WO2016084311A1 - エピタキシャルウェーハ、半導体素子、エピタキシャルウェーハの製造方法、並びに、半導体素子の製造方法 - Google Patents

エピタキシャルウェーハ、半導体素子、エピタキシャルウェーハの製造方法、並びに、半導体素子の製造方法 Download PDF

Info

Publication number
WO2016084311A1
WO2016084311A1 PCT/JP2015/005562 JP2015005562W WO2016084311A1 WO 2016084311 A1 WO2016084311 A1 WO 2016084311A1 JP 2015005562 W JP2015005562 W JP 2015005562W WO 2016084311 A1 WO2016084311 A1 WO 2016084311A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
buffer
layers
epitaxial wafer
composition
Prior art date
Application number
PCT/JP2015/005562
Other languages
English (en)
French (fr)
Inventor
憲 佐藤
洋志 鹿内
博一 後藤
篠宮 勝
慶太郎 土屋
和徳 萩本
Original Assignee
サンケン電気株式会社
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社, 信越半導体株式会社 filed Critical サンケン電気株式会社
Priority to KR1020177013821A priority Critical patent/KR20170086522A/ko
Priority to CN201580064038.8A priority patent/CN107004579B/zh
Priority to US15/525,153 priority patent/US20170323960A1/en
Publication of WO2016084311A1 publication Critical patent/WO2016084311A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/22Sandwich processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10344Aluminium gallium nitride [AlGaN]

Definitions

  • the present invention relates to an epitaxial wafer, a semiconductor device, an epitaxial wafer manufacturing method, and a semiconductor device manufacturing method.
  • the nitride semiconductor layer is generally formed on an inexpensive silicon substrate or sapphire substrate.
  • the lattice constants of these substrates and the nitride semiconductor layers are greatly different, and the thermal expansion coefficients are also different. Therefore, large strain energy is generated in the nitride semiconductor layer formed by epitaxial growth on the substrate. As a result, the nitride semiconductor layer is likely to generate cracks and crystal quality.
  • FIG. 6 A semiconductor wafer having a buffer layer of Patent Document 1 is shown in FIG.
  • the buffer layer 3 is provided between the silicon substrate 2 and the active layer 4 (consisting of the electron transit layer 4a and the electron supply layer 4b).
  • the second single layer structure buffer region 8 made of GaN provided on the first multilayer structure buffer region 5, and the second single layer structure buffer region 8 It has a second multilayer structure buffer region 5 '.
  • the first multilayer structure buffer region 5 and the second multilayer structure buffer region 5 ′ are composed of a sub multilayer structure buffer region 6 and a first single layer structure made of GaN and thinner than the second single layer structure buffer region 8. It has a multilayer structure in which the buffer region 7 is repeatedly stacked.
  • the sub-multilayer structure buffer region 6 has a multilayer structure in which a first layer made of AlN and a second layer made of GaN are repeatedly stacked.
  • a first layer is formed of a nitride semiconductor containing aluminum at a first ratio
  • a second layer, a first single-layer structure buffer region 7, and a second single-layer structure buffer are formed.
  • the present inventors have found that the conventional buffer layer configuration has room for improvement in terms of wafer warpage and internal cracks.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an epitaxial wafer capable of reducing the warpage of the wafer and suppressing the occurrence of internal cracks.
  • the present invention provides a silicon-based substrate, an Al x Ga 1-x N layer, an Al y Ga 1-y N layer (x> y) disposed on the silicon-based substrate, Are alternately arranged, and a first insertion layer made of an Al z Ga 1-z N layer (x> z) thicker than the Al y Ga 1-y N layer.
  • the first multilayer buffer region and the first buffer layer in which the first insertion layers are alternately arranged, and the Al ⁇ Ga 1- ⁇ are arranged on the first buffer layer.
  • a second insertion layer composed of an N layer ( ⁇ > ⁇ ), the second multilayer buffer region, and the second insertion layer. are alternately arranged, and a channel layer that is disposed on the second buffer layer and is thicker than the second insertion layer, and is an average of the second buffer layers.
  • the average Al composition at the upper part of the buffer layer is increased by increasing the average Al composition at the lower part of the buffer layer (a region below the upper part of the buffer layer), thereby reducing the warpage of the wafer.
  • the generation of internal cracks can be suppressed while reducing peripheral cracks, and this makes it possible to improve electrical characteristics such as withstand voltage and reliability when manufacturing semiconductor elements. Can do.
  • the second insertion layer is thinner than the first insertion layer.
  • the number of repetitions of the Al ⁇ Ga 1- ⁇ N layer and the Al ⁇ Ga 1- ⁇ N layer in the second multilayer buffer region is equal to the Al x Ga 1 in the first multilayer buffer region.
  • the number is preferably larger than the number of repetitions of the -xN layer and the Al y Ga 1-y N layer.
  • the Al ⁇ Ga 1- ⁇ N layer of the second multilayer structure buffer region is thinner than the Al y Ga 1-y N layer of the first multilayer structure buffer region.
  • the Al ⁇ Ga 1- ⁇ N layer in the second multilayer structure buffer region is thicker than the Al x Ga 1-x N layer in the first multilayer structure buffer region. Even with such a configuration, the average Al composition at the upper portion of the buffer layer can be made higher, the wafer warpage can be more effectively reduced, and the occurrence of internal cracks can be more effectively suppressed.
  • the present invention provides the above-described epitaxial wafer, a barrier layer made of a gallium nitride based semiconductor disposed on the epitaxial wafer, a first electrode disposed on the barrier layer, a second electrode, and A semiconductor device comprising a control electrode is provided.
  • the average Al composition at the top of the buffer layer can be increased, and the occurrence of internal cracks can be suppressed by reducing the warpage of the wafer.
  • the semiconductor element can have excellent electrical characteristics and reliability.
  • the present invention provides a step of preparing a silicon-based substrate, and Al x Ga 1-x N layers and Al y Ga 1-y N layers (x> y) are alternately arranged on the silicon-based substrate. And a first insertion layer made of an Al z Ga 1-z N layer (x> z) thicker than the Al y Ga 1-y N layer. Forming a first buffer layer in which one multilayer structure buffer region and the first insertion layer are alternately arranged by epitaxial growth; and Al ⁇ Ga 1- ⁇ on the first buffer layer.
  • a second multi-layer buffer region having an N layer ( ⁇ > ⁇ ) and a second insertion layer Forming a second buffer layer alternately arranged with the second insertion layers by epitaxial growth, and epitaxially growing a channel layer thicker than the second insertion layer on the second buffer layer
  • the average Al composition at the top of the buffer layer can be increased, and the generation of internal cracks can be suppressed while reducing peripheral cracks by reducing the warpage of the wafer.
  • an epitaxial wafer can be manufactured that has good electrical characteristics such as breakdown voltage and reliability when a semiconductor element is manufactured.
  • the second insertion layer is thinner than the first insertion layer so that the average Al composition of the second buffer layer is higher than the average Al composition of the first buffer layer. . If such an epitaxial wafer manufacturing method is used, the average Al composition at the upper portion of the buffer layer can be effectively increased.
  • the present invention also includes a step of epitaxially growing a barrier layer made of a gallium nitride based semiconductor on the epitaxial wafer manufactured by the above method, and a first electrode, a second electrode, And a method of manufacturing a semiconductor element, comprising the step of forming a control electrode.
  • the average Al composition at the top of the buffer layer can be increased, and the occurrence of internal cracks can be suppressed by reducing the warpage of the wafer.
  • a semiconductor element with good electrical characteristics and reliability can be manufactured.
  • the average Al composition of the upper portion of the buffer layer can be increased, and the occurrence of internal cracks can be suppressed by reducing the warpage of the wafer.
  • electrical characteristics such as withstand voltage and reliability can be improved.
  • the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
  • the conventional buffer layer has room for improvement in terms of wafer warpage and internal cracks.
  • the present inventors have intensively studied an epitaxial wafer that can reduce the warpage of the wafer and suppress the occurrence of internal cracks.
  • the average Al composition of the second buffer layer positioned above the buffer layer is higher than the average Al composition of the first buffer layer positioned below the buffer layer. It has been found that the average Al composition can be increased, thereby reducing the warpage of the wafer and suppressing the occurrence of internal cracks, and the present invention has been made.
  • FIG. 7 shows an internal crack 9 generated in the sub multilayer buffer region 6 (the first layer 61 and the second layer 62 are alternately laminated) of the first multilayer buffer region 5 of FIG. Is shown.
  • FIG. 8 shows a Nomarski image (differential interference microscope image) of the internal crack in the structure of FIG. Since the portion inside the internal crack generated by the generation of such an internal crack is buried during the subsequent epitaxial growth, the surface of the epitaxial layer after the epitaxial growth is flat. However, in the case of FIG. 7, since the substance of the first single-layer structure buffer region 7 is buried in the internal crack 9, it adversely affects electrical characteristics such as breakdown voltage and reliability.
  • the GaN layer (or AlGaN layer having a small Al composition) I and the AlN layer (or AlGaN layer having a large Al composition) II are alternately stacked, the GaN layer (or the Al composition having a small Al composition is gradually decreased) as the distance from the silicon substrate increases. Since the AlGaN layer) I is lattice-relaxed, the strain on the GaN layer (or AlGaN layer with a small Al composition) I on the upper part of the buffer structure is increased by increasing the average Al composition especially on the upper part of the buffer structure. It is presumed that the effect of suppressing internal cracks is obtained by strengthening and weakening the strain on the AlN layer (or AlGaN layer having a large Al composition) II.
  • a mechanism for reducing the warpage of the wafer will be described below.
  • a strong compressive stress is also applied to the GaN layer (that is, the channel layer) formed thereon.
  • the deformation to the negative side during epitaxial growth that is, the warpage of the negative side wafer
  • the warpage of the wafer the warpage of the positive side wafer
  • the wafer warpage is reduced, cracks generated on the outer periphery of the wafer (hereinafter referred to as outer peripheral cracks) are also suppressed.
  • the epitaxial wafer 10 of the present invention shown in FIG. 1A has a silicon substrate 12, a buffer layer 25 provided on the silicon substrate 12, and a channel layer 26 provided on the buffer layer 25.
  • the silicon-based substrate 12 is a substrate made of, for example, Si or SiC.
  • the buffer layer 25 includes a first buffer layer 15 and a second buffer layer 16 provided on the first buffer layer 15.
  • the first buffer layer 15 is formed by alternately stacking first multilayer structure buffer regions 19 and first insertion layers 20.
  • the first multilayer buffer region 19 is formed by alternately laminating Al x Ga 1-x N layers 17 and Al y Ga 1-y N layers (x> y) 18, and the first insertion layer 20 Consists of an Al z Ga 1-z N layer (x> z) and is thicker than the Al y Ga 1-y N layer (x> y) 18.
  • the second buffer layer 16 is formed by alternately stacking second multilayer structure buffer regions 23 and second insertion layers 24.
  • the second multilayer buffer region 23 is formed by alternately laminating Al ⁇ Ga 1- ⁇ N layers 21 and Al ⁇ Ga 1- ⁇ N layers ( ⁇ > ⁇ ) 22. Consists of an Al ⁇ Ga 1- ⁇ N layer ( ⁇ > ⁇ ) and is thicker than the Al ⁇ Ga 1- ⁇ N layer 22.
  • the second insertion layer 24 is configured to be thinner than the first insertion layer 20.
  • the ⁇ Ga 1- ⁇ N layer 22 can be combined as shown in Table 1, for example.
  • the channel layer 26 is composed of a GaN layer, an AlGaN layer, an InGaN layer, a composite layer including an InGaN layer on a thick GaN layer, or the like that is thicker than the second insertion layer 24.
  • an AlN initial layer 13 may be provided between the silicon-based substrate 12 and the buffer layer 25 (see FIG. 1A).
  • the average Al composition of the second buffer layer 16 is set to be higher than the average Al composition of the first buffer layer 15, the average Al composition at the top of the buffer layer 25 can be increased.
  • the occurrence of internal cracks can be suppressed while reducing peripheral cracks by reducing the warpage of the wafer. Thereby, when a semiconductor element is manufactured, electrical characteristics such as withstand voltage and reliability can be improved.
  • the second insertion layer 24 is preferably thinner than the first insertion layer 20.
  • the average Al composition at the upper part of the buffer layer 25 can be effectively made higher than the average Al composition at the lower part of the buffer layer 25 below the upper part of the buffer layer 25. While reducing a curvature effectively, generation
  • the number of repetitions of the Al ⁇ Ga 1- ⁇ N layer 21 and the Al ⁇ Ga 1- ⁇ N layer 22 in the second multilayer buffer region 23 is the same as that in the first multilayer buffer region 19.
  • the number is preferably larger than the number of repetitions of the Al x Ga 1-x N layer 17 and the Al y Ga 1-y N layer 18.
  • the Al ⁇ Ga 1- ⁇ N layer 22 in the second multilayer structure buffer region 23 is thinner than the Al y Ga 1-y N layer 18 in the first multilayer structure buffer region 19.
  • the average Al composition at the upper part of the buffer layer 25 can be more effectively increased than the average Al composition at the lower part of the buffer layer 25 below the upper part of the buffer layer 25. Can be more effectively reduced, and the occurrence of internal cracks can be more effectively suppressed.
  • the Al ⁇ Ga 1- ⁇ N layer 21 in the second multilayer structure buffer region 23 is thicker than the Al x Ga 1-x N layer 17 in the first multilayer structure buffer region 19. It is preferable.
  • x ⁇ when the Al ⁇ Ga 1- ⁇ N layer 21 in the second multilayer buffer region 23 and the Al x Ga 1-x N layer 17 in the first multilayer buffer region 19 are compared, x ⁇ . It is preferable.
  • the Al ⁇ Ga 1- ⁇ N layer 21 may be an Al 0.8 Ga 0.2 N layer, and the Al x Ga 1-x N layer 17 may be an Al 0.6 Ga 0.4 N layer.
  • the Al ⁇ Ga 1- ⁇ N layer 22 in the second multilayer buffer region 23 and the Al y Ga 1-y N layer 18 in the first multilayer buffer region 19 are compared, y ⁇ .
  • the Al ⁇ Ga 1- ⁇ N layer 22 may be an Al 0.3 Ga 0.7 N layer
  • the Al y Ga 1-y N layer 18 may be an Al 0.1 Ga 0.9 N layer.
  • the average Al composition at the upper portion of the buffer layer 25 can be more effectively increased than the average Al composition at the lower portion of the buffer layer 25 below the upper portion of the buffer layer 25.
  • the method for increasing the average Al composition in the upper portion of the buffer layer 25 may be carried out simultaneously by a plurality of methods, whereby the average Al composition in the upper portion can be increased.
  • a semiconductor element 11 of the present invention shown in FIG. 2A is provided with a barrier layer 27 made of a gallium nitride based semiconductor (for example, AlGaN) on the epitaxial wafer 10 described above with reference to FIG. 27, a first electrode (source electrode) 30, a second electrode (drain electrode) 31, and a control electrode 32 are provided.
  • the semiconductor element 11 is, for example, a high electron mobility transistor (HEMT).
  • the channel layer 26 and the barrier layer 27 constitute an active layer 29.
  • the first electrode 30 and the second electrode 31 are arranged so that a current flows from the first electrode 30 to the second electrode 31 through the two-dimensional electron gas 28 formed in the channel layer 26. ing.
  • the current flowing between the first electrode 30 and the second electrode 31 can be controlled by the potential applied to the control electrode 32.
  • the average Al composition at the upper part of the buffer layer 25 is made higher than the average Al composition at the lower part of the buffer layer 25 below the upper part of the buffer layer 25, whereby the wafer By reducing the warpage, it is possible to suppress the generation of internal cracks while reducing peripheral cracks, and the devices fabricated using this wafer are semiconductor devices with good electrical characteristics such as withstand voltage and reliability. It can be.
  • a silicon-based substrate 12 is prepared (see FIG. 3A).
  • a silicon substrate or a SiC substrate is prepared as the silicon-based substrate 12.
  • a silicon substrate or a SiC substrate is generally used as a growth substrate for a nitride semiconductor layer.
  • the first buffer layer 15 is formed on the silicon-based substrate 12 by epitaxial growth (see FIG. 3B).
  • the first buffer layer 15 constituting the buffer layer 25 is formed on the silicon substrate 12 by the MOVPE method (metal organic vapor phase epitaxy). As shown in FIG. 1B, the first buffer layer 15 is formed by alternately stacking the first multilayer structure buffer regions 19 and the first insertion layers 20.
  • the first multilayer buffer region 19 is formed by alternately laminating Al x Ga 1-x N layers 17 and Al y Ga 1-y N layers (x> y) 18, and the first insertion layer 20 Consists of an Al z Ga 1-z N layer (x> z) and is thicker than the Al y Ga 1-y N layer (x> y) 18.
  • AlN initial layer 13 may be formed before the first buffer layer 15 is formed.
  • the second buffer layer 16 is formed on the first buffer layer 15 by epitaxial growth (see FIG. 3C).
  • the second buffer layer 16 constituting the buffer layer 25 is formed on the first buffer layer 15 by the MOVPE method.
  • the second buffer layer 16 is formed by alternately stacking second multilayer structure buffer regions 23 and second insertion layers 24.
  • the second multilayer buffer region 23 is formed by alternately laminating Al ⁇ Ga 1- ⁇ N layers 21 and Al ⁇ Ga 1- ⁇ N layers ( ⁇ > ⁇ ) 22. Consists of an Al ⁇ Ga 1- ⁇ N layer ( ⁇ > ⁇ ) and is thicker than the Al ⁇ Ga 1- ⁇ N layer 22.
  • the second buffer layer 16 is formed so that the average Al composition of the second buffer layer 16 is higher than the average Al composition of the first buffer layer 15.
  • the channel layer 26 is formed on the second buffer layer 16 by epitaxial growth (see FIG. 3D).
  • a channel layer 26 thicker than the second insertion layer 24 is formed on the second buffer layer 16 by the MOVPE method.
  • the film thickness of the channel layer 26 is 1000 to 4000 nm, for example. In this way, the epitaxial wafer 10 of FIG. 1 can be manufactured.
  • the average Al composition of the second buffer layer 16 higher than the average Al composition of the first buffer layer 15, the average Al composition at the top of the buffer layer 25 can be increased, and the warpage of the wafer is increased. It is possible to suppress the occurrence of internal cracks while reducing the outer peripheral cracks. Thereby, when a semiconductor element is produced, an epitaxial wafer having good electrical characteristics such as withstand voltage and reliability can be manufactured.
  • the second insertion layer 24 is made thinner than the first insertion layer 20, and the average Al composition of the second buffer layer 16 is greater than the average Al composition of the first buffer layer 15. It is preferable to increase the height.
  • the average Al composition at the upper part of the buffer layer 25 can be increased more effectively than the average Al composition at the lower part below the upper part of the buffer layer 25.
  • a barrier layer 27 made of a gallium nitride-based semiconductor is formed by epitaxial growth on an epitaxial wafer 10 (see FIG. 3D) manufactured using the manufacturing method described with reference to FIG. )).
  • a barrier layer 27 made of AlGaN is formed on the channel layer 26 by the MOVPE method.
  • the film thickness of the barrier layer 27 is, for example, 10 to 50 nm.
  • a first electrode (source electrode) 30, a second electrode (drain electrode) 31, and a control electrode 32 are formed on the barrier layer 27 (see FIG. 4B).
  • the first electrode (source electrode) 30 and the second electrode (drain electrode) 31 can be formed of, for example, a laminated film of Ti / Al, and the control electrode 32 is, for example, a metal oxide such as SiO or SiN It is possible to form a laminated film of a lower layer film made of and an upper layer film made of a metal such as Ni, Au, Mo, Pt. In this way, the semiconductor element 11 of FIG. 2 can be manufactured.
  • the average Al composition at the upper part of the buffer layer 25 is made higher than the average Al composition below the upper part of the buffer layer 25 to reduce the warpage of the wafer, thereby reducing peripheral cracks. It is possible to suppress the occurrence of internal cracks. Thereby, it is possible to manufacture a semiconductor element having good electrical characteristics such as breakdown voltage and reliability.
  • the epitaxial wafer 10 shown in FIG. 1 was manufactured using the manufacturing method described with reference to FIG.
  • the Al x Ga 1-x N layer 17 was an AlN layer
  • the Al y Ga 1-y N (x> y) layer 18 was a GaN layer
  • the first insertion layer 20 was a GaN layer.
  • the Al ⁇ Ga 1- ⁇ N layer 21 was an AlN layer
  • the Al ⁇ Ga 1- ⁇ N layer 22 was a GaN layer
  • the second insertion layer 24 was a GaN layer.
  • the first multilayer buffer area 19 and the second multilayer buffer area 23 have a repetition number of 8 pairs, and the repetition number of the second multilayer structure buffer area 23 and the second insertion layer 24 is 3 pairs. It was.
  • the first insertion layer (GaN layer) 20 was 200 nm
  • the second insertion layer (GaN layer) 24 was 160 nm.
  • the manufactured epitaxial wafer 10 was examined for the amount of warpage of the wafer, the outer crack length, and the presence of internal cracks.
  • the wafer warpage was measured based on the definition shown in FIG. The results are shown in Table 2.
  • An epitaxial wafer 10 was produced in the same manner as in the example. However, the thickness of the second insertion layer (GaN layer) 24 was 200 nm.
  • the produced epitaxial wafer 10 was examined for the amount of warpage of the wafer, the peripheral crack length, and the presence of internal cracks in the same manner as in the example. The results are shown in Table 2.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • a thick GaN layer such as a pressure resistant layer may be provided between the buffer layer 25 and the channel layer 26.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明は、シリコン系基板と、シリコン系基板の上に配置され、AlGa1-xN層とAlGa1-yN層(x>y)とが交互に配置された第1の多層構造バッファ領域と、AlGa1-yN層よりも厚いAlGa1-zN層(x>z)からなる第1の挿入層とを有し、第1の多層構造バッファ領域と、第1の挿入層とが交互に配置された第1のバッファ層と、第1のバッファ層の上に配置され、AlαGa1-αN層とAlβGa1-βN層(α>β)とが交互に配置された第2の多層構造バッファ領域と、AlβGa1-βN層よりも厚いAlγGa1-γN層(α>γ)からなる第2の挿入層とを有し、2の多層構造バッファ領域と、第2の挿入層とが交互に配置された第2のバッファ層と、第2のバッファ層の上に配置され、第2の挿入層よりも厚いチャネル層とを有し、第2のバッファ層の平均Al組成が第1のバッファ層の平均Al組成よりも高いことを特徴とするエピタキシャルウェーハである。これにより、ウェーハの反りを低減させるとともに、内部クラックの発生を抑制することができるエピタキシャルウェーハが提供される。

Description

エピタキシャルウェーハ、半導体素子、エピタキシャルウェーハの製造方法、並びに、半導体素子の製造方法
 本発明は、エピタキシャルウェーハ、半導体素子、エピタキシャルウェーハの製造方法、並びに、半導体素子の製造方法に関する。
 窒化物半導体層は安価なシリコン基板上やサファイア基板上に形成されることが一般的である。しかし、これらの基板の格子定数と窒化物半導体層の格子定数は大きく異なり、また、熱膨張係数も異なる。このため、基板上にエピタキシャル成長によって形成された窒化物半導体層に、大きな歪みエネルギーが発生する。その結果、窒化物半導体層にクラックの発生や結晶品質の低下が生じやすい。
 上記問題を解決するために、シリコン基板と窒化物半導体からなる能動層との間に窒化物半導体層を積層したバッファ層を配置する方法が提案されている(例えば、特許文献1を参照)。
 特許文献1のバッファ層を有する半導体ウェーハを図6に示す。
 図6の半導体ウェーハ1において、バッファ層3は、シリコン基板2と能動層4(電子走行層4aと電子供給層4bからなる)との間に設けられており、バッファ層3は、第一の多層構造バッファ領域5と、第一の多層構造バッファ領域5の上に設けられたGaNからなる第二の単層構造バッファ領域8と、第二の単層構造バッファ領域8の上に設けられた第二の多層構造バッファ領域5’を有している。
 さらに、第一の多層構造バッファ領域5及び第二の多層構造バッファ領域5’は、サブ多層構造バッファ領域6と、GaNからなり第二の単層構造バッファ領域8より薄い第一の単層構造バッファ領域7とが繰り返し積層された多層構造を有している。
 また、サブ多層構造バッファ領域6は、AlNからなる第一の層と、GaNからなる第二の層とが繰り返し積層された多層構造を有している。
 特許文献1においては、第一の層をアルミニウムを第1の割合で含む窒化物半導体で形成し、第二の層、第一の単層構造バッファ領域7、及び、第二の単層構造バッファ領域8のアルミニウムの割合を第一の割合よりも小さくすることで、すなわち、バッファ層3の上部(第二の多層構造バッファ領域5’、及び、第二の単層構造バッファ領域8)のアルミ組成を小さくすることで、半導体ウェーハの反りを低減させることが開示されている。
特開2008-205117号公報
 上述したように、シリコン基板上やサファイア基板上に形成された窒化物半導体層の特性を改善するために、バッファ層を設けること、及び、バッファ層の構成を最適化することが行われてきた。
 しかしながら、本発明者らは、従来のバッファ層の構成では、ウェーハの反りや内部クラックの発生の点で改善の余地があることを見出した。
 本発明は、上記問題点に鑑みてなされたものであって、ウェーハの反りを低減させるとともに、内部クラックの発生を抑制することができるエピタキシャルウェーハを提供することを目的とする。
 上記目的を達成するために、本発明は、シリコン系基板と、該シリコン系基板の上に配置され、AlGa1-xN層とAlGa1-yN層(x>y)とが交互に配置された第1の多層構造バッファ領域と、前記AlGa1-yN層よりも厚いAlGa1-zN層(x>z)からなる第1の挿入層とを有し、前記第1の多層構造バッファ領域と、前記第1の挿入層とが交互に配置された第1のバッファ層と、前記第1のバッファ層の上に配置され、AlαGa1-αN層とAlβGa1-βN層(α>β)とが交互に配置された第2の多層構造バッファ領域と、前記AlβGa1-βN層よりも厚いAlγGa1-γN層(α>γ)からなる第2の挿入層とを有し、前記第2の多層構造バッファ領域と、前記第2の挿入層とが交互に配置された第2のバッファ層と、前記第2のバッファ層の上に配置され、前記第2の挿入層よりも厚いチャネル層とを有し、前記第2のバッファ層の平均Al組成が前記第1のバッファ層の平均Al組成よりも高いことを特徴とするエピタキシャルウェーハを提供する。
 このような構成のエピタキシャルウェーハであれば、バッファ層の上部の平均Al組成をバッファ層の下部(バッファ層の上部よりも下側の領域)の平均Al組成を高くすることで、ウェーハの反りを低減させることができ、外周クラックを低減させつつ、内部クラックの発生を抑制することができ、これにより、半導体素子を作製した場合に耐圧等の電気的特性や信頼性が良好なものとすることができる。
 このとき、前記第2の挿入層が前記第1の挿入層よりも薄いことが好ましい。
 このような構成により、バッファ層の上部の平均Al組成を効果的に高くすることができ、ウェーハの反りを効果的に低減させるとともに、内部クラックの発生を効果的に抑制することができる。
 このとき、前記第2の多層構造バッファ領域の前記AlαGa1-αN層と前記AlβGa1-βN層の繰り返し数が、前記第1の多層構造バッファ領域の前記AlGa1-xN層と前記AlGa1-yN層の繰り返し数よりも多いことが好ましい。
 このような構成により、バッファ層の上部の平均Al組成をより高くすることができ、ウェーハの反りをより効果的に低減させるとともに、内部クラックの発生をより効果的に抑制することができる。
 このとき、前記第2の多層構造バッファ領域の前記AlβGa1-βN層が、前記第1の多層構造バッファ領域の前記AlGa1-yN層より薄いことが好ましい。
  このような構成により、バッファ層の上部の平均Al組成をより高くすることができ、ウェーハの反りをより効果的に低減させるとともに、内部クラックの発生をより効果的に抑制することができる。
 このとき、前記第2の多層構造バッファ領域の前記AlαGa1-αN層が、前記第1の多層構造バッファ領域の前記AlGa1-xN層より厚いことが好ましい。
 このような構成によっても、バッファ層の上部の平均Al組成をより高くすることができ、ウェーハの反りをより効果的に低減させるとともに、内部クラックの発生をより効果的に抑制することができる。
 このとき、前記第2の多層構造バッファ領域の前記AlαGa1-αN層と、前記第1の多層構造バッファ領域の前記AlGa1-xN層とにおいて、x<αであることが好ましい。
 このような構成によっても、バッファ層の上部の平均Al組成をより高くすることができ、ウェーハの反りをより効果的に低減させるとともに、内部クラックの発生をより効果的に抑制することができる。
 このとき、前記第2の多層構造バッファ領域の前記AlβGa1-βN層と、前記第1の多層構造バッファ領域の前記AlGa1-yN層とにおいて、y<βであることが好ましい。
 このような構成によっても、バッファ層の上部の平均Al組成をより高くすることができ、ウェーハの反りをより効果的に低減させるとともに、内部クラックの発生をより効果的に抑制することができる。
 また、本発明は、上記のエピタキシャルウェーハと、前記エピタキシャルウェーハ上に配置された窒化ガリウム系半導体からなるバリア層と、前記バリア層上に配置された第1の電極、第2の電極、及び、制御電極とを有することを特徴とする半導体素子を提供する。
 このような構成の半導体素子であれば、バッファ層の上部の平均Al組成を高くすることができ、ウェーハの反りを低減させることで内部クラックの発生を抑制することができ、これにより、耐圧等の電気的特性や信頼性が良好な半導体素子とすることができる。
 さらに、本発明は、シリコン系基板を準備する工程と、該シリコン系基板の上に、AlGa1-xN層とAlGa1-yN層(x>y)とが交互に配置された第1の多層構造バッファ領域と、前記AlGa1-yN層よりも厚いAlGa1-zN層(x>z)からなる第1の挿入層とを有し、前記第1の多層構造バッファ領域と、前記第1の挿入層とが交互に配置された第1のバッファ層をエピタキシャル成長により形成する工程と、前記第1のバッファ層の上に、AlαGa1-αN層とAlβGa1-βN層(α>β)とが交互に配置された第2の多層構造バッファ領域と、前記AlβGa1-βN層よりも厚いAlγGa1-γN層(α>γ)からなる第2の挿入層とを有し、前記第2の多層構造バッファ領域と、前記第2の挿入層とが交互に配置された第2のバッファ層をエピタキシャル成長により形成する工程と、前記第2のバッファ層の上に、前記第2の挿入層よりも厚いチャネル層をエピタキシャル成長により形成する工程とを含み、前記第2のバッファ層の平均Al組成を前記第1のバッファ層の平均Al組成よりも高くすることを特徴とするエピタキシャルウェーハの製造方法を提供する。
 このようなエピタキシャルウェーハの製造方法を用いれば、バッファ層の上部の平均Al組成を高くすることができ、ウェーハの反りを低減させることで外周クラックを低減させつつ、内部クラックの発生を抑制することができ、これにより、半導体素子を作製した場合に耐圧等の電気的特性や信頼性が良好なものとなるエピタキシャルウェーハを製造することができる。
 このとき、前記第2の挿入層を前記第1の挿入層よりも薄くして、前記第2のバッファ層の平均Al組成を前記第1のバッファ層の平均Al組成よりも高くすることが好ましい。
 このようなエピタキシャルウェーハの製造方法を用いれば、バッファ層の上部の平均Al組成を効果的に高くすることができる。
 また、本発明は、上記の方法により製造されたエピタキシャルウェーハ上に、窒化ガリウム系半導体からなるバリア層をエピタキシャル成長により形成する工程と、前記バリア層上に、第1の電極、第2の電極、及び、制御電極を形成する工程とを含むことを特徴とする半導体素子の製造方法を提供する。
 このような半導体素子の製造方法を用いれば、バッファ層の上部の平均Al組成を高くすることができ、ウェーハの反りを低減させることで内部クラックの発生を抑制することができ、これにより、耐圧等の電気的特性や信頼性が良好な半導体素子を製造することができる。
 以上のように、本発明のエピタキシャルウェーハによれば、バッファ層の上部の平均Al組成を高くすることができ、ウェーハの反りを低減させることで内部クラックの発生を抑制することができ、これにより、半導体素子を作製した場合に耐圧等の電気的特性や信頼性が良好なものとすることができる。
本発明のエピタキシャルウェーハの実施態様の一例を示す概略断面図である。 本発明の半導体素子の実施態様の一例を示す概略断面図である。 本発明のエピタキシャルウェーハの製造方法の実施態様の一例を示す工程断面図である。 本発明の半導体素子の製造方法の実施態様の一例を示す工程断面図である。 ウェーハの反り量の定義を示す図である。 従来のバッファ層を有する半導体ウェーハの概略断面図である。 図6の構造における内部クラックの一例を示す概略断面図である。 図6の構造における内部クラックのノマルスキー像(微分干渉顕微鏡像)を示す図である。
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 前述のように、シリコン基板上やサファイア基板上に形成された窒化物半導体層の特性を改善するために、バッファ層を設けること、及び、バッファ層の構成を最適化することが行われてきたが、従来のバッファ層においては、ウェーハの反りや内部クラックの発生の点で改善の余地があった。
 そこで、本発明者らは、ウェーハの反りを低減させるとともに、内部クラックの発生を抑制することができるエピタキシャルウェーハについて鋭意検討を重ねた。
 その結果、バッファ層の上部に位置する第2のバッファ層の平均Al組成がバッファ層の下部に位置する第1のバッファ層の平均Al組成よりも高い構成とすることによって、バッファ層の上部の平均Al組成を高くすることができ、これによってウェーハの反りを低減させるとともに、内部クラックの発生を抑制することができることを見出し、本発明をなすに至った。
 ここで、内部クラックとは、膜応力の影響でエピタキシャル成長中にクラックが入る現象であり、図6の構造における内部クラックの一例を図7に示す。図7は図6の第一の多層構造バッファ領域5のサブ多層構造バッファ領域6(第1の層61と第2の層62とが交互に積層されたもの)に内部クラック9が発生したものを示している。また、図6の構造における内部クラックのノマルスキー像(微分干渉顕微鏡像)を図8に示す。このような内部クラックの発生により生じた内部クラックの内側の部分はその後のエピタキシャル成長を行っている際に埋まってしまうためエピタキシャル成長後のエピタキシャル層の表面は平坦になっている。しかしながら、図7の場合、内部クラック9内には、第一の単層構造バッファ領域7の物質が埋められているので、耐圧等の電気特性や信頼性に悪影響を与える。
 このような内部クラックの発生を抑制するメカニズムについて、以下に説明する。
 GaN層(又はAl組成の少ないAlGaN層)IとAlN層(又はAl組成の多いAlGaN層)IIが交互に積層された構造において、内部クラックはGaN層(又はAl組成の少ないAlGaN層)Iに引っ張られることによりAlN層(又はAl組成の多いAlGaN層)IIが割れることにより生じるため、内部クラックの発生を抑制するには、AlN層(又はAl組成の多いAlGaN層)IIに加えられる引っ張り応力を低減させることが必要となる。GaN層(又はAl組成の少ないAlGaN層)IとAlN層(又はAl組成の多いAlGaN層)IIが交互に積層されたバッファ構造中でシリコン基板から離れるにつれて徐々にGaN層(又はAl組成の少ないAlGaN層)Iが格子緩和していくため、特にバッファ構造の上部で平均Al組成を高めることで、従来に比べてバッファ構造上部のGaN層(又はAl組成の少ないAlGaN層)Iへの歪を強め、AlN層(又はAl組成の多いAlGaN層)IIへの歪を弱めることで内部クラックの抑制効果を得ているものと推定される。
 また、ウェーハの反りを低減させるメカニズムについて、以下に説明する。
 バッファ層の上部の平均Al組成が高くなることにより、この上に形成されるGaN層(すなわち、チャネル層)にも強い圧縮応力がかかる。これによりエピタキシャル成長中の負側への変形(すなわち、負側のウェーハの反り)が強くなり、エピタキシャル成長終了後に室温に戻した際のウェーハの反り(正側のウェーハの反り)が小さくなると推定される。なお、ウェーハの反りが小さくなることで、ウェーハの外周に発生するクラック(以下、外周クラックと称する)も抑制される。
 まず、図1を参照しながら、本発明のエピタキシャルウェーハの実施態様の一例を説明する。
 図1(a)に示す本発明のエピタキシャルウェーハ10は、シリコン系基板12と、シリコン系基板12上に設けられたバッファ層25と、バッファ層25上に設けられたチャネル層26を有している。
 ここで、シリコン系基板12は、例えば、SiまたはSiCからなる基板である。
 バッファ層25は、第1のバッファ層15と第1のバッファ層15上に設けられた第2のバッファ層16を有している。
 図1(b)に示すように、第1のバッファ層15は、第1の多層構造バッファ領域19と第1の挿入層20が交互に積層されたものである。第1の多層構造バッファ領域19は、AlGa1-xN層17とAlGa1-yN層(x>y)18が交互に積層されたものであり、第1の挿入層20はAlGa1-zN層(x>z)からなり、AlGa1-yN層(x>y)18よりも厚い。
 ここで、AlGa1-xN層17はAlN層(すなわち、x=1)又はAlGaN層とすることができ、AlGa1-yN層18はGaN層(すなわち、y=0)とすることができ、第1の挿入層20はGaN層(すなわち、z=0)とすることができる。
 図1(c)に示すように、第2のバッファ層16は、第2の多層構造バッファ領域23と第2の挿入層24が交互に積層されたものである。第2の多層構造バッファ領域23は、AlαGa1-αN層21とAlβGa1-βN層(α>β)22が交互に積層されたものであり、第2の挿入層24はAlγGa1-γN層(α>γ)からなり、AlβGa1-βN層22よりも厚い。さらに、第2の挿入層24は、第1の挿入層20よりも薄い構成になっている。
 ここで、AlαGa1-αN層21はAlN層(すなわち、α=1)又はAlGaN層とすることができ、AlβGa1-βN層22はGaN層(すなわち、β=0)とすることができ、第2の挿入層24はGaN層(すなわち、γ=0)とすることができる。
 第1の多層構造バッファ領域19のAlGa1-xN層17及びAlGa1-yN層18と、第2の多層構造バッファ領域23のAlαGa1-αN層21及びAlβGa1-βN層22は、例えば、表1に示すような組合せとすることができる。
Figure JPOXMLDOC01-appb-T000001
 チャネル層26は、第2の挿入層24より厚いGaN層、AlGaN層、又はInGaN層、若しくは、厚いGaN層上にInGaN層を備える複合層、等からなるものである。なお、シリコン系基板12と、バッファ層25との間に、AlN初期層13を設けても良い(図1(a)を参照)。
 このように、第2のバッファ層16の平均Al組成が第1のバッファ層15の平均Al組成よりも高い構成とすることで、バッファ層25の上部の平均Al組成を高くすることができ、ウェーハの反りを低減させることで外周クラックを低減させつつ、内部クラックの発生を抑制することができる。これにより、半導体素子を作製した場合に耐圧等の電気的特性や信頼性が良好なものとすることができる。
 図1のエピタキシャルウェーハ10において、第2の挿入層24が、第1の挿入層20よりも薄いことが好ましい。
 このような構成により、バッファ層25の上部の平均Al組成をバッファ層25の上部よりも下側のバッファ層25の下部の平均Al組成と比較して効果的に高くすることができ、ウェーハの反りを効果的に低減させるとともに、内部クラックの発生を効果的に抑制することができる。
 図1のエピタキシャルウェーハ10において、第2の多層構造バッファ領域23のAlαGa1-αN層21とAlβGa1-βN層22の繰り返し数が、第1の多層構造バッファ領域19のAlGa1-xN層17とAlGa1-yN層18の繰り返し数よりも多いことが好ましい。
 このような構成により、バッファ層25の上部の平均Al組成をバッファ層25の上部よりも下側のバッファ層25の下部の平均Al組成と比較してより効果的に高くすることができ、ウェーハの反りをより効果的に低減させるとともに、内部クラックの発生をより効果的に抑制することができる。
 図1のエピタキシャルウェーハ10において、第2の多層構造バッファ領域23のAlβGa1-βN層22が、第1の多層構造バッファ領域19のAlGa1-yN層18より薄いことが好ましい。
 このような構成により、バッファ層25の上部の平均Al組成をバッファ層25の上部よりも下側のバッファ層25の下部の平均Al組成と比較してより効果的に高くすることができ、ウェーハの反りをより効果的に低減させるとともに、内部クラックの発生をより効果的に抑制することができる。
 さらに、図1のエピタキシャルウェーハ10において、第2の多層構造バッファ領域23のAlαGa1-αN層21が、第1の多層構造バッファ領域19のAlGa1-xN層17より厚いことが好ましい。
 又、第2の多層構造バッファ領域23のAlαGa1-αN層21と、第1の多層構造バッファ領域19のAlGa1-xN層17を比較した時、x<αであることが好ましい。例えば、AlαGa1-αN層21をAl0.8Ga0.2N層とし、AlGa1-xN層17をAl0.6Ga0.4N層としてもよい。
 さらに、第2の多層構造バッファ領域23のAlβGa1-βN層22と、第1の多層構造バッファ領域19のAlGa1-yN層18を比較した時、y<βであることが好ましい。例えば、AlβGa1-βN層22をAl0.3Ga0.7N層とし、AlGa1-yN層18をAl0.1Ga0.9N層としてもよい。
 これらのような構成によっても、バッファ層25の上部の平均Al組成をバッファ層25の上部よりも下側のバッファ層25の下部の平均Al組成と比較してより効果的に高くすることができ、ウェーハの反りをより効果的に低減させるとともに、内部クラックの発生をより効果的に抑制することができる。
 上記バッファ層25の上部の平均Al組成を高くする方法は、同時に複数の方法を行ってもよく、それにより、より上部の平均Al組成を高くすることができる。
 次に、図2を参照しながら、本発明の半導体素子の実施態様の一例を説明する。
 図2(a)に示す本発明の半導体素子11は、図1を用いて上記で説明したエピタキシャルウェーハ10の上に、窒化ガリウム系半導体(例えば、AlGaN)からなるバリア層27を設け、バリア層27上に第1の電極(ソース電極)30、第2の電極(ドレイン電極)31、及び、制御電極32を設けたものである。半導体素子11は、例えば、高電子移動度トランジスタ(HEMT)である。
 チャンネル層26とバリア層27は、能動層29を構成している。
 第1の電極30及び第2の電極31は、第一の電極30から、チャネル層26内に形成された二次元電子ガス28を介して、第2の電極31に電流が流れるように配置されている。第1の電極30と第2の電極31との間に流れる電流は、制御電極32に印可される電位によってコントロールすることができる。
 このような構成の半導体素子であれば、バッファ層25の上部の平均Al組成をバッファ層25の上部よりも下側のバッファ層25の下部の平均Al組成と比較して高くすることで、ウェーハの反りを低減させることで外周クラックを低減させつつ、内部クラックの発生を抑制することができ、このウェーハを用いて作製される素子は、耐圧等の電気的特性や信頼性が良好な半導体素子とすることができる。
 次に、図3を参照しながら、本発明のエピタキシャルウェーハの製造方法の実施態様の一例を説明する。
 まず、シリコン系基板12を準備する(図3(a)を参照)。
 具体的には、シリコン系基板12として、シリコン基板又はSiC基板を準備する。シリコン基板又はSiC基板は、窒化物半導体層の成長基板として一般的に用いられている。
 次に、シリコン系基板12上に第1のバッファ層15をエピタキシャル成長により形成する(図3(b)を参照)。
 具体的には、シリコン系基板12上に、バッファ層25を構成する第1のバッファ層15をMOVPE法(有機金属気相成長法)により形成する。第1のバッファ層15は、図1(b)に示すように、第1の多層構造バッファ領域19と第1の挿入層20が交互に積層されたものである。第1の多層構造バッファ領域19は、AlGa1-xN層17とAlGa1-yN層(x>y)18が交互に積層されたものであり、第1の挿入層20はAlGa1-zN層(x>z)からなり、AlGa1-yN層(x>y)18よりも厚い。
 ここで、AlGa1-xN層17はAlN層(すなわち、x=1)とすることができ、AlGa1-yN(x>y)層18はGaN層(すなわち、y=0)とすることができ、第1の挿入層20はGaN層(すなわち、z=0)とすることができる。
 なお、第1のバッファ層15を形成する前に、AlN初期層13を形成してもよい。
 次に、第1のバッファ層15上に第2のバッファ層16をエピタキシャル成長により形成する(図3(c)を参照)。
 具体的には、第1のバッファ層15上に、バッファ層25を構成する第2のバッファ層16をMOVPE法により形成する。第2のバッファ層16は、図1(c)に示すように、第2の多層構造バッファ領域23と第2の挿入層24が交互に積層されたものである。第2の多層構造バッファ領域23は、AlαGa1-αN層21とAlβGa1-βN層(α>β)22が交互に積層されたものであり、第2の挿入層24はAlγGa1-γN層(α>γ)からなり、AlβGa1-βN層22よりも厚い。第2のバッファ層16の形成において、第2のバッファ層16の平均Al組成が第1のバッファ層15の平均Al組成よりも高くなるように形成する。
 ここで、AlαGa1-αN層21はAlN層(すなわち、α=1)とすることができ、AlβGa1-βN層22はGaN層(すなわち、β=0)とすることができ、第2の挿入層24はGaN層(すなわち、γ=0)とすることができる。
 次に、第2のバッファ層16上に、チャネル層26をエピタキシャル成長により形成する(図3(d)を参照)。
 具体的には、第2のバッファ層16上に、第2の挿入層24より厚いチャネル層26をMOVPE法により形成する。チャネル層26の膜厚は例えば、1000~4000nmである。
 このようにして、図1のエピタキシャルウェーハ10を製造することができる。
 このように第2のバッファ層16の平均Al組成を第1のバッファ層15の平均Al組成よりも高くすることで、バッファ層25の上部の平均Al組成を高くすることができ、ウェーハの反りを低減させることで外周クラックを低減させつつ、内部クラックの発生を抑制することができる。これにより、半導体素子を作製した場合に耐圧等の電気的特性や信頼性が良好なものとなるエピタキシャルウェーハを製造することができる。
 上記のエピタキシャルウェーハの製造方法において、第2の挿入層24を第1の挿入層20よりも薄くして、第2のバッファ層16の平均Al組成を第1のバッファ層15の平均Al組成よりも高くすることが好ましい。
 このようなエピタキシャルウェーハの製造方法を用いれば、バッファ層25の上部の平均Al組成をバッファ層25の上部より下側の下部の平均Al組成と比較してより効果的に高くすることができる。
 次に、図4を参照しながら、本発明の半導体素子の製造方法の実施態様の一例を説明する。
 まず、図3を用いて説明した製造方法を用いて作製したエピタキシャルウェーハ10(図3(d)を参照)上に、窒化ガリウム系半導体からなるバリア層27をエピタキシャル成長により形成する(図4(a)を参照)。
 具体的には、チャネル層26上に、AlGaNからなるバリア層27をMOVPE法により形成する。バリア層27の膜厚は例えば、10~50nmである。
 次に、バリア層27上に第1の電極(ソース電極)30、第2の電極(ドレイン電極)31、及び、制御電極32形成する(図4(b)を参照)。
 第1の電極(ソース電極)30及び第2の電極(ドレイン電極)31は、例えば、Ti/Alの積層膜で形成することができ、制御電極32は例えば、SiO、SiN等の金属酸化物からなる下層膜と、Ni、Au、Mo、Pt等の金属からなる上層膜の積層膜で形成することができる。
 このようにして、図2の半導体素子11を製造することができる。
 このような半導体素子の製造方法を用いれば、バッファ層25の上部の平均Al組成をバッファ層25の上部より下側の平均Al組成より高くし、ウェーハの反りを低減させることで外周クラックを低減させつつ、内部クラックの発生を抑制することができる。これにより、耐圧等の電気的特性や信頼性が良好な半導体素子を製造することができる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 図3を用いて説明した製造方法を用いて、図1のエピタキシャルウェーハ10を作製した。ただし、AlGa1-xN層17はAlN層とし、AlGa1-yN(x>y)層18はGaN層とし、第1の挿入層20はGaN層とした。また、AlαGa1-αN層21はAlN層とし、AlβGa1-βN層22はGaN層とし、第2の挿入層24はGaN層とした。また、第1の多層構造バッファ領域19、第2の多層構造バッファ領域23は、繰り返し数を8ペアとし、第2の多層構造バッファ領域23と第2の挿入層24の繰り返し数は、3ペアとした。
 さらに、第1の挿入層(GaN層)20を200nmとし、第2の挿入層(GaN層)24を160nmとした。
 作製したエピタキシャルウェーハ10について、ウェーハの反り量、外周クラック長、内部クラックの有無を調べた。なお、ウェーハの反り量については、図5に示す定義に基づいて測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(比較例)
 実施例と同様にしてエピタキシャルウェーハ10を作製した。ただし、第2の挿入層(GaN層)24の膜厚を200nmとした。
 作製したエピタキシャルウェーハ10について、実施例と同様にして、ウェーハの反り量、外周クラック長、内部クラックの有無を調べた。結果を表2に示す。
 表2から、比較例と比べて、実施例では、ウェーハの反り量が低減され、外周クラック長が低減され、内部クラックの発生が抑制されていることがわかる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 例えば、上記実施形態において、バッファ層25とチャネル層26との間に耐圧層等の厚いGaN層を設けてもよい。

Claims (11)

  1.  シリコン系基板と、
     該シリコン系基板の上に配置され、AlGa1-xN層とAlGa1-yN層(x>y)とが交互に配置された第1の多層構造バッファ領域と、前記AlGa1-yN層よりも厚いAlGa1-zN層(x>z)からなる第1の挿入層とを有し、前記第1の多層構造バッファ領域と、前記第1の挿入層とが交互に配置された第1のバッファ層と、
     前記第1のバッファ層の上に配置され、AlαGa1-αN層とAlβGa1-βN層(α>β)とが交互に配置された第2の多層構造バッファ領域と、前記AlβGa1-βN層よりも厚いAlγGa1-γN層(α>γ)からなる第2の挿入層とを有し、前記第2の多層構造バッファ領域と、前記第2の挿入層とが交互に配置された第2のバッファ層と、
     前記第2のバッファ層の上に配置され、前記第2の挿入層よりも厚いチャネル層と
    を有し、
     前記第2のバッファ層の平均Al組成が前記第1のバッファ層の平均Al組成よりも高いことを特徴とするエピタキシャルウェーハ。
  2.  前記第2の挿入層が前記第1の挿入層よりも薄いことを特徴とする請求項1に記載のエピタキシャルウェーハ。
  3.  前記第2の多層構造バッファ領域の前記AlαGa1-αN層と前記AlβGa1-βN層の繰り返し数が、前記第1の多層構造バッファ領域の前記AlGa1-xN層と前記AlGa1-yN層の繰り返し数よりも多いことを特徴とする請求項1又は請求項2に記載のエピタキシャルウェーハ。
  4.  前記第2の多層構造バッファ領域の前記AlβGa1-βN層が、前記第1の多層構造バッファ領域の前記AlGa1-yN層より薄いことを特徴とする請求項1から請求項3のいずれか一項に記載のエピタキシャルウェーハ。
  5.  前記第2の多層構造バッファ領域の前記AlαGa1-αN層が、前記第1の多層構造バッファ領域の前記AlGa1-xN層より厚いことを特徴とする請求項1から請求項4のいずれか一項に記載のエピタキシャルウェーハ。
  6.  前記第2の多層構造バッファ領域の前記AlαGa1-αN層と、前記第1の多層構造バッファ領域の前記AlGa1-xN層とにおいて、x<αであることを特徴とする請求項1から請求項5のいずれか一項に記載のエピタキシャルウェーハ。
  7.  前記第2の多層構造バッファ領域の前記AlβGa1-βN層と、前記第1の多層構造バッファ領域の前記AlGa1-yN層とにおいて、y<βであることを特徴とする請求項1から請求項6のいずれか一項に記載のエピタキシャルウェーハ。
  8.  請求項1から請求項7のいずれか一項に記載のエピタキシャルウェーハと、
     前記エピタキシャルウェーハ上に配置された窒化ガリウム系半導体からなるバリア層と、
     前記バリア層上に配置された第1の電極、第2の電極、及び、制御電極と
    を有することを特徴とする半導体素子。
  9.  シリコン系基板を準備する工程と、
     該シリコン系基板の上に、AlGa1-xN層とAlGa1-yN層(x>y)とが交互に配置された第1の多層構造バッファ領域と、前記AlGa1-yN層よりも厚いAlGa1-zN層(x>z)からなる第1の挿入層とを有し、前記第1の多層構造バッファ領域と、前記第1の挿入層とが交互に配置された第1のバッファ層をエピタキシャル成長により形成する工程と、
     前記第1のバッファ層の上に、AlαGa1-αN層とAlβGa1-βN層(α>β)とが交互に配置された第2の多層構造バッファ領域と、前記AlβGa1-βN層よりも厚いAlγGa1-γN層(α>γ)からなる第2の挿入層とを有し、前記第2の多層構造バッファ領域と、前記第2の挿入層とが交互に配置された第2のバッファ層をエピタキシャル成長により形成する工程と、
     前記第2のバッファ層の上に、前記第2の挿入層よりも厚いチャネル層をエピタキシャル成長により形成する工程と
    を含み、
     前記第2のバッファ層の平均Al組成を前記第1のバッファ層の平均Al組成よりも高くすることを特徴とするエピタキシャルウェーハの製造方法。
  10.  前記第2の挿入層を前記第1の挿入層よりも薄くすることで、前記第2のバッファ層の平均Al組成を前記第1のバッファ層の平均Al組成よりも高くすることを特徴とする請求項9に記載のエピタキシャルウェーハの製造方法。
  11.  請求項9又は請求項10に記載の方法により製造されたエピタキシャルウェーハ上に、窒化ガリウム系半導体からなるバリア層をエピタキシャル成長により形成する工程と、
     前記バリア層上に、第1の電極、第2の電極、及び、制御電極を形成する工程と
    を含むことを特徴とする半導体素子の製造方法。
PCT/JP2015/005562 2014-11-25 2015-11-06 エピタキシャルウェーハ、半導体素子、エピタキシャルウェーハの製造方法、並びに、半導体素子の製造方法 WO2016084311A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177013821A KR20170086522A (ko) 2014-11-25 2015-11-06 에피택셜 웨이퍼, 반도체 소자, 에피택셜 웨이퍼의 제조 방법 및 반도체 소자의 제조 방법
CN201580064038.8A CN107004579B (zh) 2014-11-25 2015-11-06 外延晶片、半导体元件、外延晶片的制造方法、以及半导体元件的制造方法
US15/525,153 US20170323960A1 (en) 2014-11-25 2015-11-06 Epitaxial wafer, semiconductor device, method for producing epitaxial wafer, and method for producing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-237683 2014-11-25
JP2014237683A JP6180401B2 (ja) 2014-11-25 2014-11-25 エピタキシャルウェーハ、半導体素子、エピタキシャルウェーハの製造方法、並びに、半導体素子の製造方法

Publications (1)

Publication Number Publication Date
WO2016084311A1 true WO2016084311A1 (ja) 2016-06-02

Family

ID=56073910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005562 WO2016084311A1 (ja) 2014-11-25 2015-11-06 エピタキシャルウェーハ、半導体素子、エピタキシャルウェーハの製造方法、並びに、半導体素子の製造方法

Country Status (6)

Country Link
US (1) US20170323960A1 (ja)
JP (1) JP6180401B2 (ja)
KR (1) KR20170086522A (ja)
CN (1) CN107004579B (ja)
TW (1) TWI610344B (ja)
WO (1) WO2016084311A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3451364B1 (en) 2017-08-28 2020-02-26 Siltronic AG Heteroepitaxial wafer and method for producing a heteroepitaxial wafer
EP3576132A1 (en) 2018-05-28 2019-12-04 IMEC vzw A iii-n semiconductor structure and a method for forming a iii-n semiconductor structure
US10770620B2 (en) * 2018-06-14 2020-09-08 Glo Ab Epitaxial gallium nitride based light emitting diode and method of making thereof
CN110233105B (zh) * 2019-06-20 2022-07-08 江苏能华微电子科技发展有限公司 一种翘曲可调的SiC基HEMT结构的制备方法及结构
TWI735212B (zh) * 2020-04-24 2021-08-01 環球晶圓股份有限公司 具有超晶格疊層體的磊晶結構
US11387356B2 (en) * 2020-07-31 2022-07-12 Vanguard International Semiconductor Corporation Semiconductor structure and high-electron mobility transistor device having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205117A (ja) * 2007-02-19 2008-09-04 Sanken Electric Co Ltd 半導体ウエーハ及び半導体素子及び製造方法
JP2008218479A (ja) * 2007-02-28 2008-09-18 Sanken Electric Co Ltd 半導体ウエーハ及び半導体素子及び製造方法
JP2011100772A (ja) * 2009-11-04 2011-05-19 Dowa Electronics Materials Co Ltd Iii族窒化物積層基板
JP2013070013A (ja) * 2011-09-08 2013-04-18 Toshiba Corp 窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法
JP2014132607A (ja) * 2013-01-04 2014-07-17 Dowa Electronics Materials Co Ltd Iii族窒化物エピタキシャル基板およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477685B2 (ja) * 2009-03-19 2014-04-23 サンケン電気株式会社 半導体ウェーハ及び半導体素子及びその製造方法
JP5660373B2 (ja) * 2010-10-29 2015-01-28 サンケン電気株式会社 半導体ウエーハ及び半導体素子
JP5708187B2 (ja) * 2011-04-15 2015-04-30 サンケン電気株式会社 半導体装置
US8710511B2 (en) * 2011-07-29 2014-04-29 Northrop Grumman Systems Corporation AIN buffer N-polar GaN HEMT profile
CN103633134B (zh) * 2013-12-12 2016-09-14 中山大学 一种厚膜高阻氮化物半导体外延结构及其生长方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205117A (ja) * 2007-02-19 2008-09-04 Sanken Electric Co Ltd 半導体ウエーハ及び半導体素子及び製造方法
JP2008218479A (ja) * 2007-02-28 2008-09-18 Sanken Electric Co Ltd 半導体ウエーハ及び半導体素子及び製造方法
JP2011100772A (ja) * 2009-11-04 2011-05-19 Dowa Electronics Materials Co Ltd Iii族窒化物積層基板
JP2013070013A (ja) * 2011-09-08 2013-04-18 Toshiba Corp 窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法
JP2014132607A (ja) * 2013-01-04 2014-07-17 Dowa Electronics Materials Co Ltd Iii族窒化物エピタキシャル基板およびその製造方法

Also Published As

Publication number Publication date
JP2016100508A (ja) 2016-05-30
TWI610344B (zh) 2018-01-01
KR20170086522A (ko) 2017-07-26
TW201631635A (zh) 2016-09-01
JP6180401B2 (ja) 2017-08-16
CN107004579B (zh) 2020-03-10
US20170323960A1 (en) 2017-11-09
CN107004579A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
JP5309452B2 (ja) 半導体ウエーハ及び半導体素子及び製造方法
WO2016084311A1 (ja) エピタキシャルウェーハ、半導体素子、エピタキシャルウェーハの製造方法、並びに、半導体素子の製造方法
JP5309451B2 (ja) 半導体ウエーハ及び半導体素子及び製造方法
JP5804768B2 (ja) 半導体素子及びその製造方法
JP5785103B2 (ja) ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
JP5572976B2 (ja) 半導体装置
JP5117283B2 (ja) 半導体電子デバイス
JP5708187B2 (ja) 半導体装置
WO2013008461A1 (ja) Iii族窒化物エピタキシャル基板およびその製造方法
JP5100427B2 (ja) 半導体電子デバイス
JP5689245B2 (ja) 窒化物半導体素子
JP6126906B2 (ja) 窒化物半導体エピタキシャルウェハ
TW201906018A (zh) 半導體元件及其形成方法
JP6239017B2 (ja) 窒化物半導体基板
JP6653750B2 (ja) 半導体基体及び半導体装置
JP6084254B2 (ja) 化合物半導体基板
US20160293710A1 (en) Nitride semiconductor substrate
JP6029538B2 (ja) 半導体装置
JP2015103665A (ja) 窒化物半導体エピタキシャルウエハおよび窒化物半導体
JP6174253B2 (ja) 窒化物系化合物半導体
KR102391923B1 (ko) 질화물계 고전자이동도 트랜지스터용 웨이퍼 및 그 제조 방법
CN111146269A (zh) 高电子迁移率晶体管装置及其制造方法
WO2015005083A1 (ja) 窒化物半導体積層基板、窒化物半導体装置および窒化物半導体積層基板の製造方法
JP2016149511A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15525153

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177013821

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863344

Country of ref document: EP

Kind code of ref document: A1