WO2016084864A1 - 膨張黒鉛シート及びその膨張黒鉛シートを用いた電池 - Google Patents

膨張黒鉛シート及びその膨張黒鉛シートを用いた電池 Download PDF

Info

Publication number
WO2016084864A1
WO2016084864A1 PCT/JP2015/083126 JP2015083126W WO2016084864A1 WO 2016084864 A1 WO2016084864 A1 WO 2016084864A1 JP 2015083126 W JP2015083126 W JP 2015083126W WO 2016084864 A1 WO2016084864 A1 WO 2016084864A1
Authority
WO
WIPO (PCT)
Prior art keywords
expanded graphite
sheet
graphite sheet
polypropylene
weight
Prior art date
Application number
PCT/JP2015/083126
Other languages
English (en)
French (fr)
Inventor
敏弘 細川
伸也 三崎
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to EP15863771.0A priority Critical patent/EP3225589B1/en
Priority to JP2016561923A priority patent/JPWO2016084864A1/ja
Priority to US15/519,025 priority patent/US10056623B2/en
Priority to CN201580061831.2A priority patent/CN107108228B/zh
Publication of WO2016084864A1 publication Critical patent/WO2016084864A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an expanded graphite sheet and a battery using the expanded graphite sheet.
  • the air battery can increase the proportion of the negative electrode active material in the battery container as compared with a lithium secondary battery, etc., and thus the discharge capacity is increased, and the battery can be easily reduced in size and weight. . Further, since oxygen used as the positive electrode active material is a clean material without resource limitations, the air battery has a small environmental load. Accordingly, the air battery is expected to be used for an electric vehicle battery, a hybrid vehicle battery, a fuel cell vehicle battery, and the like.
  • the positive electrode of the air battery is required to have conductivity, chemical stability, and ability to supply hydroxide ions derived from oxygen.
  • a positive electrode for an air battery (patent document 1) having a catalyst layer formed in addition to activated carbon and a catalyst on Teflon (registered trademark), or a positive electrode for an air battery using a carbon material that transmits gas but does not transmit liquid. (Patent Document 2) is disclosed.
  • an expanded graphite sheet as a positive electrode for an air battery.
  • an object of the present invention is to provide an expanded graphite sheet and a battery using the expanded graphite sheet that can suppress swelling even when used for applications such as a positive electrode for an air battery in contact with a liquid. .
  • the present invention is characterized by containing expanded graphite, having a surface water contact angle of 90 ° or more, and a surface resistivity of 70 m ⁇ / sq or less.
  • 6 is a graph showing the tensile strength of sheets A1 to A5, A10 to A12, and Z. 6 is a graph showing the surface resistivity of sheets A1 to A12 and Z. 6 is a graph showing gas permeability of sheets A3, A8 to A12, and Z. It is explanatory drawing which shows a gas permeability measuring apparatus. It is a top view of a sample mounting board. It is a top view of rubber packing. It is a top view of a metal flange.
  • the present invention is characterized by containing expanded graphite, having a surface water contact angle of 90 ° or more, and a surface resistivity of 70 m ⁇ / sq or less.
  • the water contact angle on the surface is 90 ° or more, the water repellency is excellent (the wettability with water becomes poor). Therefore, even when the expanded graphite sheet is exposed to water, an aqueous electrolyte solution or the like (hereinafter referred to as water), water or the like can be prevented from entering the expanded graphite sheet. Swelling of the sheet can be suppressed.
  • the expanded graphite sheet contains a polyolefin resin in a dispersed state. Since the polyolefin resin is excellent in water repellency, if the polyolefin resin is present in the expanded graphite sheet, the above-described effects are sufficiently exhibited. If the polyolefin resin is present in a dispersed state, expanded graphite is also present in addition to the polyolefin resin on the surface and inside of the expanded graphite sheet. Therefore, it is possible to suppress a decrease in conductivity of the expanded graphite sheet due to the presence of the polyolefin resin.
  • the polyolefin resin includes expanded graphite and polyolefin resin, and has a surface resistivity of 70 m ⁇ / sq or less.
  • the polyolefin resin is desirably contained in a dispersed state. With such a configuration, the same effect as described above is exhibited.
  • the water contact angle on the surface is desirably 90 ° or more. This is for the same reason as described above.
  • the polyolefin resin is preferably polypropylene. Since polypropylene has a low viscosity when melted, it is very uniformly dispersed when heat-treated after mixing with expanded graphite. Therefore, polypropylene is very uniformly dispersed in the expanded graphite sheet.
  • the polyolefin resin is contained in an amount of 3 to 20 parts by weight with respect to 100 parts by weight of the expanded graphite. If the ratio of the polyolefin resin to 100 parts by weight of the expanded graphite is less than 3 parts by weight, the effect of adding the polyolefin resin may not be sufficiently exhibited. On the other hand, if the ratio exceeds 20 parts by weight, the conductivity of the expanded graphite sheet May decrease.
  • the gas permeability is preferably 6.0 ⁇ 10 ⁇ 5 or less. If it is the said structure, when an expanded graphite sheet is used as a positive electrode for air batteries, since oxygen gas permeation requires a long time, oxygen gas and graphite are in contact for a long time. As a result, it can be expected that the capacity of the air battery is increased.
  • a positive electrode for an air battery comprising the above expanded graphite sheet.
  • the above expanded graphite sheet is used as the positive electrode for an air battery, the following effects are exhibited. That is, when an aqueous solution is used as the electrolytic solution, swelling of the expanded graphite sheet is suppressed, so that cracking of the electrode can be suppressed. Therefore, the reliability of the air battery can be improved and the life of the air battery can be extended. Further, if polyolefin exists in the continuous vent hole of the expanded graphite, the passage of oxygen gas is narrowed by the polyolefin, so that a long time is required for permeation of oxygen gas. For this reason, as described above, it is expected that the capacity of the air battery is increased.
  • the ratio of the polyolefin resin to 100 parts by weight of expanded graphite is desirably 20 parts by weight or less.
  • Example 1 natural graphite having an ash content of 0.01% by weight or less is immersed for 30 minutes in an acid treatment solution obtained by adding 5 parts by weight of hydrogen peroxide as an oxidizing agent to 100 parts by weight of concentrated sulfuric acid having a concentration of 98%. Thus, acid-treated graphite was obtained. Next, after this acid-treated graphite was taken out from the acid-treated solution, it was sufficiently washed with water to bring the pH close to 7, and further dried. Next, the acid-treated graphite after washing with water was put into an electric furnace at a temperature of 1000 ° C. for 30 seconds to perform a thermal expansion treatment. As a result, expanded graphite having a particle size of 30 to 100 mesh was produced.
  • Example 2 An expanded graphite sheet was prepared in the same manner as in Example 1 except that the amount of polypropylene added was 0.72 g (that is, the ratio of polypropylene to 100 parts by weight of expanded graphite was 10 parts by weight).
  • the expanded graphite sheet had a thickness of 0.5 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet A2.
  • Example 3 An expanded graphite sheet was prepared in the same manner as in Example 1 except that the amount of polypropylene added was 1.08 g (that is, the ratio of polypropylene to 100 parts by weight of expanded graphite was 15 parts by weight).
  • the expanded graphite sheet had a thickness of 0.5 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet A3.
  • Example 4 An expanded graphite sheet was produced in the same manner as in Example 1 except that the bulk density was changed to 1.36 Mg / m 3 by increasing the pressure during sheet formation.
  • the expanded graphite sheet had a thickness of 0.35 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet A4.
  • Example 5 An expanded graphite sheet was produced in the same manner as in Example 1 except that the bulk density was changed to 1.68 Mg / m 3 by increasing the pressure during sheet formation.
  • the expanded graphite sheet had a thickness of 0.29 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet A5.
  • Example 6 An expanded graphite sheet was produced in the same manner as in Example 1 except that the bulk density was changed to 2.00 Mg / m 3 by increasing the pressure during sheet formation.
  • the expanded graphite sheet had a thickness of 0.23 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet A6.
  • Example 7 Except that 1.08 g of polypropylene was dispersed in 40 ml of ethanol, sprayed uniformly on 7.2 g of expanded graphite, and naturally dried to obtain a mixture of expanded graphite and polypropylene, the same as in Example 3 above. Thus, an expanded graphite sheet was produced.
  • the expanded graphite sheet had a thickness of 0.5 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet A7.
  • Example 8 Except that the amount of expanded graphite was 15.2 g, and the addition amount of polypropylene was 3.05 g (that is, the ratio of polypropylene to 100 parts by weight of expanded graphite was 20 parts by weight), the same as in Example 1 above.
  • An expanded graphite sheet was produced.
  • the expanded graphite sheet had a thickness of 0.5 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet A8.
  • Example 9 Except for the amount of expanded graphite being 15.2 g and the addition amount of polypropylene being 3.77 g (that is, the ratio of polypropylene to 100 parts by weight of expanded graphite was 25 parts by weight), the same as in Example 1 above.
  • An expanded graphite sheet was produced.
  • the expanded graphite sheet had a thickness of 0.5 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet A9.
  • Example 10 1.53 g of polypropylene was dispersed in 40 ml of ethanol, uniformly sprayed onto 15.2 g of expanded graphite, and naturally dried to obtain a mixture of expanded graphite and polypropylene (that is, polypropylene with respect to 100 parts by weight of expanded graphite).
  • the expanded graphite sheet was prepared in the same manner as in Example 1 except that the ratio was 10 parts by weight.
  • the expanded graphite sheet had a thickness of 0.5 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet A10.
  • Example 11 1.52 g of polypropylene is dispersed in 40 ml of ethanol, sprayed uniformly on 15.2 g of expanded graphite, and air-dried to obtain a mixture of expanded graphite and polypropylene (that is, polypropylene based on 100 parts by weight of expanded graphite).
  • An expanded graphite sheet was produced in the same manner as in Example 1 except that the bulk density was 1.30 Mg / m 3 by increasing the pressure at the time of forming into a sheet together with the ratio of 10 parts by weight.
  • the expanded graphite sheet had a thickness of 0.38 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet A11.
  • Example 12 1.54 g of polypropylene is dispersed in 40 ml of ethanol, sprayed uniformly to 15.2 g of expanded graphite, and air-dried to obtain a mixture of expanded graphite and polypropylene (that is, polypropylene based on 100 parts by weight of expanded graphite).
  • An expanded graphite sheet was prepared in the same manner as in Example 1 except that the bulk density was 1.60 Mg / m 3 by increasing the pressure at the time of forming into a sheet together with the ratio of 10 parts by weight.
  • the expanded graphite sheet had a thickness of 0.31 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet A12.
  • Example 2 An expanded graphite sheet was produced in the same manner as in Example 1 except that polypropylene was not added to the expanded graphite.
  • the expanded graphite sheet had a thickness of 0.5 mm.
  • the expanded graphite sheet thus produced is hereinafter referred to as sheet Z.
  • the tensile strength, surface resistivity, and contact angle of the sheets A1, A2, A4, and A5 were examined under the following conditions. Further, the tensile strength, surface resistivity, contact angle and gas permeability of the sheets A3 and Z were examined under the following conditions. Furthermore, the surface resistivity and contact angle of the sheets A6 and A7 were examined under the following conditions. In addition, the surface resistivity and gas permeability of the sheets A8 and A9 were examined under the following conditions. Further, the tensile strength, surface resistivity and gas permeability of the sheets A10 to A12 were examined under the following conditions. The experimental results of the sheets A1 to A12 and Z are shown in Table 1. The tensile strength, surface resistivity, and gas permeability are also shown in FIGS. 1 to 3, respectively.
  • the gas permeability was measured using the gas permeability measuring apparatus shown in FIG.
  • a sample mounting plate 5, a sample 6, and a rubber packing 7 are arranged in order on the O-ring 10 arranged on the pedestal 4, and on the rubber packing 7. It is the structure which fastens the arrange
  • the sample mounting plate 5 has 25 through holes 5a having a diameter of 1 mm.
  • the rubber packing 7 has a donut shape as shown in FIG.
  • the metal flange 8 has a donut shape as shown in FIG.
  • 8a is a through-hole for letting a bolt pass.
  • L1 is 78 mm
  • L2 is 15 mm
  • L3 is 30 mm
  • L4 is 80 mm
  • L5 is 48 mm
  • L6 is 110 mm
  • L7 is 63 mm.
  • a vacuum pump 1, a measurement tank 2, and a manometer (vacuum gauge) 3 are connected below the pedestal 4 via a conduit 9.
  • V1 to V5 are valves.
  • the gas permeability was measured as follows. (1) Open the valves V1 and V4 and start the vacuum pump 1 with the valves V2, V3 and V5 closed. (2) Open valves V2 and V3. (3) After the ultimate pressure of the measurement tank 2 reaches 190 pa, the valve V3 is closed. (4) value of the manometer 3 measures the (a measured value is defined as P 1). (5) above (3) in measuring the value of the manometer 30 minutes after closing the valve V3 (the measured value is defined as P 2). (6) The gas permeability was calculated from the following equation.
  • the sheets A1 to A5 and A10 to A12 have a higher tensile strength than the sheet Z. Further, when the sheets A1 to A3 are compared, the tensile strength increases in the order of the sheet A1, the sheet A2, and the sheet A3. Therefore, it can be understood that the tensile strength increases as the proportion of polypropylene increases. Further, when the sheets A1, A4, A5, and A6 are compared, the tensile strength increases in the order of the sheets A1, A4, A5, and A6, and when the sheets A10 to A12 are compared, the sheet A10 The tensile strength increases in the order of sheet A11 and sheet A12. Therefore, it can be seen that the tensile strength increases as the bulk density of the expanded graphite sheet increases.
  • the sheet A1 to A7 have a larger contact angle than the sheet Z. Further, when the sheets A1 to A3 are compared, the contact angle increases in the order of the sheet A1, the sheet A2, and the sheet A3. Therefore, it can be seen that the contact angle increases as the proportion of polypropylene increases. Further, when the sheets A1, A4 to A6 are compared, there is no significant difference between the sheets, and it can be seen that the bulk density of the expanded graphite sheet does not significantly affect the contact angle.
  • the sheets A1 to A5 and A7 to A12 have a slightly higher surface resistivity than the sheet Z, but the increase is at a level that causes no problem in practice. I understand. Further, it is recognized that the sheet A6 has a lower surface resistivity than the sheet Z. Further, when the sheets A1 to A3 were compared, there was no significant difference between the sheets. Therefore, when the proportion of polypropylene is small (when the polyolefin resin is about 15 parts by weight or less with respect to 100 parts by weight of expanded graphite), the proportion of polypropylene does not significantly affect the surface resistivity.
  • the sheets A1 to A3 are compared with A8 and A9, it is recognized that the sheets A8 and A9 have a higher surface resistivity than the sheets A1 to A3. Therefore, it can be seen that the surface resistivity slightly increases when the proportion of polypropylene is large (when the polyolefin resin is about 20 parts by weight or more with respect to 100 parts by weight of expanded graphite).
  • the sheets A4 to A6 are compared, the surface resistivity decreases in the order of the sheet A4, the sheet A5, and the sheet A6, and when the sheets A10 to A12 are compared, the sheet A10, the sheet A11, and the sheet A12. It can be seen that the surface resistivity decreases in this order. Therefore, it can be seen that the higher the bulk density of the expanded graphite sheet, the lower the surface resistivity.
  • the sheet A3 and the sheet A7 have the same amount of polypropylene, but the surface resistivity and the contact angle are higher in the sheet A7. This is presumably because in the sheet A7, the polypropylene was uniformly dispersed in the solvent and mixed by spraying, so that the polypropylene was arranged more uniformly around the expanded graphite particles.
  • the surface resistivity can be suppressed to 70 m ⁇ / sq or less.
  • the surface resistivity is preferably 65 m ⁇ / sq or less, and more preferably 60 m ⁇ / sq or less.
  • the gas permeability of the sheets A3 and A8 to A12 is lower than that of the sheet Z.
  • the gas permeability is low to some extent, it takes time to permeate oxygen gas, so oxygen gas and graphite are in contact for a long time, The electric capacity can be expected to increase.
  • the gas permeability decreases in the order of the sheet A3, the sheet A8, and the sheet A9. Therefore, it can be seen that the greater the proportion of polypropylene, the lower the gas permeability.
  • the raw material graphite is not limited to the above-mentioned natural graphite, but may be pyrolytic graphite, quiche graphite, or the like, but it is preferable to use natural scaly graphite that is industrially easily available. preferable. However, it is preferable that the amount of ash is small regardless of the type of graphite used.
  • the oxidizing agent is not limited to the above hydrogen peroxide, but may be ammonium peroxide, potassium peroxide, or the like.
  • the addition amount is 1 to 10 with respect to 100 parts by weight of sulfuric acid. Any weight part may be used.
  • the method of neutralizing the acid-treated graphite is not limited to sufficient washing with water, but a solid neutralizing agent selected from alkaline earth metal oxides, hydroxides, carbonates, etc. May be used.
  • the bulk density of the expanded graphite sheet is preferably 0.5 to 1.8 g / cm 3 (particularly 0.7 to 1.6 g / cm 3 ). Further, when the expanded graphite sheet is used as an air electrode, the thickness of the expanded graphite sheet is preferably 0.02 to 1.5 mm.
  • the resin blended with expanded graphite may be polyethylene terephthalate (PET), acrylic butadiene styrene (ABS), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), or the like.
  • PET polyethylene terephthalate
  • ABS acrylic butadiene styrene
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the polyolefin resin is not limited to the above polypropylene, but may be polyethylene or the like.
  • the present invention can be used for a positive electrode of an air battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Hybrid Cells (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、空気電池用正極等に用いた場合であっても、膨潤するのを抑制できる膨張黒鉛シート及びその膨張黒鉛シートを用いた電池を提供することを目的としている。 膨張黒鉛を含み、表面の水接触角が90°以上で、表面抵抗率が70mΩ/sq以下であることを特徴とするものであり、膨張黒鉛シート中にポリオレフィン樹脂が分散されて含有されていることが望ましく、上記ポリオレフィン樹脂はポリプロピレンであることが望ましい。

Description

膨張黒鉛シート及びその膨張黒鉛シートを用いた電池
 本発明は膨張黒鉛シート及びその膨張黒鉛シートを用いた電池に関する。
 空気電池は、リチウム二次電池等と比べて、電池容器内に占める負極活物質の割合を高めることが可能になるため、放電容量が大きくなって、電池の小型化や軽量化が容易となる。また、正極活物質として用いる酸素は資源的な制約がなくクリーンな材料であるため、空気電池は環境負荷が小さい。したがって、空気電池は、電気自動車用電池、ハイブリッド車用電池、燃料電池自動車用電池などへの利用が期待されている。
 ここで、上記空気電池の正極としては、導電性、化学的安定性、及び酸素由来の水酸化物イオン供給力が要求される。このため、テフロン(登録商標)粉末に活性炭、触媒に加え成形した触媒層を有する空気電池用正極(特許文献1)や、ガスを透過し、液体を透過しない炭素材料を用いた空気電池用正極(特許文献2)が開示されている。
 しかしながら、上記特許文献1に記載の様な従来の空気電池用正極では、表面に顕在する炭素質成分の表面積が小さくなり、炭素質成分以外の成分によって水酸化物イオンの供給が阻害される。また、特許文献1及び2に開示されるような従来の空気電池用正極では、水酸化物イオン供給に必要な酸素供給に伴い、正極の厚さ方向に酸素ガスを透過させるため、連通気孔を設ける必要がある。ところが、その連通気孔を通じて電解液が蒸発する度合が大きくなるため、電解液が減少する。この結果、電池の出力低下等の不具合を生じるという課題を有していた。更に、上記特許文献2に挙げられたHOPGは高価な材質なため、電池の製造コストが高騰するという課題を有していた。
 そこで上記課題を解決するために、膨張黒鉛シートを空気電池用正極として用いることが考えられている。
特開平10-189006号公報 WO2010/084614号公報
 しかしながら、空気電池用正極として通常の膨張黒鉛シートを用いた場合には、以下に示す課題を有していた。即ち、電解液として水系のものを用いた場合には膨張黒鉛シートが膨潤する場合があるといった課題を有していた。したがって、改良の余地がある。
 そこで本発明は、空気電池用正極等の液体と接する用途に用いた場合であっても、膨潤するのを抑制できる膨張黒鉛シート及びその膨張黒鉛シートを用いた電池を提供することを目的としている。
 本発明は上記目的を達成するために、膨張黒鉛を含み、表面の水接触角が90°以上であり、表面抵抗率が70mΩ/sq以下であることを特徴とする。
 本発明によれば、空気電池用正極等の液体と接する用途に用いた場合であっても、膨張黒鉛シートが膨潤するのを抑制できるといった優れた効果を奏する。
シートA1~A5、A10~A12、Zの引張強度を示すグラフである。 シートA1~A12、Zの表面抵抗率を示すグラフである。 シートA3、A8~A12、Zのガス透過率を示すグラフである。 ガス透過率測定装置を示す説明図である。 サンプル載置板の上面図である。 ゴムパッキンの上面図である。 金属フランジの上面図である。
 本発明は上記目的を達成するために、膨張黒鉛を含み、表面の水接触角が90°以上であり、表面抵抗率が70mΩ/sq以下であることを特徴とする。
 表面の水接触角が90°以上であれば、撥水性に優れる(水に対する濡れ性が悪くなる)。したがって、膨張黒鉛シートが水や水系の電解液等(以下、水等と称する)に曝された場合であっても水等が膨張黒鉛シート内に浸入するのを抑えることができるので、膨張黒鉛シートが膨潤するのを抑制することができる。
 膨張黒鉛シート中にポリオレフィン樹脂が分散された状態で含有されていることが望ましい。
 ポリオレフィン樹脂は撥水性に優れるので、膨張黒鉛シート中にポリオレフィン樹脂が存在していれば、上述した作用効果が十分に発揮される。また、ポリオレフィン樹脂が分散された状態で存在すれば、膨張黒鉛シートの表面や内部には、ポリオレフィン樹脂の他に膨張黒鉛も存在する。したがって、ポリオレフィン樹脂の存在に起因する膨張黒鉛シートの導電性の低下を抑制できる。
 膨張黒鉛とポリオレフィン樹脂とを含み、表面抵抗率が70mΩ/sq以下であることを特徴とする。また、上記ポリオレフィン樹脂が分散された状態で含有されていることが望ましい。
 このような構成であれば、上述した効果と同様の効果が発揮される。
 表面の水接触角が90°以上であることが望ましい。
 これは、上述した理由と同様の理由による。
 上記ポリオレフィン樹脂はポリプロピレンであることが望ましい。
 ポリプロピレンは溶融した場合の粘度が低くなるので、膨張黒鉛と混合した後熱処理する際、非常に均一に分散される。したがって、膨張黒鉛シート中で、ポリプロピレンが極めて均一に分散されることになる。
 上記膨張黒鉛100重量部に対し、上記ポリオレフィン樹脂が3重量部以上20重量部以下含有されていることが望ましい。
 膨張黒鉛100重量部に対するポリオレフィン樹脂の割合が3重量部未満であれば、ポリオレフィン樹脂の添加効果が十分に発揮されないことがある一方、当該割合が20重量部を超えると、膨張黒鉛シートの導電性が低下することがある。
 ガス透過率が6.0×10-5以下であることが望ましい。
 上記構成であれば、膨張黒鉛シートを空気電池用正極として用いた場合、酸素ガスの透過に長時間を要することになるため、酸素ガスと黒鉛質とが長時間接触する。この結果、空気電池の容量が大きくなることが期待できる。
 上述の膨張黒鉛シートを含むことを特徴とする空気電池用正極。
 また、上述の膨張黒鉛シートを電極として用いたことを特徴とする電池。
 空気電池用正極として、上述の膨張黒鉛シートを用いた場合には、以下に示す作用効果が発揮される。即ち、電解液として水系のものを用いた場合に、膨張黒鉛シートが膨潤するのが抑制されるので、電極の割れを抑制できる。したがって、空気電池の信頼性が向上し、且つ、空気電池の長寿命化を図ることができる。また、膨張黒鉛の連通気孔にポリオレフィンが存在していれば、このポリオレフィンによって酸素ガスの通り道が狭くなるため、酸素ガスの透過に長時間を要することになる。このため、上述の如く、空気電池の容量が大きくなることが期待できる。
 なお、ポリオレフィンの量が多くなり過ぎると、表面抵抗が高くなるため、電圧低下を招来するおそれがあったり、酸素を送り込めないことによる電池容量の低下を招来するおそれがある。このようなことを考慮すれば、 膨張黒鉛100重量部に対するポリオレフィン樹脂の割合は20重量部以下であることが望ましい。
(実施例1)
 先ず、濃度98%の濃硫酸100重量部に酸化剤としての過酸化水素を5重量部添加した酸処理液に、灰分が0.01重量%以下の天然黒鉛を30分浸漬し攪拌して反応させて、酸処理黒鉛を得た。次に、この酸処理黒鉛を上記酸処理液から取り出した後、十分水洗することにより、pHを7に近付け、更に乾燥を行った。
 次いで、上記水洗後の酸処理黒鉛を、温度1000℃の電気炉に30秒間投入して過熱膨張化処理を行った。これによって、30~100メッシュの粒度である膨張黒鉛を作製した。
 その後、上記膨張黒鉛7.2gとポリプロピレン〔(株)セイシン企業製のLMS-30(平均粒径5μm)、融点163℃〕0.36gとを混合した(即ち、膨張黒鉛100重量部に対するポリプロピレンの割合を5重量部とした)。次に、予備成形を行った後、かさ密度が1.00Mg/mとなるようにシート化し、更に熱処理を行うことにより、膨張黒鉛シートを作製した。熱処理条件は100℃の電気炉に投入した後、160℃まで温度を上昇させ、160℃で10分間保持するという条件である。尚、この膨張黒鉛シートの厚さは0.48mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA1と称する。
(実施例2)
 ポリプロピレンの添加量を0.72g(即ち、膨張黒鉛100重量部に対するポリプロピレンの割合を10重量部)とした以外は、上記実施例1と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.5mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA2と称する。
(実施例3)
 ポリプロピレンの添加量を1.08g(即ち、膨張黒鉛100重量部に対するポリプロピレンの割合を15重量部)とした以外は、上記実施例1と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.5mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA3と称する。
(実施例4)
 シート化する際の圧力を高くすることにより、かさ密度を1.36Mg/mとした以外は、上記実施例1と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.35mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA4と称する。
(実施例5)
 シート化する際の圧力を高くすることにより、かさ密度を1.68Mg/mとした以外は、上記実施例1と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.29mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA5と称する。
(実施例6)
 シート化する際の圧力を高くすることにより、かさ密度を2.00Mg/mとした以外は、上記実施例1と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.23mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA6と称する。
(実施例7)
 ポリプロピレン1.08gをエタノール40ml中に分散させて、膨張黒鉛7.2gに対して均一に噴霧し、自然乾燥させて膨張黒鉛とポリプロピレンとの混合物を得たこと以外は、上記実施例3と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.5mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA7と称する。
(実施例8)
 膨張黒鉛の量を15.2gとし、更に、ポリプロピレンの添加量を3.05g(即ち、膨張黒鉛100重量部に対するポリプロピレンの割合を20重量部)とした以外は、上記実施例1と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.5mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA8と称する。
(実施例9)
 膨張黒鉛の量を15.2gとし、更に、ポリプロピレンの添加量を3.77g(即ち、膨張黒鉛100重量部に対するポリプロピレンの割合を25重量部)とした以外は、上記実施例1と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.5mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA9と称する。
(実施例10)
 ポリプロピレン1.53gをエタノール40ml中に分散させて、膨張黒鉛15.2gに対して均一に噴霧し、自然乾燥させて膨張黒鉛とポリプロピレンとの混合物を得た(即ち、膨張黒鉛100重量部に対するポリプロピレンの割合を10重量部)こと以外は、上記実施例1と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.5mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA10と称する。
(実施例11)
 ポリプロピレン1.52gをエタノール40ml中に分散させて、膨張黒鉛15.2gに対して均一に噴霧し、自然乾燥させて膨張黒鉛とポリプロピレンとの混合物を得る(即ち、膨張黒鉛100重量部に対するポリプロピレンの割合を10重量部)と共に、シート化する際の圧力を高くすることにより、かさ密度を1.30Mg/mとした以外は、上記実施例1と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.38mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA11と称する。       
(実施例12)
 ポリプロピレン1.54gをエタノール40ml中に分散させて、膨張黒鉛15.2gに対して均一に噴霧し、自然乾燥させて膨張黒鉛とポリプロピレンとの混合物を得る(即ち、膨張黒鉛100重量部に対するポリプロピレンの割合を10重量部)と共に、シート化する際の圧力を高くすることにより、かさ密度を1.60Mg/mとした以外は、上記実施例1と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.31mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートA12と称する。
(比較例)
 上記膨張黒鉛にポリプロピレンを添加しなかった以外は、上記実施例1と同様にして膨張黒鉛シートを作製した。尚、この膨張黒鉛シートの厚さは0.5mmであった。
 このようにして作製した膨張黒鉛シートを、以下、シートZと称する。
(実験)
 上記シートA1、A2、A4、A5の引張強度、表面抵抗率及び接触角を、下記の条件で調べた。また、上記シートA3、Zの引張強度、表面抵抗率、接触角及びガス透過率を、下記の条件で調べた。更に、上記シートA6、A7の表面抵抗率及び接触角を、下記の条件で調べた。加えて、上記シートA8、A9の表面抵抗率及びガス透過率を、下記の条件で調べた。また、上記シートA10~A12の引張強度、表面抵抗率及びガス透過率を、下記の条件で調べた。以上、シートA1~A12、Zの実験結果を表1に示す。尚、引張強度と表面抵抗率とガス透過率とについては、それぞれ、図1~図3にも示している。
〔引張強度〕
 JIS R7222の「引張強さの測定方法」と同様にして測定した。測定装置としては、オートグラフを用いた。
〔表面抵抗率〕
 四端子法に基づいて測定した。測定装置としては、共和理研社製K-705RSを用いた。
〔接触角〕
 各シートの表面に水を1μl滴下して測定した。測定装置としては、温度20℃の雰囲気下、自動接触角計CA-VP型(協和界面社製)を用い、1つの試料に1μlの水滴を10個注射器で作り、それぞれの接触角を上記装置で測定し、その平均値を求めた。この操作を10回繰り返し、その平均値をもって接触角の測定値とした。
〔ガス透過率〕
 ガス透過率の測定は、図4に示すガス透過率測定装置を用いて行った。 
 図4に示すように、台座4上に配置されたOリング10の上には、サンプル載置板5と、サンプル6と、ゴムパッキン7とが順に配置されており、上記ゴムパッキン7上に配置された金属フランジ8と上記台座4とをボルトで締め付ける構成である。上記サンプル載置板5には、図5に示すように、直径1mmの貫通穴5aが25個形成されている。また、上記ゴムパッキン7は、図6に示すように、ドーナツ状をなしている。更に、上記金属フランジ8は、図7に示すように、ドーナツ状を成している。尚、8aはボルトを通すための貫通穴である。上記図5~図7において、L1は78mm、L2は15mm、L3は30mm、L4は80mm、L5は48mm、L6は110mm、L7は63mmとなっている。
 また、上記台座4の下方には、管路9を介して、真空ポンプ1と、測定タンク2と、マノメータ(真空計)3とが接続されている。尚、V1~V5はバルブである。
 上記ガス透過率測定装置を用いて、以下のようにしてガス透過率を測定した。
(1)バルブV1、V4を開き、 バルブV2、V3、V5を閉じた状態で、真空ポンプ1を起動させる。
(2)バルブV2、V3を開く。
(3)測定タンク2の到達圧が190paとなった後、バルブV3を閉める。
(4)マノメータ3の数値を計測する(このときの測定値をPとする)。
(5)上記(3)でバルブV3を閉じてから30分後のマノメーターの数値を計測する(このときの測定値をPとする)。
(6)以下の式より、ガス透過率を算出した。 
ガス透過率(cm2/s)=(気体の透過量)×(厚さ)/(透過面積)×(時間)×(圧力差)
         =(V・Δp)・t/ A・T・(P-P)  
上記式において、
Δp= P―P
:大気圧(測定前、参考値:101,325Pa)
V:測定タンクの体積(11,050cm
A:透過面積 φ2cm(3.14cm
T:測定時間(30×60sec)
t:サンプル厚み(cm)
Figure JPOXMLDOC01-appb-T000001
 
 上記表1及び図1から明らかなように、シートA1~A5、A10~A12はシートZに比べて、引張強度が大きくなっていることが認められる。また、シートA1~A3を比べた場合、シートA1、シートA2、シートA3の順で引張強度が大きくなっているので、ポリプロピレンの割合が多い程、引張強度が大きくなることがわかる。更に、シートA1、A4、A5、A6を比べた場合、シートA1、シートA4、シートA5、シートA6の順で引張強度が大きくなっており、また、シートA10~A12を比べた場合、シートA10、シートA11、シートA12の順で引張強度が大きくなっている。したがって、膨張黒鉛シートのかさ密度が高い程、引張強度が大きくなることがわかる。
 上記表1から明らかなように、シートA1~A7はシートZに比べて、接触角が大きくなっていることが認められる。また、シートA1~A3を比べた場合、シートA1、シートA2、シートA3の順で接触角が大きくなっているので、ポリプロピレンの割合が多い程、接触角が大きくなることがわかる。更に、シートA1、A4~A6を比べた場合、シート間で大した差異はなかったので、膨張黒鉛シートのかさ密度は接触角に余り影響しないことがわかる。
 上記表1及び図2から明らかなように、シートA1~A5、A7~A12はシートZに比べて、表面抵抗率が若干高くなっているが、実用上は問題のないレベルの上昇であることがわかる。また、シートA6はシートZに比べて、表面抵抗率が低くなっていることが認められる。更に、シートA1~A3を比べた場合、シート間で大した差異はなかった。したがって、ポリプロピレンの割合が少ない場合(膨張黒鉛100重量部に対し、上記ポリオレフィン樹脂が15重量部以下程度の場合)には、ポリプロピレンの割合は、表面抵抗率に余り影響しないことがわかる。但し、シートA1~A3とA8、A9とを比べた場合、シートA8、A9はシートA1~A3に比べて、表面抵抗率が高くなっていることが認められる。したがって、ポリプロポリプロピレンの割合が多い場合(膨張黒鉛100重量部に対し、上記ポリオレフィン樹脂が20重量部以上程度の場合)には、表面抵抗率が若干上昇することがわかる。また、シートA4~A6を比べた場合、シートA4、シートA5、シートA6の順で表面抵抗率が低くなっており、また、シートA10~A12を比べた場合、シートA10、シートA11、シートA12の順で表面抵抗率が低くなっていることが認められる。したがって、膨張黒鉛シートのかさ密度が高い程、表面抵抗率が低くなることがわかる。
 また、シートA3とシートA7は、ポリプロピレンの配合量は同一であるものの、表面抵抗率、接触角はシートA7の方が高くなっている。これは、シートA7ではポリプロピレンを溶媒中に均一に分散させて噴霧することで混合しているため、膨張黒鉛粒子の周囲により均一にポリプロピレンが配置されたためと推測される。
 シートA1~A12に示されるように、表面抵抗率は70mΩ/sq以下に抑えられる。表面抵抗率は、65mΩ/sq以下とするのが好ましく、更に60mΩ/sq以下に抑えることが好ましい。
 上記表1及び図3から明らかなように、シートA3、A8~A12はシートZに比べて、ガス透過率が低くなっていることが認められる。ここで、膨張黒鉛シートを空気電池用正極として用いた場合、ガス透過率がある程度低ければ、酸素ガスの透過に時間を要するため、酸素ガスと黒鉛質とが長時間接触することとなって、電気容量が大きくなることが期待できる。
 なお、シートA3、A8、A9を比べた場合、シートA3、シートA8、シートA9の順でガス透過率が低くなっていることが認められる。したがって、ポリプロピレンの割合が多いほどガス透過率が低下することがわかる。また、シートA10~A12を比べた場合、シートA10、シートA11、シートA12の順でガス透過率が低くなっていることが認められる。したがって、かさ密度が高いほどガス透過率が低下することがわかる。
(その他の事項)
(1)原料である黒鉛としては、上記天然黒鉛に限定するものではなく、熱分解黒鉛、キッシュ黒鉛などであっても良いが、工業的に入手が容易な天然鱗片状黒鉛を使用するのが好ましい。但し、如何なる黒鉛を用いた場合であっても、灰分量は少ないのが好ましい。
(2)酸化剤としては、上記過酸化水素に限定するものではなく、過酸化アンモニウム、過酸化カリウム等であっても良く、また、その添加量は硫酸100重量部に対して、1~10重量部であれば良い。
(3)酸処理黒鉛を中和する方法としては十分な水洗を行うことに限定するものではなく、アルカリ土類金属の酸化物、水酸化物、炭酸塩等から選択される固体中和剤を用いて行っても良い。
(4)膨張黒鉛シートのかさ密度としては、0.5~1.8g/cm(特に、0.7~1.6g/cm)であることが好ましい。また、膨張黒鉛シートを空気用電極として用いる場合、膨張黒鉛シートの厚みは0.02~1.5mmであることが好ましい。
(5)膨張黒鉛に配合する樹脂は、ポリプロピレン以外にも、ポリエチレンテレフタレート(PET)、アクリルブタジエンスチロール(ABS)、ポリフッ化ビニリデン(PVDF)、ポリテトラフッ化エチレン(PTFE)等を用いても良い。また分散性を考慮すると、融点付近におけるMFR(メルトフローレート)の大きい樹脂を用いるのが好ましい。
(6)またポリオレフィン樹脂としては、上記ポリプロピレンに限定するものではなく、ポリエチレン等であっても良い。
 本発明は、空気電池の正極等に用いることができる。

Claims (10)

  1.  膨張黒鉛を含み、表面の水接触角が90°以上であり、表面抵抗率が70mΩ/sq以下であることを特徴とする膨張黒鉛シート。
  2.  膨張黒鉛シート中にポリオレフィン樹脂が分散された状態で含有されている、請求項1に記載の膨張黒鉛シート。
  3.  膨張黒鉛とオリオレフィン樹脂とを含み、表面抵抗率が70mΩ/sq以下であることを特徴とする膨張黒鉛シート。
  4.  上記ポリオレフィン樹脂が分散された状態で含有されている、請求項3に記載の膨張黒鉛シート。
  5.  表面の水接触角が90°以上である、請求項3又は4に記載の膨張黒鉛シート。
  6.  上記ポリオレフィン樹脂はポリプロピレンである、請求項2~5の何れか1項に記載の膨張黒鉛シート。
  7.  上記膨張黒鉛100重量部に対し、上記ポリオレフィン樹脂が3重量部以上20重量部以下含有されている、請求項2~6の何れか1項に記載の膨張黒鉛シート。
  8.  ガス透過率が6.0×10-5以下である、請求項1~7の何れか1項に記載の膨張黒鉛シート。
  9.  請求項1~8の何れか1項に記載の膨張黒鉛シートを含むことを特徴とする空気電池用正極。
  10.  請求項1~8の何れか1項に記載の膨張黒鉛シートを電極として用いたことを特徴とする電池。
PCT/JP2015/083126 2014-11-25 2015-11-25 膨張黒鉛シート及びその膨張黒鉛シートを用いた電池 WO2016084864A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15863771.0A EP3225589B1 (en) 2014-11-25 2015-11-25 Expanded graphite sheet and battery using same
JP2016561923A JPWO2016084864A1 (ja) 2014-11-25 2015-11-25 膨張黒鉛シート及びその膨張黒鉛シートを用いた電池
US15/519,025 US10056623B2 (en) 2014-11-25 2015-11-25 Expanded graphite sheet and battery using the expanded graphite sheet
CN201580061831.2A CN107108228B (zh) 2014-11-25 2015-11-25 膨胀石墨片材和使用该膨胀石墨片材的电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-237359 2014-11-25
JP2014237359 2014-11-25

Publications (1)

Publication Number Publication Date
WO2016084864A1 true WO2016084864A1 (ja) 2016-06-02

Family

ID=56074416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083126 WO2016084864A1 (ja) 2014-11-25 2015-11-25 膨張黒鉛シート及びその膨張黒鉛シートを用いた電池

Country Status (5)

Country Link
US (1) US10056623B2 (ja)
EP (1) EP3225589B1 (ja)
JP (1) JPWO2016084864A1 (ja)
CN (1) CN107108228B (ja)
WO (1) WO2016084864A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115285987B (zh) * 2022-08-25 2023-09-19 深圳材启新材料有限公司 一种膨胀石墨的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195568A (ja) * 1998-12-25 2000-07-14 Toshiba Battery Co Ltd 空気電池
US20080279710A1 (en) * 2007-05-08 2008-11-13 Aruna Zhamu Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
JP2010513685A (ja) * 2006-12-20 2010-04-30 ダウ グローバル テクノロジーズ インコーポレイティド ワイヤ及びケーブルを調製するための半導電体ポリマー組成物
JP2011042769A (ja) * 2009-08-24 2011-03-03 Nippon Pillar Packing Co Ltd 膨張黒鉛シートガスケット
JP2013516374A (ja) * 2009-12-31 2013-05-13 エスゲーエル カーボン ソシエタス ヨーロピア 黒鉛含有成形体及びその製造方法
WO2015076402A1 (ja) * 2013-11-25 2015-05-28 独立行政法人国立高等専門学校機構 空気電池用正極及びこの正極を用いた空気電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132358A (ja) 1984-07-20 1986-02-15 Pentel Kk 電池用電極
JPH10189006A (ja) 1996-12-25 1998-07-21 Toshiba Battery Co Ltd 空気電池
CA2350925A1 (en) 1998-11-16 2000-05-25 Takeji Nakae Porous conductive sheet and method for producing the same
JP5267575B2 (ja) 2009-01-26 2013-08-21 トヨタ自動車株式会社 空気電池
US20130032278A1 (en) 2009-12-31 2013-02-07 Sgl Carbon Se Graphite-containing molded body and method for the production thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195568A (ja) * 1998-12-25 2000-07-14 Toshiba Battery Co Ltd 空気電池
JP2010513685A (ja) * 2006-12-20 2010-04-30 ダウ グローバル テクノロジーズ インコーポレイティド ワイヤ及びケーブルを調製するための半導電体ポリマー組成物
US20080279710A1 (en) * 2007-05-08 2008-11-13 Aruna Zhamu Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
JP2011042769A (ja) * 2009-08-24 2011-03-03 Nippon Pillar Packing Co Ltd 膨張黒鉛シートガスケット
JP2013516374A (ja) * 2009-12-31 2013-05-13 エスゲーエル カーボン ソシエタス ヨーロピア 黒鉛含有成形体及びその製造方法
JP2013527964A (ja) * 2009-12-31 2013-07-04 エスゲーエル カーボン ソシエタス ヨーロピア レドックスフローバッテリーにおいて使用するための複合積層材料
WO2015076402A1 (ja) * 2013-11-25 2015-05-28 独立行政法人国立高等専門学校機構 空気電池用正極及びこの正極を用いた空気電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASASHI YODA ET AL.: "Bocho Kokuen Sheet o Seikyoku to suru Kuki Kinzoku Denchi no Kento", DAI 40 KAI ABSTRACTS OF ANNUAL MEETING OF THE CARBON SOCIETY OF JAPAN, 3 December 2013 (2013-12-03), pages 52, XP008183331 *

Also Published As

Publication number Publication date
EP3225589A1 (en) 2017-10-04
CN107108228B (zh) 2020-05-12
US20170237080A1 (en) 2017-08-17
CN107108228A (zh) 2017-08-29
EP3225589B1 (en) 2020-08-05
EP3225589A4 (en) 2018-07-18
US10056623B2 (en) 2018-08-21
JPWO2016084864A1 (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
McAteer et al. Liquid exfoliated Co (OH) 2 nanosheets as low‐cost, yet high‐performance, catalysts for the oxygen evolution reaction
CN110945161A (zh) 碱水电解用隔膜、其制造方法以及无机有机复合膜的制造方法
JPH08339809A (ja) 電池用撥水性付与剤および電池
JPWO2009063907A1 (ja) 非水系電池用正極合剤および正極構造体
JP2005063953A (ja) 非水電解液二次電池とその製造方法及び電解液二次電池用電極材料
AU2009211726B2 (en) Separator for metal halogen battery
JP2011086378A (ja) 蓄電素子電極形成用水性ペースト
WO2009116688A1 (ja) 電極およびそれを有する電池
TWI785058B (zh) 硫-碳材料複合體、鋰硫二次電池用正極材料及鋰硫二次電池
JP5768629B2 (ja) リチウム一次電池の正極活物質
KR101918445B1 (ko) 비수전해액 이차 전지용 세퍼레이터
JP2019067768A (ja) シート状空気電池、その製造方法およびパッチ
KR20180079635A (ko) 이오노머가 코팅된 탄소 구조체의 제조 방법, 그리고 이에 의하여 제조된 이오노머가 코팅된 탄소 구조체
JP2007194004A (ja) 固体高分子形燃料電池用ガス拡散層の製造方法および膜電極接合体
WO2016084864A1 (ja) 膨張黒鉛シート及びその膨張黒鉛シートを用いた電池
US10276877B2 (en) Positive electrode for air battery, and air battery using the positive electrode
JP5154104B2 (ja) リチウムイオン二次電池およびその正極板の製造方法
JP3463081B2 (ja) 電気化学反応装置用セパレータ及びそれを用いた電気化学反応装置
WO2022191150A1 (ja) 鉛蓄電池用セパレータ、および鉛蓄電池
JP2020047764A (ja) 電気二重層キャパシタ用電極および電気二重層キャパシタ
JP2019102347A (ja) 触媒層、空気極、金属空気電池及び触媒層の製造方法
JP2006318790A (ja) 固体高分子型燃料電池用ガス拡散電極とその製造方法、および固体高分子型燃料電池
WO2013169605A1 (en) Coated fluorinated carbon electrodes and coating processes
JPS62287570A (ja) ガス拡散電極用材料の製造方法
WO2024048235A1 (ja) アルカリ水電解用隔膜、アルカリ水電解セル、及び、アルカリ水電解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561923

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15519025

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015863771

Country of ref document: EP