WO2016088438A1 - ポリプロピレン系樹脂発泡シート、ポリプロピレン系樹脂発泡シートの製造方法及び粘着シート - Google Patents

ポリプロピレン系樹脂発泡シート、ポリプロピレン系樹脂発泡シートの製造方法及び粘着シート Download PDF

Info

Publication number
WO2016088438A1
WO2016088438A1 PCT/JP2015/077282 JP2015077282W WO2016088438A1 WO 2016088438 A1 WO2016088438 A1 WO 2016088438A1 JP 2015077282 W JP2015077282 W JP 2015077282W WO 2016088438 A1 WO2016088438 A1 WO 2016088438A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
surface portion
polypropylene resin
foam sheet
exposed
Prior art date
Application number
PCT/JP2015/077282
Other languages
English (en)
French (fr)
Inventor
和真 木村
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014246119A external-priority patent/JP2016108422A/ja
Priority claimed from JP2014246120A external-priority patent/JP2016108423A/ja
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Publication of WO2016088438A1 publication Critical patent/WO2016088438A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers

Definitions

  • the present invention relates to a polypropylene resin foam sheet obtained by foaming a resin composition containing a polypropylene resin.
  • the present invention also relates to a method for producing the polypropylene resin foam sheet and an adhesive sheet using the polypropylene resin foam sheet.
  • thermoplastic resin foam obtained by foam-molding a thermoplastic resin has been used for various applications.
  • the thermoplastic resin foam is often used, for example, as a cushioning material for packaging and a structural member for automobiles.
  • thermoplastic resin foams polyolefin resin foams are excellent in processability and flexibility, and are used as adhesive sheets used in electronic and electrical equipment, and as base materials for sealing materials. .
  • pressure-sensitive adhesive sheets used for electronic / electrical devices demands for reduction in thickness and weight are increasing.
  • the pressure-sensitive adhesive sheet used for electronic / electric equipment is required to have excellent strength.
  • slicing has been performed to make a thermoplastic resin foam thin.
  • the strength is lowered only by slicing the thermoplastic resin foam.
  • Patent Documents 1 to 3 disclose polyolefin resin foams.
  • Patent Document 1 discloses a polyolefin resin thin-layer foamed sheet having a plurality of bubbles partitioned by a wall containing a polyolefin resin.
  • This polyolefin resin thin-layer foam sheet has a thickness of 0.05 to 0.5 mm, an expansion ratio of 2 to 15 times, an open cell ratio of 30 to 95%, and a bubble breakage ratio of 1 to 30%.
  • Patent Document 2 it is obtained by performing extrusion foam molding with an annular die using a polyolefin resin composition containing a polyolefin resin as a thermoplastic resin and using carbon dioxide (carbon dioxide) as a foaming agent.
  • Polyolefin resin foams are disclosed.
  • the polyolefin resin composition includes (a) a polyolefin resin, (b) (b1) an elastomer, and (b2) a plastomer.
  • the blending ratio of the above (a) and (b) is in the range of 90/10 to 10/90 by weight.
  • the blending ratio of (b1) and (b2) is in the range of 90/10 to 10/90 by weight.
  • Patent Document 3 discloses a resin foam having a foam layer and a surface layer.
  • the foam layer and the surface layer have the same composition.
  • the surface coverage of the surface layer is 40% or more.
  • the density of the foam layer is 0.20 g / cm 3 or less.
  • the resin constituting the resin foam is a thermoplastic resin, and a polyolefin resin is exemplified as this thermoplastic resin.
  • the surface layer is formed by heat melting treatment.
  • the resin foam has a thickness of 0.2 to 5 mm. The resin foam is used for electric / electronic devices.
  • the polyolefin resin foams described in Patent Documents 1 to 3 may have low tensile strength. For this reason, when stress is added to the polyolefin resin foam, the foam may break. In addition, the polyolefin resin foams described in Patent Documents 1 to 3 may have low flexibility.
  • the polyolefin resin foams described in Patent Documents 1 to 3 have a problem that when the thickness is reduced, the tensile strength of the foam is further lowered and the flexibility of the foam is further lowered.
  • a sheet-like foam of a resin composition comprising a polypropylene-based resin and at least one of an olefin-based thermoplastic elastomer and a polyethylene-based plastomer.
  • the material of the first surface portion on one side in the direction and the second surface portion on the other side in the thickness direction is the resin composition, and the thickness is 0.05 mm or more and 0.5 mm or less.
  • a polypropylene resin foam sheet having a tensile strength of 0.1 MPa or more and 30 MPa or less and a 25% compressive stress of 10 kPa or more and 150 kPa or less.
  • a plurality of bubbles are exposed on the first surface portion, and bubbles are not exposed on the second surface portion, or the second surface portion is exposed. Bubbles are exposed on the surface portion and the number of exposed bubbles on the second surface portion is smaller than the number of exposed bubbles on the first surface portion.
  • the number of exposed bubbles in the 1 mm 2 range of the first surface portion is 20 or more, and the exposure of the second surface portion in the 1 mm 2 range.
  • the number of bubbles produced is 10 or less.
  • the second surface portion is a skin layer.
  • the average bubble diameter of the exposed bubble cross section is 20 ⁇ m or more and 200 ⁇ m or less on the outer surface of the first surface portion.
  • the total content of the polypropylene resin, the olefinic thermoplastic elastomer, and the polyethylene plastomer is 100% by weight, and the content of the polypropylene resin is 10% by weight or more and 90% by weight or less and the olefin.
  • the total content of the thermoplastic elastomer and the polyethylene plastomer is preferably 10% by weight or more and 90% by weight or less.
  • the foamed sheet is preferably used for an adhesive sheet for electronic / electrical equipment, and is preferably used for an adhesive sheet for wearable computers.
  • Obtain a polypropylene resin foam sheet in which a plurality of bubbles are exposed on the outer surface of the first surface portion and the second surface portion on the other side in the thickness direction is a skin layer, or
  • the foam is heated and compressed from the second surface portion side, and a plurality of bubbles are exposed on the outer surface of the first surface portion on one side in the thickness direction, and No bubbles are exposed on the second surface portion on the other side in the thickness direction, or bubbles are exposed on the second surface portion and the number of exposed bubbles on the second surface portion is
  • a method for producing a polypropylene resin foam sheet which obtains a polypropylene resin foam sheet having a smaller number of exposed bubbles in the first surface portion.
  • a method for producing the above-described polypropylene resin foam sheet the foaming step of foaming the resin composition to obtain a foam, and heating and compressing the foam.
  • a method for producing a polypropylene resin foam sheet comprising a heat compression step of obtaining a polypropylene resin foam sheet.
  • a plurality of bubbles are exposed on the first surface portion on one side in the thickness direction, and the second on the other side in the thickness direction.
  • the foam is heated and compressed from the second surface portion side to form a first surface portion on one side in the thickness direction.
  • a plurality of bubbles are exposed on the outer surface of the resin, and the second surface portion on the other side in the thickness direction is a skin layer.
  • the foam is heated and compressed from the surface portion side of 2 to expose a plurality of bubbles on the outer surface of the first surface portion on one side in the thickness direction, and on the other side in the thickness direction. No air bubbles are exposed on the surface of 2 or the second The number of bubbles bubbles on the surface portion is exposed in and and said second surface portion is exposed, to obtain a first bubble exposed at the surface portion of the foamed polypropylene resin sheet smaller than the number of.
  • the said foam in the said heat compression process, is heated and compressed from the said 2nd surface part side, and 1st of the one side of the thickness direction is 1st. A plurality of bubbles are exposed on the outer surface of the surface portion, and a polypropylene resin foam sheet is obtained in which the second surface portion on the other side in the thickness direction is a skin layer.
  • a foam sheet according to the present invention in the foaming step, without slicing the surface on the other side in the thickness direction, only the surface on one side in the thickness direction is sliced and foamed. A body is obtained, and the foam is heated and compressed from the surface side that has not been sliced in the heating and compression step, and the center portion in the thickness direction and the sliced first surface portion are sliced. A polypropylene resin foam sheet having a second surface portion that has not been obtained is obtained.
  • ratio of the thickness of the polypropylene resin foam sheet obtained with respect to the thickness of the said foam is 0.1 or more and 0.95 or less.
  • the foam is heated and compressed.
  • the foam in the heat compression step, is heated for 0.1 seconds or more and 5 seconds or less while being in contact with a heat source.
  • the foam in the heating and compression step, is heated and compressed while being in contact with a heat source, or the foam is heated while being in contact with a heat source. Thereafter, the foam is compressed during cooling.
  • an adhesive sheet comprising the above-described polypropylene resin foam sheet and an adhesive layer disposed on one surface of the polypropylene resin foam sheet.
  • the polypropylene resin foam sheet according to the present invention is a sheet-like foam of a resin composition comprising a polypropylene resin and at least one of an olefinic thermoplastic elastomer and a polyethylene plastomer, and has a central portion in the thickness direction. And the first surface portion on one side in the thickness direction and the second surface portion on the other side in the thickness direction are the resin composition, and the thickness is 0.05 mm or more and 0.5 mm or less.
  • the tensile strength is 0.1 MPa or more and 30 MPa or less
  • the 25% compressive stress is 10 kPa or more and 150 kPa or less, even though the thickness is small, water and dust enter the electronic / electrical equipment. Can be prevented.
  • the method for producing a polypropylene resin foam sheet according to the present invention includes foaming a resin composition containing a polypropylene resin and at least one of an olefin thermoplastic elastomer and a polyethylene plastomer to obtain a foam.
  • a polypropylene tree in which a plurality of bubbles are exposed on the outer surface of the first surface portion on one side in the thickness direction, and the second surface portion on the other side in the thickness direction is a skin layer Obtain a foam sheet, or heat and compress the foam from the second surface portion side in the heat compression step, so that a plurality of foam sheets are formed on the outer surface of the first surface portion on one side in the thickness direction. Are exposed and the second surface portion on the other side in the thickness direction is not exposed, or the second surface portion is exposed and the second surface is exposed.
  • a foamed polypropylene resin foam sheet can be obtained. Furthermore, although compressed, it is possible to prevent intrusion of water, dust, etc. into an electronic / electrical device, etc., despite being thin.
  • FIG. 1 is a cross-sectional SEM image showing a polypropylene resin foam sheet according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional SEM image showing a foam (before heat compression treatment) used to obtain a foam sheet.
  • the polypropylene resin foam sheet (sometimes abbreviated as a foam sheet) according to the present invention is obtained by foaming a resin composition (polypropylene resin composition).
  • the foam sheet is a sheet-like foam.
  • the foam sheet according to the present invention has a plurality of bubbles.
  • the resin composition includes a polypropylene resin and at least one of an olefin thermoplastic elastomer and a polyethylene plastomer.
  • the central portion in the thickness direction, the first surface portion on one side in the thickness direction, and the second surface portion on the other side in the thickness direction are all formed of the resin composition.
  • the material of the central portion in the thickness direction, the first surface portion on one side in the thickness direction, and the second surface portion on the other side in the thickness direction are all the above resin compositions. It is.
  • the thickness of the foam sheet according to the present invention is 0.05 mm or more and 0.5 mm or less.
  • the tensile strength of the foamed sheet according to the present invention is 0.1 MPa or more and 30 MPa or less.
  • the 25% compressive stress of the foamed sheet according to the present invention is 10 kPa or more and 150 kPa or less.
  • a resin composition comprising a polypropylene resin and at least one of an olefin thermoplastic elastomer and a polyethylene plastomer.
  • the method for producing a foamed sheet according to the present invention includes a foaming step of foaming the resin composition to obtain a foam, and a heat compression step of heating and compressing the foam to obtain a polypropylene resin foamed sheet. Prepare.
  • the foam sheet manufacturing method in the foaming step, a plurality of bubbles are exposed on the first surface portion on one side in the thickness direction, and the second surface portion on the other side in the thickness direction is the skin. A foam which is a layer is obtained.
  • the foam in the heating and compression step, the foam is heated and compressed from the second surface portion side, and the outer side of the first surface portion on one side in the thickness direction.
  • a polypropylene resin foam sheet is obtained in which a plurality of bubbles are exposed on the surface and the second surface portion on the other side in the thickness direction is a skin layer.
  • the foam in the heat compression step, the foam is heated and compressed from the second surface portion side, and the first surface portion on one side in the thickness direction is heated.
  • a plurality of bubbles are exposed on the outer surface and the bubbles are not exposed on the second surface portion on the other side in the thickness direction, or the bubbles are exposed on the second surface portion, and A polypropylene resin foam sheet is obtained in which the number of exposed bubbles in the second surface portion is smaller than the number of exposed bubbles in the first surface portion.
  • the method for producing a foam sheet according to the present invention since the above-described configuration is provided, it is difficult to break despite being thin by being compressed, and the flexibility can be increased.
  • the manufacturing method of the foam sheet which concerns on this invention since the structure mentioned above is provided, even if thickness is thin, it is hard to fracture
  • 0.5 mm or more may be sufficient as the thickness of the foam sheet obtained by the manufacturing method of the foam sheet which concerns on this invention.
  • the thickness of the foam sheet obtained when the thickness of the foam sheet obtained is thick, it is further excellent by breakage prevention property and a softness
  • the manufacturing method of the foam sheet which concerns on this invention since the structure mentioned above is provided, sufficient tensile strength can be maintained.
  • the present invention provides a foamed sheet that is difficult to break even when the thickness is 0.5 mm or less.
  • a highly flexible foam sheet is provided.
  • the conventional foamed sheet is not flexible when the thickness is small, and the followability to fine irregularities is poor, so it is difficult to prevent the entry of water, dust, etc. into electronic and electrical equipment. .
  • a highly flexible foam sheet cannot be reduced in thickness, and it is difficult to cope with downsizing and thinning of electronic and electrical devices.
  • the conventional foamed sheet has a problem that when the thickness is reduced, the mechanical strength is lowered and secondary processing such as adhesive processing cannot be performed.
  • the foamed sheet according to the present invention can be thinned by heat compression treatment, and the second surface portion having a specific surface state is formed, so that the mechanical strength is higher than that of the conventional foamed sheet. Can be expressed. Moreover, since the 1st surface part of a specific surface state is formed, the outstanding softness
  • the thickness of the foamed sheet is preferably 0.05 mm or more, preferably 1 mm or less, more preferably 0.5 mm or less. From the viewpoint of further increasing the tensile strength and flexibility, the thickness of the foamed sheet is preferably 0.06 mm or more, more preferably 0.07 mm or more, still more preferably 0.08 mm or more, and particularly preferably 0.09 mm or more. Preferably it is 0.10 mm or more. From the viewpoint of meeting the demand for thinning, the thickness of the foamed sheet is preferably 0.45 mm or less, more preferably 0.40 mm or less, still more preferably 0.35 mm or less, and particularly preferably 0.30 mm or less.
  • the tensile strength is further increased.
  • the thickness of the foamed sheet is not more than the above upper limit, it is possible to meet the demand for thinning.
  • tensile strength becomes high enough.
  • the tensile strength of the foamed sheet is preferably 0.1 MPa or more, preferably 30 MPa or less.
  • the foam sheet manufacturing method according to the present invention it is easy to obtain a foam sheet having a tensile strength of 0.1 MPa or more and 30 MPa or less.
  • the tensile strength of the foamed sheet is preferably 0.2 MPa or more, more preferably 0.3 MPa or more, further preferably 0.4 MPa or more, particularly preferably 0.5 MPa or more, and most preferably. Is 0.6 MPa or more.
  • the foam sheet may be obtained through a melt extrusion foam molding process or the like. It is preferable that the tensile strength in the flow direction (MD direction) of the foam sheet and the tensile strength in the direction (TD direction) perpendicular to the flow direction of the foam sheet are not less than the above lower limit and not more than the above upper limit.
  • the 25% compressive stress of the foamed sheet is preferably 10 kPa or more, preferably 200 kPa or less, more preferably 150 kPa or less.
  • the 25% compressive stress of the foamed sheet is preferably 140 kPa or less, more preferably 130 kPa or less, and still more preferably 120 kPa or less.
  • the arithmetic average roughness Ra of the surfaces on both sides of the foamed sheet is different.
  • the side with the larger arithmetic average roughness Ra is the first surface portion side.
  • the arithmetic average roughness Ra of the outer surface of the first surface portion is preferably larger than the arithmetic average roughness Ra of the outer surface of the second surface portion.
  • the arithmetic average roughness Ra is measured according to JIS B0601: 1994.
  • a plurality of bubbles are exposed on the first surface portion, and no bubbles are exposed on the second surface portion, or the second surface portion. It is preferable that air bubbles are exposed on the surface portion of the first surface portion and the number of exposed air bubbles on the second surface portion is smaller than the number of air bubbles exposed on the first surface portion.
  • the number of exposed bubbles in the 1 mm 2 range (1 mm ⁇ 1 mm square range) of the first surface portion in the foam sheet is preferably 20 or more. , More preferably 30 or more, still more preferably 40 or more, particularly preferably 50 or more.
  • the number of exposed bubbles in the 1 mm 2 range (1 mm ⁇ 1 mm square range) of the second surface portion is preferably 10 or less, more preferably 5 or less, still more preferably 3 or less, particularly preferably. 0.
  • the absolute value of the difference from the number of exposed bubbles in the 1 mm 2 range (1 mm ⁇ 1 mm square range) of the surface portion is preferably 1 or more, more preferably 5 or more, and still more preferably 10 or more. Particularly preferred is 20 or more.
  • the second surface portion is preferably a skin layer.
  • the skin layer is a layer having a higher resin density than other regions.
  • the first surface portion is preferably a surface portion formed by slicing.
  • the second surface portion is preferably a surface portion that has not been sliced.
  • the resin density of the second surface portion is preferably higher than the center portion, and the resin density is higher than that of the first surface portion. High is preferred.
  • the average bubble diameter of the exposed bubble cross section on the outer surface of the first surface portion is preferably 20 ⁇ m or more, more preferably 25 ⁇ m or more, preferably 200 ⁇ m. Hereinafter, it is more preferably 150 ⁇ m or less.
  • the bubble diameter of the bubble cross section is the long diameter of the bubble cross section.
  • the average bubble diameter of the bubble cross section is obtained by averaging the long diameters of the bubble cross sections.
  • the total surface area of the outer surface of the first surface portion is 100%, and the surface area without bubbles is preferably 5% or more, more preferably 10% or more, preferably 40% or less, more preferably 35% or less. It is.
  • the surface area without bubbles is preferably 90% or more, more preferably 95% or more, and particularly preferably 100% (exposed skin layer and bubbles). None).
  • the surface area without bubbles was 100% in the total surface area 100% of the outer surface of the second surface portion.
  • the foam sheet is preferably obtained through a heat compression treatment. Since the resin composition having the above-described composition is used, the specific surface portion can be easily formed by heat compression treatment. It is preferable that the said foam sheet is obtained by heat-pressing the foam obtained by making a resin composition foam.
  • the said foam is a sheet
  • the direction in which the length directions of the plurality of bubbles are averaged is parallel to the direction orthogonal to the thickness direction of the foam sheet in the central third region of the thickness direction. Or a direction inclined at 30 ° or less with respect to the direction perpendicular to the thickness direction of the foam sheet.
  • the inclination angle is more preferably 25 ° or less, still more preferably 20 ° or less, and particularly preferably Is 15 ° or less.
  • the air bubbles in the central region in the thickness direction were flat and extended in a direction perpendicular to the thickness direction of the foamed sheet, and the inclination angle was 30 ° or less.
  • the method for producing a foam sheet for obtaining a foam sheet according to the present invention includes foaming a resin composition to obtain a foam having a plurality of bubbles, and heating and compressing the foam. It is preferable to include a heat compression step for obtaining a foam sheet.
  • the foaming step a plurality of bubbles are exposed on the first surface portion on one side in the thickness direction, and the second surface portion on the other side in the thickness direction. It is preferable to obtain a foam in which is a skin layer.
  • the foam is heated and compressed from the second surface portion side, and a plurality of bubbles are exposed on the outer surface of the first surface portion on one side in the thickness direction, and the thickness is increased.
  • a foam sheet in which the second surface portion on the other side in the direction is a skin layer is obtained, or, in the heating and compression step, the foam is heated and compressed from the second surface portion side to obtain a thickness direction.
  • a plurality of bubbles are exposed on the outer surface of the first surface portion on one side of the first surface and the bubbles are not exposed on the second surface portion on the other side in the thickness direction, or the second It is preferable to obtain a polypropylene resin foam sheet in which bubbles are exposed on the surface portion and the number of exposed bubbles on the second surface portion is smaller than the number of exposed bubbles on the first surface portion.
  • the foam is heated and compressed from the second surface portion side, and a plurality of bubbles are exposed on the outer surface of the first surface portion on one side in the thickness direction, and the thickness is increased. It is more preferable to obtain a foam sheet in which the second surface portion on the other side in the direction is a skin layer.
  • the foam is preferably heated while being in contact with a heat source.
  • the temperature of the heat source is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, still more preferably 50 ° C. or higher, still more preferably 55 ° C. or higher, Particularly preferably, it is 75 ° C or higher, most preferably 95 ° C or higher, preferably 170 ° C or lower, more preferably 160 ° C or lower, and further preferably 150 ° C or lower.
  • the contact time (heating time) with the heat source is preferably 0.1 seconds or longer, more preferably 0.2 seconds or longer, preferably 5.0 seconds or shorter, more preferably. Is 4.5 seconds or less, more preferably 4.0 seconds or less.
  • the pressure during compression is preferably 0.05 MPa or more, more preferably 0.1 MPa or more, still more preferably 0.15 MPa or more, preferably 1.1 MPa or less.
  • it is 1.0 MPa or less, More preferably, it is 0.9 MPa or less.
  • the foam in the heating and compression step, is heated and compressed while being in contact with a heat source, or the foam is heated while being in contact with a heat source,
  • the foam is preferably compressed during cooling, and in the heating and compression step, it is more preferable to heat and compress the foam while contacting the foam with a heat source.
  • the foam from the first surface side in the heat compression step it is preferable not to heat the foam from the first surface side in the heat compression step, and preferably not compress the foam from the first surface side. It is preferable not to heat and compress the foam from the first surface side.
  • the thickness of the foam is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, preferably 3.5 mm or less, More preferably, it is 3 mm or less, More preferably, it is 2.5 mm or less.
  • the foaming ratio of the foam is preferably 5 times or more, more preferably 10 times or more, and even more preferably 15 times. As mentioned above, Preferably it is 25 times or less, More preferably, it is 24 times or less, More preferably, it is 23 times or less.
  • the average cell diameter in the foam is preferably 0.01 mm or more, more preferably 0.02 mm or more, and still more preferably. It is 0.03 mm or more, preferably 0.3 mm or less, more preferably 0.2 mm or less, and still more preferably 0.15 mm or less. In the examples described later, the average cell diameter in the foam was in the range of 0.05 mm or more and 0.15 mm or less.
  • the bubble diameter in a foam is the thickness direction of a sheet
  • the diameter of each bubble can be obtained by averaging the diameters.
  • the bubble diameter of the foam is obtained by averaging the diameters of a plurality of bubbles.
  • the ratio of the thickness of the obtained foam sheet to the thickness of the foam during the heat compression treatment is preferably 0.05 or more, more preferably 0.06 or more, and further
  • the foam is heated and compressed so that it is preferably 0.07 or more, preferably 0.98 or less, more preferably 0.95 or less, and even more preferably 0.93 or less.
  • the foam is heated and compressed so as to satisfy the above thickness relationship, the thickness is appropriately reduced, and the tensile strength and flexibility are sufficiently increased.
  • annular die In the step of obtaining the foam, an annular die is preferably used.
  • the annular die preferably has a bubble generation unit that generates bubbles and a bubble growth unit that grows the generated bubbles.
  • the bubble growth part is located downstream of the bubble generation part.
  • the annular die generally has a forming part that performs sheet forming downstream of the bubble growth part.
  • the bubble generation part is preferably a part where the width of the flow path through which the resin composition flows is narrowed.
  • the bubble growth part is preferably a part where the width of the flow path is expanded downstream of the part where the width of the flow path through which the resin composition flows is narrowed.
  • a resin composition containing (A) a polypropylene resin and (B) at least one of an olefin thermoplastic elastomer and (C) a polyethylene plastomer is used.
  • a foaming step of foaming the resin composition to obtain a foam and a heat compression step of heating and compressing the foam to obtain a foamed sheet, in the foaming step, on one side in the thickness direction A plurality of bubbles are exposed on the first surface portion, and a foam in which the second surface portion on the other side in the thickness direction is a skin layer is obtained.
  • the second surface portion side The foam is heated and compressed to expose a plurality of bubbles on the outer surface of the first surface portion on one side in the thickness direction and the second surface portion on the other side in the thickness direction.
  • the resin composition preferably includes a thermoplastic resin, more preferably includes a polyolefin resin or a polystyrene resin, and includes a polyolefin resin. Is more preferable, and it is particularly preferable that (A) a polypropylene resin is included. From the viewpoint of further effectively increasing the tensile strength and flexibility, the resin composition includes a thermoplastic resin and (B) at least one of an olefin-based thermoplastic elastomer and (C) a polyethylene-based plastomer. It is particularly preferable that (A) a polypropylene-based resin and (B) an olefin-based thermoplastic elastomer and (C) a polyethylene-based plastomer are included.
  • the resin composition contains both (B) an olefin-based thermoplastic elastomer and (C) a polyethylene-based plastomer. Is preferred.
  • Resin composition does or does not contain (D) black pigment.
  • the resin composition may contain (D) a black pigment from the viewpoint of making folds (corrugated) and stains less noticeable.
  • Resin composition does or does not contain (E) bubble core material.
  • the resin composition may contain (E) a cell core material.
  • (A) Polypropylene resin, (B) Olefin thermoplastic elastomer, (C) Polyethylene plastomer, (D) Black pigment, and (E) Cellular core material may each be used alone or two The above may be used in combination.
  • thermoplastic resin is not particularly limited, and examples thereof include polyolefin resins, polystyrene resins, polyester resins, thermoplastic epoxy resins, polyamide resins, thermoplastic polyurethane resins, sulfide resins, and acrylic resins. From the viewpoint of effectively increasing the tensile strength and flexibility, a polyolefin-based resin or a polystyrene-based resin is preferable.
  • the polyolefin resin is not particularly limited, and examples thereof include a polyethylene resin and a polypropylene resin. From the viewpoint of effectively increasing breakage prevention and flexibility, a polyethylene resin, a polypropylene resin, or a polystyrene resin is preferable.
  • the polypropylene resin is obtained by polymerizing a propylene monomer.
  • the polypropylene resin is a polymer.
  • the polymer includes a copolymer.
  • As a polypropylene resin the homopolymer of a propylene monomer and the copolymer of the polymerization component which has a propylene monomer as a main component are mentioned.
  • the content of the propylene monomer is 50% by weight or more, preferably 80% by weight or more, more preferably 90% by weight in 100% by weight of the polymerizable polymerization component. % By weight or more.
  • the form of copolymerization may be random or block.
  • polypropylene resin examples include propylene homopolymer, propylene random polymer, and propylene block polymer.
  • the polypropylene resin is preferably a homopolymer of a propylene monomer, and is preferably a propylene homopolymer.
  • the melt flow rate (MFR) of the thermoplastic resin and the (A) polypropylene resin is preferably 0.1 g / 10 min or more, more preferably 0.15 g / 10, under the conditions of a test temperature of 230 ° C. and a load of 21.18 N. Min. Or more, more preferably 0.2 g / 10 min or more, preferably 5 g / 10 min or less.
  • MFR of the thermoplastic resin and the (A) polypropylene resin is not less than the above lower limit and not more than the above upper limit, a foamed sheet having a higher tensile strength and a better surface state can be obtained.
  • the melt tension at 230 ° C. of the thermoplastic resin and the (A) polypropylene resin is preferably 0.3 cN or more, More preferably, it is 0.5 cN or more, preferably 35 cN or less, more preferably 20 cN or less. Further, when the melt tension is not less than the above lower limit and not more than the above upper limit, the bubbles can be made finer, and the surface roughness of the foam sheet is effectively reduced.
  • the olefin-based thermoplastic elastomer preferably has a structure in which a hard segment and a soft segment are combined.
  • the olefin-based thermoplastic elastomer has rubber properties at room temperature (25 ° C.) and has a property that it can be molded and molded at a high temperature in the same manner as a thermoplastic resin.
  • the olefinic thermoplastic elastomer is generally a polyolefin resin such as polypropylene or polyethylene whose hard segment is a rubber, and a rubber such as an ethylene-propylene-diene copolymer or ethylene-propylene copolymer as a soft segment. Ingredient or amorphous polyethylene.
  • thermoplastic elastomer polymerization of a hard segment monomer and a soft segment monomer is performed in multiple stages and directly produced in a polymerization reaction vessel; Banbury mixer or biaxial Blend-type elastomer produced by physically dispersing polyolefin resin as hard segment and rubber component as soft segment using kneader such as extruder; Banbury mixer or twin screw extruder Using a kneader, the rubber component is completely cross-linked in the polyolefin resin matrix by adding a cross-linking agent when physically dispersing the polyolefin resin that becomes the hard segment and the rubber component that becomes the soft segment. Or partially crosslinked and microdispersed Dynamic crosslinked elastomer obtained can be mentioned.
  • thermoplastic elastomer As the olefin-based thermoplastic elastomer, it is possible to use both a non-crosslinked elastomer and a crosslinked elastomer. From the viewpoint of improving the recyclability of the foamed sheet, a non-crosslinked elastomer produced by physically dispersing a polyolefin-based resin serving as a hard segment and a rubber component serving as a soft segment is preferable. Moreover, such a non-crosslinked elastomer can be suitably used for extrusion foam molding with the annular die. Furthermore, even when such a non-crosslinked elastomer is used, even when the foamed sheet is recycled and supplied again to the extruder for extrusion foam molding, foaming failure due to the crosslinked rubber can be suppressed.
  • thermoplastic elastomers include olefinic elastomers such as ethylene-propylene-diene copolymer, ethylene-vinyl acetate copolymer, polybutene, and chlorinated polyethylene; styrene elastomers; polyester elastomers Polyamide-based elastomers; polyurethane-based elastomers and the like.
  • the olefinic thermoplastic elastomer is an ethylene-propylene-diene copolymer elastomer
  • examples of the diene component include ethylidene norbornene, 1,4-hexadiene, and dicyclopentadiene.
  • Such an ethylene-propylene-diene copolymer elastomer can be suitably used for extrusion foam molding with the above annular die. Only one type of ethylene-propylene-diene copolymer elastomer may be used, or two or more types may be used in combination.
  • the olefin-based thermoplastic elastomer has an MFR at a test temperature of 230 ° C. and a load of 21.18 N.
  • the MFR of (B) the olefinic thermoplastic elastomer is preferably 1 g / 10 min or more, and preferably 15 g / 10 min or less.
  • Examples of the polyethylene plastomer include a polyethylene polymer containing a polyolefin resin and a copolymer component such as ⁇ -olefin.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 4 to 8 carbon atoms, more preferably 1-butene, 1-hexene or 1-octene.
  • Examples of the ethylene / ⁇ -olefin copolymer include “Esprene NO416” (ethylene-1-butene copolymer) manufactured by Sumitomo Chemical Co., Ltd., and “Kernel KS240T” (ethylene-1-hexene copolymer) manufactured by Nippon Polyethylene Co., Ltd. And “Affinity EG8100” (ethylene-1-octene copolymer) manufactured by Dow Chemical.
  • (C) density of the polyethylene-based plastomer preferably 0.85 g / cm 3 or more, preferably 0.91 g / cm 3 or less.
  • the density is equal to or higher than the lower limit, the tensile strength of the foam sheet is effectively increased.
  • the density is not more than the above upper limit, the flexibility of the foam sheet is further increased.
  • the (C) polyethylene-based plastomer may have an MFR at a test temperature of 190 ° C. and a load of 21.18 N.
  • the MFR of the (C) polyethylene plastomer is preferably 1 g / 10 min or more, and preferably 15 g / 10 min or less.
  • the resin composition comprises a thermoplastic resin, (B) an olefin-based thermoplastic elastomer, and (C) a polyethylene-based plastomer.
  • the thermoplastic resin content is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 20% by weight or more, preferably 90% by weight or less, more preferably 85% by weight or less.
  • the total content of (B) the olefinic thermoplastic elastomer and (C) the polyethylene plastomer is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 80% by weight or less. Is 20% by weight or more, preferably 90% by weight or less, more preferably 85% by weight or less, and still more preferably 80% by weight or less. It is.
  • the content of the (A) polypropylene resin is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 20% by weight or more, and preferably 90% by weight or less.
  • the total content of (B) the olefinic thermoplastic elastomer and (C) the polyethylene plastomer is preferably 10% by weight or more, more preferably 15% by weight or less, more preferably 85% by weight or less. % By weight or more, more preferably 20% by weight or more, preferably 90% by weight or less, more preferably 85% by weight or less. More preferably 80 wt% or less.
  • the weight ratio of the content of (C) polyethylene plastomer to the content of (B) olefin thermoplastic elastomer is preferably 5 / 95 or more, more preferably 10/90 or more, further preferably 15/85 or more, particularly preferably 20/80 or more, preferably 95/5 or less, more preferably 90/10 or less, still more preferably 85/10 or less, Especially preferably, it is 80/20 or less.
  • the weight ratio (content of (C) / content of (B)) is not less than the above lower limit and not more than the above upper limit, the tensile strength and flexibility are effectively increased, and the surface state is further improved. .
  • the flexibility of the foam sheet can be further increased.
  • the total content of the thermoplastic resin, (B) the olefinic thermoplastic elastomer and (C) the polyethylene plastomer is preferably 80% by weight or more, more preferably 90% by weight or more, preferably 100% by weight. % (Total amount) or less.
  • the total content of (A) polypropylene resin, (B) olefin thermoplastic elastomer and (C) polyethylene plastomer is preferably 80% by weight or more, more preferably 90% by weight or more, preferably Is less than 100% by weight (total amount).
  • the content of (D) the black pigment is preferably 2% by weight or more, more preferably 4% by weight or more, preferably 20% by weight or less, more preferably 15% by weight or less.
  • the melt flow rate (MFR) of the resin composition is preferably 0.1 g / 10 min or more, more preferably 0.15 g / 10 min or more, still more preferably 0.2 g / 10 min or more, particularly preferably 0.25 g. / 10 min or more, preferably 5 g / 10 min or less, more preferably 4.5 g / 10 min or less, still more preferably 4 g / 10 min or less.
  • MFR of the resin composition is not less than the above lower limit and not more than the above upper limit, the tensile strength and flexibility are effectively increased, and the surface state is further improved.
  • the MFR of the resin composition is equal to or higher than the lower limit, the load on the extruder is reduced, the foam sheet productivity is increased, and the resin composition efficiently flows through the resin flow path of the annular die.
  • the MFR of the thermoplastic resin, (A) polypropylene resin, (B) olefin thermoplastic elastomer, (C) polyethylene plastomer, and resin composition is a test temperature of 230 ° C. in accordance with B method of JIS K7210: 1999. Alternatively, it is measured under the conditions of 190 ° C. and a load of 21.18N.
  • the melt tension at 230 ° C. of the resin composition is preferably 0.1 cN or more, more preferably 0.2 cN or more. , Preferably 30 cN or less, more preferably 25 cN or less. Moreover, a bubble can be made still finer as melt tension is more than the said minimum and below the said upper limit.
  • the melt tension of the thermoplastic resin, (A) polypropylene resin and resin composition is measured under the conditions of a test temperature of 230 ° C. and a load of 21.18N.
  • additives may be used as necessary as long as the effects of the present invention are not impaired.
  • the above additives include surfactants, dispersants, weathering stabilizers, light stabilizers, pigments, dyes, flame retardants, plasticizers, lubricants, UV absorbers, antioxidants, fillers, reinforcing agents, and antistatic agents. Agents and the like.
  • surfactant By using the surfactant, the slipperiness and the anti-blocking property are further enhanced.
  • dispersant the dispersibility of each compounding component is increased. Examples of the dispersant include higher fatty acids, higher fatty acid esters and higher fatty acid amides.
  • thermoplastic resin or (A) polypropylene-based resin is the sea part, (B) olefin-based thermoplastic elastomer and (C) polyethylene-based plastomer
  • the islands is an island. In this case, when shear is applied to the resin composition, the island portion expands and contracts, so that the viscosity of the resin composition is appropriately increased.
  • the hardness (duro hardness) of the thermoplastic resin or (A) polypropylene resin is (B) olefinic thermoplasticity. It is preferably higher than the hardness (duro hardness) of the elastomer and (C) polyethylene plastomer.
  • the hardness of the thermoplastic resin or (A) polypropylene resin is preferably D50 or more, and the hardness of (B) the olefin thermoplastic elastomer and (C) polyethylene plastomer is preferably less than D50.
  • the hardness of (B) the olefin thermoplastic elastomer and (C) the polyethylene plastomer is preferably D10 or more.
  • the above annular die is attached to the tip of the extruder.
  • the resin composition is melt-kneaded in the extruder.
  • the extruder include a single-screw extruder, a twin-screw extruder, and a tandem extruder.
  • a tandem type extruder is preferred because the extrusion conditions can be easily controlled.
  • the extrusion rate of the resin composition in the bubble generation part of the resin flow path is preferably 15 kg / hour or more, preferably 50 kg / hour or less.
  • the extrusion amount is not less than the above lower limit and not more than the above upper limit, a foamed sheet having a higher tensile strength and a better surface state can be obtained, the foaming ratio can be further increased, and the bubbles can be made finer. And a foamed sheet having an appropriate open cell rate and appropriate bubble breaking rate can be obtained.
  • Extrusion amount is the total weight of extrudates (resin composition, foaming agent, etc.) extruded from an annular die.
  • the melting temperature of the resin composition is preferably T + 10 ° C. or higher, preferably T + 30 ° C. or lower, when the melting point of the thermoplastic resin or (A) polypropylene resin is T ° C. is there.
  • the melting temperature is equal to or higher than the lower limit, crystallization of the thermoplastic resin or (A) polypropylene resin is difficult to start, and an excessive increase in viscosity of the melt is suppressed.
  • the melting temperature is not more than the above upper limit, the solidification speed and foaming speed after foaming become appropriate, and the foaming ratio can be increased moderately.
  • the number of cells in the thickness direction is preferably 2 or more, and more preferably 3 or more. That is, it is preferable that two or more or three or more bubbles are arranged on a straight line connecting the surfaces of both sides of the foam and the foam sheet in the thickness direction. When the number of bubbles in the thickness direction is 3 or more, the flexibility of the foam sheet is further increased.
  • the upper limit of the number of cells in the thickness direction can be appropriately adjusted depending on the thickness of the foam and the foamed sheet and the average cell diameter, and is not particularly limited.
  • the number of bubbles in the thickness direction may be 50 or less.
  • the use of the foam sheet is not particularly limited. Foamed sheets are used for packaging cushioning materials, automotive structural members, and the like. In addition, since the foam sheet is excellent in workability and flexibility, it is used as a pressure-sensitive adhesive sheet for electronic / electric equipment, a base material for a sealing material, and the like.
  • An adhesive sheet can be obtained by disposing an adhesive layer on one surface of the foam sheet.
  • This pressure-sensitive adhesive sheet includes a foamed sheet and a pressure-sensitive adhesive layer disposed on one surface of the foamed sheet.
  • the pressure-sensitive adhesive layer may be disposed on the other surface of the foamed sheet, or the pressure-sensitive adhesive layer may be disposed on the surfaces on both sides of the foamed sheet.
  • the foamed sheet is preferably used for an adhesive sheet for electronic / electric equipment, and more preferably used for an adhesive sheet for wearable computers.
  • the pressure-sensitive adhesive sheet is preferably a pressure-sensitive adhesive sheet for electronic / electric equipment, and is preferably a pressure-sensitive adhesive sheet for wearable computers. In such a use, it is calculated
  • Example 1 60 parts by weight of a polypropylene resin (MFR: 0.3 g / 10 min, “E110G” manufactured by Prime Polymer) and 20 parts by weight of a thermoplastic elastomer (MFR: 1.5 g / 10 min, “R110E” manufactured by Prime Polymer) Then, 20 parts by weight of polyethylene (MFR: 2.2 g / 10 min, “KS240T” manufactured by Nippon Polyethylene Co., Ltd.), which is a metallocene plastomer, was added to prepare 100 parts by weight of the compounded resin composition.
  • MFR polypropylene resin
  • MFR thermoplastic elastomer
  • MFR 1.5 g / 10 min, “R110E” manufactured by Prime Polymer
  • a tandem type extruder in which a second extruder with a diameter of 75 mm was connected to the tip of a first extruder with a diameter of 65 mm was prepared.
  • the obtained resin composition was supplied to the first extruder of the tandem type extruder and melt kneaded.
  • 5.0 parts by weight of carbon dioxide in a supercritical state is injected as a foaming agent, and the molten resin composition and carbon dioxide are uniformly mixed and kneaded, and then a molten resin containing the foaming agent.
  • the composition was continuously supplied to the second extruder and cooled to a resin temperature suitable for foaming while melt-kneading.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the outer skin, and a foam (average sheet thickness before heating and pressing) having an average thickness of 0.5 mm obtained by slicing one side was obtained.
  • a dielectric heating roll is prepared as a heat source, the heating temperature (pressing temperature) is 70 ° C., the nip roll pressure (pressing pressure) is 0.3 MPa, and the contact time between the dielectric heating roll and the foam is 1.0 second.
  • the resulting foam was passed between a dielectric heating roll and a nip roll. At this time, the surface of the obtained foam which was not sliced was brought into contact with a dielectric heating roll.
  • a foamed sheet (after heat pressing) having an average thickness of 0.20 mm was obtained by heat pressing from the surface side that was not sliced.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 60%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 2 Except that the contact time between the dielectric heating roll and the foam was changed to 3.0 seconds, it was hot-pressed from the non-sliced surface side in the same manner as in Example 1, and the average thickness was 0.10 mm. A foam sheet was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 80%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 3 Heating from the unsliced surface side in the same manner as in Example 1 except that the heating temperature was changed to 130 ° C. and the contact time between the dielectric heating roll and the foam was changed to 0.5 seconds. A foamed sheet that was pressed and had an average thickness of 0.05 mm was obtained.
  • the obtained foam sheet is compressed at a compression rate of 90% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 4 Heating from the surface side not sliced in the same manner as in Example 1 except that the heating temperature was changed to 110 ° C. and the contact time between the dielectric heating roll and the foam was changed to 0.5 seconds. A foamed sheet that was pressed and had an average thickness of 0.10 mm was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 80%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 5 Heating from the surface side not sliced in the same manner as in Example 1 except that the heating temperature was changed to 90 ° C. and the contact time between the dielectric heating roll and the foam was changed to 0.5 seconds. A foamed sheet that was pressed and had an average thickness of 0.15 mm was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 70%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 6 Except that the contact time between the dielectric heating roll and the foam was changed to 0.5 seconds, it was heated and pressed from the surface side not sliced in the same manner as in Example 1, and the average thickness was 0.20 mm. A foam sheet was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 60%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 7 Heating was performed from the surface side that was not sliced in the same manner as in Example 1 except that the heating temperature was changed to 50 ° C. and the contact time between the dielectric heating roll and the foam was changed to 0.5 seconds. A foamed sheet that was pressed and had an average thickness of 0.30 mm was obtained.
  • the obtained foam sheet is compressed at a compression rate of 40% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 8 The resin foam sheet obtained in Example 1 was prepared. One side of the resin foam sheet was sliced with a splitting machine to remove the epidermis, and a foam having an average thickness of 1.0 mm (before heating press, sheet original fabric) was obtained by slicing one side.
  • Example 2 The same as in Example 1 except that the obtained foam was used, the heating temperature was changed to 140 ° C., and the contact time between the dielectric heating roll and the foam was changed to 0.3 seconds. The foamed sheet was heated and pressed from the surface side not sliced, and the average thickness was 0.15 mm.
  • the obtained foam sheet is compressed at a compression rate of 85% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 9 The foam obtained in Example 8 was prepared.
  • Example 1 was used except that the obtained foam was used, the heating temperature was changed to 140 ° C., and the contact time between the dielectric heating roll and the foam was changed to 0.8 seconds.
  • the foamed sheet was heated and pressed from the surface side that was not sliced, and the average thickness was 0.10 mm.
  • the obtained foam sheet is compressed at a compression rate of 90% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 10 40 parts by weight of polypropylene resin (MFR: 0.3 g / 10 min, “SH9000” manufactured by Nippon Polypro Co., Ltd.), 20 parts by weight of thermoplastic elastomer (MFR: 11 g / 10 min, “Z101N” manufactured by Mitsubishi Chemical Corporation), and metallocene 40 parts by weight of polyethylene as a plastomer (MFR: 20 g / 10 min, “KC650T” manufactured by Nippon Polyethylene Co., Ltd.) was added to prepare 100 parts by weight of the compounded resin composition.
  • MFR polypropylene resin
  • MFR thermoplastic elastomer
  • MFR 11 g / 10 min, “Z101N” manufactured by Mitsubishi Chemical Corporation
  • metallocene 40 parts by weight of polyethylene as a plastomer MFR: 20 g / 10 min, “KC650T” manufactured by Nippon Polyethylene Co., Ltd.
  • the average thickness of 2.0 mm was obtained in the same manner as in Example 1 except that the obtained resin composition was used, the melt temperature was changed to 175 ° C., and the melt pressure was changed to 11.5 MPa. A resin foam was obtained.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the outer skin, and a foam (average sheet thickness before heating and pressing) having an average thickness of 0.5 mm obtained by slicing one side was obtained.
  • Example 1 Except for using the obtained foamed material, a foamed sheet that was hot-pressed from the surface side that was not sliced and had an average thickness of 0.40 mm was obtained in the same manner as in Example 1.
  • the obtained foam sheet is compressed at a compression rate of 20% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 11 The foam obtained in Example 10 was prepared.
  • Heating was performed from the surface side not sliced in the same manner as in Example 1 except that the obtained foam was used and the contact time between the dielectric heating roll and the foam was changed to 3.0 seconds. A foamed sheet that was pressed and had an average thickness of 0.30 mm was obtained.
  • the obtained foam sheet is compressed at a compression rate of 40% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 12 The foam obtained in Example 10 was prepared.
  • Example 2 The same as in Example 1 except that the obtained foam was used, the heating temperature was changed to 140 ° C., and the contact time between the dielectric heating roll and the foam was changed to 0.3 seconds. The foamed sheet was heated and pressed from the surface side that was not sliced, and the average thickness was 0.09 mm.
  • the obtained foam sheet is compressed at a compression rate of 82% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 13 The foam obtained in Example 10 was prepared.
  • Example 1 was used except that the obtained foam was used, the heating temperature was changed to 140 ° C., and the contact time between the dielectric heating roll and the foam was changed to 0.8 seconds.
  • the foamed sheet was heated and pressed from the surface side that was not sliced, and the average thickness was 0.07 mm.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 86%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Comparative Example 1 60 parts by weight of a polypropylene resin (MFR: 0.3 g / 10 minutes, “E110G” manufactured by Prime Polymer) and 40 parts by weight of a thermoplastic elastomer (MFR: 1.5 g / 10 minutes, “R110E” manufactured by Prime Polymer) In addition, 100 parts by weight of the blended resin composition was prepared.
  • MFR polypropylene resin
  • MFR thermoplastic elastomer
  • An average thickness of 1.9 mm was obtained in the same manner as in Example 1 except that the obtained resin composition was used, the melt temperature was changed to 178 ° C., and the melt pressure was changed to 13.5 MPa. A resin foam sheet was obtained.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the epidermis, and a foam with an average thickness of 1.0 mm obtained by slicing one side was obtained.
  • Example 2 Except that the obtained foam was used and the heating temperature was changed to 140 ° C., it was heat-pressed from the non-sliced surface side in the same manner as in Example 1, and the average thickness was 0.00. A foam sheet of 60 mm was obtained.
  • the obtained foam sheet is compressed at a compression rate of 40% with respect to the foam.
  • the average thickness of 1.8 mm was obtained in the same manner as in Example 1 except that the obtained resin composition was used, the melt temperature was changed to 177 ° C., and the melt pressure was changed to 10.5 MPa. A resin foam sheet was obtained.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the epidermis, and a foam with an average thickness of 1.0 mm (before heating press, sheet original fabric) was obtained by slicing one side.
  • Example 2 Except that the obtained foam was used and the heating temperature was changed to 140 ° C., it was heat-pressed from the non-sliced surface side in the same manner as in Example 1, and the average thickness was 0.00. A foam sheet of 30 mm was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 70%.
  • An average thickness of 2.2 mm was obtained in the same manner as in Example 1 except that the obtained resin composition was used, the melt temperature was changed to 176 ° C., and the melt pressure was changed to 12.3 MPa. A resin foam sheet was obtained.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the epidermis, and a foam with an average thickness of 1.0 mm (before heating press, sheet original fabric) was obtained by slicing one side.
  • Heating was performed from the surface side not sliced in the same manner as in Example 1 except that the obtained foam was used and the contact time between the dielectric heating roll and the foam was changed to 8.0 seconds. A foamed sheet that was pressed and had an average thickness of 0.90 mm was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 10%.
  • An average thickness of 1.9 mm was obtained in the same manner as in Example 1 except that the obtained resin composition was used, the melt temperature was changed to 176 ° C., and the melt pressure was changed to 11.5 MPa. A resin foam sheet was obtained.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the epidermis, and a foam with an average thickness of 1.0 mm (before heating press, sheet original fabric) was obtained by slicing one side.
  • Heating was performed from the surface side not sliced in the same manner as in Example 1 except that the obtained foam was used and the contact time between the dielectric heating roll and the foam was changed to 8.0 seconds. A foamed sheet that was pressed and had an average thickness of 0.70 mm was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 30%.
  • Example 5 The resin sheet obtained in Example 1 was obtained.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the epidermis, and a foam with an average thickness of 1.0 mm obtained by slicing one side was obtained.
  • the foam obtained was used as a foam sheet of Comparative Example 5 without being hot pressed.
  • the average bubble diameter of the exposed bubble surface was determined. Specifically, the first surface portion and the second surface portion are made 100 times using a scanning electron microscope (“S-3000N” manufactured by Hitachi, Ltd. or “S-3400N” manufactured by Hitachi High-Technologies Corporation). The photo was taken with a magnification.
  • the photographed image was printed on A4 paper, the number of bubbles present on a 60 mm straight line drawn on the printed photograph was measured, and the average bubble diameter was calculated by the following equation.
  • Average bubble diameter (mm) 60 / (number of bubbles ⁇ 100)
  • Photo magnification Scale bar actual measurement value (mm) / Scale bar display value (mm)
  • the foamed sheet was punched in the flow direction of the foamed sheet (MD direction: extrusion direction) to obtain five test pieces.
  • the foamed sheet was punched in the width direction (TD direction: direction orthogonal to the extrusion direction) to obtain five test pieces.
  • JIS K 7100 1999 symbol “23/50” (temperature 23 ° C., relative humidity 50%), condition adjustment over 16 hours or more in a second grade standard atmosphere, then in the same standard atmosphere It was measured.
  • the distance between grips was measured at 50 mm and a test speed of 500 mm / min, and calculated by the method defined in JIS K6251: 2010. However, the elongation was calculated from the distance between the grippers.
  • the tensile strength TS (MPa) is calculated by the following formula.
  • TS Fm / Wt TS: Tensile strength (MPa) Fm: Maximum force (N) W: Width of the parallel part of the punching blade shape (mm) t: thickness of parallel part (mm)
  • test piece size is 50 ⁇ 50 ⁇ 2 mm and the thickness of the test piece is 2 mm or more, the test piece is used as it is, and when the thickness of the test piece is less than 2 mm, the test pieces are stacked to have a thickness of about 2 mm.
  • test piece The width and length of the test piece were measured to 1/100 mm using a digital caliper (manufactured by Mitutoyo Corporation, product name: Digimatic caliper, model: CD-15), and the thickness of the test piece was measured using a Tensilon universal testing machine ( Compressed test pieces using Orientec Corp., model: UCT-10T, load cell: 10 kN, model: UR-1T-A-SR) above and below the point where the load is 2 N / 25 cm 2 (0.8 kPa) Measure the distance between the compression plates to 1/100 mm and use it as the test start point.
  • a digital caliper manufactured by Mitutoyo Corporation, product name: Digimatic caliper, model: CD-15
  • Tensilon universal testing machine Compressed test pieces using Orientec Corp., model: UCT-10T, load cell: 10 kN, model: UR-1T-A-SR) above and below the point where the load is 2 N / 25 cm 2 (0.8 kP
  • the starting point of displacement is the test start point
  • the compression speed is 1 mm / min
  • the stress at the time of 25% compression of the initial thickness is 2 N / 25 cm 2
  • the compression stress is the compression stress.
  • Three test pieces are measured, and the average of the compressive stress calculated by the following formula is defined as 25% compressive stress (kPa) of the foamed sheet.
  • ⁇ 25 (F 25 / A 0 ) ⁇ 10 3 ⁇ 25 : compressive stress (kPa) F 25 : Load at 25% deformation (N) A 0 : Initial cross-sectional area of the test piece (mm 2 )
  • IP code was measured as follows in accordance with the IP code measuring method based on the protection grade (IP code) by the outer shell of JIS C0920 electric machine.
  • test piece obtained by extracting a foam sheet of each thickness into a width of 2 mm and a length of 150 mm ⁇ width of 150 mm (inner diameter length of 148 mm ⁇ width of 148 mm), and sandwiching the test piece with an acrylic plate having a thickness of 3 mm, length of 200 mm ⁇ width of 200 mm, It was. The test piece was uniformly sandwiched at the four corners of the acrylic plate so that the thickness was 50% compressed.
  • IP00 protected against invasion of foreign solids with a diameter of 2.5mm or more
  • IP31 exogenous with a diameter of 1.0mm or more that is not adversely affected by water drops falling vertically
  • IP43 which is protected against intrusion of solids and is not adversely affected by water from spray water within 60 degrees from the vertical, is protected against intrusion of foreign solids with a diameter of 1.0 mm or more
  • IP44 was not adversely affected by splashes from any direction.
  • IP57 was designated as an IP57 that does not hinder normal operation even if there is a slight intrusion of dust, and is not adversely affected even when immersed in water at a specified pressure and time.
  • the foamed sheets obtained in Comparative Examples 2 and 4 have a low IP code evaluation and are not particularly suitable for use as an adhesive sheet for electronic / electric equipment. Moreover, since the foamed sheets obtained in Comparative Examples 1, 3, and 5 are thick, they are not suitable for use as, for example, an adhesive sheet for wearable computers.
  • FIG. 1 shows a cross-sectional SEM (scanning electron microscope) image in the thickness direction of the foam sheet according to one embodiment of the present invention.
  • FIG. 2 the cross-sectional SEM image in the thickness direction of the foaming molding (before heat compression process) used in order to obtain a foam sheet was shown.
  • a tandem type extruder in which a second extruder with a diameter of 75 mm was connected to the tip of a first extruder with a diameter of 65 mm was prepared.
  • the obtained resin composition was supplied to the first extruder of the tandem type extruder and melt kneaded.
  • 4.5 parts by weight of supercritical carbon dioxide is injected as a foaming agent, and the molten resin composition and carbon dioxide are uniformly mixed and kneaded, and then a molten resin containing the foaming agent.
  • the composition was continuously supplied to the second extruder and cooled to a resin temperature suitable for foaming while melt-kneading.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the outer skin, and a foam (average sheet thickness before heating and pressing) having an average thickness of 0.5 mm obtained by slicing one side was obtained.
  • a dielectric heating roll is prepared as a heat source, the heating temperature (pressing temperature) is 110 ° C., the nip roll pressure (pressing pressure) is 0.3 MPa, and the contact time between the dielectric heating roll and the foam is 3.0 seconds.
  • the resulting foam was passed between a dielectric heating roll and a nip roll. At this time, the surface of the obtained foam which was not sliced was brought into contact with a dielectric heating roll. As a result, a foamed sheet (after heat pressing) having an average thickness of 0.10 mm was obtained from the surface side that was not sliced.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 80%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 14 60 parts by weight of a polypropylene resin (MFR: 0.3 g / 10 minutes, “E110G” manufactured by Prime Polymer) and 40 parts by weight of a thermoplastic elastomer (MFR: 1.5 g / 10 minutes, “R110E” manufactured by Prime Polymer) In addition, 100 parts by weight of the blended resin composition was prepared.
  • MFR polypropylene resin
  • MFR thermoplastic elastomer
  • a resin foam sheet having an average thickness of 2.0 mm was obtained in the same manner as in Reference Example 1 except that the obtained resin composition was used.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the outer skin, and a foam (average sheet thickness before heating and pressing) having an average thickness of 0.5 mm obtained by slicing one side was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 70%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 15 60 parts by weight of a polypropylene resin (MFR: 0.3 g / 10 min, “E110G” manufactured by Prime Polymer) and 20 parts by weight of a thermoplastic elastomer (MFR: 1.5 g / 10 min, “R110E” manufactured by Prime Polymer) Then, 20 parts by weight of polyethylene (MFR: 2.2 g / 10 min, “KS240T” manufactured by Nippon Polyethylene Co., Ltd.), which is a metallocene plastomer, was added to prepare 100 parts by weight of the compounded resin composition.
  • MFR polypropylene resin
  • a thermoplastic elastomer MFR: 1.5 g / 10 min, “R110E” manufactured by Prime Polymer
  • a resin foam sheet having an average thickness of 2.0 mm was obtained in the same manner as in Reference Example 1 except that the obtained resin composition was used.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the outer skin, and a foam (average sheet thickness before heating and pressing) having an average thickness of 0.5 mm obtained by slicing one side was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 80%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 16 The foam obtained in Example 15 was prepared.
  • the obtained foam sheet is compressed at a compression rate of 90% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 17 The foam obtained in Example 15 was prepared.
  • the heating temperature was changed to 90 ° C., and the contact time between the dielectric heating roll and the foam was changed to 0.5 seconds, as in Reference Example 1.
  • the foamed sheet was heated and pressed from the surface side not sliced, and the average thickness was 0.15 mm.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 70%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 18 The foam obtained in Example 15 was prepared.
  • the heating temperature was changed to 70 ° C., and the contact time between the dielectric heating roll and the foam was changed to 0.5 seconds, as in Reference Example 1.
  • the foamed sheet was heated and pressed from the surface side that was not sliced, and the average thickness was 0.20 mm.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 60%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 19 The foam obtained in Example 15 was prepared.
  • the heating temperature was changed to 60 ° C., and the contact time between the dielectric heating roll and the foam was changed to 0.5 seconds, as in Reference Example 1.
  • the foamed sheet was heated and pressed from the surface side that was not sliced and had an average thickness of 0.25 mm.
  • the obtained foam sheet is compressed at a compression rate of 50% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • Example 20 The foam obtained in Example 15 was prepared.
  • the heating temperature was changed to 50 ° C., and the contact time between the dielectric heating roll and the foam was changed to 0.5 seconds, as in Reference Example 1.
  • the foamed sheet was heated and pressed from the surface side that was not sliced, and the average thickness was 0.30 mm.
  • the obtained foam sheet is compressed at a compression rate of 40% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • An average thickness of 2.5 mm was obtained in the same manner as in Reference Example 1 except that the obtained resin composition was used, the melt temperature was changed to 115 ° C., and the melt pressure was changed to 10.0 MPa. A resin foam sheet was obtained.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the epidermis, and a foam with an average thickness of 1.0 mm (before heating press, sheet original fabric) was obtained by slicing one side.
  • the obtained foam sheet is compressed at a compression rate of 90% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • thermoplastic elastomer (MFR: 11 g / 10 minutes, “Z101N” manufactured by Mitsubishi Chemical Co., Ltd.) is added to 60 parts by weight of a polyethylene resin (MFR: 0.2 g / 10 minutes, manufactured by NUC “DFDJ6776”). 100 parts by weight of the blended resin composition was prepared.
  • An average thickness of 2.5 mm was obtained in the same manner as in Reference Example 1 except that the obtained resin composition was used, the melt temperature was changed to 115 ° C., and the melt pressure was changed to 10.0 MPa. A resin foam sheet was obtained.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the epidermis, and a foam with an average thickness of 1.0 mm (before heating press, sheet original fabric) was obtained by slicing one side.
  • the obtained foam sheet is compressed at a compression rate of 88% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • An average thickness of 2.5 mm was obtained in the same manner as in Reference Example 1 except that the obtained resin composition was used, the melt temperature was changed to 115 ° C., and the melt pressure was changed to 10.0 MPa. A resin foam sheet was obtained.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the epidermis, and a foam with an average thickness of 1.0 mm (before heating press, sheet original fabric) was obtained by slicing one side.
  • the heating temperature was changed to 80 ° C., and the contact time between the dielectric heating roll and the foam was changed to 0.5 seconds, as in Reference Example 1.
  • the foamed sheet was heated and pressed from the surface side that was not sliced, and the average thickness was 0.07 mm.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 93%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the outer skin, and a foam (average sheet thickness before heating and pressing) having an average thickness of 0.5 mm obtained by slicing one side was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 60%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • thermoplastic elastomer MFR: 0.4 g / 10 min, JSR “3400B”
  • polystyrene resin MFR: 1.6 g / 10 min, “HRM26” manufactured by Toyo Styrene Co., Ltd.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the outer skin, and a foam (average sheet thickness before heating and pressing) having an average thickness of 0.5 mm obtained by slicing one side was obtained.
  • the heating temperature was changed to 130 ° C., and the contact time between the dielectric heating roll and the foam was changed to 1.0 second, in the same manner as in Reference Example 1.
  • the foamed sheet was heated and pressed from the surface side that was not sliced and had an average thickness of 0.25 mm.
  • the obtained foam sheet is compressed at a compression rate of 50% with respect to the foam. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • One side of the obtained resin foam sheet was sliced with a splitting machine to remove the outer skin, and a foam (average sheet thickness before heating and pressing) having an average thickness of 0.5 mm obtained by slicing one side was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 70%. It was possible to crush easily. When the thickness after 24 hours was observed, there was no restoration over time and the shape was maintained.
  • the obtained foam was used, the contact time between the dielectric heating roll and the foam was changed to 1.0 second, and the surface on one side of both sides that was not sliced was brought into contact with the dielectric heating roll.
  • a foamed sheet that was hot-pressed from the non-sliced surface side and had an average thickness of 0.35 mm was obtained.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 30%.
  • the both sides of the obtained resin foam sheet were sliced by a splitting machine to remove the skin, and a foam having an average thickness of 0.5 mm (before heating press, sheet original fabric) was obtained by slicing both sides.
  • the obtained foam was used, the contact time between the dielectric heating roll and the foam was changed to 1.0 second, and the surface on one side of the sliced sides was brought into contact with the dielectric heating roll. Except for this, a foamed sheet that was hot-pressed from one side of the sliced process and had an average thickness of 0.15 mm was obtained in the same manner as in Reference Example 1.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 70%.
  • An average thickness of 1. was obtained in the same manner as in Reference Example 1 except that the obtained resin composition was used and 6.0 parts by weight of carbon dioxide in a supercritical state was injected from the middle of the first extruder as a blowing agent. A 0 mm resin foam sheet was obtained. This resin foam sheet was used as a foam without slicing.
  • the obtained foam sheet is compressed at a compression rate of 25% with respect to the foam.
  • the both sides of the obtained resin foam sheet were sliced by a splitting machine to remove the skin, and a foam having an average thickness of 1.0 mm (before heating press, sheet original) was obtained by slicing both sides.
  • a foamed sheet having an average thickness of 0.25 mm was obtained in the same manner as in Reference Example 1 except that the surface was contacted with a dielectric heating roll.
  • the obtained foam sheet is compressed with a compression ratio of 75% with respect to the foam.
  • the obtained foam sheet is compressed at a compression rate of 40% with respect to the foam.
  • the both sides of the obtained resin foam sheet were sliced by a splitting machine to remove the skin, and a foam having an average thickness of 0.5 mm (before heating press, sheet original fabric) was obtained by slicing both sides.
  • a foamed sheet having an average thickness of 0.10 mm was obtained in the same manner as in Reference Example 1 except that the surface was contacted with a dielectric heating roll.
  • the obtained foam sheet is compressed with respect to the foam at a compression rate of 80%.
  • the both sides of the obtained resin foam sheet were sliced with a splitting machine to remove the epidermis, and a foam with an average thickness of 1.0 mm obtained by slicing both sides was obtained.
  • the foam obtained was used as a foam sheet of Comparative Example 12 without being hot pressed.
  • FIG. 1 is also a cross-sectional SEM (scanning electron microscope) image in the thickness direction of the foam sheet obtained by the foam sheet manufacturing method according to an embodiment of the present invention.
  • FIG. 2 is also a cross-sectional SEM image in the thickness direction of a foam (before heat compression treatment) used to obtain a foam sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 厚みが薄いにも関わらず、電子・電気機器等への水、埃等の浸入を防ぐことができるポリプロピレン系樹脂発泡シートを提供する。 本発明に係るポリプロピレン系樹脂発泡シートは、ポリプロピレン系樹脂と、オレフィン系熱可塑性エラストマー及びポリエチレン系プラストマーの内の少なくとも1種とを含む樹脂組成物のシート状発泡体であり、厚み方向の中央部と厚み方向の一方側の第1の表面部と厚み方向の他方側の第2の表面部との材料がいずれも、前記樹脂組成物であり、厚みが0.05mm以上、0.5mm以下であり、引張強度が0.1MPa以上、30MPa以下であり、25%圧縮応力が10kPa以上、150kPa以下である。

Description

ポリプロピレン系樹脂発泡シート、ポリプロピレン系樹脂発泡シートの製造方法及び粘着シート
 本発明は、ポリプロピレン系樹脂を含む樹脂組成物を発泡させることにより得られているポリプロピレン系樹脂発泡シートに関する。また、本発明は、上記ポリプロピレン系樹脂発泡シートの製造方法及び上記ポリプロピレン系樹脂発泡シートを用いた粘着シートに関する。
 従来、熱可塑性樹脂を発泡成形することにより得られる熱可塑性樹脂発泡体が、様々な用途に用いられている。上記熱可塑性樹脂発泡体は、例えば、包装用緩衝材及び自動車用構造部材等に多く用いられている。
 また、熱可塑性樹脂発泡体のなかでも、ポリオレフィン系樹脂発泡体は、加工性及び柔軟性に優れることから、電子・電気機器に用いられる粘着シート、及びシーリング材の基材等として用いられている。電子・電気機器に用いられる粘着シートでは、薄型化及び軽量化の要求が高まっている。
 また、電子・電気機器に用いられる粘着シートでは、強度に優れていることも求められる。従来、熱可塑性樹脂発泡体を薄くするために、スライス加工が行われている。しかし、熱可塑性樹脂発泡体をスライス加工しただけでは、強度が低くなるという問題がある。
 また、下記の特許文献1~3には、ポリオレフィン系樹脂発泡体が開示されている。
 特許文献1には、ポリオレフィン系樹脂を含む壁により区画された複数の気泡を有するポリオレフィン系樹脂薄層発泡シートが開示されている。このポリオレフィン系樹脂薄層発泡シートでは、厚みが0.05~0.5mm、発泡倍率が2~15倍、連続気泡率が30~95%、気泡破れ率が1~30%である。
 特許文献2では、熱可塑性樹脂としてポリオレフィン系樹脂を含むポリオレフィン系樹脂組成物を用いて、かつ発泡剤として二酸化炭素(炭酸ガス)を用いて、円環状ダイにより押出発泡成形を行うことにより得られるポリオレフィン系樹脂発泡体が開示されている。上記ポリオレフィン系樹脂組成物は、(a)ポリオレフィン系樹脂と、(b)(b1)エラストマーおよび(b2)プラストマーとを含む。上記(a)と(b)との配合割合は、重量比で90/10~10/90の範囲である。上記(b1)と(b2)との配合割合は、重量比で90/10~10/90の範囲である。
 特許文献3には、発泡体層と表面層とを有する樹脂発泡体が開示されている。上記発泡体層と上記表面層とは同一組成である。上記表面層の表面被覆率は40%以上である。上記発泡体層の密度は0.20g/cm以下である。特許文献3では、上記樹脂発泡体を構成する樹脂は熱可塑性樹脂であり、この熱可塑性樹脂としてポリオレフィン樹脂が例示されている。上記表面層は加熱溶融処理により形成されている。上記樹脂発泡体の厚みは0.2~5mmである。上記樹脂発泡体は、電気・電子機器類に用いられる。
特開2014-062245号公報 特開2014-084341号公報 特開2013-147667号公報
 特許文献1~3に記載のポリオレフィン系樹脂発泡体では、引張強度が低いことがある。このため、ポリオレフィン系樹脂発泡体に応力が加わると、発泡体が破断することがある。また、特許文献1~3に記載のポリオレフィン系樹脂発泡体では、柔軟性が低いことがある。
 また、特許文献1~3に記載のポリオレフィン系樹脂発泡体では、厚みを薄くすると、発泡体の引張強度が更に低くなったり、発泡体の柔軟性が更に低くなったりするという問題がある。
 本発明の目的は、厚みが薄いにも関わらず、電子・電気機器等への水、埃等の浸入を防ぐことができるポリプロピレン系樹脂発泡シートを提供することである。また、本発明の目的は、厚みが薄いにも関わらず、電子・電気機器等への水、埃等の浸入を防ぐことができるポリプロピレン系樹脂発泡シートを得るポリプロピレン系樹脂発泡シートの製造方法を提供することである。また、本発明は、上記ポリプロピレン系樹脂発泡シートを用いた粘着シートを提供することも目的とする。
 本発明の広い局面によれば、ポリプロピレン系樹脂と、オレフィン系熱可塑性エラストマー及びポリエチレン系プラストマーの内の少なくとも1種とを含む樹脂組成物のシート状発泡体であり、厚み方向の中央部と厚み方向の一方側の第1の表面部と厚み方向の他方側の第2の表面部との材料がいずれも、前記樹脂組成物であり、厚みが0.05mm以上、0.5mm以下であり、引張強度が0.1MPa以上、30MPa以下であり、25%圧縮応力が10kPa以上、150kPa以下である、ポリプロピレン系樹脂発泡シートが提供される。
 本発明に係る発泡シートのある特定の局面では、前記第1の表面部に複数の気泡が露出しており、前記第2の表面部に気泡が露出していないか、又は、前記第2の表面部に気泡が露出しておりかつ前記第2の表面部における露出した気泡の数が、前記第1の表面部における露出した気泡の数よりも少ない。
 本発明に係る発泡シートのある特定の局面では、前記第1の表面部の1mmの範囲における露出した気泡の個数が20個以上であり、前記第2の表面部の1mmの範囲における露出した気泡の個数が10個以下である。
 本発明に係る発泡シートのある特定の局面では、前記第2の表面部が、スキン層である。
 本発明に係る発泡シートのある特定の局面では、前記第1の表面部の外側の表面において、露出している気泡断面の平均気泡径が20μm以上、200μm以下である。
 前記樹脂組成物において、前記ポリプロピレン系樹脂と前記オレフィン系熱可塑性エラストマーと前記ポリエチレン系プラストマーとの合計100重量%中、前記ポリプロピレン系樹脂の含有量が10重量%以上、90重量%以下かつ前記オレフィン系熱可塑性エラストマーと前記ポリエチレン系プラストマーとの合計の含有量が10重量%以上、90重量%以下であることが好ましい。
 前記発泡シートは、電子・電気機器用粘着シートに好適に用いられ、ウェアラブルコンピュータ用粘着シートにより好適に用いられる。
 本発明の広い局面によれば、ポリプロピレン系樹脂と、オレフィン系熱可塑性エラストマー及びポリエチレン系プラストマーの内の少なくとも1種とを含む樹脂組成物を発泡させて、発泡体を得る発泡工程と、前記発泡体を加熱及び圧縮して、ポリプロピレン系樹脂発泡シートを得る加熱圧縮工程とを備え、前記発泡工程において、厚み方向の一方側の第1の表面部に複数の気泡が露出しており、厚み方向の他方側の第2の表面部がスキン層である発泡体を得て、前記加熱圧縮工程において、前記第2の表面部側から、前記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部がスキン層であるポリプロピレン系樹脂発泡シートを得るか、又は、前記加熱圧縮工程において、前記第2の表面部側から、前記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部に気泡が露出していないか、又は、前記第2の表面部に気泡が露出しておりかつ前記第2の表面部における露出した気泡の数が、前記第1の表面部における露出した気泡の数よりも少ないポリプロピレン系樹脂発泡シートを得る、ポリプロピレン系樹脂発泡シートの製造方法が提供される。
 本発明の広い局面によれば、上述したポリプロピレン系樹脂発泡シートを製造する方法であって、前記樹脂組成物を発泡させて、発泡体を得る発泡工程と、前記発泡体を加熱及び圧縮して、ポリプロピレン系樹脂発泡シートを得る加熱圧縮工程とを備える、ポリプロピレン系樹脂発泡シートの製造方法が提供される。
 本発明に係る発泡シートの製造方法のある特定の局面では、前記発泡工程において、厚み方向の一方側の第1の表面部に複数の気泡が露出しており、厚み方向の他方側の第2の表面部がスキン層である発泡体を得て、前記加熱圧縮工程において、前記第2の表面部側から、前記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部がスキン層であるポリプロピレン系樹脂発泡シートを得るか、又は、前記加熱圧縮工程において、前記第2の表面部側から、前記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部に気泡が露出していないか、又は、前記第2の表面部に気泡が露出しておりかつ前記第2の表面部における露出した気泡の数が、前記第1の表面部における露出した気泡の数よりも少ないポリプロピレン系樹脂発泡シートを得る。
 本発明に係る発泡シートの製造方法のある特定の局面では、前記加熱圧縮工程において、前記第2の表面部側から、前記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部がスキン層であるポリプロピレン系樹脂発泡シートを得る。
 本発明に係る発泡シートの製造方法のある特定の局面では、前記発泡工程において、厚み方向の他方側の表面をスライス加工せずに、厚み方向の一方側の表面のみをスライス加工して、発泡体を得て、前記加熱圧縮工程において、スライス加工されなかった表面側から、前記発泡体を加熱及び圧縮し、厚み方向に中央部と、スライス加工された第1の表面部と、スライス加工されなかった第2の表面部とを有するポリプロピレン系樹脂発泡シートを得る。
 本発明に係る発泡シートの製造方法のある特定の局面では、前記加熱圧縮工程において、前記発泡体の厚みに対する得られるポリプロピレン系樹脂発泡シートの厚みの比が0.1以上、0.95以下となるように、前記発泡体を加熱及び圧縮する。
 本発明に係る発泡シートの製造方法のある特定の局面では、前記加熱圧縮工程において、前記発泡体を、熱源に接触させながら、0.1秒以上、5秒以下加熱する。
 本発明に係る発泡シートの製造方法のある特定の局面では、前記加熱圧縮工程において、前記発泡体を熱源に接触させながら加熱及び圧縮するか、又は、前記発泡体を熱源に接触させながら加熱した後、前記発泡体を冷却時に圧縮する。
 本発明の広い局面によれば、上述したポリプロピレン系樹脂発泡シートと、前記ポリプロピレン系樹脂発泡シートの一方の表面上に配置された粘着層とを備える、粘着シートが提供される。
 本発明に係るポリプロピレン系樹脂発泡シートは、ポリプロピレン系樹脂と、オレフィン系熱可塑性エラストマー及びポリエチレン系プラストマーの内の少なくとも1種とを含む樹脂組成物のシート状発泡体であり、厚み方向の中央部と厚み方向の一方側の第1の表面部と厚み方向の他方側の第2の表面部との材料がいずれも、上記樹脂組成物であり、厚みが0.05mm以上、0.5mm以下であり、引張強度が0.1MPa以上、30MPa以下であり、25%圧縮応力が10kPa以上、150kPa以下であるので、厚みが薄いにも関わらず、電子・電気機器等への水、埃等の浸入を防ぐことができる。
 本発明に係るポリプロピレン系樹脂発泡シートの製造方法は、ポリプロピレン系樹脂と、オレフィン系熱可塑性エラストマー及びポリエチレン系プラストマーの内の少なくとも1種とを含む樹脂組成物を発泡させて、発泡体を得る発泡工程と、上記発泡体を加熱及び圧縮して、ポリプロピレン系樹脂発泡シートを得る加熱圧縮工程とを備え、上記発泡工程において、厚み方向の一方側の第1の表面部に複数の気泡が露出しており、厚み方向の他方側の第2の表面部がスキン層である発泡体を得て、上記加熱圧縮工程において、上記第2の表面部側から、上記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部がスキン層であるポリプロピレン系樹脂発泡シートを得るか、又は、上記加熱圧縮工程において、上記第2の表面部側から、上記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部に気泡が露出していないか、又は、上記第2の表面部に気泡が露出しておりかつ上記第2の表面部における露出した気泡の数が、上記第1の表面部における露出した気泡の数よりも少ないポリプロピレン系樹脂発泡シートを得るので、電子・電気機器等への水、埃等の浸入を防ぐことができるポリプロピレン系樹脂発泡シートを得ることができる。さらに、圧縮されていることによって厚みが薄いにも関わらず、電子・電気機器等への水、埃等の浸入を防ぐことができる。
図1は、本発明の一実施形態に係るポリプロピレン系樹脂発泡シートを示す断面SEM画像である。 図2は、発泡シートを得るために用いる発泡体(加熱圧縮処理前)を示す断面SEM画像である。
 以下、本発明を詳細に説明する。
 本発明に係るポリプロピレン系樹脂発泡シート(発泡シートと略記することがある)は、樹脂組成物(ポリプロピレン系樹脂組成物)を発泡させることにより得られる。上記発泡シートは、シート状発泡体である。本発明に係る発泡シートは、複数の気泡を有する。上記樹脂組成物は、ポリプロピレン系樹脂と、オレフィン系熱可塑性エラストマー及びポリエチレン系プラストマーの内の少なくとも1種とを含む。
 本発明に係る発泡シートでは、厚み方向の中央部と、厚み方向の一方側の第1の表面部と、厚み方向の他方側の第2の表面部とがいずれも、上記樹脂組成物により形成されている。本発明に係る発泡シートでは、厚み方向の中央部と、厚み方向の一方側の第1の表面部と、厚み方向の他方側の第2の表面部との材料がいずれも、上記樹脂組成物である。本発明に係る発泡シートの厚みは、0.05mm以上、0.5mm以下である。本発明に係る発泡シートの引張強度は0.1MPa以上、30MPa以下である。本発明に係る発泡シートの25%圧縮応力は10kPa以上、150kPa以下である。
 本発明に係るポリプロピレン系樹脂発泡シート(発泡シートと略記することがある)の製造方法では、ポリプロピレン系樹脂と、オレフィン系熱可塑性エラストマー及びポリエチレン系プラストマーの内の少なくとも1種とを含む樹脂組成物を用いる。本発明に係る発泡シートの製造方法は、上記樹脂組成物を発泡させて、発泡体を得る発泡工程と、上記発泡体を加熱及び圧縮して、ポリプロピレン系樹脂発泡シートを得る加熱圧縮工程とを備える。本発明に係る発泡シートの製造方法では、上記発泡工程において、厚み方向の一方側の第1の表面部に複数の気泡が露出しており、厚み方向の他方側の第2の表面部がスキン層である発泡体を得る。
 本発明に係る発泡シートの製造方法では、上記加熱圧縮工程において、上記第2の表面部側から、上記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部がスキン層であるポリプロピレン系樹脂発泡シートを得る。又は、本発明に係る発泡シートの製造方法では、上記加熱圧縮工程において、上記第2の表面部側から、上記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部に気泡が露出していないか、又は、上記第2の表面部に気泡が露出しておりかつ上記第2の表面部における露出した気泡の数が、上記第1の表面部における露出した気泡の数よりも少ないポリプロピレン系樹脂発泡シートを得る。
 本発明に係る発泡シートの製造方法では、上述した構成が備えられているので、圧縮されていることによって厚みが薄いにも関わらず、破断し難くし、柔軟性を高くすることができる。本発明に係る発泡シートの製造方法では、上述した構成が備えられているので、厚みが薄くても、破断し難くし、柔軟性を高くすることができる。なお、本発明に係る発泡シートの製造方法により得られる発泡シートの厚みは0.5mm以上であってもよい。本発明に係る発泡シートの製造方法では、得られる発泡シートの厚みが厚いと、破断防止性及び柔軟性により一層優れる。本発明に係る発泡シートの製造方法では、上述した構成が備えられているので、十分な引張強度を維持することができる。
 例えば、厚みが0.5mmよりも大きい場合には、ある程度破断し難くすることができたとしても、厚みが0.5mm以下である場合には、破断し難くすることは困難である。本発明では、厚みが0.5mm以下であっても、破断し難い発泡シートが提供される。また、例えば、厚みが0.5mmよりも大きい場合には、柔軟性をある程度高めることができたとしても、厚みが0.5mm以下である場合には、柔軟性を高めることは困難である。本発明では、厚みが0.5mm以下であっても、柔軟性が高い発泡シートが提供される。
 なお、従来の発泡シートは、厚みが薄い場合には柔軟性が無く、微細な凹凸への追従性が悪いため、電子・電気機器等への水、埃等の浸入を防ぐことは困難である。一方、柔軟性の高い発泡シートは、厚みを薄くすることができず、電子・電気機器等の小型化、薄型化に対応することが困難である。従来の発泡シートは、厚みが薄くなると機械強度が低下し、粘着加工などの二次加工ができない課題がある。
 本発明に係る発泡シートでは、加熱圧縮処理することで薄層化が可能であると共に、特定の表面状態の第2の表面部が形成されていることで、従来の発泡シートよりも高い機械強度を発現させることができる。また、特定の表面状態の第1の表面部が形成されているため、優れた柔軟性が発現し、微細な凹凸への優れた追従性も発現する。このため、電子・電気機器内部への水、埃の浸入を防ぐことが出来ると共に、機器の小型化、薄型化にも寄与することが可能となる。
 上記発泡シートの厚みは、好ましくは0.05mm以上、好ましくは1mm以下、より好ましくは0.5mm以下である。引張強度及び柔軟性をより一層高める観点からは、発泡シートの厚みは好ましくは0.06mm以上、より好ましくは0.07mm以上、更に好ましくは0.08mm以上、特に好ましくは0.09mm以上、最も好ましくは0.10mm以上である。薄型化の要求に対応する観点からは、発泡シートの厚みは、好ましくは0.45mm以下、より好ましくは0.40mm以下、更に好ましくは0.35mm以下、特に好ましくは0.30mm以下である。上記発泡シートの厚みが上記下限以上であると、引張強度がより一層高くなる。上記発泡シートの厚みが上記上限以下であると、薄型化の要求に対応可能である。また、本発明では、発泡シートの厚みが薄くても、また発泡シートの厚みが上記上限以下であっても、引張強度が十分に高くなる。
 上記発泡シートの引張強度は、好ましくは0.1MPa以上、好ましくは30MPa以下である。本発明に係る発泡シートの製造方法では、引張強度が0.1MPa以上、30MPa以下である発泡シートを得ることが容易である。破断防止性をより一層高める観点からは、発泡シートの引張強度は好ましくは0.2MPa以上、より好ましくは0.3MPa以上、更に好ましくは0.4MPa以上、特に好ましくは0.5MPa以上、最も好ましくは0.6MPa以上である。
 上記発泡シートは、溶融押出発泡成形工程などを経て得られていてもよい。発泡シートの流れ方向(MD方向)における引張強度及び発泡シートの流れ方向と直交する方向(TD方向)における引張強度が上記下限以上及び上記上限以下であることが好ましい。
 上記発泡シートの25%圧縮応力は、好ましくは10kPa以上、好ましくは200kPa以下、より好ましくは150kPa以下である。本発明に係る発泡シートの製造方法では、25%圧縮応力が10kPa以上、200MPa以下である発泡シートを得ることが容易であり、25%圧縮応力が10kPa以上、150MPa以下である発泡シートを得ることも容易である。柔軟性をより一層高める観点からは、発泡シートの25%圧縮応力は好ましくは140kPa以下、より好ましくは130kPa以下、更に好ましくは120kPa以下である。
 発泡シートにおける両側の表面の算術平均粗さRaが異なることが好ましい。この場合に、算術平均粗さRaが大きい側が、第1の表面部側であることが好ましい。第1の表面部の外側の表面の算術平均粗さRaが、第2の表面部の外側の表面の算術平均粗さRaよりも大きいことが好ましい。算術平均粗さRaは、JIS B0601:1994に準拠して測定される。
 引張強度及び柔軟性を効果的に高める観点からは、上記第1の表面部に複数の気泡が露出しており、上記第2の表面部に気泡が露出していないか、又は、上記第2の表面部に気泡が露出しておりかつ上記第2の表面部における露出した気泡の数が、上記第1の表面部における露出した気泡の数よりも少ないことが好ましい。
 引張強度及び柔軟性を効果的に高める観点からは、発泡シートにおいて、上記第1の表面部の1mmの範囲(1mm×1mmの正方形の範囲)における露出した気泡の個数は好ましくは20個以上、より好ましくは30個以上、更に好ましくは40個以上、特に好ましくは50個以上である。上記第2の表面部の1mmの範囲(1mm×1mmの正方形の範囲)における露出した気泡の個数は好ましくは10個以下、より好ましくは5個以下、更に好ましくは3個以下、特に好ましくは0個である。
 引張強度及び柔軟性を効果的に高める観点からは、発泡シートにおいて、上記第1の表面部の1mmの範囲(1mm×1mmの正方形の範囲)における露出した気泡の個数と、上記第2の表面部の1mmの範囲(1mm×1mmの正方形の範囲)における露出した気泡の個数との差の絶対値は、好ましくは1個以上、より好ましくは5個以上、更に好ましくは10個以上、特に好ましくは20個以上である。
 引張強度及び柔軟性を効果的に高める観点からは、第2の表面部は、スキン層であることが好ましい。スキン層は、他の領域よりも樹脂密度が高い層である。引張強度及び柔軟性を効果的に高める観点からは、発泡シートにおいて、第1の表面部は、スライス加工により形成された表面部であることが好ましい。引張強度及び柔軟性を効果的に高める観点からは、発泡シートにおいて、第2の表面部は、スライス加工されていない表面部であることが好ましい。引張強度及び柔軟性を効果的に高める観点からは、発泡シートにおいて、第2の表面部の樹脂密度は、中央部よりも樹脂密度が高いことが好ましく、第1の表面部よりも樹脂密度が高いことが好ましい。
 引張強度及び柔軟性を効果的に高める観点からは、第1の表面部の外側の表面に複数の気泡が露出していることが好ましい。引張強度及び柔軟性を効果的に高める観点からは、第1の表面部の外側の表面において、露出している気泡断面の平均気泡径は好ましくは20μm以上、より好ましくは25μm以上、好ましくは200μm以下、より好ましくは150μm以下である。上記気泡断面の気泡径は、気泡断面部分の長径である。上記気泡断面の平均気泡径は、気泡断面部分の長径を平均することにより求められる。
 発泡シートにおいて、第1の表面部の外側の表面の全表面積100%中、気泡がない表面積は好ましくは5%以上、より好ましくは10%以上、好ましくは40%以下、より好ましくは35%以下である。発泡シートにおいて、第2の表面部の外側の表面の全表面積100%中、気泡がない表面積は好ましくは90%以上、より好ましくは95%以上、特に好ましくは100%(スキン層、気泡の露出なし)である。後述する実施例では、第2の表面部の外側の表面の全表面積100%中、気泡がない表面積は100%であった。
 上記発泡シートは、加熱圧縮処理を経て得られることが好ましい。上述した組成を有する樹脂組成物を用いているので、加熱圧縮処理により、特定の表面部を容易に形成することができる。上記発泡シートは、樹脂組成物を発泡させて得られる発泡体を、加熱圧縮処理することで得られることが好ましい。上記発泡体は、例えば、加熱圧縮処理前のシートである。加熱時に、上記発泡シートの表面を溶融させることが好ましい。溶融によって、表面部の外側の表面の気泡状態、表面状態及び露出する気泡の数を制御することができる。また、加熱圧縮処理によって、発泡シートをより一層薄型化できる。また、加熱圧縮処理によって、気泡が扁平になり、荷重が付与された際の反発力が小さくなる。
 発泡シートを厚み方向に3分割したときに、厚み方向の中央の1/3の領域において、複数の上記気泡の長さ方向を平均した方向が、発泡シートの厚み方向と直交する方向と平行であるか、又は、発泡シートの厚み方向と直交する方向に対して、30°以下で傾斜した方向であることが好ましい。上記気泡の長さ方向を平均した方向が、発泡シートの厚み方向と直交する方向に対して傾斜している場合に、傾斜角度はより好ましくは25°以下、更に好ましくは20°以下、特に好ましくは15°以下である。なお、後述する実施例では、厚み方向の中央の領域における気泡は、発泡シートの厚み方向と直交する方向に延びる扁平状であり、傾斜角度は30°以下であった。
 本発明に係る発泡シートを得るための発泡シートの製造方法は、樹脂組成物を発泡成形して、複数の気泡を有する発泡体を得る発泡工程と、上記発泡体を加熱及び圧縮することで、発泡シートを得る加熱圧縮工程とを備えることが好ましい。
 引張強度及び柔軟性を効果的に高める観点からは、発泡工程において、厚み方向の一方側の第1の表面部に複数の気泡が露出しており、厚み方向の他方側の第2の表面部がスキン層である発泡体を得ることが好ましい。加熱圧縮工程において、第2の表面部側から、上記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部がスキン層である発泡シートを得るか、又は、上記加熱圧縮工程において、上記第2の表面部側から、上記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部に気泡が露出していないか、又は、上記第2の表面部に気泡が露出しておりかつ上記第2の表面部における露出した気泡の数が、上記第1の表面部における露出した気泡の数よりも少ないポリプロピレン系樹脂発泡シートを得ることが好ましい。加熱圧縮工程において、第2の表面部側から、上記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部がスキン層である発泡シートを得ることがより好ましい。
 引張強度及び柔軟性を効果的に高める観点からは、発泡工程において、厚み方向の他方側の表面をスライス加工せずに、厚み方向の一方側の表面のみをスライス加工して、上記発泡体を得ることが好ましい。引張強度及び柔軟性を効果的に高める観点からは、加熱圧縮工程において、スライス加工されなかった表面側から、上記発泡体を加熱及び圧縮することが好ましい。厚み方向に中央部と、スライス加工された第1の表面部と、スライス加工されなかった第2の表面部とを有する発泡シートを得ることが好ましい。
 上記加熱圧縮工程において、上記発泡体を、熱源に接触させながら、加熱することが好ましい。
 引張強度及び柔軟性を効果的に高める観点からは、熱源の温度(加熱温度)は好ましくは30℃以上、より好ましくは40℃以上、より一層好ましくは50℃以上、更に好ましくは55℃以上、特に好ましくは75℃以上、最も好ましくは95℃以上、好ましくは170℃以下、より好ましくは160℃以下、更に好ましくは150℃以下である。
 引張強度及び柔軟性を効果的に高める観点からは、熱源に対する接触時間(加熱時間)は好ましくは0.1秒以上、より好ましくは0.2秒以上、好ましくは5.0秒以下、より好ましくは4.5秒以下、更に好ましくは4.0秒以下である。
 引張強度及び柔軟性を効果的に高める観点からは、圧縮時の圧力は好ましくは0.05MPa以上、より好ましくは0.1MPa以上、更に好ましくは0.15MPa以上、好ましくは1.1MPa以下、より好ましくは1.0MPa以下、更に好ましくは0.9MPa以下である。
 引張強度及び柔軟性を効果的に高める観点からは、上記加熱圧縮工程において、上記発泡体を熱源に接触させながら加熱及び圧縮するか、又は、上記発泡体を熱源に接触させながら加熱した後、上記発泡体を冷却時に圧縮することが好ましく、上記加熱圧縮工程において、上記発泡体を熱源に接触させながら加熱及び圧縮することがより好ましい。
 引張強度及び柔軟性をより一層高める観点からは、上記加熱圧縮工程において、第1の表面側から、発泡体を加熱しないことが好ましく、第1の表面側から、発泡体を圧縮しないことが好ましく、第1の表面側から、発泡体を加熱及び圧縮しないことが好ましい。
 引張強度及び柔軟性を効果的に高める観点からは、上記発泡体の厚みは好ましくは0.1mm以上、より好ましくは0.2mm以上、更に好ましくは0.3mm以上、好ましくは3.5mm以下、より好ましくは3mm以下、更に好ましくは2.5mm以下である。
 特定の組成を有する樹脂組成物を用いて引張強度及び柔軟性を効果的に高める観点からは、上記発泡体の発泡倍率は好ましくは5倍以上、より好ましくは10倍以上、更に好ましくは15倍以上、好ましくは25倍以下、より好ましくは24倍以下、更に好ましくは23倍以下である。
 特定の組成を有する樹脂組成物を用いて引張強度及び柔軟性を効果的に高める観点からは、発泡体における平均気泡径は好ましくは0.01mm以上、より好ましくは0.02mm以上、更に好ましくは0.03mm以上、好ましくは0.3mm以下、より好ましくは0.2mm以下、更に好ましくは0.15mm以下である。なお、後述する実施例では、発泡体における平均気泡径は0.05mm以上、0.15mm以下の範囲内であった。なお、発泡体における気泡径は、シートの厚み方向と、厚み方向と直交する第1の方向(例えばMD方向)と、厚み方向及び第1の方向と直交する第2の方向(例えばTD方向)との径を平均することにより各気泡の径を求められる。発泡体の気泡径は、複数の気泡の径を平均することにより求められる。
 上記加熱圧縮処理時に、上記発泡体の厚みに対する得られる上記発泡シートの厚みの比(発泡シートの厚み/発泡体の厚み)が、好ましくは0.05以上、より好ましくは0.06以上、更に好ましくは0.07以上、好ましくは0.98以下、より好ましくは0.95以下、更に好ましくは0.93以下となるように、発泡体を加熱及び圧縮する。上記の厚みの関係を満足するように発泡体を加熱及び圧縮すると、厚みが適度に薄くなり、かつ引張強度及び柔軟性も十分に高くなる。
 上記発泡体を得る工程において、円環状ダイを用いることが好ましい。上記円環状ダイは、気泡を生成させる気泡生成部と、生成した気泡を成長させる気泡成長部とを有することが好ましい。上記気泡成長部は、上記気泡生成部の下流に位置する。また、上記円環状ダイは、一般に、気泡成長部の下流に、シート成形を行う成形部を有する。上記気泡生成部は、樹脂組成物が流れる流路の幅が狭まった部分であることが好ましい。上記気泡成長部は、樹脂組成物が流れる流路の幅が狭まった部分の下流において、流路の幅が拡がる部分であることが好ましい。
 次に、樹脂組成物の詳細について説明する。
 (樹脂組成物の詳細)
 本発明に係る発泡シートの製造方法では、(A)ポリプロピレン系樹脂と、(B)オレフィン系熱可塑性エラストマー及び(C)ポリエチレン系プラストマーの内の少なくとも1種とを含む樹脂組成物を用いることが好ましい。但し、樹脂組成物を発泡させて、発泡体を得る発泡工程と、上記発泡体を加熱及び圧縮して、発泡シートを得る加熱圧縮工程とを行い、上記発泡工程において、厚み方向の一方側の第1の表面部に複数の気泡が露出しており、厚み方向の他方側の第2の表面部がスキン層である発泡体を得て、上記加熱圧縮工程において、上記第2の表面部側から、上記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部がスキン層である発泡シートを得ることによって、他の製造方法で発泡シートを得た場合と比べて、(A)ポリプロピレン系樹脂と、(B)オレフィン系熱可塑性エラストマー及び(C)ポリエチレン系プラストマーの内の少なくとも1種とを含む樹脂組成物以外の樹脂組成物を用いたとしても、破断し難く、柔軟性が高い発泡シートを得ることができる。
 但し、引張強度及び柔軟性を効果的に高める観点からは、樹脂組成物は、熱可塑性樹脂を含むことが好ましく、ポリオレフィン系樹脂又はポリスチレン系樹脂を含むことがより好ましく、ポリオレフィン系樹脂を含むことが更に好ましく、(A)ポリプロピレン系樹脂を含むことが特に好ましい。引張強度及び柔軟性をより一層効果的に高める観点からは、樹脂組成物は、熱可塑性樹脂と、(B)オレフィン系熱可塑性エラストマー及び(C)ポリエチレン系プラストマーの内の少なくとも1種とを含むことが好ましく、(A)ポリプロピレン系樹脂と、(B)オレフィン系熱可塑性エラストマー及び(C)ポリエチレン系プラストマーの内の少なくとも1種とを含むことが特に好ましい。
 引張強度及び柔軟性を効果的に高くし、表面状態をより一層良好にする観点からは、樹脂組成物は、(B)オレフィン系熱可塑性エラストマーと(C)ポリエチレン系プラストマーとの双方を含むことが好ましい。
 樹脂組成物は、(D)黒色顔料を含まないか又は含む。表面状態が良好である発泡シートにおいて、ヒダ(コルゲート)及び汚れをより一層目立たなくする観点からは、樹脂組成物は、(D)黒色顔料を含んでいてもよい。
 樹脂組成物は、(E)気泡核材を含まないか又は含む。柔軟性が良好である発泡シートを得る観点からは、樹脂組成物は、(E)気泡核材を含んでいてもよい。
 (A)ポリプロピレン系樹脂、(B)オレフィン系熱可塑性エラストマー、(C)ポリエチレン系プラストマー、(D)黒色顔料及び(E)気泡核材はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記熱可塑性樹脂としては、特に限定されず、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、熱可塑性エポキシ樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン樹脂、サルファイド系樹脂、アクリル系樹脂などが挙げられる。引張強度及び柔軟性を効果的に高くする観点からは、ポリオレフィン系樹脂又はポリスチレン系樹脂が好ましい。
 上記ポリオレフィン系樹脂としては、特に限定されず、ポリエチレン系樹脂及びポリプロピレン系樹脂等が挙げられる。破断防止性及び柔軟性を効果的に高くする観点からは、ポリエチレン系樹脂、ポリプロピレン系樹脂又はポリスチレン系樹脂が好ましい。
 (A)ポリプロピレン系樹脂は、プロピレンモノマーを重合させることにより得られる。(A)ポリプロピレン系樹脂は重合体である。重合体には共重合体が含まれる。(A)ポリプロピレン系樹脂としては、プロピレンモノマーの単独重合体、並びにプロピレンモノマーを主成分とする重合成分の共重合体が挙げられる。上記プロピレンモノマーを主成分とする重合成分の共重合体では、重合可能な重合成分100重量%中、プロピレンモノマーの含有量は50重量%以上であり、好ましくは80重量%以上、より好ましくは90重量%以上である。また、共重合の形態は、ランダムであってもよく、ブロックであってもよい。
 (A)ポリプロピレン系樹脂としては、具体的には、プロピレンホモポリマー、プロピレンランダムポリマー及びプロピレンブロックポリマー等が挙げられる。(A)ポリプロピレン系樹脂は、プロピレンモノマーの単独重合体であることが好ましく、プロピレンホモポリマーであることが好ましい。
 熱可塑性樹脂及び(A)ポリプロピレン系樹脂のメルトフローレイト(MFR)は、試験温度230℃及び荷重21.18Nの条件で、好ましくは0.1g/10分以上、より好ましくは0.15g/10分以上、更に好ましくは0.2g/10分以上、好ましくは5g/10分以下である。熱可塑性樹脂及び(A)ポリプロピレン系樹脂のMFRが上記下限以上及び上記上限以下であると、引張強度がより一層高く、表面状態がより一層良好である発泡シートが得られる。
 引張強度及び柔軟性を効果的に高くし、表面状態をより一層良好にする観点からは、熱可塑性樹脂及び(A)ポリプロピレン系樹脂の230℃での溶融張力は、好ましくは0.3cN以上、より好ましくは0.5cN以上、好ましくは35cN以下、より好ましくは20cN以下である。また、溶融張力が上記下限以上及び上記上限以下であると、気泡をより一層微細にすることができ、発泡シートの表面の粗度が効果的に小さくなる。
 (B)オレフィン系熱可塑性エラストマーは、ハードセグメントとソフトセグメントを組み合わせた構造を有することが好ましい。(B)オレフィン系熱可塑性エラストマーは、常温(25℃)でゴム弾性を示し、高温では熱可塑性樹脂と同様に可塑化されて成形できるという性質を有する。
 (B)オレフィン系熱可塑性エラストマーは、一般的には、ハードセグメントがポリプロピレン又はポリエチレンなどのポリオレフィン系樹脂であり、ソフトセグメントがエチレン-プロピレン-ジエン共重合体又はエチレン-プロピレン共重合体などのゴム成分又は非結晶性ポリエチレンである。
 (B)オレフィン系熱可塑性エラストマーとしては、ハードセグメントとなるモノマーとソフトセグメントとなるモノマーとの重合を多段階で行い、重合反応容器内において直接製造される重合タイプのエラストマー;バンバリーミキサー又は二軸押出機などの混練機を用いて、ハードセグメントとなるポリオレフィン系樹脂と、ソフトセグメントとなるゴム成分とを物理的に分散させて製造されたブレンドタイプのエラストマー;バンバリーミキサー又は二軸押出機などの混練機を用いて、ハードセグメントとなるポリオレフィン系樹脂と、ソフトセグメントとなるゴム成分とを物理的に分散させる際に、架橋剤を加えることによって、ポリオレフィン系樹脂マトリックス中に、ゴム成分を完全架橋又は部分架橋させて、ミクロ分散させて得られる動的架橋されたエラストマー等が挙げられる。
 (B)オレフィン系熱可塑性エラストマーとして、非架橋エラストマー及び架橋エラストマーの双方を用いることが可能である。発泡シートのリサイクル性を高める観点からは、ハードセグメントとなるポリオレフィン系樹脂と、ソフトセグメントとなるゴム成分とを物理的に分散させて製造された非架橋エラストマーが好ましい。また、このような非架橋エラストマーは、上記円環状ダイでの押出発泡成形に好適に用いることができる。また更に、このような非架橋エラストマーの使用により、発泡シートをリサイクルし、再び押出機へ供給して押出発泡成形をする場合でも、架橋ゴムによる発泡不良などが抑えられる。
 (B)オレフィン系熱可塑性エラストマーの具体例としては、エチレン-プロピレン-ジエン共重合体、エチレン-酢酸ビニル共重合体、ポリブテン、及び塩素化ポリエチレンなどのオレフィン系エラストマー;スチレン系エラストマー;ポリエステル系エラストマー;ポリアミド系エラストマー;ポリウレタン系エラストマー等が挙げられる。
 (B)オレフィン系熱可塑性エラストマーがエチレン-プロピレン-ジエン共重合体エラストマーである場合に、ジエン成分としては、例えばエチリデンノルボルネン、1,4-ヘキサジエン、及びジシクロペンタジエン等が挙げられる。このようなエチレン-プロピレン-ジエン共重合体エラストマーは、上記円環状ダイでの押出発泡成形に好適に用いることができる。エチレン-プロピレン-ジエン共重合体エラストマーは1種のみが用いられてもよく、2種以上が併用されてもよい。
 引張強度及び柔軟性を効果的に高くし、表面状態をより一層良好にする観点からは、(B)オレフィン系熱可塑性エラストマーは、試験温度230℃及び荷重21.18Nの条件で、MFRを有することが好ましく、(B)オレフィン系熱可塑性エラストマーのMFRは、好ましくは1g/10分以上、好ましくは15g/10分以下である。(B)オレフィン系熱可塑性エラストマーのMFRが上記下限以上及び上記上限以下であると、引張強度がより一層高く、表面状態がより一層良好である発泡シートが得られる。
 (C)ポリエチレン系プラストマーとしては、ポリオレフィン系樹脂とα-オレフィンなどの共重合体成分とを含むポリエチレン系重合体等が挙げられる。
 α-オレフィンとしては、炭素数4~8のα-オレフィンが好ましく、1-ブテン、1-へキセン又は1-オクテンがより好ましい。
 エチレン/α-オレフィン共重合体としては、例えば、住友化学社製「エスプレンNO416」(エチレン-1-ブテン共重合体)、日本ポリエチレン社製「カーネルKS240T」(エチレン-1-ヘキセン共重合体)及びダウ・ケミカル社製「アフィニティーEG8100」(エチレン-1-オクテン共重合体)等が挙げられる。
 (C)ポリエチレン系プラストマーの密度は、好ましくは0.85g/cm以上、好ましくは0.91g/cm以下である。上記密度が上記下限以上であると、発泡シートの引張強度が効果的に高くなる。上記密度が上記上限以下であると、発泡シートの柔軟性がより一層高くなる。
 引張強度及び柔軟性を効果的に高くし、表面状態をより一層良好にする観点からは、(C)ポリエチレン系プラストマーは、試験温度190℃及び荷重21.18Nの条件で、MFRを有することが好ましく、(C)ポリエチレン系プラストマーのMFRは、好ましくは1g/10分以上、好ましくは15g/10分以下である。
 引張強度及び柔軟性を効果的に高くし、表面状態をより一層良好にする観点からは、樹脂組成物において、熱可塑性樹脂と(B)オレフィン系熱可塑性エラストマーと(C)ポリエチレン系プラストマーとの合計100重量%中、熱可塑性樹脂の含有量は好ましくは10重量%以上、より好ましくは15重量%以上、更に好ましくは20重量%以上、好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下であり、(B)オレフィン系熱可塑性エラストマーと(C)ポリエチレン系プラストマーとの合計の含有量は好ましくは10重量%以上、より好ましくは15重量%以上、更に好ましくは20重量%以上、好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下である。
 引張強度及び柔軟性を効果的に高くし、表面状態をより一層良好にする観点からは、樹脂組成物において、(A)ポリプロピレン系樹脂と(B)オレフィン系熱可塑性エラストマーと(C)ポリエチレン系プラストマーとの合計100重量%中、(A)ポリプロピレン系樹脂の含有量は好ましくは10重量%以上、より好ましくは15重量%以上、更に好ましくは20重量%以上、好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下であり、(B)オレフィン系熱可塑性エラストマーと(C)ポリエチレン系プラストマーとの合計の含有量は好ましくは10重量%以上、より好ましくは15重量%以上、更に好ましくは20重量%以上、好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下である。
 樹脂組成物において、(B)オレフィン系熱可塑性エラストマーの含有量に対する(C)ポリエチレン系プラストマーの含有量の重量比((C)の含有量/(B)の含有量)は、好ましくは5/95以上、より好ましくは10/90以上、更に好ましくは15/85以上、特に好ましくは20/80以上、好ましくは95/5以下、より好ましくは90/10以下、更に好ましくは85/10以下、特に好ましくは80/20以下である。上記重量比((C)の含有量/(B)の含有量)が上記下限以上及び上記上限以下であると、引張強度及び柔軟性が効果的に高くなり、表面状態をより一層良好になる。また、発泡倍率を効果的に高くすることができる結果、発泡シートの柔軟性をより一層高くすることができる。
 樹脂組成物において、熱可塑性樹脂と(B)オレフィン系熱可塑性エラストマーと(C)ポリエチレン系プラストマーとの合計の含有量は好ましくは80重量%以上、より好ましくは90重量%以上、好ましくは100重量%(全量)以下である。
 樹脂組成物において、(A)ポリプロピレン系樹脂と(B)オレフィン系熱可塑性エラストマーと(C)ポリエチレン系プラストマーとの合計の含有量は好ましくは80重量%以上、より好ましくは90重量%以上、好ましくは100重量%(全量)以下である。
 樹脂組成物において、(D)黒色顔料の含有量は好ましくは2重量%以上、より好ましくは4重量%以上、好ましくは20重量%以下、より好ましくは15重量%以下である。
 樹脂組成物のメルトフローレイト(MFR)は、好ましくは0.1g/10分以上、より好ましくは0.15g/10分以上、更に好ましくは0.2g/10分以上、特に好ましくは0.25g/10分以上、好ましくは5g/10分以下、より好ましくは4.5g/10分以下、更に好ましくは4g/10分以下である。樹脂組成物のMFRが上記下限以上及び上記上限以下であると、引張強度及び柔軟性が効果的に高くなり、表面状態をより一層良好になる。また、樹脂組成物のMFRが上記下限以上であると、押出機の負荷が小さくなり、発泡シートの生産性が高くなり、樹脂組成物が円環状ダイの樹脂流路を効率的に流れる。
 熱可塑性樹脂、(A)ポリプロピレン系樹脂、(B)オレフィン系熱可塑性エラストマー、(C)ポリエチレン系プラストマー及び樹脂組成物のMFRは、JIS K7210:1999のB法に準拠して、試験温度230℃又は190℃及び荷重21.18Nの条件で測定される。
 引張強度及び柔軟性を効果的に高くし、表面状態をより一層良好にする観点からは、樹脂組成物の230℃での溶融張力は、好ましくは0.1cN以上、より好ましくは0.2cN以上、好ましくは30cN以下、より好ましくは25cN以下である。また、溶融張力が上記下限以上及び上記上限以下であると、気泡をより一層微細にすることができる。
 熱可塑性樹脂、(A)ポリプロピレン系樹脂及び樹脂組成物の溶融張力は、試験温度230℃及び荷重21.18Nの条件で測定される。
 樹脂組成物とともに、本発明の効果を阻害しない範囲で、必要に応じて、各種の添加剤を用いてもよい。上記添加剤としては、界面活性剤、分散剤、耐候性安定剤、光安定剤、顔料、染料、難燃剤、可塑剤、滑剤、紫外線吸収剤、酸化防止剤、充填剤、補強剤及び帯電防止剤等が挙げられる。界面活性剤の使用により、滑性及びアンチブロッキング性がより一層高くなる。分散剤の使用により、各配合成分の分散性が高くなる。分散剤としては、高級脂肪酸、高級脂肪酸エステル及び高級脂肪酸アミド等が挙げられる。
 (樹脂シート、ポリプロピレン系樹脂発泡シート及びポリプロピレン系樹脂発泡シートの製造方法の他の詳細)
 発泡成形には、発泡剤として、炭酸ガス(二酸化炭素)等が好適に用いられる。
 発泡成形時に、樹脂組成物において、海島構造が形成されていることが好ましく、熱可塑性樹脂又は(A)ポリプロピレン系樹脂が海部であり、(B)オレフィン系熱可塑性エラストマー及び(C)ポリエチレン系プラストマーの内の少なくとも1種が島部であることが好ましい。この場合に、樹脂組成物にせん断が付与されたときに、島部が伸び縮みすることで、樹脂組成物の粘度が適度に高くなる。(B)オレフィン系熱可塑性エラストマー及び(C)ポリエチレン系プラストマーを良好な島部にするために、熱可塑性樹脂又は(A)ポリプロピレン系樹脂の硬度(デュロ硬度)が、(B)オレフィン系熱可塑性エラストマー及び(C)ポリエチレン系プラストマーの硬度(デュロ硬度)よりも高いことが好ましい。熱可塑性樹脂又は(A)ポリプロピレン系樹脂の硬度は好ましくはD50以上であり、(B)オレフィン系熱可塑性エラストマー及び(C)ポリエチレン系プラストマーの硬度はそれぞれ好ましくはD50未満である。樹脂組成物にせん断が付与されたときに、樹脂組成物の粘度を適度に高める観点からは、(B)オレフィン系熱可塑性エラストマー及び(C)ポリエチレン系プラストマーの硬度は好ましくはD10以上である。
 上記円環状ダイは押出機の先端に取り付けられる。押出機内で樹脂組成物は溶融混練される。上記押出機としては、単軸押出機、二軸押出機及びタンデム型押出機等が挙げられる。押出条件の制御が容易であるので、タンデム型押出機が好ましい。
 樹脂流路の上記気泡生成部における樹脂組成物の押出量は、好ましくは15kg/時間以上、好ましくは50kg/時間以下である。押出量が上記下限以上及び上記上限以下であると、引張強度がより一層高く表面状態がより一層良好である発泡シートが得られ、発泡倍率をより一層高くし、気泡をより一層微細にすることができ、かつ連続気泡率及び気泡破れ率が適度である発泡シートを得ることができる。
 押出量は、円環状ダイから押出される押出物(樹脂組成物及び発泡剤など)の総重量である。
 発泡性を適度に高める観点からは、樹脂組成物の溶融温度は、熱可塑性樹脂又は(A)ポリプロピレン系樹脂の融点をT℃としたときに、好ましくはT+10℃以上、好ましくはT+30℃以下である。溶融温度が上記下限以上であると、熱可塑性樹脂又は(A)ポリプロピレン系樹脂の結晶化が始まりにくく、溶融物の過度の粘度上昇が抑えられる。溶融温度が上記上限以下であると、発泡後の固化速度と発泡速度とが適度になり、発泡倍率を適度に高めることができる。
 発泡体及び発泡シートにおいて、厚み方向の気泡数は2個以上であることが好ましく、3個以上であることがより好ましい。すなわち、発泡体及び発泡シートの両側の表面を厚み方向に結ぶ直線上で、気泡が2個以上又は3個以上配置されていることが好ましい。厚み方向の気泡数が3個以上であると、発泡シートの柔軟性がより一層高くなる。厚み方向の気泡数の上限は、発泡体及び発泡シートの厚み及び平均気泡径などによって適宜調整でき、特に限定されない。厚み方向の気泡数は50個以下であってもよい。
 発泡シートの用途は特に限定されない。発泡シートは、包装用緩衝材及び自動車用構造部材等に用いられる。また、発泡シートは、加工性及び柔軟性に優れることから、電子・電気機器用粘着シート、及びシーリング材の基材等として用いられる。
 発泡シートの一方の表面上に粘着層を配置することで、粘着シートを得ることができる。この粘着シートは、発泡シートと、発泡シートの一方の表面上に配置された粘着層とを備える。この粘着シートでは、発泡シートの他方の表面上にも、粘着層が配置されていてもよく、発泡シートの両側の表面上に粘着層が配置されてもよい。
 発泡シートは、電子・電気機器用粘着シートに好適に用いられ、ウェアラブルコンピュータ用粘着シートに、より好適に用いられる。粘着シートは、電子・電気機器用粘着シートであることが好ましく、ウェアラブルコンピュータ用粘着シートであることが好ましい。このような用途では、特に発泡シート及び粘着シートの厚みが薄いことが求められる。本発明では、厚みが薄いにも関わらず、破断し難く、柔軟性が高いので、ウェアラブルコンピュータなどの電子・電気機器において、発泡シート及び粘着シートの破断を抑え、発泡シート及び粘着シートによる衝撃吸収性を高めることができる。
 以下に実施例を掲げて、本発明を更に詳しく説明する。本発明は、以下の実施例のみに限定されない。
 (実施例1)
 ポリプロピレン樹脂(MFR:0.3g/10分、プライムポリマー社製「E110G」)60重量部に、熱可塑性エラストマー(MFR:1.5g/10分、プライムポリマー社製「R110E」)20重量部と、メタロセンプラストマーであるポリエチレン(MFR:2.2g/10分、日本ポリエチレン社製「KS240T」)20重量部とを加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 口径が65mmの第一押出機の先端に、口径が75mmの第二押出機を接続したタンデム型押出機を用意した。得られた樹脂組成物を、タンデム型押出機の第一押出機に供給して溶融混練した。第一押出機の途中から発泡剤として超臨界状態の二酸化炭素を5.0重量部圧入して、溶融状態の樹脂組成物と二酸化炭素を均一に混合混練した上で、発泡剤を含む溶融樹脂組成物を第二押出機に連続的に供給して、溶融混練しつつ発泡に適した樹脂温度に冷却した。
 その後、第二押出機の先端に取り付けた金型の円環ダイ(気泡生成部口径φ36mm、発泡体成形部の出口口径φ70mm)から、吐出量30kg/hr、溶融物温度179℃、円環ダイ手前での溶融物圧力10.0MPaの条件で押出発泡させることで、円筒状の発泡体を得た。円環ダイの発泡体成形部において成形された円筒状の発泡体を、冷却されているマンドレル上に添わせるとともに、その外面をエアリングからエアーを吹き付けて冷却した。冷却された円筒状の発泡体を、マンドレル上の一点でカッターにより切開して、平均厚み2.5mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み0.5mmの発泡体(加熱プレス前、シート原反)を得た。
 次に、熱源として誘電加熱ロールを用意し、加熱温度(プレス温度)70℃、ニップロール圧力(プレス圧力)0.3MPa、誘電加熱ロールと発泡体との接触時間が1.0秒の条件で、得られた発泡体を、誘電加熱ロールとニップロールとの間に通した。このとき、得られた発泡体のスライス加工されていない表面を誘電加熱ロールに接触させた。この結果、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.20mmである発泡シート(加熱プレス後)を得た。
 得られた発泡シートは、発泡体に対して、圧縮率60%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例2)
 誘電加熱ロールと発泡体との接触時間を3.0秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.10mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率80%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例3)
 加熱温度を130℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.05mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率90%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例4)
 加熱温度を110℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.10mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率80%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例5)
 加熱温度を90℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.15mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率70%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例6)
 誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.20mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率60%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例7)
 加熱温度を50℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.30mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率40%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例8)
 実施例1で得られた樹脂発泡シートを用意した。樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み1.0mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、加熱温度を140℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.3秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.15mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率85%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例9)
 実施例8で得られた発泡体を用意した。
 得られた発泡体を用いたこと、加熱温度を140℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.8秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.10mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率90%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例10)
 ポリプロピレン樹脂(MFR:0.3g/10分、日本ポリプロ社製「SH9000」)40重量部に、熱可塑性エラストマー(MFR:11g/10分、三菱化学社製「Z101N」)20重量部と、メタロセンプラストマーであるポリエチレン(MFR:20g/10分、日本ポリエチレン社製「KC650T」)40重量部とを加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと、溶融物温度を175℃に変更したこと、並びに溶融物圧力を11.5MPaに変更したこと以外は実施例1と同様にして、平均厚み2.0mmの樹脂発泡体を得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み0.5mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.40mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率20%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例11)
 実施例10で得られた発泡体を用意した。
 得られた発泡体を用いたこと、並びに誘電加熱ロールと発泡体との接触時間を3.0秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.30mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率40%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例12)
 実施例10で得られた発泡体を用意した。
 得られた発泡体を用いたこと、加熱温度を140℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.3秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.09mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率82%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例13)
 実施例10で得られた発泡体を用意した。
 得られた発泡体を用いたこと、加熱温度を140℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.8秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.07mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率86%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (比較例1)
 ポリプロピレン樹脂(MFR:0.3g/10分、プライムポリマー社製「E110G」)60重量部に、熱可塑性エラストマー(MFR:1.5g/10分、プライムポリマー社製「R110E」)40重量部を加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと、溶融物温度を178℃に変更したこと、並びに溶融物圧力を13.5MPaに変更したこと以外は実施例1と同様にして、平均厚み1.9mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み1.0mmの発泡体を得た。
 得られた発泡体を用いたこと、並びに加熱温度を140℃に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.60mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率40%で圧縮されている。
 (比較例2)
 ポリプロピレン樹脂(MFR:0.3g/10分、プライムポリマー社製「E110G」)60重量部に、メタロセンプラストマーであるポリエチレン(MFR:2.2g/10分、日本ポリエチレン社製「KS240T」)40重量部を加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと、溶融物温度を177℃に変更したこと、並びに溶融物圧力を10.5MPaに変更したこと以外は実施例1と同様にして、平均厚み1.8mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み1.0mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、並びに加熱温度を140℃に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.30mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率70%で圧縮されている。
 (比較例3)
 ポリプロピレン樹脂(MFR:0.3g/10分、日本ポリプロ社製「SH9000」)60重量部に、熱可塑性エラストマー(MFR:11g/10分、三菱化学社製「Z101N」)40重量部を加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと、溶融物温度を176℃に変更したこと、並びに溶融物圧力を12.3MPaに変更したこと以外は実施例1と同様にして、平均厚み2.2mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み1.0mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、並びに誘電加熱ロールと発泡体との接触時間を8.0秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.90mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率10%で圧縮されている。
 (比較例4)
 ポリプロピレン樹脂(MFR:0.3g/10分、日本ポリプロ社製「SH9000」)60重量部に、メタロセンプラストマーであるポリエチレン(MFR:20g/10分、日本ポリエチレン社製「KC650T」)40重量部を加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと、溶融物温度を176℃に変更したこと、並びに溶融物圧力を11.5MPaに変更したこと以外は実施例1と同様にして、平均厚み1.9mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み1.0mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、並びに誘電加熱ロールと発泡体との接触時間を8.0秒に変更したこと以外は、実施例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.70mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率30%で圧縮されている。
 (比較例5)
 実施例1で得られた樹脂シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み1.0mmの発泡体を得た。
 得られた発泡体を加熱プレスせずに、比較例5の発泡シートとした。
 (実施例1~13及び比較例1~5の評価)
 (1)平均厚み
 シックネスゲージ(ミツトヨ社製「NO.547-301」)及びサイズφ10mmの厚み測定器を用いて、得られた発泡シートの幅方向(TD方向)の厚みを、無荷重状態で、30mm間隔で12点測定した。測定値の平均値(相加平均)を、発泡シートの平均厚み(A)(mm)とした。
 (2)平均気泡径(露出気泡断面)
 露出している気泡表面の平均気泡径を求めた。具体的には、第1の表面部及び第2の表面部を、走査型電子顕微鏡(日立製作所社製「S-3000N」又は日立ハイテクノロジーズ社製「S-3400N」)を用いて、100倍に拡大して撮影した。
 撮影した画像をA4用紙上に印刷し、印刷した写真の上に描いた60mmの直線上に存在する気泡の数を測定し、次式により平均気泡径を算出した。
 平均気泡径(mm)=60/(気泡の数×100)
 なお、ミツトヨ社製「デジマチックキャリパ」を用いて、写真上のスケールバーを1/100mmまで計測し、次式により写真の倍率とした。
 写真倍率=スケールバー実測値(mm)/スケールバーの表示値(mm)
 また、直線を描く際には、気泡断面のうち、できる限り長径を通るような方向に60mmの直線を描いた。
 (3)1mmの範囲における露出した気泡の個数
 平均気泡径の測定で用いた写真を用いて、個数の算出を行った。具体的には、平均気泡径の測定で用いた、印刷した写真の上に描いた10mm×10mmの正方形内に存在する気泡の数を目視で数えることで、1mmの範囲における露出した気泡の個数とした。
 (4)引張強度
 テンシロン万能試験機UCT-10T(オリエンテック社製)、万能試験機データ処理ソフトUTPS-458X(ソフトブレーン社製)を用いて、以下の方法で測定された値を、MD方向及びTD方向の発泡シートの引張強度(MPa)とした。
 JIS K6251:2010に規定するダンベル状3号形の打抜き刃を用いて、発泡シートの流れ方向(MD方向:押出方向)に発泡シートを打ち抜き、5枚の試験片を得た。幅方向(TD方向:押出方向に直交する方向)に発泡シートを打ち抜き、5枚の試験片を得た。
 試験片を、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間以上かけて状態調整した後、同じ標準雰囲気下にて測定した。つかみ具間隔を50mm、試験速度500mm/minで測定し、JIS K6251:2010規定の方法により算出した。但し、伸びはつかみ具間の距離から算出した。引張強さTS(MPa)は次式により算出される。
 TS=Fm/Wt
 TS:引張強さ(MPa)
 Fm:最大の力(N)
 W:打抜き刃形の平行部分の幅(mm)
 t:平行部分の厚さ(mm)
 (5)25%圧縮応力
 テンシロン万能試験機(オリエンテック社製、型式:UCT-10T)及び万能試験機データ処理ソフト(ソフトブレーン社製、製品番号:UTPS-458X)を用いて、次の方法で測定された値を発泡シートの25%圧縮応力(kPa)とする。
 試験片サイズを50×50×2mmとし、試験片の厚みが2mm以上である場合には試験片をそのまま用い、試験片の厚みが2mm未満である場合には試験片を積み重ねて厚みを約2mmとする。
 試験片の幅および長さを、デジタルノギス(ミツトヨ社製、製品名:デジマチックキャリパ、型式:CD-15)を用いて1/100mmまで測定し、試験片の厚みを、テンシロン万能試験機(オリエンテック社製、型式:UCT-10T、ロードセル:10kN、型式:UR-1T-A-SR)を用いて試験片を圧縮し、負荷が2N/25cm(0.8kPa)となる点の上下圧縮板間隔を1/100mmまで測定し、試験開始点とする。
 変位の原点を試験開始点、圧縮速度を1mm/minとし、初めの厚み(圧縮負荷が2N/25cmの上下圧縮板間隔値)の25%圧縮時の応力を圧縮応力とする。3個の試験片を測定し、次式により算出した圧縮応力の平均を発泡シートの25%圧縮応力(kPa)とする。
 σ25=(F25/A)×10
 σ25:圧縮応力(kPa)
 F25:25%変形時の荷重(N)
 A0 :試験片の初めの断面積(mm
 なお試験片を、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間以上かけて状態を調整した後、同じ標準雰囲気下で測定を行う。
 (6)IPコード
 IPコードは、JIS C0920電気機械器具の外郭による保護等級(IPコード)によるIPコード測定方法に準拠して、以下のようにして測定した。
 各厚みの発泡シートを幅2mm、縦150mm×横150mm(内径縦148mm×横148mm)に抜いた試験片を用い、厚みが3mm、縦200mm×横200mmのアクリル板で試験片を挟み、試験サンプルとした。試験片は、厚みの50%圧縮になるようにアクリル板の四隅を均一に挟んだ。
 無保護なものをIP00、直径2.5mm以上の外来固形物の侵入に対して保護され、かつ、鉛直に落ちてくる水滴によって有害な影響を受けないものをIP31、直径1.0mm以上の外来固形物の侵入に対して保護され、かつ、鉛直から60度以内の噴霧水による水によって有害な影響を受けないものをIP43、直径1.0mm以上の外来固形物の侵入に対して保護され、かつ、いかなる方向からの飛沫によっても有害な影響を受けないものをIP44とした。若干の粉塵の侵入があっても正常な運転を阻害しない、かつ、規定の圧力及び時間で水中に浸漬しても有害な影響を受けないものをIP57とした。
 詳細及び結果を下記の表1,2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 比較例2,4で得られた発泡シートについては、IPコード評価が低く、特に電子・電気機器用粘着シートとしての使用に適さない。また、比較例1、3、5で得られた発泡シートについては厚みが厚いため、例えば、ウェアラブルコンピュータ用粘着シートとしての使用に適さない。
 また、図1に、本発明の一実施形態に係る発泡シートの厚み方向における断面SEM(走査型電子顕微鏡)画像を示した。図2に、発泡シートを得るために用いる発泡成形体(加熱圧縮処理前)の厚み方向における断面SEM画像を示した。
 (参考例1)
 ポリプロピレン樹脂(MFR:0.3g/10分、プライムポリマー社製「E110G」)100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 口径が65mmの第一押出機の先端に、口径が75mmの第二押出機を接続したタンデム型押出機を用意した。得られた樹脂組成物を、タンデム型押出機の第一押出機に供給して溶融混練した。第一押出機の途中から発泡剤として超臨界状態の二酸化炭素を4.5重量部圧入して、溶融状態の樹脂組成物と二酸化炭素を均一に混合混練した上で、発泡剤を含む溶融樹脂組成物を第二押出機に連続的に供給して、溶融混練しつつ発泡に適した樹脂温度に冷却した。
 その後、第二押出機の先端に取り付けた金型の円環ダイ(気泡生成部口径φ36mm、発泡体成形部の出口口径φ70mm)から、吐出量30kg/hr、溶融物温度176℃、円環ダイ手前での溶融物圧力12.0MPaの条件で押出発泡させることで、円筒状の発泡体を得た。円環ダイの発泡体成形部において成形された円筒状の発泡体を、冷却されているマンドレル上に添わせるとともに、その外面をエアリングからエアーを吹き付けて冷却した。冷却された円筒状の発泡体を、マンドレル上の一点でカッターにより切開して、平均厚み2.0mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み0.5mmの発泡体(加熱プレス前、シート原反)を得た。
 次に、熱源として誘電加熱ロールを用意し、加熱温度(プレス温度)110℃、ニップロール圧力(プレス圧力)0.3MPa、誘電加熱ロールと発泡体との接触時間が3.0秒の条件で、得られた発泡体を、誘電加熱ロールとニップロールとの間に通した。このとき、得られた発泡体のスライス加工されていない表面を誘電加熱ロールに接触させた。この結果、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.10mmである発泡シート(加熱プレス後)を得た。
 得られた発泡シートは、発泡体に対して、圧縮率80%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例14)
 ポリプロピレン樹脂(MFR:0.3g/10分、プライムポリマー社製「E110G」)60重量部に、熱可塑性エラストマー(MFR:1.5g/10分、プライムポリマー社製「R110E」)40重量部を加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと以外は参考例1と同様にして、平均厚み2.0mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み0.5mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、並びに誘電加熱ロールと発泡体との接触時間を1.0秒に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.15mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率70%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例15)
 ポリプロピレン樹脂(MFR:0.3g/10分、プライムポリマー社製「E110G」)60重量部に、熱可塑性エラストマー(MFR:1.5g/10分、プライムポリマー社製「R110E」)20重量部と、メタロセンプラストマーであるポリエチレン(MFR:2.2g/10分、日本ポリエチレン社製「KS240T」)20重量部とを加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと以外は参考例1と同様にして、平均厚み2.0mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み0.5mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.10mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率80%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例16)
 実施例15で得られた発泡体を用意した。
 得られた発泡体を用いたこと、加熱温度を130℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.05mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率90%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例17)
 実施例15で得られた発泡体を用意した。
 得られた発泡体を用いたこと、加熱温度を90℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.15mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率70%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例18)
 実施例15で得られた発泡体を用意した。
 得られた発泡体を用いたこと、加熱温度を70℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.20mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率60%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例19)
 実施例15で得られた発泡体を用意した。
 得られた発泡体を用いたこと、加熱温度を60℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.25mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率50%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (実施例20)
 実施例15で得られた発泡体を用意した。
 得られた発泡体を用いたこと、加熱温度を50℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.30mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率40%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (参考例2)
 ポリエチレン系樹脂(MFR:0.2g/10分、NUC社製「DFDJ6776」)100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと、溶融物温度を115℃に変更したこと、並びに溶融物圧力を10.0MPaに変更したこと以外は参考例1と同様にして、平均厚み2.5mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み1.0mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、並びに加熱温度を80℃に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.10mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率90%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (参考例3)
 ポリエチレン系樹脂(MFR:0.2g/10分、NUC社製「DFDJ6776」)60重量部に、熱可塑性エラストマー(MFR:11g/10分、三菱化学社製「Z101N」)40重量部を加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと、溶融物温度を115℃に変更したこと、並びに溶融物圧力を10.0MPaに変更したこと以外は参考例1と同様にして、平均厚み2.5mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み1.0mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、加熱温度を80℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を1.0秒に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.12mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率88%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (参考例4)
 ポリエチレン系樹脂(MFR:0.2g/10分、NUC社製「DFDJ6776」)60重量部に、熱可塑性エラストマー(MFR:11g/10分、三菱化学社製「Z101N」)20重量部と、メタロセンプラストマーであるポリエチレン(MFR:2.2g/10分、日本ポリエチレン社製「KS240T」)20重量部を加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと、溶融物温度を115℃に変更したこと、並びに溶融物圧力を10.0MPaに変更したこと以外は参考例1と同様にして、平均厚み2.5mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み1.0mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、加熱温度を80℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.07mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率93%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (参考例5)
 ポリスチレン系樹脂(MFR:1.6g/10分、東洋スチレン社製「HRM26」)100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと、溶融物温度を15.3℃に変更したこと、並びに溶融物圧力を9.0MPaに変更したこと以外は参考例1と同様にして、平均厚み2.0mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み0.5mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、並びに加熱温度を130℃に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.20mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率60%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (参考例6)
 ポリスチレン系樹脂(MFR:1.6g/10分、東洋スチレン社製「HRM26」)60重量部に、熱可塑性エラストマー(MFR:0.4g/10分、JSR社製「3400B」)40重量部を加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと、溶融物温度を150℃に変更したこと、並びに溶融物圧力を9.5MPaに変更したこと以外は参考例1と同様にして、平均厚み2.0mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み0.5mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、加熱温度を130℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を1.0秒に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.25mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率50%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (参考例7)
 ポリスチレン系樹脂(MFR:1.6g/10分、東洋スチレン社製「HRM26」)60重量部に、熱可塑性エラストマー(MFR:11g/10分、三菱化学社製「Z101N」)20重量部と、メタロセンプラストマーであるポリエチレン(MFR:2.2g/10分、日本ポリエチレン社製「KS240T」)20重量部を加えて、配合樹脂組成物100重量部を調製した。
 得られた配合樹脂組成物100重量部に、気泡核材としてタルク(平均粒子径13μm)7重量部と、顔料(トーヨーケム社製「PPM OYA164 BLK-FD」)10重量部とを混合して、樹脂組成物を調製した。
 得られた樹脂組成物を用いたこと、溶融物温度を150℃に変更したこと、並びに溶融物圧力を9.5MPaに変更したこと以外は参考例1と同様にして、平均厚み2.0mmの樹脂発泡シートを得た。
 得られた樹脂発泡シートの片面を、スプリッティングマシンによりスライス加工して表皮を除去し、片面がスライス加工された平均厚み0.5mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、加熱温度を130℃に変更したこと、並びに誘電加熱ロールと発泡体との接触時間を0.5秒に変更したこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.15mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率70%で圧縮されている。容易に潰すことが可能であった。24時間後の厚みを観察したところ、経時での復元はなく、形状を維持していた。
 (比較例6)
 実施例14で得られた樹脂組成物を用意した。
 得られた樹脂組成物を用いたこと、第一押出機の途中から発泡剤として超臨界状態の二酸化炭素2.0重量部を圧入したこと以外は参考例1と同様にして、平均厚み0.5mmの樹脂発泡シートを得た。この樹脂発泡シートをスライス加工せずに、発泡体として用いた。
 得られた発泡体を用いたこと、誘電加熱ロールと発泡体との接触時間を1.0秒に変更したこと、並びにスライス加工されていない両側の内の片側の表面を誘電加熱ロールに接触させたこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.35mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率30%で圧縮されている。
 (比較例7)
 実施例14で得られた樹脂発泡シートを用意した。
 得られた樹脂発泡シートの両面を、スプリッティングマシンによりスライス加工して表皮を除去し、両面がスライス加工された平均厚み0.5mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、誘電加熱ロールと発泡体との接触時間を1.0秒に変更したこと、並びにスライス加工された両側の内の片側の表面を誘電加熱ロールに接触させたこと以外は、参考例1と同様にして、スライス加工された片側から加熱プレスされており、平均厚みが0.15mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率70%で圧縮されている。
 (比較例8)
 参考例3で得られた樹脂組成物を用意した。
 得られた樹脂組成物を用いたこと、第一押出機の途中から発泡剤として超臨界状態の二酸化炭素6.0重量部を圧入したこと以外は参考例1と同様にして、平均厚み1.0mmの樹脂発泡シートを得た。この樹脂発泡シートをスライス加工せずに、発泡体として用いた。
 得られた発泡体を用いたこと、加熱温度を80℃に変更したこと、誘電加熱ロールと発泡体との接触時間を1.0秒に変更したこと、並びにスライス加工されていない両側の内の片側の表面を誘電加熱ロールに接触させたこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.75mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率25%で圧縮されている。
 (比較例9)
 参考例3で得られた樹脂発泡シートを用意した。
 得られた樹脂発泡シートの両面を、スプリッティングマシンによりスライス加工して表皮を除去し、両面がスライス加工された平均厚み1.0mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、加熱温度を80℃に変更したこと、誘電加熱ロールと発泡体との接触時間を1.0秒に変更したこと、並びにスライス加工された両側の内の片側の表面を誘電加熱ロールに接触させたこと以外は、参考例1と同様にして、スライス加工された片側から加熱プレスされており、平均厚みが0.25mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率75%で圧縮されている。
 (比較例10)
 参考例6で得られた樹脂組成物を用意した。
 得られた樹脂組成物を用いたこと、第一押出機の途中から発泡剤として超臨界状態の二酸化炭素3.0重量部を圧入したこと以外は参考例1と同様にして、平均厚み0.5mmの樹脂発泡シートを得た。この樹脂発泡シートをスライス加工せずに、発泡体として用いた。
 得られた発泡体を用いたこと、加熱温度を130℃に変更したこと、誘電加熱ロールと発泡体との接触時間を1.0秒に変更したこと、並びにスライス加工されていない両側の内の片側の表面を誘電加熱ロールに接触させたこと以外は、参考例1と同様にして、スライス加工されていない表面側から加熱プレスされており、平均厚みが0.30mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率40%で圧縮されている。
 (比較例11)
 参考例6で得られた樹脂発泡シートを用意した。
 得られた樹脂発泡シートの両面を、スプリッティングマシンによりスライス加工して表皮を除去し、両面がスライス加工された平均厚み0.5mmの発泡体(加熱プレス前、シート原反)を得た。
 得られた発泡体を用いたこと、加熱温度を130℃に変更したこと、誘電加熱ロールと発泡体との接触時間を1.0秒に変更したこと、並びにスライス加工された両側の内の片側の表面を誘電加熱ロールに接触させたこと以外は、参考例1と同様にして、スライス加工された片側から加熱プレスされており、平均厚みが0.10mmである発泡シートを得た。
 得られた発泡シートは、発泡体に対して、圧縮率80%で圧縮されている。
 (比較例12)
 実施例15で得られた樹脂シートを用意した。
 得られた樹脂発泡シートの両面を、スプリッティングマシンによりスライス加工して表皮を除去し、両面がスライス加工された平均厚み1.0mmの発泡体を得た。
 得られた発泡体を加熱プレスせずに、比較例12の発泡シートとした。
 (実施例14~20、参考例1~7及び比較例6~12の評価)
 実施例1~13及び比較例1~5の評価項目について、同様の評価を行った。
 詳細及び結果を下記の表3,4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 図1は、本発明の一実施形態に係る発泡シートの製造方法により得られる発泡シートの厚み方向における断面SEM(走査型電子顕微鏡)画像でもある。図2は、発泡シートを得るために用いる発泡体(加熱圧縮処理前)の厚み方向における断面SEM画像でもある。

Claims (17)

  1.  ポリプロピレン系樹脂と、オレフィン系熱可塑性エラストマー及びポリエチレン系プラストマーの内の少なくとも1種とを含む樹脂組成物のシート状発泡体であり、
     厚み方向の中央部と厚み方向の一方側の第1の表面部と厚み方向の他方側の第2の表面部との材料がいずれも、前記樹脂組成物であり、
     厚みが0.05mm以上、0.5mm以下であり、
     引張強度が0.1MPa以上、30MPa以下であり、
     25%圧縮応力が10kPa以上、150kPa以下である、ポリプロピレン系樹脂発泡シート。
  2.  前記第1の表面部に複数の気泡が露出しており、
     前記第2の表面部に気泡が露出していないか、又は、前記第2の表面部に気泡が露出しておりかつ前記第2の表面部における露出した気泡の数が、前記第1の表面部における露出した気泡の数よりも少ない、請求項1に記載のポリプロピレン系樹脂発泡シート。
  3.  前記第1の表面部の1mmの範囲における露出した気泡の個数が20個以上であり、前記第2の表面部の1mmの範囲における露出した気泡の個数が10個以下である、請求項1又は2に記載のポリプロピレン系樹脂発泡シート。
  4.  前記第2の表面部がスキン層である、請求項1~3のいずれか1項に記載のポリプロピレン系樹脂発泡シート。
  5.  前記第1の表面部の外側の表面において、露出している気泡断面の平均気泡径が20μm以上、200μm以下である、請求項1~4のいずれか1項に記載のポリプロピレン系樹脂発泡シート。
  6.  前記樹脂組成物において、前記ポリプロピレン系樹脂と前記オレフィン系熱可塑性エラストマーと前記ポリエチレン系プラストマーとの合計100重量%中、前記ポリプロピレン系樹脂の含有量が10重量%以上、90重量%以下かつ前記オレフィン系熱可塑性エラストマーと前記ポリエチレン系プラストマーとの合計の含有量が10重量%以上、90重量%以下である、請求項1~5のいずれか1項に記載のポリプロピレン系樹脂発泡シート。
  7.  電子・電気機器用粘着シートに用いられる、請求項1~6のいずれか1項に記載のポリプロピレン系樹脂発泡シート。
  8.  ウェアラブルコンピュータ用粘着シートに用いられる、請求項7に記載のポリプロピレン系樹脂発泡シート。
  9.  ポリプロピレン系樹脂と、オレフィン系熱可塑性エラストマー及びポリエチレン系プラストマーの内の少なくとも1種とを含む樹脂組成物を発泡させて、発泡体を得る発泡工程と、
     前記発泡体を加熱及び圧縮して、ポリプロピレン系樹脂発泡シートを得る加熱圧縮工程とを備え、
     前記発泡工程において、厚み方向の一方側の第1の表面部に複数の気泡が露出しており、厚み方向の他方側の第2の表面部がスキン層である発泡体を得て、
     前記加熱圧縮工程において、前記第2の表面部側から、前記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部がスキン層であるポリプロピレン系樹脂発泡シートを得るか、又は、前記加熱圧縮工程において、前記第2の表面部側から、前記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部に気泡が露出していないか、又は、前記第2の表面部に気泡が露出しておりかつ前記第2の表面部における露出した気泡の数が、前記第1の表面部における露出した気泡の数よりも少ないポリプロピレン系樹脂発泡シートを得る、ポリプロピレン系樹脂発泡シートの製造方法。
  10.  請求項1~8のいずれか1項に記載のポリプロピレン系樹脂発泡シートを製造する方法であって、
     前記樹脂組成物を発泡させて、発泡体を得る発泡工程と、
     前記発泡体を加熱及び圧縮して、ポリプロピレン系樹脂発泡シートを得る加熱圧縮工程とを備える、ポリプロピレン系樹脂発泡シートの製造方法。
  11.  前記発泡工程において、厚み方向の一方側の第1の表面部に複数の気泡が露出しており、厚み方向の他方側の第2の表面部がスキン層である発泡体を得て、
     前記加熱圧縮工程において、前記第2の表面部側から、前記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部がスキン層であるポリプロピレン系樹脂発泡シートを得るか、又は、前記第2の表面部に気泡が露出しておりかつ前記第2の表面部における露出した気泡の数が、前記第1の表面部における露出した気泡の数よりも少ないポリプロピレン系樹脂発泡シートを得る、請求項10に記載のポリプロピレン系樹脂発泡シートの製造方法。
  12.  前記加熱圧縮工程において、前記第2の表面部側から、前記発泡体を加熱及び圧縮して、厚み方向の一方側の第1の表面部の外側の表面に複数の気泡が露出しており、かつ厚み方向の他方側の第2の表面部がスキン層であるポリプロピレン系樹脂発泡シートを得るか、又は、前記第2の表面部に気泡が露出しておりかつ前記第2の表面部における露出した気泡の数が、前記第1の表面部における露出した気泡の数よりも少ないポリプロピレン系樹脂発泡シートを得る、請求項9又は11に記載のポリプロピレン系樹脂発泡シートの製造方法。
  13.  前記発泡工程において、厚み方向の他方側の表面をスライス加工せずに、厚み方向の一方側の表面のみをスライス加工して、発泡体を得て、
     前記加熱圧縮工程において、スライス加工されなかった表面側から、前記発泡体を加熱及び圧縮し、
     厚み方向に中央部と、スライス加工された第1の表面部と、スライス加工されなかった第2の表面部とを有するポリプロピレン系樹脂発泡シートを得る、請求項9~12のいずれか1項に記載のポリプロピレン系樹脂発泡シートの製造方法。
  14.  前記加熱圧縮工程において、前記発泡体の厚みに対する得られるポリプロピレン系樹脂発泡シートの厚みの比が0.1以上、0.95以下となるように、前記発泡体を加熱及び圧縮する、請求項9~13のいずれか1項に記載のポリプロピレン系樹脂発泡シートの製造方法。
  15.  前記加熱圧縮工程において、前記発泡体を、熱源に接触させながら、0.1秒以上、5秒以下加熱する、請求項9~14のいずれか1項に記載のポリプロピレン系樹脂発泡シートの製造方法。
  16.  前記加熱圧縮工程において、前記発泡体を熱源に接触させながら加熱及び圧縮するか、又は、前記発泡体を熱源に接触させながら加熱した後、前記発泡体を冷却時に圧縮する、請求項9~15のいずれか1項に記載のポリプロピレン系樹脂発泡シートの製造方法。
  17.  請求項1~8のいずか1項に記載のポリプロピレン系樹脂発泡シートと、
     前記ポリプロピレン系樹脂発泡シートの一方の表面上に配置された粘着層とを備える、粘着シート。
PCT/JP2015/077282 2014-12-04 2015-09-28 ポリプロピレン系樹脂発泡シート、ポリプロピレン系樹脂発泡シートの製造方法及び粘着シート WO2016088438A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014246119A JP2016108422A (ja) 2014-12-04 2014-12-04 ポリプロピレン系樹脂発泡シート、ポリプロピレン系樹脂発泡シートの製造方法及び粘着シート
JP2014-246119 2014-12-04
JP2014-246120 2014-12-04
JP2014246120A JP2016108423A (ja) 2014-12-04 2014-12-04 発泡シートの製造方法

Publications (1)

Publication Number Publication Date
WO2016088438A1 true WO2016088438A1 (ja) 2016-06-09

Family

ID=56091395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077282 WO2016088438A1 (ja) 2014-12-04 2015-09-28 ポリプロピレン系樹脂発泡シート、ポリプロピレン系樹脂発泡シートの製造方法及び粘着シート

Country Status (2)

Country Link
TW (1) TW201620974A (ja)
WO (1) WO2016088438A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111194331A (zh) * 2017-10-11 2020-05-22 东丽株式会社 聚烯烃系树脂发泡体及其制造方法以及胶粘带
WO2024075361A1 (ja) * 2022-10-04 2024-04-11 Dic株式会社 積層体、積層体の製造方法、及びバッテリーケース

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521353A1 (en) * 2016-09-27 2019-08-07 Sekisui Plastics Co., Ltd. Expanded beads, molded foam, fiber-reinforced composite, and automotive component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094378A (ja) * 2001-09-26 2003-04-03 Sekisui Chem Co Ltd ポリオレフィン系樹脂発泡積層シートの製造方法
JP2009221237A (ja) * 2008-03-13 2009-10-01 Toray Ind Inc ガスケット用ポリオレフィン樹脂架橋発泡体
JP2011012235A (ja) * 2009-07-06 2011-01-20 Nitto Denko Corp 樹脂発泡体
WO2013100015A1 (ja) * 2011-12-28 2013-07-04 積水化成品工業株式会社 ポリオレフィン系樹脂発泡シート、その製造方法、及びその用途
WO2013099755A1 (ja) * 2011-12-26 2013-07-04 Dic株式会社 粘着テープ
JP2013209612A (ja) * 2012-02-28 2013-10-10 Nitto Denko Corp 樹脂発泡体シート及び樹脂発泡複合体
JP2014012821A (ja) * 2012-06-07 2014-01-23 Nitto Denko Corp 樹脂発泡体及び発泡材
JP2014062245A (ja) * 2012-08-31 2014-04-10 Sekisui Plastics Co Ltd ポリオレフィン系樹脂薄層発泡シートおよびその製造方法、その用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094378A (ja) * 2001-09-26 2003-04-03 Sekisui Chem Co Ltd ポリオレフィン系樹脂発泡積層シートの製造方法
JP2009221237A (ja) * 2008-03-13 2009-10-01 Toray Ind Inc ガスケット用ポリオレフィン樹脂架橋発泡体
JP2011012235A (ja) * 2009-07-06 2011-01-20 Nitto Denko Corp 樹脂発泡体
WO2013099755A1 (ja) * 2011-12-26 2013-07-04 Dic株式会社 粘着テープ
WO2013100015A1 (ja) * 2011-12-28 2013-07-04 積水化成品工業株式会社 ポリオレフィン系樹脂発泡シート、その製造方法、及びその用途
JP2013209612A (ja) * 2012-02-28 2013-10-10 Nitto Denko Corp 樹脂発泡体シート及び樹脂発泡複合体
JP2014012821A (ja) * 2012-06-07 2014-01-23 Nitto Denko Corp 樹脂発泡体及び発泡材
JP2014062245A (ja) * 2012-08-31 2014-04-10 Sekisui Plastics Co Ltd ポリオレフィン系樹脂薄層発泡シートおよびその製造方法、その用途

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111194331A (zh) * 2017-10-11 2020-05-22 东丽株式会社 聚烯烃系树脂发泡体及其制造方法以及胶粘带
CN111194331B (zh) * 2017-10-11 2022-07-22 东丽株式会社 聚烯烃系树脂发泡体及其制造方法以及胶粘带
WO2024075361A1 (ja) * 2022-10-04 2024-04-11 Dic株式会社 積層体、積層体の製造方法、及びバッテリーケース

Also Published As

Publication number Publication date
TW201620974A (zh) 2016-06-16

Similar Documents

Publication Publication Date Title
KR101632878B1 (ko) 폴리올레핀계 수지 발포 시트, 그 제조 방법 및 그 용도
JP2016183292A (ja) ポリプロピレン系樹脂発泡シート、ポリプロピレン系樹脂発泡シートの製造方法及び粘着シート
JP6012566B2 (ja) ポリオレフィン系樹脂薄層発泡シートおよびその製造方法、その用途
JP5622242B2 (ja) 発泡粘着シート
JP5123021B2 (ja) ポリプロピレン系樹脂発泡体の製造方法及びポリプロピレン系樹脂発泡体
JP2010270228A (ja) ポリプロピレン系樹脂発泡体の製造方法及びポリプロピレン系樹脂発泡体
JP2015199925A (ja) ポリオレフィン系樹脂薄層発泡シートおよびその製造方法、並びに粘着シート
KR20190123772A (ko) 발포체 및 그 제조 방법
WO2016088438A1 (ja) ポリプロピレン系樹脂発泡シート、ポリプロピレン系樹脂発泡シートの製造方法及び粘着シート
JP2015044888A (ja) ポリオレフィン系樹脂発泡シート及びその用途
TWI520996B (zh) 聚烯烴系樹脂發泡體及使用該樹脂發泡體之聚烯烴系樹脂發泡防塵材
JP5410221B2 (ja) ポリプロピレン系樹脂発泡体
JP2016108422A (ja) ポリプロピレン系樹脂発泡シート、ポリプロピレン系樹脂発泡シートの製造方法及び粘着シート
KR20140002717A (ko) 전기 또는 전자 기기용 발포 적층체
JP2016069461A (ja) ポリプロピレン系樹脂発泡シート及びポリプロピレン系樹脂発泡シートの製造方法
JP5940428B2 (ja) ポリオレフィン系樹脂発泡体
WO2016143684A1 (ja) ポリプロピレン系樹脂発泡シート、ポリプロピレン系樹脂発泡シートの製造方法及び粘着シート
JP2014189658A (ja) 遮光用ポリオレフィン系樹脂発泡シートおよびその製造方法、その用途
JP2016186030A (ja) 発泡シートの製造方法
JP2013203793A (ja) 制振材
JP2016108423A (ja) 発泡シートの製造方法
JP2016164212A (ja) 発泡シートの製造方法
JP5674585B2 (ja) 透気防水フィルター
JP5798963B2 (ja) 電子機器用緩衝材
JP2016047607A (ja) ポリプロピレン系樹脂発泡シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15864883

Country of ref document: EP

Kind code of ref document: A1