WO2016084408A1 - 表示装置および表示装置の製造方法 - Google Patents

表示装置および表示装置の製造方法 Download PDF

Info

Publication number
WO2016084408A1
WO2016084408A1 PCT/JP2015/065169 JP2015065169W WO2016084408A1 WO 2016084408 A1 WO2016084408 A1 WO 2016084408A1 JP 2015065169 W JP2015065169 W JP 2015065169W WO 2016084408 A1 WO2016084408 A1 WO 2016084408A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
electrode
display device
forming
layer
Prior art date
Application number
PCT/JP2015/065169
Other languages
English (en)
French (fr)
Inventor
忠克 中平
寿樹 松元
Original Assignee
株式会社Joled
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Joled filed Critical 株式会社Joled
Priority to JP2016561417A priority Critical patent/JP6248288B2/ja
Publication of WO2016084408A1 publication Critical patent/WO2016084408A1/ja
Priority to US15/485,465 priority patent/US10580988B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present disclosure relates to a display device such as an organic EL (EL) display device and a method for manufacturing such a display device.
  • a display device such as an organic EL (EL) display device and a method for manufacturing such a display device.
  • EL organic EL
  • organic EL display devices that use current-driven optical elements, such as organic EL elements, whose light emission luminance varies according to the value of a flowing current as light emitting elements.
  • the light emitting element is a self light emitting element, and it is not necessary to provide a separate light source (backlight). Therefore, the organic EL display device has features such as higher image visibility, lower power consumption, and faster element response speed than a liquid crystal display device that requires a light source.
  • Such a display device has a structure in which a light emitting layer (organic electroluminescent layer) is sandwiched between electrodes (between an anode and a cathode), and this is caused by foreign matters mixed in the organic layer during the manufacturing process. As a result, a short path occurs between the electrodes, and a display defect called a so-called dark spot occurs. Therefore, a repair method for cutting the short path has been proposed (for example, Patent Document 1).
  • a reverse bias is applied between the electrodes, and the electrode material is ablated by heat generated by the reverse bias current.
  • the location where the short path is generated can be destroyed or insulated, and the lost location can be repaired.
  • the electrode is a thick film for reducing resistance. This is because deterioration of display image quality due to so-called voltage drop can be suppressed.
  • the electrode is a thick film, it is difficult to repair the dark spot by applying the reverse bias as described above.
  • a first display device includes a first electrode, an organic layer including a light emitting layer, and a second electrode in this order on a substrate.
  • the second electrode includes, in order from the organic layer side, a first conductive film that includes insulating or missing local portions and has transparency, a high-resistance layer having a higher electrical resistance than the first conductive film, and a high-resistance layer And a second conductive film formed thereon.
  • the first conductive film having transparency in the second electrode includes a local portion that is insulated or missing, and this local portion causes a foreign matter.
  • the short path to be cut is electrically disconnected.
  • the resistance of the second electrode can be reduced without increasing the thickness of the first conductive film, and the voltage drop is reduced. It is easy to suppress.
  • the presence of the high resistance layer suppresses the occurrence of re-short circuit that may occur when the second conductive film is stacked adjacent to the first conductive film. While suppressing a voltage drop in the second electrode, short paths caused by foreign substances are reduced, and the influence on display image quality due to so-called dark spots is reduced.
  • the manufacturing method of the 1st display which is one embodiment of this indication forms the 1st electrode, the organic layer containing a light emitting layer, and the 2nd electrode in this order on a substrate.
  • the second electrode after forming the first conductive film having transparency, by applying a reverse bias between the first electrode and the first conductive film to repair the dark spot, A high resistance layer having a higher electrical resistance than the first conductive film is formed on the first conductive film after repairing the dark spot, and a second conductive film is formed on the high resistance layer.
  • the first conductive film having transparency is formed, and then the first electrode and the first conductive film are formed.
  • a reverse bias in the middle heat is generated by the reverse bias current in the vicinity of the foreign matter in the first conductive film, and is locally insulated or partially blown out (deleted). The dark spot is restored.
  • the resistance of the second electrode can be reduced without increasing the thickness of the first conductive film, and the voltage drop is reduced. Easy to suppress.
  • the high resistance layer by interposing the high resistance layer, the occurrence of re-shorting in the vicinity of the foreign matter that may occur when the second conductive film is stacked adjacent to the first conductive film is suppressed. While suppressing a voltage drop in the second electrode, short paths caused by foreign substances are reduced, and the influence on display image quality due to so-called dark spots is reduced.
  • a second display device includes a first electrode, an organic layer including a light emitting layer, and a second electrode in this order on a substrate.
  • the second electrode includes, in order from the organic layer side, a first conductive film including a local portion that is insulated or missing and having transparency, and a wiring layer provided on the first conductive film.
  • the first conductive film having transparency in the second electrode includes a local portion that is insulated or missing, and this local portion causes a foreign matter.
  • the short path to be cut is electrically disconnected.
  • a first electrode, an organic layer including a light emitting layer, and a second electrode are formed in this order on a substrate.
  • a reverse bias between the first electrode and the first conductive film is formed.
  • the first conductive film having transparency is formed, and then the first electrode and the first conductive film are formed.
  • a reverse bias in the middle heat is generated by the reverse bias current in the vicinity of the foreign matter in the first conductive film, and is locally insulated or partially blown out (deleted).
  • the dark spot is restored.
  • a wiring layer on the first conductive film it is possible to reduce the resistance of the second electrode without increasing the thickness of the first conductive film, and to easily suppress a voltage drop. While suppressing a voltage drop in the second electrode, short paths caused by foreign substances are reduced, and the influence on display image quality due to so-called dark spots is reduced.
  • a first electrode, an organic layer including a light emitting layer, and a second electrode are formed in this order on a substrate.
  • the second electrode after forming the third conductive film having translucency, the first conductive film having transparency is formed, and one or both of before and after forming the first conductive film.
  • the dark spot is repaired by applying a reverse bias between the first electrode and the third conductive film or the first conductive film, and a protective film is formed on the second electrode after the second electrode is formed. After forming the dark spot, it is repaired by irradiating a laser beam.
  • the first electrode and the third conductivity are formed before or after the formation of the first conductive film, or both.
  • a reverse bias is applied between the film and the first conductive film.
  • heat is generated by the reverse bias current, and it is locally insulated or partially blown away (deleted) and destroyed. The point is repaired. Further, the dark spot repair is performed again by irradiating laser light after the formation of the second electrode and the protective film.
  • the second electrode forming the first conductive film on the third conductive film is advantageous for lowering the resistance compared to the case where the first conductive film or the third conductive film is used as a single layer, and suppresses the voltage drop. Leads to. While suppressing a voltage drop in the second electrode, short paths caused by foreign substances are reduced, and the influence on display image quality due to so-called dark spots is reduced.
  • the second electrode includes an insulating or missing local portion on the transparent first conductive film. Since the second conductive film is provided via the high resistance layer, the second electrode can be reduced in resistance, and short paths caused by foreign matters can be reduced. In addition, the occurrence of re-short circuit can be suppressed by the interposition of the high resistance layer. While suppressing the voltage drop at the second electrode, it is possible to reduce the influence on the display image quality due to the dark spot. Therefore, it is possible to suppress deterioration in display image quality.
  • the second electrode includes an insulating or missing local portion on the transparent first conductive film. Since the wiring layer is provided, it is possible to reduce the influence on the display image quality due to the dark spot while suppressing the voltage drop in the second electrode. Therefore, it is possible to suppress deterioration in display image quality.
  • the first conductive film is stacked on the third conductive film, and a predetermined reverse bias is applied.
  • the dark spot repair is performed, and the dark spot repair is performed again after the second electrode is formed.
  • FIG. 2 is a circuit diagram illustrating an example of a pixel drive circuit illustrated in FIG. 1. It is sectional drawing showing the structure of the display apparatus shown in FIG. It is sectional drawing showing the principal part structure of the organic EL element shown in FIG. It is a cross-sectional schematic diagram showing the structure of the foreign material vicinity of the organic EL element shown in FIG. 4 is a flowchart for explaining a method of manufacturing the display device shown in FIG. 3. It is a cross-sectional schematic diagram for demonstrating the formation process of the 2nd electrode shown in FIG. 4 and FIG. It is a cross-sectional schematic diagram for demonstrating the process following FIG. 7A.
  • FIG. 9 is an enlarged view of a region close to a foreign object in the image shown in FIG. 8. It is an enlarged view of the area
  • FIG. 12 is a flowchart for explaining a method of manufacturing the display device shown in FIG. 10 is a cross-sectional view illustrating a main configuration of a display device according to a third embodiment of the present disclosure.
  • FIG. FIG. 14 is a schematic plan view for explaining the configuration of the high resistance layer shown in FIG. 13.
  • FIG. 14 is a schematic plan view for explaining the configuration of the high resistance layer shown in FIG. 13. It is sectional drawing showing the principal part structure of the display apparatus which concerns on 4th Embodiment of this indication.
  • 16 is a flowchart for explaining an example of a method for manufacturing the display device shown in FIG. 15 (second electrode formation method).
  • 16 is a flowchart for explaining another example of the method for manufacturing the display device shown in FIG. 15 (method for forming a second electrode).
  • FIG. 16 is a flowchart for explaining another example of the method for manufacturing the display device shown in FIG. 15 (method for forming a second electrode). It is sectional drawing showing the principal part structure of the display apparatus which concerns on 5th Embodiment of this indication.
  • FIG. 20 is a schematic plan view for explaining the configuration of the wiring layer shown in FIG. 19.
  • FIG. 20 is a schematic plan view for explaining the configuration of the wiring layer shown in FIG. 19.
  • FIG. 20 is a flowchart for explaining a method for manufacturing the display device shown in FIG. 19 (second electrode formation method). It is sectional drawing showing the principal part structure of the display apparatus which concerns on 6th Embodiment of this indication.
  • 23 is a flowchart for explaining a method for manufacturing the display device shown in FIG.
  • First Embodiment Example of Display Device in which Second Electrode has Laminated Structure of First Conductive Film / High Resistance Layer / Second Conductive Film
  • Second Embodiment Example of Display Device in which Second Electrode has Laminated Structure of Fourth Conductive Film / First Conductive Film / High Resistance Layer / Second Conductive Film
  • Third Embodiment Example in which high resistance layer is patterned
  • Fourth Embodiment Example of Display Device in which Second Electrode has Laminated Structure of Fourth Conductive Film / First Conductive Film
  • FIG. 1 illustrates a configuration of a display device (display device 1) according to the first embodiment of the present disclosure.
  • the display device 1 is, for example, an organic EL display device, and a plurality of pixels (subpixels) PXLC are arranged in a display area 110 on the substrate 11 in a matrix, for example.
  • Each pixel PXLC includes an organic EL element 10A, for example, red light LR (wavelength 620 nm to 750 nm), green light LG (wavelength 495 nm to 570 nm), blue light LB (wavelength 450 nm to 495 nm), or white light LW. Is generated.
  • a signal line driver circuit 120 and a scanning line driver circuit 130 are provided around the display area 110.
  • an active drive circuit (pixel drive circuit 140) is provided in the display area 110.
  • the pixel driving circuit 140 includes a driving transistor Tr1 and a writing transistor Tr2, and a capacitor Cs is provided between the transistors Tr1 and Tr2.
  • the organic EL element 10A is connected in series with the transistor Tr1 between the first power supply line (Vcc) and the second power supply line (GND).
  • the signal line driver circuit 120 supplies an image signal to the source electrode of the transistor Tr2 through a plurality of signal lines 120A arranged in the column direction.
  • the scanning line driving circuit 130 sequentially supplies a scanning signal to the gate electrode of the transistor Tr2 through a plurality of scanning lines 130A arranged in the row direction.
  • FIG. 3 shows a cross-sectional configuration of the display device shown in FIG. Note that FIG. 3 shows a region corresponding to the four-color pixel PXLC.
  • the display device 1 is a so-called top emission type (top emission type) organic EL display device in which, for example, light generated in the organic EL element 10 ⁇ / b> A is extracted above the sealing substrate 20.
  • the organic EL element 10A has an element structure that emits white light, and the white light emitted from each organic EL element 10A passes through the color filter 19 (19R, 19G, 19B, 19W).
  • the light LR, LG, LB, LW is emitted.
  • the organic EL element 10 ⁇ / b> A is provided between the drive substrate 10 and the sealing substrate 20.
  • a pixel driving circuit 140 (only the TFT 12 corresponding to the transistor Tr1 is shown in FIG. 3) for driving each organic EL element 10A is formed on the substrate 11, and the surface is flat. It is covered with the chemical layer 13.
  • a first electrode 14 as an anode is provided on the planarization layer 13, for example. The first electrode 14 is electrically connected to the TFT 12 provided on the drive substrate 10.
  • a first electrode 14, a bank (inter-pixel insulating film) 15, an organic layer 16 including a light emitting layer, and a second electrode 17 as a cathode, for example, are stacked in this order from the drive substrate 10 side.
  • a protective film 18 is formed on the second electrode 17.
  • a sealing substrate 20 is bonded onto the protective film 18 with an adhesive layer 21 therebetween.
  • a color filter layer 19 including color filters 19R, 19G, 19B, 19W and a black matrix layer BM is formed on the sealing substrate 20, a color filter layer 19 including color filters 19R, 19G, 19B, 19W and a black matrix layer BM is formed.
  • the black matrix layer BM is formed in a lattice shape, and the color filters 19R, 19G, 19B, and 19W are formed in the lattice-like openings of the black matrix layer BM.
  • the substrate 11 is made of, for example, glass, silicon (Si) or resin.
  • the TFT 12 is, for example, a bottom gate type thin film transistor (TFT: Thin Film Transistor), and is composed of, for example, a MOSFET (Metal Oxide Semiconductor Semiconductor Field Effect Transistor).
  • TFT Thin Film Transistor
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Effect Transistor
  • a gate electrode 121 patterned through an insulating film, a gate insulating film 122, a semiconductor thin film 123 forming a channel, and an interlayer insulating film 124 are stacked in this order on the substrate 11. Yes.
  • a source electrode 125a and a drain electrode 125b are formed on both ends of the semiconductor thin film 123, and the first electrode 14 is electrically connected to the drain electrode 125b.
  • the transistor 12 is not limited to such a bottom gate type but may be a top gate type.
  • the transistor 12 may be made of crystalline silicon, amorphous silicon, or the like, or may be made of an oxide semiconductor
  • the planarizing layer 13 is for planarizing the surface of the drive substrate 10 and forming the thickness of each layer of the organic EL element 10A uniformly.
  • the constituent material of the planarizing layer 13 include organic materials such as polyimide resin, acrylic resin, and novolac resin, or inorganic materials such as silicon oxide (SiO 2 ), silicon nitride (SiN x ), and silicon oxynitride (SiON). Is mentioned.
  • the first electrode 14 is electrically separated for each pixel and has, for example, light reflectivity. It is desirable to have as high reflectivity as possible in order to increase the light emission efficiency. In addition, since the first electrode 14 is used as an anode, it is preferable that the first electrode 14 is made of a material having a high hole injection property.
  • the constituent materials of the first electrode 14 include chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), tungsten (W), titanium (Ti), Examples include simple elements or alloys of metal elements such as tantalum (Ta) or silver (Ag).
  • the bank 15 is for electrically isolating the first electrode 14 for each pixel and ensuring insulation between the first electrode 14 and the second electrode 17.
  • the bank 15 has an opening in a selective region facing each first electrode 14, and forms each light emitting region of the organic EL element 10A.
  • the bank 15 is made of an insulating material such as silicon oxide, polyimide, or photosensitive resin.
  • the organic layer 16 includes a light emitting layer (organic electroluminescent layer).
  • the organic layer 16 is a white light emitting layer common to each organic EL element 10A.
  • the organic layer 16 includes, for example, a hole transport layer (HTL: Hole Transport Layer), a hole injection layer (HIL: Hole Injection Layer), an electron transport layer (ETL: Electron Transport Layer) in addition to the light emitting layer. May be included.
  • an electron injection layer EIL: Electron Injection Layer
  • LiF an electron injection layer
  • the second electrode 17 is light transmissive and is formed over the entire display area in common with each organic EL element 10A here.
  • the second electrode 17 includes a transparent conductive film (transparent conductive film) or a translucent conductive film.
  • FIG. 4 is an enlarged view of the element structure of the organic EL element 10A.
  • the second electrode 17 has a multilayer structure including the transparent conductive film as described above. Specifically, the second electrode 17 is formed by laminating a first conductive film 17A, a high resistance layer 17B, and a second conductive film 17C in order from the organic layer 16 side.
  • the first conductive film 17A and the second conductive film 17C are both composed of the transparent conductive film as described above.
  • the first conductive film 17A and the second conductive film 17C are made of the same material (for example, IZO). ).
  • the first conductive film 17A is formed before a repair process described later, and is configured by a transparent conductive film.
  • the transmittance of the first conductive film 17A is 80% or more (average value) at a wavelength of 400 to 700 nm, and the electrical resistivity is, for example, 10 ⁇ 3 ⁇ ⁇ cm to 10 ⁇ 4 ⁇ ⁇ cm.
  • the thickness of the first electrode 17A is desirably a thickness that can be sufficiently insulated by applying a reverse bias in a repair process described later, for example, 1 nm to 100 nm.
  • the transparent conductive film material include indium zinc oxide (IZO).
  • the first conductive film 17A can be formed, for example, by sputtering.
  • the high resistance layer 17B is formed after a repair process described later, and is made of, for example, niobium oxide (NbO x ) or zinc oxide.
  • the transmittance of the high resistance layer 17B is 80% or more (average value) at a wavelength of 400 to 700 nm, and the electrical resistivity is, for example, 10 4 ⁇ ⁇ cm to 10 6 ⁇ ⁇ cm.
  • the thickness of the high resistance layer 17B is, for example, not less than 1 nm and not more than 2000 nm.
  • the thickness of the high resistance layer 17B is such that in the first conductive film 17A after application of the reverse bias, a gap in the vicinity of the foreign material is filled and no short circuit occurs between the second conductive film 17C and the first conductive film 17A. It is desirable to set the thickness.
  • the second conductive film 17C is made of the same material (for example, IZO) as the first conductive film 17A.
  • the thickness of the second conductive film 17C is not particularly limited, but is desirably larger than the first conductive film 17A, for example, 100 nm or more and 2000 nm or less in order to reduce resistance. This is because a desired resistance value can be obtained.
  • FIG. 5 schematically shows the element structure of the organic EL element 10A (in the vicinity of the foreign matter X).
  • the first conductive film 17A has a portion (local portion 17a1) that is insulated (or blown away) in the vicinity of the foreign matter X (first portion 17a1). 1) A part of the conductive film 17A is locally insulated or missing.
  • the local portion 17a1 is formed by applying a reverse bias in a repair process to be described later, and serves to electrically cut a short path caused by the foreign matter X between the first electrode 14 and the first conductive film 17A. have.
  • the local portions 17 a 1 are scattered at a plurality of locations corresponding to the locations where the foreign matter X exists in the plane of the second electrode 17.
  • the protective film 18 is made of, for example, silicon nitride, silicon oxide, or metal oxide.
  • An adhesive layer 21 made of, for example, a thermosetting resin or an ultraviolet curable resin is formed between the protective film 18 and the sealing substrate 20.
  • the sealing substrate 20 is made of a transparent material (for example, glass).
  • the color filter layer 19 may be provided on either the light incident side (element side) or the light emission side of the sealing substrate 20.
  • the color filter layer 19 is provided on the light incident side surface.
  • the color filters 19R, 19G, 19B, and 19W are provided to face the organic EL element 10A, respectively.
  • the color filters 19R, 19G, and 19B selectively transmit red light, green light, and blue light.
  • the color filter 19W is, for example, for obtaining desired whiteness, and is a filter for adjusting chromaticity or luminance. Note that the color filter 19W may not be particularly provided.
  • FIG. 6 shows the flow of the manufacturing process of the display device 1 as described above.
  • the drive substrate 10 is formed (step S1).
  • the pixel driving circuit 140 including the above-described transistors Tr1 and Tr2, the capacitor Cs, and the like is formed on the substrate 11 by, for example, a low-temperature polysilicon process.
  • the planarization layer 13 is formed on the entire surface of the substrate 11, a contact hole or the like is formed by patterning.
  • the first electrode 14 is formed on the planarization layer 13 of the drive substrate 10 (step S2). Specifically, for example, the first electrode 14 made of the above-described material is formed on the planarizing layer 13 by, for example, a sputtering method, and then patterned by, for example, etching using a photolithography method.
  • step S3 the bank 15 is formed. Specifically, after forming the insulating material described above, an opening is formed in a region facing the first electrode 14 by patterning.
  • the organic layer 16 is formed (step S4).
  • a white light emitting layer made of the above-described material or the like is formed by, for example, a vacuum evaporation method.
  • a hole injection layer, a hole transport layer, an electron transport layer, and the like may be continuously formed by an integrated vacuum process.
  • the second electrode 17 is formed (step S5).
  • 7A to 7C schematically show a part of the process of forming the second electrode 17. Specifically, first, as shown in FIG. 7A, the first conductive film 17A made of the above-described material or the like is formed on the organic layer 16 by, eg, sputtering (step S51).
  • a reverse bias is applied between the formed first conductive film 17A and the first electrode 14, for example, in the range of DC voltage ⁇ 1V to ⁇ 60V for 1 second or longer, preferably Apply at DC voltage -40V for 15 minutes.
  • the reverse bias is not limited to a DC voltage, but may be an AC voltage.
  • the reverse bias may be applied in an oxygen atmosphere.
  • the first conductive film 17A is insulated or blown away to be lost (a local portion 17a1 is formed), the short path caused by the foreign matter X is electrically cut, and the dark spot is repaired (removed).
  • Step S52 Thereafter, as shown in FIG.
  • the high resistance layer 17 is formed by, for example, sputtering so as to fill a gap in the vicinity of the foreign matter X in the organic layer 16 in FIG. 7B. At this time, it is desirable that the high resistance layer 17 is formed so as not to cause an electrical short circuit between the first transparent conductive film 17A and the second conductive film 17C formed thereafter.
  • FIG. 8 shows a cross-sectional STEM image of the element after applying a reverse bias.
  • an organic layer 16 a transparent conductive film 17A (cathode) made of IZO, and a protective film 18 (SiN) are stacked on the first electrode 14 (anode).
  • a tungsten layer for cross-sectional STEM analysis was formed on the protective film 18.
  • Foreign matter X is observed in the SiN film of the protective film 18.
  • a reverse bias ⁇ 40 V, 15 minutes
  • FIG. 9A shows an enlarged view of area a1 in FIG. 8, and FIG. 9B shows an enlarged view of area a2 in FIG.
  • the thickness of the IZO is increased compared to the region a2.
  • IZO is connected in a layered manner, whereas in the region a1, it is presumed that the IZO aggregates into particles due to application of a reverse bias, thereby insulating.
  • the second conductive film 17C made of the above-described material and thickness is formed, for example, by sputtering or the like (step S53). In this way, the second electrode 17 is formed.
  • a protective film 18 is formed on the second electrode 17 by, for example, a CVD (Chemical Vapor Deposition) method (Step S6). Finally, the sealing substrate 20 on which the color filter layer 19 is formed is bonded (step S7). Thereby, the display device 1 shown in FIG. 3 is completed.
  • CVD Chemical Vapor Deposition
  • a scanning signal is supplied from the scanning line driving circuit 130 to the gate of the transistor Tr2 of each pixel, and the signal line driving circuit 120
  • the image signal is supplied to the holding capacitor Cs via the transistor Tr2 and held.
  • the transistor Tr1 is on / off controlled in accordance with the signal held in the holding capacitor Cs, whereby a drive current (drain current Ids) is injected into the organic EL element 10A.
  • a drive current drain current Ids
  • this driving current is injected into the light emitting layer of the organic layer 16 through the first electrode 14 and the second electrode 17, light emission occurs in the organic layer 16 due to recombination of holes and electrons.
  • white light is generated from the organic layer 16 of each organic EL element 10A.
  • each organic EL element 10A When white light is generated from each organic EL element 10A, the white light is transmitted through the second electrode 17, the color filter layer 19 (any one of 19R, 19G, 19B, and 19W) and the sealing substrate 20 to display the display device. 1 is emitted upward. Thus, image display is performed in which a set of organic EL elements 10A that emit light of R, G, B, and W colors is used as one pixel.
  • the transparent first conductive film 17 ⁇ / b> A includes an insulating or missing local portion (local portion 17 a 1 in FIG. 5).
  • the local portion 17a1 is formed by applying a reverse bias in the manufacturing process, and the local portion 17a1 electrically cuts a short path caused by a foreign substance.
  • the second conductive film 17C is laminated on the first conductive film 17A via the high resistance layer 17B, thereby reducing the resistance of the second electrode 17 without increasing the thickness of the first conductive film 17A. It is easy to suppress voltage drop.
  • the thick transparent conductive film 17 ⁇ / b> C is directly (adjacently adjacent) on the transparent conductive film 17 ⁇ / b> A after the dark spot repair is performed by applying the reverse bias. ) If formed, a re-short may occur.
  • the second conductive film 17C is formed on the first conductive film 17A via the high resistance layer 17B as in the present embodiment, the occurrence of such a re-short circuit can be suppressed. Therefore, it is possible to reduce the short path caused by the foreign matter while reducing the resistance of the second electrode 17 to suppress the voltage drop, and to reduce the influence on the display image quality due to the dark spot.
  • the second electrode 17 includes the insulating or missing local portion 17a1 and the second conductive layer on the transparent first conductive film 17A via the high resistance layer 17B. Since the film 17C is provided, it is possible to reduce the short path caused by the foreign matter while reducing the resistance of the second electrode 17. In addition, the occurrence of re-short circuit can be suppressed by the interposition of the high resistance layer 17B. While suppressing the voltage drop at the second electrode 17, the influence on the display image quality due to the dark spot can be reduced. Therefore, it is possible to suppress deterioration in display image quality.
  • FIG. 11 illustrates a main configuration of a display device according to the second embodiment of the present disclosure.
  • This embodiment differs from the first embodiment in that a third conductive film 17D is further formed between the first conductive film 17A and the organic layer 16 in the second electrode 17.
  • the second electrode 17 of the present embodiment includes a third conductive film 17D, a first conductive film 17A, a high resistance layer 17B, and a second conductive film 17C in this order from the organic layer 16 side. Yes.
  • the third conductive film 17D functions as a cathode and is provided for the purpose of optical adjustment.
  • the third conductive film 17D also has a role of absorbing laser light when repairing a dark spot by laser irradiation described later.
  • the third conductive film 17D is made of a semi-transparent conductive film such as an alloy of magnesium (Mg) and silver (Ag) (MgAg: magnesium silver).
  • the thickness of the third conductive film 17D is, for example, not less than 1 nm and not more than 20 nm. Considering the viewing angle characteristics, it is desirable that the thickness is 5 nm or more and 10 nm or less.
  • FIG. 12 shows the flow of the manufacturing method of the display device of the present embodiment.
  • the procedure for forming the laminated structure in the step of forming the second electrode 17 step S8 and the dark spot repair (dark spot repair) again after the sealing substrate 20 is bonded.
  • This is different from the first embodiment in that it is performed.
  • the steps from the formation of the driving substrate 10 to the formation of the organic layer 16 steps S1 to S4), the formation of the protective film 18 (step S6), and the adhesion of the sealing substrate 20 (step S7) are described above. This is the same as the embodiment.
  • the second electrode 17 is formed as follows (step S8). Specifically, first, the third conductive film 17D made of the above-described material or the like is formed by, for example, vapor deposition or sputtering (step S81). Thereafter, the first conductive film 17A made of the above-described material or the like is formed in the same manner as in the first embodiment (step S82). Subsequently, a reverse bias is applied between the first conductive film 17A and the first electrode 14 in the same manner as in the first embodiment.
  • the first conductive film 17A is insulated or blown away to be lost, and the short path caused by the foreign matter X can be electrically disconnected to repair (remove) the location that becomes a dark spot (step S83).
  • the high resistance layer 17 is formed in the same manner as in the first embodiment (step S84).
  • a second conductive film 17C is formed on the high resistance layer 17 in the same manner as in the first embodiment (step S85). In this way, the second electrode 17 is formed.
  • the dark spot repair (dark spot repair) is performed again by irradiating the laser beam (step S9).
  • a YAG laser having a wavelength of 1064 nm is used to blow off a short portion (only the third conductive film 17D or both the third conductive film 17D and the first conductive film 17A) around the foreign matter.
  • the short path by a foreign material is electrically cut
  • the dark spot repair by laser irradiation is performed after sealing, the second dark spot repair may be performed after the protective film 18 is formed and before the sealing substrate 20 is bonded.
  • the second conductive film 17C is formed through the high resistance layer 17B.
  • An effect equivalent to that of the embodiment can be obtained.
  • optical adjustment can be performed and the dark spot repair can be performed twice. it can.
  • FIG. 13 illustrates a main configuration of a display device according to the third embodiment of the present disclosure.
  • the high resistance layer 17B is patterned, and the high resistance layer 17B has a portion (part S1 (first portion)) selectively removed. This is different from the first embodiment.
  • the high resistance layer 17B according to the present embodiment is selectively removed (high resistance) at least at a part (between pixels) excluding the pixel opening H1 (opening portion of the bank 15), for example. A portion S1 where the layer 17B is not formed).
  • the high resistance layer 17B is selectively removed in the strike-type portion S1 along the row direction or the column direction of the pixel opening H1.
  • a high resistance layer 17B can be formed by using a predetermined mask at the time of film formation, for example.
  • the same effect as that of the first embodiment can be obtained by the laminated structure of the first conductive film 17A, the high resistance layer 17B, and the second conductive film 17C. Further, since the high resistance layer 17B has the portion S1 from which the high resistance layer 17B has been selectively removed, the first conductive film 17A and the second conductive film 17C can be electrically connected in the portion S1. Thereby, the voltage drop in the 2nd electrode 17 can be suppressed more effectively.
  • FIG. 15 illustrates a main configuration of a display device according to the fourth embodiment of the present disclosure.
  • the present embodiment is different from the first embodiment in that the second electrode 17 is configured by a laminated film of a third conductive film 17D and a first conductive film 17A.
  • a third conductive film 17D and a first conductive film 17A are stacked in this order from the organic layer 16 side, and are protected on the first conductive film 17A.
  • a film 18 is formed.
  • FIG. 16 shows the flow of the manufacturing method of the display device of this embodiment (method of forming the second electrode 17).
  • the process before the formation of the second electrode 17 (steps S1 to S4) and the process after the formation of the second electrode 17 (steps S6 and S7) are the same as those in the first embodiment.
  • a dark spot repairing step (step S9) by laser irradiation is performed in the same manner as in the second embodiment.
  • the second electrode 17 is formed as follows.
  • the third conductive film 17D made of the above-described material or the like is formed in the same manner as in the second embodiment (step S10).
  • the first conductive film 17A is formed in the same manner as in the first embodiment (step S11).
  • a reverse bias is applied between the first conductive film 17A and the first electrode 14 under the same conditions as in the first embodiment (step S12).
  • the short path by a foreign material is electrically cut
  • a reverse bias is applied between the first electrode 14 and the first conductive film 17A after the formation of the third conductive film 17D and the first conductive film 17A.
  • the timing is not limited to this.
  • the third conductive film 17D is formed (step S13), and then a reverse bias is applied between the first electrode 14 and the third conductive film 17D (step S14).
  • the applied voltage and the application time are the same as the reverse bias application conditions in the first embodiment. Thereby, the short path
  • the first conductive film 17A is formed on the third conductive film 17D by, for example, sputtering (step S15). In this way, the second electrode 17 can be formed.
  • a reverse bias may be applied after the second electrode 17 is formed.
  • the third conductive film 17D is formed (step S16), and then a reverse bias is applied between the first electrode 14 and the third conductive film 17D (step S17).
  • the first conductive film 17A is formed (step S18), and a reverse bias is applied again between the formed first conductive film 17A and the first electrode 14 (step S19).
  • the applied voltage, the application time, and the like are the same as the reverse bias application conditions in the first embodiment. Thereby, the short path
  • the repair process when the repair process by laser irradiation after the subsequent sealing is also combined, the repair process is performed three times in total.
  • the timing of the dark spot repair is not particularly limited, and can be performed once or a plurality of times.
  • the first conductive film 17A is formed on the third conductive film 17D, so that the resistance of the second electrode 17 is reduced compared to the case where the first conductive film 17A is used as a single layer. It is easy and is advantageous for voltage drop suppression.
  • a dark spot is repaired by laser irradiation after sealing, a point where insulation is insufficient due to a single dark spot repair (recovered dark spot by applying a reverse bias) occurs. This can be removed in the second spot repair.
  • FIG. 19 illustrates a main configuration of a display device according to the fifth embodiment of the present disclosure.
  • the second electrode 17 is different from the first embodiment in that the second electrode 17 is composed of a laminated film of a third conductive film 17D, a first conductive film 17A, and a wiring layer 17E. ing.
  • a third conductive film 17D, a first conductive film 17A, and a wiring layer 17E are stacked in this order from the organic layer 16 side.
  • a protective film 18 is formed.
  • the wiring layer 17E is patterned on the first conductive film 17A. Specifically, the wiring layer 17E is formed to extend to a selective region (between pixels) excluding the pixel opening H1 (opening portion of the bank 15), for example. As an example, as shown in FIG. 20A, in a plan view, the pixel openings H1 are formed in a streak shape along the row direction or the column direction, or as shown in FIG. It is formed in a matrix form.
  • FIG. 21 shows the flow of the manufacturing method of the display device of this embodiment (method of forming the second electrode 17).
  • the process before the formation of the second electrode 17 (steps S1 to S4) and the process after the formation of the second electrode 17 (steps S6 and S7) are the same as those in the first embodiment.
  • a dark spot repairing step (step S9) by laser irradiation is performed in the same manner as in the second embodiment.
  • the second electrode 17 is formed as follows.
  • the third conductive film 17D made of the above-described material or the like is formed in the same manner as in the second embodiment (step S20).
  • the first conductive film 17A is formed in the same manner as in the first embodiment (step S21).
  • a reverse bias is applied between the first conductive film 17A and the first electrode 14 under the same conditions as in the first embodiment (step S22). Thereby, the short path by a foreign material is electrically cut
  • the wiring layer 17E is formed on the first conductive film 17A so as to have, for example, a stripe shape or a matrix shape in plan view.
  • a wiring layer 17E is formed by using, for example, a high-definition mask, molybdenum (Mo), IZO, or the like, for example, by sputtering.
  • Mo molybdenum
  • IZO IZO
  • aluminum (Al), silver, or the like may be formed, for example, by a vapor deposition method using a high-definition mask.
  • a low nano-ink conductive material containing any of silver, aluminum, tin (Sn), zinc (Zn), copper (Cu), and gold (Au) is printed using a printing method (for example, reverse printing, offset printing). , Spray coating, ink jet printing, stripe coating, screen printing, etc.).
  • the resistance of the second electrode 17 can be reduced without increasing the thickness of the first conductive film 17A. It is easy to suppress the descent. Therefore, it is possible to reduce a short path caused by a foreign substance while suppressing a voltage drop in the second electrode 17 and obtain substantially the same effect as in the first and second embodiments.
  • FIG. 22 illustrates a main configuration of a display device according to the sixth embodiment of the present disclosure.
  • the present embodiment is different from the first embodiment in that the second electrode 17 is configured by a laminated film of the first conductive film 17A and the wiring layer 17E.
  • the first conductive film 17A and the wiring layer 17E are laminated in this order from the organic layer 16 side, and the protective film 18 is formed on the wiring layer 17E.
  • the constituent material and planar layout of the wiring layer 17E are the same as those described in the fifth embodiment.
  • FIG. 23 shows the flow of the method for manufacturing the display device according to the present embodiment (method for forming the second electrode 17).
  • the process before the formation of the second electrode 17 (steps S1 to S4) and the process after the formation of the second electrode 17 (steps S6 and S7) are the same as those in the first embodiment.
  • a dark spot repairing step (step S9) by laser irradiation is performed in the same manner as in the second embodiment.
  • the second electrode 17 is formed as follows.
  • the first conductive film 17A made of the above-described material or the like is formed in the same manner as in the first embodiment (step S24). Thereafter, a reverse bias is applied between the first conductive film 17A and the first electrode 14 under the same conditions as in the first embodiment (step S25). Thereby, the short path by a foreign material is electrically cut
  • the resistance of the second electrode 17 can be reduced without increasing the thickness of the first conductive film 17A. Therefore, substantially the same effect as that of the first embodiment can be obtained.
  • the 2nd electrode in the display apparatus of this indication can take various structures besides the laminated structure of the 2nd electrode 17 quoted by said each embodiment.
  • the stacked structure may include at least the first conductive film 17A among the first conductive film 17A, the high resistance layer 17B, the second conductive film 17C, the third conductive film 17D, and the wiring layer 17E.
  • the structure using the high resistance layer 17B as in the first and second embodiments is desirable.
  • the configuration using the high resistance layer 17B can be the configuration shown in FIGS. 24A to 24C. Specifically, in the example of FIG.
  • the second electrode 17 includes a first conductive film 17A, a high resistance layer 17B, and a wiring layer 17E in this order from the organic layer 16 side.
  • the second electrode 17 includes, in order from the organic layer 16 side, a first conductive film 17A, a high resistance layer 17B, a wiring layer 17E, and a second conductive film 17C. Yes.
  • the second electrode 17 includes a third conductive film 17D, a first conductive film 17A, a high resistance layer 17B, and a wiring layer 17E in this order from the organic layer 16 side. Yes.
  • the second conductive film 17B may be further formed on the wiring layer 17E.
  • the display devices described in the above embodiments and modifications can be used for electronic devices in various fields that display a video signal input from the outside or a video signal generated inside as a video. An example is shown below.
  • the smartphone 220 includes, for example, a display unit 221 and an operation unit 222 on the front side, a camera 223 on the back side, and the display unit 221 includes the display device of the above embodiment.
  • FIG. 26 shows the appearance of the tablet personal computer 240.
  • the tablet personal computer 240 includes, for example, a touch panel unit 241 and a housing 242, and the display device of the above embodiment is mounted on the touch panel unit 241.
  • FIG. 27 shows the appearance of the television apparatus 250.
  • the television apparatus 250 includes a main body 251 and a stand 252.
  • the display device of the above embodiment is mounted on the main body portion 251.
  • FIG. 28A and 28B show the appearance of the mobile phone 290.
  • FIG. The cellular phone 290 is formed by, for example, connecting an upper housing 291 and a lower housing 292 with a connecting portion (hinge portion) 293, and includes a display 294, a sub display 295, a picture light 296, and a camera 297. ing.
  • the display device of the above embodiment is mounted on the display 294 or the sub display 295.
  • FIG. 29A and FIG. 29B show the appearance of the digital single-lens reflex camera 410.
  • the digital single lens reflex camera 410 includes, for example, a main body 411, a lens 412, a grip 413, a display unit 414, a viewfinder 415, and the like.
  • the display device of the above embodiment is mounted on the display unit 414 or the viewfinder 415.
  • FIG. 30 shows the appearance of the head mounted display 420.
  • the head mounted display 420 includes a glasses-type display unit 421 and a support unit 422, for example.
  • the display device of the above embodiment is mounted on the display portion 421.
  • the digital still camera 520 includes, for example, a flash light emitting unit 521, a display unit 522, a menu switch 523, and a shutter button 524.
  • the display device of the above embodiment is mounted on the display portion 522.
  • FIG. 32 shows the appearance of the notebook personal computer 530.
  • the notebook personal computer 530 includes, for example, a main body 531, a keyboard 532 for inputting characters and the like, and a display unit 533 for displaying an image.
  • the display device of the above embodiment is mounted on the display portion 533.
  • FIG. 33 shows the appearance of the video camera 540.
  • the video camera 540 includes, for example, a main body 541, a subject shooting lens 542 provided on the front side surface of the main body 610, a start / stop switch 543 during shooting, and a display 544.
  • the display device of the above embodiment is mounted on the display portion 544.
  • the reverse bias voltage may be applied only to a selective region that is a dark spot target, or the reverse bias voltage may be applied to a wide area including the dark spot portion. Also good. According to the latter method, the time required for the repair operation can be shortened, which is advantageous for mass production. A reverse bias voltage is also applied to the normal part, but only the improvement effect of the repair rate can be enjoyed by appropriately controlling the application conditions.
  • the second electrode 17 has a two-layer or three-layer structure is illustrated, but a multilayer film including four or more layers including other films may be used.
  • each layer described in the above embodiment and the like are not limited to those listed, and may be other materials and thicknesses.
  • the display device does not have to include all the layers described above, or may include other layers in addition to the layers described above.
  • the effect demonstrated in the said embodiment etc. is an example, The other effect may be sufficient and the other effect may be included.
  • the present disclosure may be configured as follows. (1) On the substrate, a first electrode, an organic layer including a light emitting layer, and a second electrode are provided in this order, The second electrode is sequentially from the organic layer side. A first conductive film that includes insulating or missing local portions and is transparent; A high resistance layer having a higher electrical resistance than the first conductive film; A display device comprising: a second conductive film formed on the high resistance layer. (2) The display device according to (1), wherein the second conductive film includes a transparent conductive film having a thickness larger than that of the first conductive film. (3) The display device according to (1) or (2), wherein the second electrode includes a third conductive film having translucency between the organic layer and the first conductive film.
  • the thickness of the first conductive film is not less than 1 nm and not more than 100 nm.
  • a first electrode, an organic layer including a light emitting layer, and a second electrode are formed in this order, When forming the second electrode, After forming the first conductive film having transparency, the reverse spot is repaired by applying a reverse bias between the first electrode and the first conductive film, Forming a high resistance layer having a higher electrical resistance than the first conductive film on the first conductive film after repairing the dark spot, A method for manufacturing a display device, comprising forming a second conductive film on the high-resistance layer. (12) The method for manufacturing a display device according to (11), wherein the second conductive film includes a transparent conductive film having a thickness larger than that of the first conductive film.
  • (16) A plurality of pixels arranged two-dimensionally; The display device according to (15), wherein the wiring layer is formed extending in a region between the pixels and has a stripe shape or a lattice shape in plan view.
  • (17) The display device according to (15) or (16), wherein the second electrode includes a third conductive film having translucency between the organic layer and the first conductive film.
  • a first electrode, an organic layer including a light emitting layer, and a second electrode are formed in this order,
  • the reverse spot is repaired by applying a reverse bias between the first electrode and the first conductive film,
  • a method for manufacturing a display device comprising forming a wiring layer after repairing the dark spot.
  • a first electrode, an organic layer including a light emitting layer, and a second electrode are formed in this order, When forming the second electrode, After forming the third conductive film having translucency, forming the first conductive film having transparency, By applying a reverse bias between the first electrode and the third conductive film or the first conductive film in one or both of before and after forming the first conductive film, Repair, A method for manufacturing a display device, comprising: forming a protective film on the second electrode after forming the second electrode; and repairing the dark spot by irradiating a laser beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 表示装置は、基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に備える。第2電極は、有機層の側から順に、絶縁化または欠損した局所部分を含むと共に透明性を有する第1導電膜と、第1導電膜よりも電気抵抗の高い高抵抗層と、高抵抗層上に形成された第2導電膜とを有する。

Description

表示装置および表示装置の製造方法
 本開示は、例えば有機EL(EL:Electroluminescence)表示装置などの表示装置およびそのような表示装置の製造方法に関する。
 近年、画像表示を行う表示装置の分野では、発光素子として、流れる電流値に応じて発光輝度が変化する電流駆動型の光学素子、例えば有機EL素子を用いた表示装置(有機EL表示装置)が開発され、商品化が進められている。発光素子は、液晶素子などと異なり自発光素子であり、別に光源(バックライト)を設ける必要がない。そのため、有機EL表示装置は、光源を必要とする液晶表示装置と比べて画像の視認性が高く、消費電力が低く、かつ素子の応答速度が速いなどの特徴を有する。
 このような表示装置では、電極間(アノードおよびカソード間)に発光層(有機電界発光層)を挟んだ構造を有するが、製造プロセス過程において、有機層内に異物が混入すると、これに起因して電極間にショートパスが生じ、いわゆる滅点とよばれる表示不良が生じる。そこで、このショートパスを切断する修復手法が提案されている(例えば、特許文献1)。
特開2005-340149号公報
 上記特許文献1の手法では、電極間に逆方向バイアスを印加し、逆バイアス電流による発熱によって電極材料をアブレーションさせる。これにより、ショートパスの生じている箇所を破壊または絶縁化し、滅点箇所を修復することができる。ここで、電極として透明性を有する導電膜を用いた場合、低抵抗化のために厚膜であることが望ましい。いわゆる電圧降下に起因する表示画質の劣化を抑制できるためである。しかしながら、電極が厚膜である場合、上記のような逆バイアス印加による滅点の修復を行うことは困難である。
 このように、電極の低抵抗化による電圧降下の抑制と、異物などに起因する滅点修復との両方を実現し、表示画質の劣化を抑制することが可能な表示装置の実現が望まれている。
 したがって、表示画質の劣化を抑制することが可能な表示装置およびその製造方法を提供することが望ましい。
 本開示の一実施形態である第1の表示装置は、基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に備える。第2電極は、有機層の側から順に、絶縁化または欠損した局所部分を含むと共に透明性を有する第1導電膜と、第1導電膜よりも電気抵抗の高い高抵抗層と、高抵抗層上に形成された第2導電膜とを有するものである。
 本開示の一実施形態である第1の表示装置では、第2電極において、透明性を有する第1導電膜が、絶縁化または欠損した局所部分を含むことで、この局所部分により、異物に起因するショートパスが電気的に切断される。この第1導電膜上に、高抵抗層を介して第2導電膜が積層されることにより、第1導電膜を厚膜化せずに第2電極を低抵抗化することができ、電圧降下を抑制し易い。また、高抵抗層の介在により、第1導電膜に隣接して第2導電膜を積層した場合に生じ得る再ショートの発生が抑制される。第2電極における電圧降下を抑制しつつ、異物に起因するショートパスが削減され、いわゆる滅点による表示画質への影響が軽減される。
 本開示の一実施形態である第1の表示装置の製造方法は、基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に形成するものである。第2電極を形成する際には、透明性を有する第1導電膜を形成した後、第1電極と第1導電膜との間に逆方向バイアスを印加することにより滅点箇所を修復し、滅点箇所を修復後の第1導電膜上に、第1導電膜よりも電気抵抗の高い高抵抗層を形成し、高抵抗層上に第2導電膜を形成する。
 本開示の一実施形態である第1の表示装置の製造方法では、第2電極を形成する際に、透明性を有する第1導電膜を形成した後、第1電極と第1導電膜との間に逆方向バイアスを印加することにより、第1導電膜のうちの異物付近では、逆バイアス電流によって発熱が生じ、局所的に絶縁化されるか、または一部が吹き飛ばされ(欠損し)、滅点箇所が修復される。この第1導電膜上に、高抵抗層を介して第2導電膜を形成することにより、第1導電膜を厚膜化せずに第2電極を低抵抗化することができ、電圧降下を抑制し易い。また、高抵抗層を介在させることにより、第1導電膜に隣接して第2導電膜を積層した場合に生じ得る異物付近での再ショートの発生が抑制される。第2電極における電圧降下を抑制しつつ、異物に起因するショートパスが削減され、いわゆる滅点による表示画質への影響が軽減される。
 本開示の一実施形態である第2の表示装置は、基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に備える。第2電極は、有機層の側から順に、絶縁化または欠損した局所部分を含むと共に透明性を有する第1導電膜と、第1導電膜上に設けられた配線層とを有するものである。
 本開示の一実施形態である第2の表示装置では、第2電極において、透明性を有する第1導電膜が、絶縁化または欠損した局所部分を含むことで、この局所部分により、異物に起因するショートパスが電気的に切断される。この第1導電膜上に、配線層が積層されることにより、第1導電膜を厚膜化せずに第2電極を低抵抗化することができ、電圧降下を抑制し易い。第2電極における電圧降下を抑制しつつ、異物に起因するショートパスが削減され、いわゆる滅点による表示画質への影響が軽減される。
 本開示の一実施形態である第2の表示装置の製造方法は、基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に形成するものである。第2電極を形成する際には、透明性を有する第1導電膜を形成した後、第1電極と第1導電膜との間に逆方向バイアスを印加することにより滅点箇所を修復し、滅点箇所を修復後に、配線層を形成する。
 本開示の一実施形態である第2の表示装置の製造方法では、第2電極を形成する際に、透明性を有する第1導電膜を形成した後、第1電極と第1導電膜との間に逆方向バイアスを印加することにより、第1導電膜のうちの異物付近では、逆バイアス電流によって発熱が生じ、局所的に絶縁化されるか、または一部が吹き飛ばされ(欠損し)、滅点箇所が修復される。この第1導電膜上に、配線層を形成することにより、第1導電膜を厚膜化せずに第2電極を低抵抗化することができ、電圧降下を抑制し易い。第2電極における電圧降下を抑制しつつ、異物に起因するショートパスが削減され、いわゆる滅点による表示画質への影響が軽減される。
 本開示の一実施形態である第3の表示装置の製造方法は、基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に形成するものである。第2電極を形成する際には、半透明性を有する第3導電膜を形成した後、透明性を有する第1導電膜を形成し、第1導電膜を形成する前後のうちの一方または両方において、第1電極と、第3導電膜または第1導電膜との間に逆方向バイアスを印加することにより滅点箇所を修復し、第2電極の形成後において、第2電極上に保護膜を形成した後、レーザー光を照射することにより滅点箇所を修復する。
 本開示の一実施形態である第3の表示装置の製造方法では、第2電極を形成する際に、第1導電膜の形成前または形成後、あるいはその両方において、第1電極と第3導電膜または第1導電膜との間に、逆方向バイアスを印加する。これにより、第3導電膜(または第1導電膜)のうちの異物付近では、逆バイアス電流によって発熱が生じ、局所的に絶縁化されるか、または一部が吹き飛ばされ(欠損し)、滅点箇所が修復される。更に、第2電極および保護膜の形成後にレーザー光を照射することで、再度滅点修復を行う。2回の滅点修復により、1回目の修復(逆方向バイアス印加による滅点修復)において局所部分の絶縁化が不十分な箇所があった場合にも、そのような箇所を2回目の修復において修復することができ、より確実に滅点箇所が修復される。また、第2電極において、第3導電膜上に第1導電膜を形成することで、第1導電膜あるいは第3導電膜を単層で用いる場合に比べ、低抵抗化に有利となり電圧降下抑制につながる。第2電極における電圧降下を抑制しつつ、異物に起因するショートパスが削減され、いわゆる滅点による表示画質への影響が軽減される。
 本開示の一実施形態である第1の表示装置および第1の表示装置の製造方法では、第2電極において、絶縁化または欠損した局所部分を含むと共に透明性を有する第1導電膜の上に、高抵抗層を介して第2導電膜を設けるようにしたので、第2電極を低抵抗化しつつ、異物に起因するショートパスを削減することができる。また、高抵抗層の介在により、再ショートの発生を抑制できる。第2電極における電圧降下を抑制しつつ、滅点による表示画質への影響を軽減することができる。よって、表示画質の劣化を抑制することが可能となる。
 本開示の一実施形態である第2の表示装置および第2の表示装置の製造方法では、第2電極において、絶縁化または欠損した局所部分を含むと共に透明性を有する第1導電膜の上に配線層を設けるようにしたので、第2電極における電圧降下を抑制しつつ、滅点による表示画質への影響を軽減することができる。よって、表示画質の劣化を抑制することが可能となる。
 本開示の一実施形態である第3の表示装置の製造方法では、第2電極の形時において、第3導電膜上に第1導電膜を積層させると共に、所定の逆方向バイアスを印加して滅点修復を行い、第2電極形成後において再度滅点修復を行う。これにより、第2電極における電圧降下を抑制しつつ、滅点による表示画質への影響を軽減することができる。よって、表示画質の劣化を抑制することが可能となる。
 尚、上記内容は本開示の一例である。本開示の効果は、上述したものに限らず、他の異なる効果であってもよいし、更に他の効果を含んでいてもよい。
本開示の第1の実施の形態に係る表示装置の構成を表す図である。 図1に示した画素駆動回路の一例を表す回路図である。 図1に示した表示装置の構成を表す断面図である。 図3に示した有機EL素子の要部構成を表す断面図である。 図4に示した有機EL素子の異物付近の構成を表す断面模式図である。 図3に示した表示装置の製造方法を説明するための流れ図である。 図4および図5に示した第2電極の形成工程を説明するための断面模式図である。 図7Aに続く工程を説明するための断面模式図である。 図7Bに続く工程を説明するための断面模式図である。 異物付近の断面のSTEM(Scanning Transmission Electron Microscope:走査型透過電子顕微鏡)による撮影画像である。 図8に示した画像における異物に近接した領域の拡大図である。 図8に示した画像における異物から離れた領域の拡大図である。 比較例に係る表示装置の要部構成を表す断面模式図である。 本開示の第2の実施の形態に係る表示装置の要部構成を表す断面図である。 図11に示した表示装置の製造方法を説明するための流れ図である。 本開示の第3の実施の形態に係る表示装置の要部構成を表す断面図である。 図13に示した高抵抗層の構成を説明するための平面模式図である。 図13に示した高抵抗層の構成を説明するための平面模式図である。 本開示の第4の実施の形態に係る表示装置の要部構成を表す断面図である。 図15に示した表示装置の製造方法(第2電極の形成方法)の一例を説明するための流れ図である。 図15に示した表示装置の製造方法(第2電極の形成方法)の他の例を説明するための流れ図である。 図15に示した表示装置の製造方法(第2電極の形成方法)の他の例を説明するための流れ図である。 本開示の第5の実施の形態に係る表示装置の要部構成を表す断面図である。 図19に示した配線層の構成を説明するための平面模式図である。 図19に示した配線層の構成を説明するための平面模式図である。 図19に示した表示装置の製造方法(第2電極の形成方法)を説明するための流れ図である。 本開示の第6の実施の形態に係る表示装置の要部構成を表す断面図である。 図22に示した表示装置の製造方法(第2電極の形成方法)を説明するための流れ図である。 変形例に係る表示装置の要部構成を表す断面図である。 変形例に係る表示装置の要部構成を表す断面図である。 変形例に係る表示装置の要部構成を表す断面図である。 スマートフォンの構成を表す斜視図である。 スマートフォンの構成を表す斜視図である。 タブレット型パーソナルコンピュータの構成を表す斜視図である。 テレビジョン装置の構成を表す斜視図である。 携帯電話機の構成を表す平面図である。 携帯電話機の構成を表す平面図である。 デジタル一眼レフカメラの構成を表す正面図である。 デジタル一眼レフカメラの構成を表す背面図である。 ヘッドマウントディスプレイの構成を表す斜視図である。 デジタルスチルカメラの構成を表す正面図である。 デジタルスチルカメラの構成を表す背面図である。 ノート型パーソナルコンピュータの構成を表す斜視図である。 ビデオカメラの構成を表す斜視図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(第2電極が、第1導電膜/高抵抗層/第2導電膜の積層構造を有する表示装置の例)
2.第2の実施の形態(第2電極が、第4導電膜/第1導電膜/高抵抗層/第2導電膜の積層構造を有する表示装置の例)
3.第3の実施の形態(高抵抗層がパターニングされている場合の例)
4.第4の実施の形態(第2電極が、第4導電膜/第1導電膜の積層構造を有する表示装置の例)
5.第5の実施の形態(第2電極が、第4導電膜/第1導電膜/配線層の積層構造を有する表示装置の例)
6.第6の実施の形態(第2電極が、第1導電膜/配線層の積層構造を有する表示装置の例)
7.変形例(第2電極の他の積層例)
8.適用例(電子機器の例)
<第1の実施の形態>
[構成]
 図1は、本開示の第1の実施の形態に係る表示装置(表示装置1)の構成を表すものである。この表示装置1は、例えば有機EL表示装置であり、基板11上の表示領域110には、複数の画素(サブピクセル)PXLCが、例えばマトリクス状に配置されている。各画素PXLCは、有機EL素子10Aを含み、例えば赤色の光LR(波長620nm~750nm),緑色の光LG(波長495nm~570nm),青色の光LB(波長450nm~495nm)または白色の光LWを発生する。ここでは、これら4種の画素PXLC(R画素,G画素,B画素,W画素)の組により1つのピクセルが構成される場合を例に挙げて説明する。表示領域110の周辺には、信号線駆動回路120および走査線駆動回路130が設けられている。
 表示領域110内には、例えばアクティブ型の駆動回路(画素駆動回路140)が設けられている。画素駆動回路140は、図2に示したように駆動用のトランジスタTr1および書き込み用のトランジスタTr2を有し、トランジスタTr1,Tr2の間にはキャパシタCsが設けられている。第1の電源ライン(Vcc)と第2の電源ライン(GND)との間において、有機EL素子10AがトランジスタTr1に直列に接続されている。信号線駆動回路120は、列方向に配置された複数の信号線120Aを通じてトランジスタTr2のソース電極に画像信号を供給する。走査線駆動回路130は、行方向に配置された複数の走査線130Aを通じてトランジスタTr2のゲート電極に走査信号を順次供給する。
 図3は、図1に示した表示装置の断面構成を表すものである。尚、図3では、上記4色の画素PXLCに対応する領域について示している。表示装置1は、例えば有機EL素子10Aで発生した光が封止基板20の上方へ取り出される、いわゆるトップエミッション方式(上面発光方式)の有機EL表示装置である。また、有機EL素子10Aが白光の光を発する素子構造を有しており、各有機EL素子10Aから発せられた白色の光が、カラーフィルタ19(19R,19G,19B,19W)を通過することにより、上記光LR,LG,LB,LWを出射するようになっている。
 有機EL素子10Aは、駆動基板10および封止基板20間に設けられている。駆動基板10では、基板11上に、各有機EL素子10Aを駆動するための画素駆動回路140(図3には、上記トランジスタTr1に相当するTFT12のみを示す)が形成されており、表面が平坦化層13によって覆われている。この平坦化層13上に、例えば陽極としての第1電極14が設けられている。第1電極14は、駆動基板10に設けられたTFT12と電気的に接続されている。
 この有機EL素子10Aでは、駆動基板10側から順に、第1電極14と、バンク(画素間絶縁膜)15と、発光層を含む有機層16と、例えば陰極としての第2電極17とが積層されている。第2電極17上に保護膜18が形成されている。保護膜18上に、接着層21を間にして封止基板20が貼り合わされている。封止基板20には、カラーフィルタ19R,19G,19B,19Wおよびブラックマトリクス層BMからなるカラーフィルタ層19が形成されている。カラーフィルタ層19では、ブラックマトリクス層BMが格子状に形成され、カラーフィルタ19R,19G,19B,19Wは、そのブラックマトリクス層BMの格子状の開口に形成されている。
 以下、表示装置1の各部の構成について説明する。
 基板11は、例えばガラス、シリコン(Si)あるいは樹脂などにより構成されている。
 TFT12は、例えばボトムゲート型の薄膜トランジスタ(TFT:Thin Film Transistor)であり、例えばMOSFET(Metal Oxide Semiconductor Field Effect Transistor)により構成されている。このTFT12では、基板11上に、例えば絶縁膜を介してパターン形成されたゲート電極121と、ゲート絶縁膜122と、チャネルを形成する半導体薄膜123と、層間絶縁膜124とがこの順に積層されている。半導体薄膜123の両端側に、ソース電極125aおよびドレイン電極125bが形成されており、ドレイン電極125bには、第1電極14が電気的に接続されている。尚、トランジスタ12は、このようなボトムゲート型に限らず、トップゲート型のものであってもよい。また、トランジスタ12は、結晶性シリコンおよびアモルファスシリコンなどから構成されていてもよいし、酸化物半導体から構成されていてもよい。
 平坦化層13は、駆動基板10の表面を平坦化し、有機EL素子10Aの各層の膜厚を均一に形成するためのものである。平坦化層13の構成材料としては、例えば、ポリイミド樹脂、アクリル樹脂およびノボラック樹脂などの有機材料、あるいは酸化シリコン(SiO2),窒化シリコン(SiN)または酸窒化シリコン(SiON)などの無機材料が挙げられる。
 第1電極14は、画素毎に電気的に分離して設けられると共に、例えば光反射性を有しており、できるだけ高い反射率を有することが発光効率を高める上では望ましい。また、第1電極14は陽極として用いられることから、正孔注入性の高い材料により構成されていることが望ましい。第1電極14の構成材料としては、クロム(Cr),金(Au),白金(Pt),ニッケル(Ni),銅(Cu),モリブデン(Mo),タングステン(W),チタン(Ti),タンタル(Ta)あるいは銀(Ag)などの金属元素の単体または合金が挙げられる。
 バンク15は、第1電極14を画素毎に電気的に分離すると共に、第1電極14と第2電極17との間の絶縁性を確保するためのものである。バンク15は、各第1電極14に対向する選択的な領域に開口部を有しており、有機EL素子10Aの各発光領域を形成するものである。このバンク15は、例えば酸化シリコン、ポリイミドあるいは感光性樹脂などの絶縁材料により構成されている。
 有機層16は、発光層(有機電界発光層)を含むものである。ここでは、有機層16が、各有機EL素子10Aに共通の白色発光層となっている。但し、有機層16は、発光層の他にも例えば正孔輸送層(HTL:Hole Transport Layer)、正孔注入層(HIL:Hole Injection Layer)および電子輸送層(ETL:Electron Transport Layer)などを含んでいてもよい。また、有機層16と第2電極17との間には、例えばLiFなどの電子注入層(EIL:Electron Injection Layer)が設けられていてもよい。
 第2電極17は、光透過性を有し、ここでは各有機EL素子10Aに共通して、表示領域の全面にわたって形成されている。第2電極17は、透明性を有する導電膜(透明導電膜)あるいは半透明な導電膜を含んで構成されている。
 図4は、有機EL素子10Aの素子構造を拡大して表したものである。本実施の形態では、第2電極17が、上記のような透明導電膜を含む多層構造を有している。具体的には、第2電極17は、有機層16の側から順に、第1導電膜17A、高抵抗層17Bおよび第2導電膜17Cを積層したものである。第1導電膜17Aおよび第2導電膜17Cはいずれも上述したような透明導電膜から構成されており、ここでは、第1導電膜17Aおよび第2導電膜17Cが、互いに同一の材料(例えばIZO)から構成されている。
 第1導電膜17Aは、後述の修復工程前に形成され、透明導電膜により構成さている。この第1導電膜17Aの透過率は、波長400~700nmにおいて80%以上(平均値)であり、電気抵抗率は、例えば10-3Ω・cm以上10-4Ω・cm以下である。また、第1電極17Aの厚みは、後述の修復工程における逆方向バイアスの印加によって、十分に絶縁化が可能な程度の厚み、例えば1nm以上100nm以下であることが望ましい。透明導電膜材料としては、例えばインジウム亜鉛酸化物(IZO)が挙げられる。但し、この他にも、例えばインジウム錫酸化物(ITO)、酸化亜鉛(ZnO)、アルミナドープ酸化亜鉛(AZO)、ガリウム酸化物ドープ酸化亜鉛(GZO)、あるいはインジウムチタン酸化物(ITiO)などであってもよい。この第1導電膜17Aは、例えばスパッタ法により形成可能である。
 高抵抗層17Bは、後述の修復工程後に形成され、例えば酸化ニオブ(NbO)、あるいは酸化亜鉛などから構成されている。この高抵抗層17Bの透過率は、波長400~700nmにおいて80%以上(平均値)であり、電気抵抗率は、例えば10Ω・cm以上10Ω・cm以下である。高抵抗層17Bの厚みは、例えば1nm以上2000nm以下である。この高抵抗層17Bの厚みは、逆方向バイアス印加後の第1導電膜17Aにおいて、異物付近の隙間を埋め、第2導電膜17Cと第1導電膜17Aとの間でショートが発生しない程度の厚みに設定されることが望ましい。
 第2導電膜17Cは、第1導電膜17Aと同一の材料(例えばIZO)から構成されている。この第2導電膜17Cの厚みは、特に限定されるものではないが、低抵抗化のためには第1導電膜17Aよりも大きな厚み、例えば100nm以上2000nm以下であることが望ましい。所望の抵抗値が得られるためである。
 図5は、有機EL素子10Aの素子構造(異物X付近)を模式的に表したものである。このように、有機層16などに異物Xが混入している場合、第1導電膜17Aは、異物Xの付近において、絶縁化(または吹き飛んで欠損)した部分(局所部分17a1)を有する(第1導電膜17Aの一部が局所的に絶縁化または欠損している)。この局所部分17a1は、後述の修復工程において逆方向バイアスを印加することにより形成されるものであり、第1電極14および第1導電膜17A間の異物Xによるショートパスを電気的に切断する役割を有している。局所部分17a1は、例えば第2電極17の面内において、異物Xの存在箇所に対応した複数箇所に点在する。
 保護膜18は、例えば窒化シリコン、酸化シリコンまたは金属酸化物などからなる。尚、この保護膜18と封止基板20との間に、例えば熱硬化型樹脂または紫外線硬化型樹脂からなる接着層21が形成されている。
 封止基板20は、透明な材料(例えばガラス)により構成されている。カラーフィルタ層19は、封止基板20の光入射側(素子側)および光出射側のどちらの面に設けられてもよいが、例えば光入射側の面に設けられている。カラーフィルタ19R,19G,19B,19Wはそれぞれ、有機EL素子10Aに対向して設けられている。カラーフィルタ19R,19G,19Bは、赤色光,緑色光,青色光を選択的に透過するものである。カラーフィルタ19Wは、例えば所望の白色度を得るためのものであり、色度あるいは輝度を調整するフィルタである。尚、カラーフィルタ19Wについては、特に設けられていなくともよい。
[製造方法]
 図6は、上記のような表示装置1の製造工程の流れを表したものである。このように、まず、駆動基板10を形成する(ステップS1)。具体的には、基板11上に、例えば低温ポリシリコンプロセスにより、上述したトラジスタTr1,Tr2、キャパシタCs等を含む画素駆動回路140を形成する。この後、平坦化層13を基板11の全面に成膜した後、パターニングすることによりコンタクトホール等を形成する。
 この後、駆動基板10の平坦化層13上に、第1電極14を形成する(ステップS2)。具体的には、例えば、平坦化層13上に、上述した材料よりなる第1電極14を、例えばスパッタ法により成膜した後、例えばフォトリソグラフィ法を用いたエッチングにより、パターニングする。
 続いて、バンク15を形成する(ステップS3)。具体的には、上述した絶縁材料を成膜した後、パターニングすることにより、第1電極14に対向する領域に開口部を形成する。
 この後、有機層16を形成する(ステップS4)。具体的には、上述した材料等よりなる白色発光層を、例えば真空蒸着法により成膜する。このとき、正孔注入層、正孔輸送層、電子輸送層などを、真空一貫プロセスにより連続成膜してもよい。
 次に、第2電極17を形成する(ステップS5)。図7A~図7Cは、第2電極17の形成工程の一部を模式的に示したものである。具体的には、まず、図7Aに示したように、上述した材料等よりなる第1導電膜17Aを、例えばスパッタ法等により有機層16上に形成する(ステップS51)。
 この後、図7Bに示したように、形成した第1導電膜17Aと第1電極14との間に、逆方向バイアスを、例えば直流電圧-1V~-60Vの範囲で1秒以上、望ましくは直流電圧-40Vで15分、印加する。尚、逆方向バイアスは、直流電圧に限らず、交流電圧であってもよい。また、この逆方向バイアスの印加は、酸素雰囲気で行うようにしてもよい。これにより、第1導電膜17Aが絶縁化または吹き飛ばされて欠損し(局所部分17a1が形成され)、異物Xによるショートパスを電気的に切断し、滅点となる箇所の修復(除去)を行うことができる(ステップS52)。この後、図7Cに示したように、高抵抗層17を、例えばスパッタ法等により、図7Bの有機層16における異物X近傍の隙間を埋めるように成膜する。この際、高抵抗層17の厚みは、第1透明導電膜17Aと、この後に形成される第2導電膜17Cとが、電気的にショートしない程度の厚みに形成することが望ましい。
 ここで、一例として、図8に、逆方向バイアスを印加後の素子の断面STEM画像を示す。この例では、第1電極14(アノード)上に、有機層16、IZOよりなる透明導電膜17A(カソード)および保護膜18(SiN)が積層されている。尚、保護膜18状には、断面STEM解析用のタングステン層を形成した。保護膜18のSiN膜内に異物Xが認められる。このような積層構造に対し、第1電極14と第1導電膜17Aとの間に、逆方向バイアス(-40V,15分)を印加すると、異物X付近の約4μmの範囲において、第1導電膜17AのIZOの粒子化が観察された。図9Aに、図8の領域a1を、図9Bに図8の領域a2をそれぞれ拡大したものを示す。領域a1では、領域a2に比べ、IZOの厚みが増している。また、領域a2ではIZOが層状に連なっているのに対し、領域a1では逆方向バイアスの印加によってIZOが凝集して粒子状となり、これによって絶縁化したと推測される。
 続いて、上述した材料および厚みよりなる第2導電膜17Cを、例えばスパッタ法等により形成する(ステップS53)。このようにして、第2電極17を形成する。
 次に、第2電極17上に、例えばCVD(Chemical Vapor Deposition)法により保護膜18を形成する(ステップS6)。最後に、カラーフィルタ層19が形成された封止基板20を貼り合わせる(ステップS7)。これにより、図3に示した表示装置1を完成する。
[作用,効果]
 本実施の形態の表示装置1では、図1および図2に示したように、走査線駆動回路130から各画素のトランジスタTr2のゲートに走査信号が供給されると共に、信号線駆動回路120からは画像信号が、トランジスタTr2を介して保持容量Csに供給され、保持される。この保持容量Csに保持された信号に応じてトランジスタTr1がオンオフ制御され、これによって、有機EL素子10Aに駆動電流(ドレイン電流Ids)が注入される。この駆動電流が、第1電極14および第2電極17を通じて有機層16の発光層に注入されることにより、有機層16では、正孔と電子との再結合により、発光が起こる。ここでは、各有機EL素子10Aの有機層16から白色光が発生する。
 各有機EL素子10Aから白色光が発生すると、この白色光は、第2電極17、カラーフィルタ層19(19R,19G,19B,19Wのいずれか)および封止基板20を透過して、表示装置1の上方へ出射する。これにより、R,G,B,Wの各色光を発する有機EL素子10Aの組を1つのピクセルとした画像表示が行われる。
 ここで、本実施の形態では、第2電極17において、透明性を有する第1導電膜17Aが、絶縁化または欠損した局所部分(図5中の局所部分17a1)を含む。この局所部分17a1は、製造プロセスにおいて、逆方向バイアスを印加することによって形成され、局所部分17a1により、異物に起因するショートパスが電気的に切断される。この第1導電膜17A上に、高抵抗層17Bを介して第2導電膜17Cが積層されることにより、第1導電膜17Aを厚膜化せずに第2電極17を低抵抗化することができ、電圧降下を抑制し易い。
 また、高抵抗層17Bの介在により、次のようなメリットがある。ここで、仮に、図10に示したように、逆方向バイアスを印加して滅点修復を行った後の透明導電膜17Aの上に、厚膜の透明導電膜17Cを直に(隣接して)形成すると、再ショートが生じることがある。これに対し、本実施の形態のように第1導電膜17A上に高抵抗層17Bを介して第2導電膜17Cを形成することで、そのような再ショートの発生を抑制することができる。よって、第2電極17を低抵抗化して電圧降下を抑制しつつ、異物に起因するショートパスを削減することができ、滅点による表示画質への影響を軽減することができる。
 以上のように本実施の形態では、第2電極17において、絶縁化または欠損した局所部分17a1を含むと共に透明性を有する第1導電膜17Aの上に、高抵抗層17Bを介して第2導電膜17Cを設けるようにしたので、第2電極17を低抵抗化しつつ、異物に起因するショートパスを削減することができる。また、高抵抗層17Bの介在により、再ショートの発生を抑制できる。第2電極17における電圧降下を抑制しつつ、滅点による表示画質への影響を軽減することができる。よって、表示画質の劣化を抑制することが可能となる。
 次に、本開示の他の実施の形態および変形例について説明する。以下では、上記第1の実施の形態と同様の構成要素については、同一の符号を付し、適宜その説明を省略する。
<第2の実施の形態>
 図11は、本開示の第2の実施の形態の表示装置の要部構成を表したものである。本実施の形態では、第2電極17において、第1導電膜17Aと有機層16との間に、更に第3導電膜17Dが形成されている点において、上記第1の実施の形態と異なっている。具体的には、本実施の形態の第2電極17は、有機層16の側から順に、第3導電膜17D、第1導電膜17A、高抵抗層17Bおよび第2導電膜17Cを有している。
 第3導電膜17Dは、カソードとして機能すると共に、光学調整の目的で設けられている。この第3導電膜17Dは、また、後述のレーザー照射による滅点修復の際にレーザー光を吸収する役割も持っている。第3導電膜17Dは、例えばマグネシウム(Mg)と銀(Ag)との合金(MgAg:マグネシウム銀)などの半透明性を有する導電膜から構成されている。この第3導電膜17Dの厚みは、例えば1nm以上20nm以下である。視野角特性を考慮すると、5nm以上10nm以下であることが望ましい。
 図12は、本実施の形態の表示装置の製造方法の流れを表したものである。本実施の形態の表示装置の製造方法では、第2電極17の形成工程(ステップS8)における積層構造の形成手順と、封止基板20の接着後において再度の滅点修復(滅点リペア)を行う点において、上記第1の実施の形態と異なっている。駆動基板10の形成から有機層16の形成までの工程(ステップS1~S4)と、保護膜18の形成(ステップS6)と、封止基板20の接着(ステップS7)とについては、上記第1の実施の形態と同様である。
 本実施の形態では、第2電極17を次のようにして形成する(ステップS8)。具体的には、まず、上述した材料等よりなる第3導電膜17Dを、例えば蒸着法またはスパッタ法により成膜する(ステップS81)。この後、上述した材料等よりなる第1導電膜17Aを、上記第1の実施の形態と同様にして形成する(ステップS82)。続いて、上記第1の実施の形態と同様にして、第1導電膜17Aと第1電極14との間に、逆方向バイアスを印加する。これにより、第1導電膜17Aが絶縁化または吹き飛ばされて欠損し、異物Xによるショートパスを電気的に切断し、滅点となる箇所の修復(除去)を行うことができる(ステップS83)。この後、高抵抗層17を、上記第1の実施の形態と同様にして成膜する(ステップS84)。高抵抗層17の上に、第2導電膜17Cを上記第1の実施の形態と同様にして形成する(ステップS85)。このようにして、第2電極17を形成する。
 また、封止基板20の接着後において、レーザー光を照射することにより、再度の滅点修復(滅点リペア)を行う(ステップS9)。具体的には、例えば波長1064nmのYAGレーザー等を用いて、異物周辺のショート箇所(第3導電膜17Dのみ、あるいは第3導電膜17Dと第1導電膜17Aとの両方)を吹き飛ばす。これにより、異物によるショートパスを電気的に切断する。尚、ここでは、封止後にレーザー照射による滅点修復を行ったが、この2回目の滅点修復は、保護膜18の形成後、封止基板20の接着前に行うようにしてもよい。
 本実施の形態では、第1導電膜17Aにおいて逆方向バイアスの印加により滅点修復がなされた後、高抵抗層17Bを介して第2導電膜17Cが形成されることで、上記第1の実施の形態と同等の効果を得ることができる。加えて、第2電極17において、有機層16と第1導電膜17Aとの間に第3導電膜17Dを設けることにより、光学調整が可能となると共に、2回の滅点修復を行うことができる。これにより、1回目の修復(逆方向バイアス印加による滅点修復)において異物付近の絶縁化が不十分な箇所があった場合にも、そのような箇所を2回目の修復において修復することができ、より確実に滅点箇所を修復することができる。
<第3の実施の形態>
 図13は、本開示の第3の実施の形態の表示装置の要部構成を表したものである。本実施の形態では、第2電極17において、高抵抗層17Bがパターニングされ、高抵抗層17Bが選択的に除去された部分(部分S1(第1部分))を有している点において、上記第1の実施の形態と異なっている。具体的には、本実施の形態の高抵抗層17Bは、例えば画素開口H1(バンク15の開口部分)を除いた(画素間の)少なくとも一部において、選択的に除去されている(高抵抗層17Bが形成されていない部分S1を有する)。一例としては、図14Aおよび図14Bに示したように、画素開口H1の行方向または列方向に沿ったストタイプ状の部分S1において、高抵抗層17Bが選択的に除去されている。このような高抵抗層17Bは、例えば成膜の際に、所定のマスクを用いることで形成することができる。
 本実施の形態では、第1導電膜17A、高抵抗層17Bおよび第2導電膜17Cの積層構造により、上記第1の実施の形態と同等の効果を得ることができる。また、高抵抗層17Bが選択的に除去された部分S1を有することにより、この部分S1において、第1導電膜17Aと第2導電膜17Cとを、電気的に接続することができる。これにより、第2電極17における電圧降下をより効果的に抑制することができる。
<第4の実施の形態>
 図15は、本開示の第4の実施の形態の表示装置の要部構成を表したものである。本実施の形態では、第2電極17が、第3導電膜17Dと第1導電膜17Aとの積層膜により構成されている点において、上記第1の実施の形態と異なっている。具体的には、本実施の形態の第2電極17は、有機層16の側から順に、第3導電膜17Dおよび第1導電膜17Aがこの順に積層され、第1導電膜17Aの上に保護膜18が形成されている。
 図16は、本実施の形態の表示装置の製造方法(第2電極17の形成方法)の流れを表したものである。尚、第2電極17の形成前の工程(ステップS1~S4)と、第2電極17の形成後の工程(ステップS6,S7)とについては、上記第1の実施の形態と同様である。また、封止基板20の接着後、上記第2の実施の形態と同様にして、レーザー照射による滅点修復工程(ステップS9)を行う。但し、本実施の形態では、第2電極17を、次のようにして形成する。
 即ち、まず、上述した材料等よりなる第3導電膜17Dを、上記第2の実施の形態と同様にして形成する(ステップS10)。続いて、第1導電膜17Aを、上記第1の実施の形態と同様にして形成する(ステップS11)。この後、第1導電膜17Aと、第1電極14との間に、逆方向バイアスを、上記第1の実施の形態と同様の条件を用いて印加する(ステップS12)。これにより、異物によるショートパスを電気的に切断し、滅点となる箇所の修復を行う。このようにして第2電極17を形成する。
 図17および図18は、本実施の形態の第2電極17の形成方法の他の例を表したものである。上記図16の例では、第3導電膜17Dおよび第1導電膜17Aの形成後において、第1電極14と第1導電膜17Aとの間に逆方向バイアスを印加したが、逆方向バイアスの印加タイミングはこれに限定されるものではない。例えば、図17に示したように、第3導電膜17Dの形成し(ステップS13)、この後、第1電極14と第3導電膜17Dとの間に逆方向バイアスを印加する(ステップS14)。印加電圧および印加時間などは、上記第1の実施の形態における逆方向バイアス印加の条件と同様である。これにより、異物によるショートパスを電気的に切断し、滅点となる箇所の除去を行うことができる。この後、第3導電膜17Dの上に、例えばスパッタ法等により、第1導電膜17Aを形成する(ステップS15)。このようにして、第2電極17を形成することができる。
 また、図18に示したように、更に第2電極17の形成後に、逆方向バイアスを印加してもよい。この場合、第3導電膜17Dを形成し(ステップS16)、この後、第1電極14と第3導電膜17Dとの間に逆方向バイアスを印加する(ステップS17)。続いて、第1導電膜17Aを形成し(ステップS18)、形成した第1導電膜17Aと第1電極14との間に、再び逆方向バイアスを印加する(ステップS19)。印加電圧および印加時間などは、上記第1の実施の形態における逆方向バイアスの印加条件と同様である。これにより、異物によるショートパスを電気的に切断し、滅点となる箇所の除去を行うことができる。なお、この例では、後の封止後のレーザー照射による修復工程も合わせると、計3回の修復工程を行うこととなる。このように、滅点修復のタイミングは特に限定されず、また、1回または複数回にわたって行うことができる。
 このように本実施の形態では、第3導電膜17D上に第1導電膜17Aが形成されることで、第1導電膜17Aを単層で用いる場合よりも、第2電極17を低抵抗化し易く、電圧降下抑制に有利である。また、封止後にレーザー照射による滅点修復を行うことで、1回の滅点修復(逆方向バイアスの印加による滅点修復)によって絶縁化が不十分な箇所が生じた場合にも、そのような箇所を2回目の滅点修復において除去することができる。
<第5の実施の形態>
 図19は、本開示の第5の実施の形態の表示装置の要部構成を表したものである。本実施の形態では、第2電極17が、第3導電膜17Dと、第1導電膜17Aと、配線層17Eとの積層膜により構成されている点において、上記第1の実施の形態と異なっている。具体的には、本実施の形態の第2電極17は、有機層16の側から順に、第3導電膜17D、第1導電膜17Aおよび配線層17Eがこの順に積層され、配線層17Eの上に保護膜18が形成されている。
 本実施の形態の第2電極17では、第1導電膜17A上に配線層17Eがパターン形成されている。具体的には、配線層17Eは、例えば画素開口H1(バンク15の開口部分)を除いた(画素間の)選択的な領域に延在して形成されている。一例としては、図20Aに示したように、平面視的に、画素開口H1の行方向または列方向に沿ったストタイプ状に形成されるか、あるいは図20Bに示したように、格子状(マトリクス状)に形成されている。
 図21は、本実施の形態の表示装置の製造方法(第2電極17の形成方法)の流れを表したものである。尚、第2電極17の形成前の工程(ステップS1~S4)と、第2電極17の形成後の工程(ステップS6,S7)とについては、上記第1の実施の形態と同様である。また、封止基板20の接着後、上記第2の実施の形態と同様にして、レーザー照射による滅点修復工程(ステップS9)を行う。但し、本実施の形態では、第2電極17を、次のようにして形成する。
 即ち、まず、上述した材料等よりなる第3導電膜17Dを、上記第2の実施の形態と同様にして形成する(ステップS20)。続いて、第1導電膜17Aを、上記第1の実施の形態と同様にして形成する(ステップS21)。この後、第1導電膜17Aと、第1電極14との間に、逆方向バイアスを、上記第1の実施の形態と同様の条件を用いて印加する(ステップS22)。これにより、異物によるショートパスを電気的に切断し、滅点となる箇所の修復を行う。
 続いて、第1導電膜17A上に、平面視的に例えばストライプ状またはマトリクス状となるように配線層17Eを形成する。このような配線層17Eは、例えば高精細マスクを用いて、モリブデン(Mo)またはIZO等を、例えばスパッタ法により形成する。あるいは、高精細マスクを用いて、アルミニウム(Al)または銀等を、例えば蒸着法で形成してもよい。また、例えば銀,アルミニウム,錫(Sn),亜鉛(Zn),銅(Cu)および金(Au)のうちのいずれかを含む低ナノインク導電性材料を、印刷法(例えば、反転印刷、オフセット印刷、スプレーコート、インクジェット印刷、ストライプコートあるいはスクリーン印刷等)により、形成することもできる。
 本実施の形態では、第1導電膜17A上に、配線層17Eが形成されることにより、第1導電膜17Aを厚膜化せずに第2電極17を低抵抗化することができ、電圧降下を抑制し易い。よって、第2電極17における電圧降下を抑制しつつ、異物に起因するショートパスを削減することができ、上記第1および第2の実施の形態とほぼ同等の効果を得ることができる。
<第6の実施の形態>
 図22は、本開示の第6の実施の形態の表示装置の要部構成を表したものである。本実施の形態では、第2電極17が、第1導電膜17Aと配線層17Eとの積層膜により構成されている点において、上記第1の実施の形態と異なっている。具体的には、本実施の形態の第2電極17は、有機層16の側から順に、第1導電膜17Aおよび配線層17Eがこの順に積層され、配線層17Eの上に保護膜18が形成されている。配線層17Eの構成材料および平面レイアウトなどは、上記第5の実施の形態で説明したものと同様である。
 図23は、本実施の形態の表示装置の製造方法(第2電極17の形成方法)の流れを表したものである。尚、第2電極17の形成前の工程(ステップS1~S4)と、第2電極17の形成後の工程(ステップS6,S7)とについては、上記第1の実施の形態と同様である。また、封止基板20の接着後、上記第2の実施の形態と同様にして、レーザー照射による滅点修復工程(ステップS9)を行う。但し、本実施の形態では、第2電極17を、次のようにして形成する。
 即ち、まず、上述した材料等よりなる第1導電膜17Aを、上記第1の実施の形態と同様にして形成する(ステップS24)。この後、第1導電膜17Aと、第1電極14との間に、逆方向バイアスを、上記第1の実施の形態と同様の条件を用いて印加する(ステップS25)。これにより、異物によるショートパスを電気的に切断し、滅点となる箇所の修復を行う。続いて、上記第5の実施の形態と同様にして、第1導電膜17A上に、配線層17Eを形成する。
 本実施の形態においても、第1導電膜17A上に配線層17Eが形成されることで、第1導電膜17Aを厚膜化することなく、第2電極17を低抵抗化することができる。よって、上記第1の実施の形態とほぼ同等の効果を得ることができる。
<変形例> 尚、本開示の表示装置における第2電極は、上記の各実施の形態で挙げた第2電極17の積層構造の他にも様々な構造を取り得る。例えば、上述した、第1導電膜17A、高抵抗層17B、第2導電膜17C、第3導電膜17Dおよび配線層17Eのうちの少なくとも第1導電膜17Aを有する積層構造であればよい。但し、上記第1および第2の実施の形態のように高抵抗層17Bを用いた構造であることが望ましい。高抵抗層17Bを用いた構成としては、上記の他にも、図24A~図24Cに示したような構成とすることができる。具体的には、図24Aの例では、第2電極17が、有機層16の側から順に、第1導電膜17Aと、高抵抗層17Bと、配線層17Eと有している。また、図24Bの例では、第2電極17が、有機層16の側から順に、第1導電膜17Aと、高抵抗層17Bと、配線層17Eと、第2導電膜17Cとを有している。更に、図24Cの例では、第2電極17が、有機層16の側から順に、第3導電膜17Dと、第1導電膜17Aと、高抵抗層17Bと、配線層17Eとを有している。また、図24Cの例において、更に配線層17Eの上に第2導電膜17Bが形成されてもよい。
<適用例>
 上記実施の形態および変形例において説明した表示装置は、外部から入力された映像信号あるいは内部で生成した映像信号を、映像として表示するあらゆる分野の電子機器に用いることができる。以下にその一例を示す。
 図25Aおよび図25Bは、スマートフォン220の外観を表したものである。このスマートフォン220は、例えば、表側に表示部221および操作部222を有し、裏側にカメラ223を有しており、表示部221に上記実施の形態の表示装置が搭載されている。
 図26は、タブレット型パーソナルコンピュータ240の外観を表したものである。このタブレット型パーソナルコンピュータ240は、例えば、タッチパネル部241および筐体242を有しており、タッチパネル部241に上記実施の形態の表示装置が搭載されている。
 図27は、テレビジョン装置250の外観を表したものである。このテレビジョン装置250は、例えば、本体部251とスタンド252とを有している。本体部251に、上記実施の形態の表示装置が搭載されている。
 図28Aおよび図28Bは、携帯電話機290の外観を表したものである。この携帯電話機290は、例えば、上側筐体291と下側筐体292とを連結部(ヒンジ部)293で連結したものであり、ディスプレイ294,サブディスプレイ295,ピクチャーライト296およびカメラ297を有している。ディスプレイ294またはサブディスプレイ295に、上記実施の形態の表示装置が搭載されている。
 図29Aおよび図29Bは、デジタル一眼レフカメラ410の外観を表したものである。このデジタル一眼レフカメラ410は、例えば本体部411,レンズ412,グリップ413,表示部414およびビューファインダ415などを有している。表示部414またはビューファインダ415に、上記実施の形態の表示装置が搭載されている。
 図30は、ヘッドマウントディスプレイ420の外観を表したものである。ヘッドマウントディスプレイ420は、例えば眼鏡型の表示部421および支持部422を有している。表示部421に、上記実施の形態の表示装置が搭載されている。
 図31Aおよび図31Bは、デジタルスチルカメラ520の外観を表したものである。このデジタルスチルカメラ520は、例えば、フラッシュ用の発光部521、表示部522、メニュースイッチ523およびシャッターボタン524を有している。表示部522に、上記実施の形態の表示装置が搭載されている。
 図32は、ノート型パーソナルコンピュータ530の外観を表したものである。このノート型パーソナルコンピュータ530は、例えば、本体531,文字等の入力操作のためのキーボード532および画像を表示する表示部533を有している。表示部533に、上記実施の形態の表示装置が搭載されている。
 図33は、ビデオカメラ540の外観を表したものである。このビデオカメラ540は、例えば、本体部541,この本体部610の前方側面に設けられた被写体撮影用のレンズ542,撮影時のスタート/ストップスイッチ543および表示部544を有している。表示部544に、上記実施の形態の表示装置が搭載されている。
 以上、実施の形態および変形例を挙げて説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、修復動作時には、滅点対象となる選択的な領域にのみ逆バイアス電圧を印加してもよいし、これに限らず、滅点部分を含む広い範囲の領域に逆バイアス電圧を印加してもよい。後者の手法によれば、修復動作に要する時間を短縮でき、量産化に有利である。尚、正常部分にも逆バイアス電圧が印加されることになるが、印加条件を適切に制御することにより、修復率の改善効果だけを享受することができる。
 また、上記実施の形態等では、第2電極17が2層または3層の構造である場合を例示したが、更に他の膜を含む4層以上の多層膜であってもよい。
 更に、上記実施の形態等に記載した各層の材料および厚みは列挙したものに限定されるものではなく、他の材料および厚みとしてもよい。また、表示装置では、上述した全ての層を備えている必要はなく、あるいは上述した各層に加えて更に他の層を備えていてもよい。また、上記実施の形態等において説明した効果は一例であり、他の効果であってもよいし、更に他の効果を含んでいてもよい。
 尚、本開示は以下のような構成であってもよい。
(1)
 基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に備え、
 前記第2電極は、前記有機層の側から順に、
 絶縁化または欠損した局所部分を含むと共に透明性を有する第1導電膜と、
 前記第1導電膜よりも電気抵抗の高い高抵抗層と、
 前記高抵抗層上に形成された第2導電膜と
 を有する
 表示装置。
(2)
 前記第2導電膜は、前記第1導電膜よりも厚みが大きい透明導電膜を含む
 上記(1)に記載の表示装置。
(3)
 前記第2電極は、前記有機層と前記第1導電膜との間に、半透明性を有する第3導電膜を有する
 上記(1)または(2)に記載の表示装置。
(4)
 2次元配置された複数の画素を備え、
 前記高抵抗層では、前記画素間の領域のうちの少なくとも一部に相当する第1部分が選択的に除去されており、
 前記第1部分を通じて前記第1導電膜と前記第2導電膜とが電気的に接続されている
 上記(1)~(3)のいずれかに記載の表示装置。
(5)
 前記高抵抗層の電気抵抗率は、1.0×10Ω・cm以上1.0×10Ω・cm以下である
 上記(1)~(4)のいずれかに記載の表示装置。
(6)
 前記第1導電膜の厚みは、1nm以上100nm以下である
 上記(1)~(5)のいずれかに記載の表示装置。
(7)
 前記第2導電膜の厚みは、100nm以上2000nm以下である
 上記(2)に記載の表示装置。
(8)
 前記第3導電膜の厚みは、1nm以上20nm以下である
 上記(3)に記載の表示装置。
(9)
 2次元配置された複数の画素を備え、
 前記第2導電膜は、前記画素間の領域に延在して形成されると共に、平面視的にストライプ状または格子状を成す配線層を含む
 上記(2)または(7)のいずれかに記載の表示装置。
(10)
 前記第2電極上に保護膜を更に備えた
 上記(2),(7)または(9)に記載の表示装置。
(11)
 基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に形成し、
 前記第2電極を形成する際に、
 透明性を有する第1導電膜を形成した後、前記第1電極と前記第1導電膜との間に逆方向バイアスを印加することにより滅点箇所を修復し、
 前記滅点箇所を修復後の第1導電膜上に、前記第1導電膜よりも電気抵抗の高い高抵抗層を形成し、
 前記高抵抗層上に第2導電膜を形成する
 表示装置の製造方法。
(12)
 前記第2導電膜は、前記第1導電膜よりも厚みが大きい透明導電膜を含む
 上記(11)に記載の表示装置の製造方法。
(13)
 前記第2電極を形成する際に、前記第1導電膜を形成するよりも前に、半透明性を有する第3導電膜を形成し、
 前記第2電極の形成後において、前記第2電極上に保護膜を形成した後、レーザー光を照射することにより滅点箇所を修復する
 上記(11)または(12)に記載の表示装置の製造方法。
(14)
 2次元配置された複数の画素を備え、
 前記第2導電膜は、前記画素間の領域に延在して形成されると共に、平面視的にストライプ状または格子状を成す配線層を含む
 上記(11)~(13)のいずれかに記載の表示装置の製造方法。
(15)
 基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に備え、
 前記第2電極は、前記有機層の側から順に、
 絶縁化または欠損した局所部分を含むと共に透明性を有する第1導電膜と、
 前記第1導電膜上に設けられた配線層と
 を有する
 表示装置。
(16)
 2次元配置された複数の画素を備え、
 前記配線層は、前記画素間の領域に延在して形成されると共に、平面視的にストライプ状または格子状を成す
 上記(15)に記載の表示装置。
(17)
 前記第2電極は、前記有機層と前記第1導電膜との間に、半透明性を有する第3導電膜を有する
 上記(15)または(16)に記載の表示装置。
(18)
 基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に形成し、
 前記第2電極を形成する際に、
 透明性を有する第1導電膜を形成した後、前記第1電極と前記第1導電膜との間に逆方向バイアスを印加することにより滅点箇所を修復し、
 前記滅点箇所を修復後に、配線層を形成する
 表示装置の製造方法。
(19)
 前記第2電極を形成する際に、前記第1導電膜を形成するよりも前に、半透明性を有する第3導電膜を形成し、
 前記第2電極の形成後において、前記第2電極上に保護膜を形成した後、レーザー光を照射することにより滅点箇所を修復する
 上記(18)に記載の表示装置の製造方法。
(20)
 基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に形成し、
 前記第2電極を形成する際に、
 半透明性を有する第3導電膜を形成した後、透明性を有する第1導電膜を形成し、
 前記第1導電膜を形成する前後のうちの一方または両方において、前記第1電極と、前記第3導電膜または前記第1導電膜との間に逆方向バイアスを印加することにより滅点箇所を修復し、
 前記第2電極を形成後において、前記第2電極上に保護膜を形成した後、レーザー光を照射することにより滅点箇所を修復する
 表示装置の製造方法。
 本出願は、日本国特許庁において2014年11月27日に出願された日本特許出願番号第2014-240107号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (20)

  1.  基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に備え、
     前記第2電極は、前記有機層の側から順に、
     絶縁化または欠損した局所部分を含むと共に透明性を有する第1導電膜と、
     前記第1導電膜よりも電気抵抗の高い高抵抗層と、
     前記高抵抗層上に形成された第2導電膜と
     を有する
     表示装置。
  2.  前記第2導電膜は、前記第1導電膜よりも厚みが大きい透明導電膜を含む
     請求項1に記載の表示装置。
  3.  前記第2電極は、前記有機層と前記第1導電膜との間に、半透明性を有する第3導電膜を有する
     請求項1に記載の表示装置。
  4.  2次元配置された複数の画素を備え、
     前記高抵抗層では、前記画素間の領域のうちの少なくとも一部に相当する第1部分が選択的に除去されており、
     前記第1部分を通じて前記第1導電膜と前記第2導電膜とが電気的に接続されている
     請求項1に記載の表示装置。
  5.  前記高抵抗層の電気抵抗率は、1.0×10Ω・cm以上1.0×10Ω・cm以下である
     請求項1に記載の表示装置。
  6.  前記第1導電膜の厚みは、1nm以上100nm以下である
     請求項1に記載の表示装置。
  7.  前記第2導電膜の厚みは、100nm以上2000nm以下である
     請求項2に記載の表示装置。
  8.  前記第3導電膜の厚みは、1nm以上20nm以下である
     請求項3に記載の表示装置。
  9.  2次元配置された複数の画素を備え、
     前記第2導電膜は、前記画素間の領域に延在して形成されると共に、平面視的にストライプ状または格子状を成す配線層を含む
     請求項1に記載の表示装置。
  10.  前記第2電極上に保護膜を更に備えた
     請求項1に記載の表示装置。
  11.  基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に形成し、
     前記第2電極を形成する際に、
     透明性を有する第1導電膜を形成した後、前記第1電極と前記第1導電膜との間に逆方向バイアスを印加することにより滅点箇所を修復し、
     前記滅点箇所を修復後の第1導電膜上に、前記第1導電膜よりも電気抵抗の高い高抵抗層を形成し、
     前記高抵抗層上に第2導電膜を形成する
     表示装置の製造方法。
  12.  前記第2導電膜は、前記第1導電膜よりも厚みが大きい透明導電膜を含む
     請求項11に記載の表示装置の製造方法。
  13.  前記第2電極を形成する際に、前記第1導電膜を形成するよりも前に、半透明性を有する第3導電膜を形成し、
     前記第2電極の形成後において、前記第2電極上に保護膜を形成した後、レーザー光を照射することにより滅点箇所を修復する
     請求項11に記載の表示装置の製造方法。
  14.  2次元配置された複数の画素を備え、
     前記第2導電膜は、前記画素間の領域に延在して形成されると共に、平面視的にストライプ状または格子状を成す配線層を含む
     請求項11に記載の表示装置の製造方法。
  15.  基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に備え、
     前記第2電極は、前記有機層の側から順に、
     絶縁化または欠損した局所部分を含むと共に透明性を有する第1導電膜と、
     前記第1導電膜上に設けられた配線層と
     を有する
     表示装置。
  16.  2次元配置された複数の画素を備え、
     前記配線層は、前記画素間の領域に延在して形成されると共に、平面視的にストライプ状または格子状を成す
     請求項15に記載の表示装置。
  17.  前記第2電極は、前記有機層と前記第1導電膜との間に、半透明性を有する第3導電膜を有する
     請求項15に記載の表示装置。
  18.  基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に形成し、
     前記第2電極を形成する際に、
     透明性を有する第1導電膜を形成した後、前記第1電極と前記第1導電膜との間に逆方向バイアスを印加することにより滅点箇所を修復し、
     前記滅点箇所を修復後に、配線層を形成する
     表示装置の製造方法。
  19.  前記第2電極を形成する際に、前記第1導電膜を形成するよりも前に、半透明性を有する第3導電膜を形成し、
     前記第2電極の形成後において、前記第2電極上に保護膜を形成した後、レーザー光を照射することにより滅点箇所を修復する
     請求項18に記載の表示装置の製造方法。
  20.  基板上に、第1電極と、発光層を含む有機層と、第2電極とをこの順に形成し、
     前記第2電極を形成する際に、
     半透明性を有する第3導電膜を形成した後、透明性を有する第1導電膜を形成し、
     前記第1導電膜を形成する前後のうちの一方または両方において、前記第1電極と、前記第3導電膜または前記第1導電膜との間に逆方向バイアスを印加することにより滅点箇所を修復し、
     前記第2電極を形成後において、前記第2電極上に保護膜を形成した後、レーザー光を照射することにより滅点箇所を修復する
     表示装置の製造方法。
PCT/JP2015/065169 2014-11-27 2015-05-27 表示装置および表示装置の製造方法 WO2016084408A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016561417A JP6248288B2 (ja) 2014-11-27 2015-05-27 表示装置および表示装置の製造方法
US15/485,465 US10580988B2 (en) 2014-11-27 2017-04-12 Display unit and method of manufacturing display unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014240107 2014-11-27
JP2014-240107 2014-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/485,465 Continuation US10580988B2 (en) 2014-11-27 2017-04-12 Display unit and method of manufacturing display unit

Publications (1)

Publication Number Publication Date
WO2016084408A1 true WO2016084408A1 (ja) 2016-06-02

Family

ID=56073992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065169 WO2016084408A1 (ja) 2014-11-27 2015-05-27 表示装置および表示装置の製造方法

Country Status (3)

Country Link
US (1) US10580988B2 (ja)
JP (1) JP6248288B2 (ja)
WO (1) WO2016084408A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3316336A1 (en) * 2016-10-31 2018-05-02 LG Display Co., Ltd. Organic light-emitting display device having a repair area
JP2019175665A (ja) * 2018-03-28 2019-10-10 株式会社Joled 有機電界発光素子
CN110447307A (zh) * 2017-03-30 2019-11-12 堺显示器制品株式会社 有机el器件及其制造方法
US10580988B2 (en) 2014-11-27 2020-03-03 Joled Inc. Display unit and method of manufacturing display unit
US11910696B2 (en) 2020-11-09 2024-02-20 Jdi Design And Development G.K. Self-luminous display panel and self-luminous display panel manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656295B (zh) * 2015-03-06 2018-05-01 京东方科技集团股份有限公司 一种阵列基板、显示面板、其驱动方法及显示装置
CN109427845B (zh) * 2017-08-25 2021-02-09 京东方科技集团股份有限公司 显示面板及其制作方法、电致发光器件、显示装置
CN110233169B (zh) * 2019-06-19 2021-08-03 京东方科技集团股份有限公司 像素界定层、显示装置、阵列基板及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253044A (ja) * 2005-03-14 2006-09-21 Fuji Electric Holdings Co Ltd 有機elディスプレイおよびそのリーク修復方法
JP2012216514A (ja) * 2011-03-23 2012-11-08 Semiconductor Energy Lab Co Ltd 発光装置、及び発光装置の作製方法
JP2013114749A (ja) * 2011-11-24 2013-06-10 Panasonic Corp 有機el素子の製造方法
JP2013186448A (ja) * 2012-03-12 2013-09-19 Sony Corp 表示パネル、表示装置および電子機器
JP2013211132A (ja) * 2012-03-30 2013-10-10 Sony Corp 発光デバイス、発光デバイスの製造方法及び電子機器
JP2015088319A (ja) * 2013-10-30 2015-05-07 ソニー株式会社 表示装置および電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569194B2 (ja) 2004-04-28 2010-10-27 ソニー株式会社 発光装置の修復方法及び製造方法、発光装置の修復装置及び製造装置
JP2010056075A (ja) * 2008-07-29 2010-03-11 Sony Corp 発光素子及び有機エレクトロルミネッセンス表示装置
WO2016084408A1 (ja) 2014-11-27 2016-06-02 株式会社Joled 表示装置および表示装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253044A (ja) * 2005-03-14 2006-09-21 Fuji Electric Holdings Co Ltd 有機elディスプレイおよびそのリーク修復方法
JP2012216514A (ja) * 2011-03-23 2012-11-08 Semiconductor Energy Lab Co Ltd 発光装置、及び発光装置の作製方法
JP2013114749A (ja) * 2011-11-24 2013-06-10 Panasonic Corp 有機el素子の製造方法
JP2013186448A (ja) * 2012-03-12 2013-09-19 Sony Corp 表示パネル、表示装置および電子機器
JP2013211132A (ja) * 2012-03-30 2013-10-10 Sony Corp 発光デバイス、発光デバイスの製造方法及び電子機器
JP2015088319A (ja) * 2013-10-30 2015-05-07 ソニー株式会社 表示装置および電子機器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580988B2 (en) 2014-11-27 2020-03-03 Joled Inc. Display unit and method of manufacturing display unit
CN108011049B (zh) * 2016-10-31 2020-05-29 乐金显示有限公司 具有修复区的有机发光显示装置
CN108011049A (zh) * 2016-10-31 2018-05-08 乐金显示有限公司 具有修复区的有机发光显示装置
KR20180047577A (ko) * 2016-10-31 2018-05-10 엘지디스플레이 주식회사 리페어 영역을 포함하는 유기 발광 표시 장치
US10134820B2 (en) 2016-10-31 2018-11-20 Lg Display Co., Ltd. Organic light-emitting display device having a repair area
TWI664765B (zh) * 2016-10-31 2019-07-01 韓商Lg顯示器股份有限公司 具有修復區域的有機發光顯示裝置
KR102587876B1 (ko) 2016-10-31 2023-10-11 엘지디스플레이 주식회사 리페어 영역을 포함하는 유기 발광 표시 장치
EP3316336A1 (en) * 2016-10-31 2018-05-02 LG Display Co., Ltd. Organic light-emitting display device having a repair area
CN110447307A (zh) * 2017-03-30 2019-11-12 堺显示器制品株式会社 有机el器件及其制造方法
CN110447307B (zh) * 2017-03-30 2022-01-04 堺显示器制品株式会社 有机el器件及其制造方法
US10892431B2 (en) 2018-03-28 2021-01-12 Joled Inc. Organic electroluminescent element
JP2019175665A (ja) * 2018-03-28 2019-10-10 株式会社Joled 有機電界発光素子
US11910696B2 (en) 2020-11-09 2024-02-20 Jdi Design And Development G.K. Self-luminous display panel and self-luminous display panel manufacturing method

Also Published As

Publication number Publication date
JPWO2016084408A1 (ja) 2017-06-01
US10580988B2 (en) 2020-03-03
JP6248288B2 (ja) 2017-12-20
US20170222149A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6248288B2 (ja) 表示装置および表示装置の製造方法
US9799710B2 (en) Organic light emitting display device and method for fabricating the same
JP4678421B2 (ja) 表示装置
EP2139041B1 (en) Luminescence display panel and method for fabricating the same
JP5642277B2 (ja) 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
KR101901574B1 (ko) 유기 전계 발광 표시 장치 및 그 제조 방법
WO2016056364A1 (ja) 表示装置、表示装置の製造方法および電子機器
JP2018097361A (ja) 有機発光表示装置およびその製造方法
JP6159946B2 (ja) 表示装置および電子機器
JP2015022914A (ja) 表示装置およびその製造方法、並びに電子機器
JP2010114213A (ja) 薄膜トランジスタ基板および表示装置
KR102377531B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
JP4626649B2 (ja) 有機発光装置の製造方法
JP2008288075A (ja) 表示装置の製造方法および表示装置
JP2015069844A (ja) 表示装置および電子機器
KR102177587B1 (ko) 유기전계 발광소자 및 이의 제조 방법
JP2009103732A (ja) 表示装置およびその製造方法
JP4692581B2 (ja) 表示装置の製造方法および表示装置
US9570526B2 (en) Organic light emitting display device and manufacturing method thereof
KR20100128794A (ko) 유기전계발광 표시장치와 그 제조방법
KR20150067974A (ko) 유기전계 발광소자 및 이의 제조 방법
KR102294170B1 (ko) 유기발광다이오드 표시장치 및 그 제조방법
KR20150042985A (ko) 유기전계 발광소자 및 이의 제조 방법
JP2011040328A (ja) 表示装置およびその製造方法
JP2016054046A (ja) 表示装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561417

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863514

Country of ref document: EP

Kind code of ref document: A1