中で前記薄膜に近づく方向に駆動する工程と、
     前記生体分子固定化部材が前記薄膜に所定距離まで近づいたときに駆動を止める工程と、
     前記ナノポアを介して流れるイオン電流の変化から生体分子が前記ナノポア内に入ったことを確認する工程と、
     前記生体分子固定化部材を前記薄膜から遠ざかる方向に駆動しながら前記イオン電流を計測する工程と、
     前記計測したイオン電流から前記生体分子を構成する分子を識別する情報を取得する工程と、
     を有することを特徴とする生体分子測定方法。
  18.  請求項17に記載の生体分子測定方法において、
     前記生体分子固定化部材を前記薄膜から遠ざかる方向に駆動するとき、前記イオン電流値の変化から生体分子が前記ナノポアから抜け出したことを検出する工程と、
     前記生体分子が前記ナノポアから抜け出したことが検出されたとき前記生体分子固定化部材の駆動を止める工程と、
     その後、前記生体分子固定化部材を前記薄膜に近づく方向に駆動しながら前記イオン電流を計測する工程と、前記薄膜から遠ざかる方向に駆動しながら前記イオン電流を計測する工程を反復し、各工程で計測したイオン電流から前記生体分子を構成する分子を識別する情報を取得することを特徴とする生体分子測定方法。
  19.  請求項17に記載の生体分子測定方法において、
     前記ナノポアを有する薄膜が複数用意され、複数のナノポアのそれぞれを介して流れるイオン電流を独立して計測することにより複数の生体分子を構成する分子を識別する情報を取得することを特徴とする生体分子測定方法。
  20.  電解質溶液中に配置された薄膜のナノポアを介して電圧を印加し前記ナノポアの周囲に電場を生成する工程と、
     生体分子を固定化した磁気ビーズを前記電解質溶液中で電気泳動により泳動させ、生体分子を前記ナノポアに導入する工程と、
     磁石材料からなる生体分子固定部材を前記薄膜に近づく方向に駆動し、磁力によって前記磁気ビーズを前記生体分子固定部材に固定する工程と、
     前記生体分子固定部材を制御された速度で前記薄膜から離れる方向に駆動し、前記ナノポアを介して流れるイオン電流を検出する工程と、
     前記ナノポア中を移動する生体分子に起因する前記イオン電流の変化から前記生体分子の配列情報を取得する工程と、
     を有することを特徴とする生体分子測定方法。
     
PCT/JP2015/080402 2014-12-04 2015-10-28 生体分子測定装置及び生体分子測定方法 WO2016088486A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/531,500 US10294525B2 (en) 2014-12-04 2015-10-28 Biomolecule measurement system and biomolecule measurement method
CN201580064266.5A CN107002009B (zh) 2014-12-04 2015-10-28 生物分子测定装置及生物分子测定方法
DE112015005465.0T DE112015005465B4 (de) 2014-12-04 2015-10-28 Vorrichtung und Verfahren zur Messung von Biomolekülen
GB1708677.8A GB2549860B (en) 2014-12-04 2015-10-28 Biomolecule measurement system and biomolecule measurement method
US16/395,708 US11169139B2 (en) 2014-12-04 2019-04-26 Biomolecule measurement system and biomolecule measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246163 2014-12-04
JP2014246163A JP6283305B2 (ja) 2014-12-04 2014-12-04 生体分子測定装置及び生体分子測定方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/531,500 A-371-Of-International US10294525B2 (en) 2014-12-04 2015-10-28 Biomolecule measurement system and biomolecule measurement method
US16/395,708 Division US11169139B2 (en) 2014-12-04 2019-04-26 Biomolecule measurement system and biomolecule measurement method

Publications (1)

Publication Number Publication Date
WO2016088486A1 true WO2016088486A1 (ja) 2016-06-09

Family

ID=56091441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080402 WO2016088486A1 (ja) 2014-12-04 2015-10-28 生体分子測定装置及び生体分子測定方法

Country Status (6)

Country Link
US (2) US10294525B2 (ja)
JP (1) JP6283305B2 (ja)
CN (1) CN107002009B (ja)
DE (1) DE112015005465B4 (ja)
GB (1) GB2549860B (ja)
WO (1) WO2016088486A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104398A1 (ja) * 2015-12-17 2017-06-22 株式会社日立ハイテクノロジーズ 生体分子測定装置
WO2018142480A1 (ja) * 2017-01-31 2018-08-09 株式会社日立ハイテクノロジーズ 生体分子分析用デバイス及び生体分子固定部材
JP2018155698A (ja) * 2017-03-21 2018-10-04 株式会社東芝 分析チップ
EP3368178A4 (en) * 2015-10-30 2019-04-17 Universal Sequencing Technology Corporation METHODS AND SYSTEMS FOR REGULATING DNA, RNA AND OTHER BIOLOGICAL MOLECULES CROSSING NANOPORES
CN111088154A (zh) * 2019-12-25 2020-05-01 广东工业大学 一种石墨烯纳米孔测序仪及其测序方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021806A (ja) * 2016-08-03 2018-02-08 株式会社日立ハイテクノロジーズ 生体試料分析方法及び生体試料分析装置
GB2569478B (en) * 2016-10-20 2022-06-01 Hitachi High Tech Corp Method for treating biomolecules and method for analyzing biomolecules
JP6929375B2 (ja) * 2017-05-12 2021-09-01 ユニバーサル シークエンシング テクノロジー コーポレーション ディービーエー ユーエスティー コーポレーション 軟磁性構造を用いたナノ細孔を介してdna、rnaおよび他の生体分子を引っ張る方法およびシステム
JP6453960B1 (ja) * 2017-08-31 2019-01-16 株式会社東芝 検出装置および検出方法
CN109709185A (zh) * 2017-10-25 2019-05-03 深圳宣泽生物医药有限公司 一种修饰生物探针的纳米孔检测装置及制作方法
EP3830572A1 (en) * 2018-07-27 2021-06-09 Palogen, Inc. Nanopore device and methods of detecting charged particles using same
JP2020031557A (ja) * 2018-08-28 2020-03-05 株式会社日立ハイテクノロジーズ 生体分子分析装置
CN109455662B (zh) * 2018-11-26 2020-07-03 广东工业大学 一种固态纳米孔结构
US20200326325A1 (en) * 2019-04-12 2020-10-15 Lisa Diamond Nanosensor chip with compound nanopores
EP3999847A4 (en) * 2019-07-15 2023-10-18 Universal Sequencing Technology Corporation SEQUENCING OF BIOPOLYMERS BY MOTION-CONTROLLED ELECTRON TUNNELING
CN111122398A (zh) * 2019-12-20 2020-05-08 瑞芯智造(深圳)科技有限公司 一种微纳颗粒的检测装置及方法
CN111521766B (zh) * 2020-04-10 2022-02-15 浙江大学 人工合成的大环结构分子纳米孔结构及制备方法及应用
CN111508555A (zh) * 2020-04-15 2020-08-07 淮南师范学院 一组用于度量生物分子集的网络拓扑学特性的方法
JP2020153996A (ja) * 2020-05-29 2020-09-24 株式会社東芝 分析チップ
US20230251122A1 (en) 2022-02-09 2023-08-10 Simmonds Precision Products, Inc. Optical fabry-perot based liquid level sensors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078491A (ja) * 2004-09-10 2006-03-23 Agilent Technol Inc ナノステッパー/センサーシステム及びその使用方法
JP2011211905A (ja) * 2010-03-31 2011-10-27 Hitachi High-Technologies Corp 生体ポリマーの特性解析方法、生体ポリマーの特性解析装置、及び生体ポリマーの特性解析チップ
JP2013090576A (ja) * 2011-10-24 2013-05-16 Hitachi Ltd 核酸分析デバイス及びそれを用いた核酸分析装置
KR20130056756A (ko) * 2011-11-22 2013-05-30 나노칩스 (주) 압전소자를 이용한 실시간 분자서열 분석 시스템 및 방법
WO2013119784A1 (en) * 2012-02-08 2013-08-15 Brown University Methods of sequencing nucleic acids using nanopores and active kinetic proofreading
JP2014074599A (ja) * 2012-10-03 2014-04-24 Hitachi High-Technologies Corp 分析装置及び分析方法
WO2014208184A1 (ja) * 2013-06-28 2014-12-31 株式会社 日立ハイテクノロジーズ 分析装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU760493B2 (en) 1998-09-22 2003-05-15 Ccl Label, Inc. Business card sheet construction and methods of making and using same
US5958701A (en) * 1999-01-27 1999-09-28 The United States Of America As Represented By The Secretary Of The Navy Method for measuring intramolecular forces by atomic force
US8232582B2 (en) * 2000-04-24 2012-07-31 Life Technologies Corporation Ultra-fast nucleic acid sequencing device and a method for making and using the same
DE10327683A1 (de) * 2003-06-20 2005-01-20 Bayer Technology Services Gmbh Verfahren und Vorrichtung zum quantitativen elektrischen Nachweis von Analyten
US20060105461A1 (en) * 2004-10-22 2006-05-18 May Tom-Moy Nanopore analysis system
GB0716005D0 (en) * 2007-08-16 2007-09-26 Imp Innovations Ltd Single molecule spectroscopy using nanoporpus membranes
US8968540B2 (en) * 2008-10-06 2015-03-03 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Trans-base tunnel reader for sequencing
JP5372570B2 (ja) * 2009-03-30 2013-12-18 株式会社日立ハイテクノロジーズ ナノポアを用いたバイオポリマー決定方法、システム、及びキット
JP5822930B2 (ja) * 2011-07-19 2015-11-25 株式会社日立製作所 分析装置及び分析システム
EP2562135A1 (de) * 2011-08-22 2013-02-27 ETH Zurich Verfahren zur Herstellung und Ausrichtung von Nanowires und Anwendungen eines solchen Verfahrens
JP6033602B2 (ja) * 2012-08-08 2016-11-30 株式会社日立ハイテクノロジーズ 生体分子検出方法、生体分子検出装置、および分析用デバイス
JP5951527B2 (ja) * 2013-03-07 2016-07-13 株式会社東芝 検体検出装置及び検出方法
CN103820313B (zh) * 2014-03-10 2015-07-08 东南大学 一种基于纳米孔和原子力显微镜的三通道并行dna测序传感器及检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078491A (ja) * 2004-09-10 2006-03-23 Agilent Technol Inc ナノステッパー/センサーシステム及びその使用方法
JP2011211905A (ja) * 2010-03-31 2011-10-27 Hitachi High-Technologies Corp 生体ポリマーの特性解析方法、生体ポリマーの特性解析装置、及び生体ポリマーの特性解析チップ
JP2013090576A (ja) * 2011-10-24 2013-05-16 Hitachi Ltd 核酸分析デバイス及びそれを用いた核酸分析装置
KR20130056756A (ko) * 2011-11-22 2013-05-30 나노칩스 (주) 압전소자를 이용한 실시간 분자서열 분석 시스템 및 방법
WO2013119784A1 (en) * 2012-02-08 2013-08-15 Brown University Methods of sequencing nucleic acids using nanopores and active kinetic proofreading
JP2014074599A (ja) * 2012-10-03 2014-04-24 Hitachi High-Technologies Corp 分析装置及び分析方法
WO2014208184A1 (ja) * 2013-06-28 2014-12-31 株式会社 日立ハイテクノロジーズ 分析装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BUERMANS HPJ ET AL.: "Next generation sequencing technology: Advances and applications", BIOCHIM. BIOPHYS. ACTA ., vol. 1842, no. 10, October 2014 (2014-10-01), pages 1932 - 1941, XP029056080, DOI: doi:10.1016/j.bbadis.2014.06.015 *
HYUN C ET AL.: "Threading immobilized DNA molecules through a solid-state nanopore at >100 ps per base rate", ACS NANO, vol. 7, no. 7, 23 July 2013 (2013-07-23), pages 5892 - 5900 *
KEYSER UF ET AL.: "Direct force measurements on DNA in a solid-state nanopore", NATURE PHYS., vol. 2, no. 7, 2006, pages 473 - 477, XP002528061, DOI: doi:10.1038/NPHYS344 *
NELSON EM ET AL.: "Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography", ACS NANO, vol. 8, no. 6, 24 June 2014 (2014-06-24), pages 5484 - 5493 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3368178A4 (en) * 2015-10-30 2019-04-17 Universal Sequencing Technology Corporation METHODS AND SYSTEMS FOR REGULATING DNA, RNA AND OTHER BIOLOGICAL MOLECULES CROSSING NANOPORES
WO2017104398A1 (ja) * 2015-12-17 2017-06-22 株式会社日立ハイテクノロジーズ 生体分子測定装置
CN108368466A (zh) * 2015-12-17 2018-08-03 株式会社日立高新技术 生物体分子测定装置
JPWO2017104398A1 (ja) * 2015-12-17 2018-08-30 株式会社日立ハイテクノロジーズ 生体分子測定装置
GB2560668A (en) * 2015-12-17 2018-09-19 Hitachi High Tech Corp Biomolecule measurement apparatus
US10753922B2 (en) 2015-12-17 2020-08-25 Hitachi High-Tech Corporation Biomolecule measurement apparatus
GB2560668B (en) * 2015-12-17 2022-08-24 Hitachi High Tech Corp Biomolecule measurement apparatus
CN108368466B (zh) * 2015-12-17 2022-09-02 株式会社日立高新技术 生物体分子测定装置
WO2018142480A1 (ja) * 2017-01-31 2018-08-09 株式会社日立ハイテクノロジーズ 生体分子分析用デバイス及び生体分子固定部材
JP2018155698A (ja) * 2017-03-21 2018-10-04 株式会社東芝 分析チップ
CN111088154A (zh) * 2019-12-25 2020-05-01 广东工业大学 一种石墨烯纳米孔测序仪及其测序方法

Also Published As

Publication number Publication date
CN107002009A (zh) 2017-08-01
JP6283305B2 (ja) 2018-02-21
DE112015005465B4 (de) 2023-06-29
DE112015005465T5 (de) 2017-08-17
US20190249243A1 (en) 2019-08-15
GB2549860A (en) 2017-11-01
US11169139B2 (en) 2021-11-09
US20170268054A1 (en) 2017-09-21
GB2549860B (en) 2020-11-25
JP2016106563A (ja) 2016-06-20
US10294525B2 (en) 2019-05-21
CN107002009B (zh) 2020-01-17
GB201708677D0 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6283305B2 (ja) 生体分子測定装置及び生体分子測定方法
CN107690582B (zh) 用于样品分析的装置和方法
JP6124982B2 (ja) ナノ細孔を形成するためのシステムおよぴ方法
JP6986270B2 (ja) Dna、rnaおよび他の生体分子によるナノ細孔の通過を制御するための方法およびシステム
Hu et al. Four aspects about solid‐state nanopores for protein sensing: Fabrication, sensitivity, selectivity, and durability
JP6826047B2 (ja) 生体分子測定装置
US10145846B2 (en) Digital protein sensing chip and methods for detection of low concentrations of molecules
US20120312083A1 (en) Biopolymer analysis method, biopolymer analyzer, and biopolymer analysis chip
Krishnakumar et al. Slowing DNA translocation through a nanopore using a functionalized electrode
JP2001522999A (ja) ナノ電極アレイ(array)
US20140151227A1 (en) Field effect based nanosensor for biopolymer manipulation and detection
JP2009536107A (ja) イオンチャンネル記録並びに単分子検出及び解析のためのナノポア基盤
US20100032653A1 (en) Carbon Nanotube Electric Field Effect Transistor and Process for Producing the Same
JP6727052B2 (ja) 生体分子分析用デバイス及び生体分子分析装置
KR20130057721A (ko) 바이오 센서, 이를 이용한 바이오 물질 검출 장치 및 검출 방법
CN107429216B (zh) 用于检测分子和结合能的装置和方法
Xia et al. Silicon nitride nanopores formed by simple chemical etching: DNA translocations and TEM imaging
JP4497903B2 (ja) タンパク質チップおよびそれを用いたバイオセンサー
JP6559814B2 (ja) 生体分子測定方法
Kim et al. Nanofluidic concentration of selectively extracted biomolecule analytes by microtubules
US20180299424A1 (en) System and method for nucleotide sequencing
JP4833679B2 (ja) 密度が調整された分子膜の製造方法及び製造装置
JP5740660B2 (ja) 細胞分析装置
JP2006153733A (ja) リポソームの固定化方法、リポソームマイクロアレイチップおよびその製造方法
US9428805B2 (en) DNA sequencing using a suspended carbon nanotube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865929

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15531500

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201708677

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151028

WWE Wipo information: entry into national phase

Ref document number: 112015005465

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865929

Country of ref document: EP

Kind code of ref document: A1