WO2016082746A1 - 一种硅片处理装置及方法 - Google Patents

一种硅片处理装置及方法 Download PDF

Info

Publication number
WO2016082746A1
WO2016082746A1 PCT/CN2015/095431 CN2015095431W WO2016082746A1 WO 2016082746 A1 WO2016082746 A1 WO 2016082746A1 CN 2015095431 W CN2015095431 W CN 2015095431W WO 2016082746 A1 WO2016082746 A1 WO 2016082746A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
module
aligned
exposure
rotating
Prior art date
Application number
PCT/CN2015/095431
Other languages
English (en)
French (fr)
Inventor
王刚
田翠侠
姜杰
王邵玉
阮冬
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Priority to JP2017527867A priority Critical patent/JP6474143B2/ja
Priority to KR1020177017434A priority patent/KR101981872B1/ko
Priority to EP15863383.4A priority patent/EP3226284B1/en
Priority to US15/531,320 priority patent/US10658214B2/en
Priority to SG11201704323XA priority patent/SG11201704323XA/en
Publication of WO2016082746A1 publication Critical patent/WO2016082746A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2026Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure for the removal of unwanted material, e.g. image or background correction
    • G03F7/2028Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure for the removal of unwanted material, e.g. image or background correction of an edge bead on wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67712Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrate being handled substantially vertically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel

Definitions

  • the present invention relates to the field of integrated circuit manufacturing, and in particular to a silicon wafer processing apparatus and method.
  • Electroplating is one of the most important processes for IC circuit post-packaging. It uses the edge of the silicon wafer as the anode, the plating window in the middle of the silicon wafer as the cathode, and then adds a certain DC working voltage between the anode and the cathode, by controlling the current and plating. The concentration of the plating solution in the bath controls the height of the metal bumps.
  • the width of the edge is determined by the width of the Wafer Edge Exclusion (WEE) process.
  • WEE Wafer Edge Exclusion
  • the chemical de-edge method is to eliminate the edge of the silicon wafer by spraying solvent on the edge of the silicon wafer during the process of coating the silicon wafer.
  • the disadvantages of the method are long de-edge time, high cost of solvent consumables and easy spraying of the solvent onto the silicon wafer.
  • the middle graphics area seriously affects the graphics quality.
  • the edge exposure method is to vacuum-adsorb the silicon wafer on the rotating platform, and fix a set of ultraviolet exposure lens above the edge of the silicon wafer to generate a uniform illumination spot of a certain size, and then use the rotation of the rotary table to realize the edge exposure of the silicon wafer.
  • the edge exposure method has the advantages of high production efficiency, low device cost, and easy process control.
  • the silicon wafer is first pre-aligned because the position where the silicon wafer is transferred to the pre-alignment system is random and there is a position error.
  • the purpose of pre-alignment is to adjust these deviations to complete the centering of the silicon wafer and the orientation of the gap.
  • the centering is to move the core of the silicon wafer to the core of the rotating table to make the two coincide.
  • Orientation is to rotate the notch of the silicon wafer to a specified position, thus ensuring that the silicon wafer can be transmitted in a fixed posture.
  • Pre-alignment is a precise positioning before the edge of the wafer is exposed, and its positioning accuracy directly affects the working efficiency of the entire wafer processing apparatus.
  • the requirements for pre-alignment and edge exposure are getting higher and higher, and the degree of automation is getting higher and higher.
  • pre-alignment function it is not only required to complete pre-alignment of various types of process sheets, such as through-hole sheets, warps, ultra-thin sheets, etc., but also requires simultaneous processing of 6/8/12-inch wafers.
  • edge exposure function not only the edge exposure, ring exposure, segmentation exposure and other exposure modes are required, but also the exposure field of view and the exposure energy monitoring function are required. At the same time, the cost of the silicon wafer processing apparatus is required to be lower and lower.
  • wafer pre-alignment and wafer edge exposure are usually completed by two sets of devices, requiring two independent control systems, occupying a large space, and controlling more objects, and simultaneously implementing the switching axis.
  • Control of the motion axes such as the rotating shaft, the lifting shaft, and the centering shaft, the pre-alignment method is cumbersome, the system design is complicated, the energy consumption is large, and the cost is high.
  • the present invention provides a silicon wafer processing apparatus capable of simultaneously realizing pre-alignment and edge exposure functions of a silicon wafer, reducing control objects, and reducing system complexity.
  • a silicon wafer processing apparatus for pre-aligning and edge-exposing a silicon wafer, comprising: a rotating stage for carrying the silicon wafer; and a motion module And a rotating module, a lifting module and a straight line module are connected to each other from top to bottom, and the top end of the rotating module is connected to the rotating table for driving the silicon wafer and the rotating table.
  • Rotating the lifting module is configured to drive the rotating module and the rotating table to move in a vertical direction, and to move the silicon wafer between at least a first height and a second height, the linear mode
  • the group is configured to drive the lifting module and the rotating module to move in a horizontal direction
  • a pre-aligning module is configured to collect position information of the silicon chip when the silicon chip is at a pre-aligned height
  • an edge exposure module is used for Edge-exposing the silicon wafer, the pre-alignment module and the edge exposure module are respectively located on two sides of the silicon wafer
  • a control module, and the pre-alignment module, the edge exposure module, and the motion module Electrical connection for Receiving position information of the wafer and adjusting the position of the turntable position information of wafer movement of the control module, the wafer pre-alignment, the control module is further used for exposure control edges
  • the optical module performs edge exposure on the silicon wafer.
  • the silicon wafer processing apparatus further includes a fixed module, the pre-alignment module, the edge exposure module, the motion module and the control module are all connected to the fixed module, and the linear module can be in the fixed module On one surface, it moves in the horizontal direction.
  • the pre-alignment module includes a pre-aligned light source and a pre-aligned lens, the pre-aligned light source has a mounting height lower than the pre-aligned height, and the pre-aligned lens has a higher mounting height than the Pre-aligning height, when the silicon wafer is at the pre-aligned height, the pre-aligned light source emits illumination light to illuminate an edge of the silicon wafer, and reaches the pre-aligned lens by an image sensor Collect position information of the edge of the wafer.
  • the pre-aligned light source is a visible light source light source.
  • the silicon wafer pre-alignment includes aligning a center of the silicon wafer in a horizontal direction with a center of the rotating stage.
  • control module further includes a data processing component, configured to calculate an offset of the center of the silicon wafer from the center of the rotating table and/or a position of the notch of the silicon wafer gap according to the collected position information of the silicon wafer.
  • the edge exposure module includes an edge exposure lens, the edge exposure lens is located above an exposure height of the silicon wafer, and a central axis of the edge exposure lens and a central axis of the pre-alignment module are located The plane passes through the center of the silicon wafer, the edge exposure lens includes an exposure source and a variable field stop, the exposure source is located above the variable field stop, and the light emitted by the exposure source is illuminated by the variable field stop Exposure to the silicon wafer.
  • the exposure height is the same as or different from the pre-alignment height.
  • the exposure light source is an ultraviolet band light source.
  • the silicon wafer processing apparatus further includes a positioning table located between the first and second heights, the positioning table allows the rotating table to pass vertically, but does not allow the silicon wafer to be vertically oriented After passing, and used to adsorb the silicon wafer when the silicon wafer is close to the positioning stage.
  • the positioning platform is a U-shaped structure with one side open, and the radial size of the hollow portion of the U-shaped structure is larger than the radial size of the rotating module and the rotating table, and is smaller than the silicon wafer. radius.
  • the positioning stage adsorbs the silicon wafer by adopting a two-point adsorption method.
  • the two sides of the positioning table opening are respectively provided with one or more vacuum adsorption holes for adsorbing silicon wafers and a plurality of protrusions for auxiliary support.
  • a flexible suction cup is disposed around the vacuum adsorption hole.
  • the silicon wafer is selected from a plurality of silicon wafers of different sizes, and a horizontally disposed position of the pre-alignment module and the edge exposure module corresponds to an edge position of a largest-sized silicon wafer of the plurality of different-sized silicon wafers. .
  • the present invention also provides a method for pre-aligning and edge-exposure a silicon wafer using the above-described silicon wafer processing apparatus, comprising the following steps:
  • the motion module is driven to move the rotary table to the side of the pre-alignment module;
  • the control module controls the rotation module to drive the rotary table and the silicon wafer to rotate, and the pre-alignment module collects the position information of the silicon wafer, and transmits the position information of the silicon wafer to the control module;
  • the control module controls the motion module to adjust the position of the rotary table according to the obtained position information of the silicon wafer, and completes the pre-alignment work of the silicon wafer;
  • the motion module drives the rotary table to move to the side of the edge exposure module
  • the control module controls the edge exposure module to perform edge exposure processing on the silicon wafer.
  • the silicon wafer processing apparatus further includes a positioning table located between the first and second heights, the positioning table allows the rotating table to pass vertically, but does not allow the silicon wafer to pass vertically And for adsorbing the silicon wafer when the silicon wafer is close to the positioning stage.
  • the pre-alignment module of the silicon wafer processing apparatus includes a pre-aligned light source and a pre-pair a quasi-lens, the pre-aligned light source having a mounting height lower than the pre-aligned height, the pre-aligned lens having a mounting height higher than the pre-aligned height, wherein the silicon wafer is located in the pre-aligned At a height, the pre-aligned light source emits illumination light to illuminate an edge of the silicon wafer, and after reaching the pre-aligned lens, position information of the edge of the silicon wafer is acquired by an image sensor.
  • step (5) comprises the following steps:
  • the control module drives the lifting module to drive the rotating table and the silicon piece to move downward according to the positional deviation of the center of the silicon wafer relative to the center of the rotating table, and reaches the intersection with the positioning table, and the positioning table absorbs the silicon wafer;
  • the lifting module drives the rotary table to continue downward movement to reach the adjustment position below the positioning table, and the adjustment position is located between the positioning table and the lifting module;
  • the control module controls the linear module to drive the rotary table to move in the horizontal direction according to the offset, so that the center of the rotary table is aligned with the center of the silicon wafer;
  • the control module controls the lifting module to drive the rotating table to move up to the intersection position, so that the silicon piece is separated from the positioning table and returned to the rotating table;
  • rotating module drives the rotating table to rotate the notch position of the silicon wafer to the side of the pre-aligned lens
  • the image sensor collects the position information of the notch and transmits it to the control module, and the control module processes the position information of the notch to obtain the vertex position of the notch of the silicon wafer;
  • the control module sends a command to the rotating module, and the rotating module rotates according to the command, so that the silicon chip gap is below the pre-aligned lens;
  • step (7) further comprises: performing a specified position exposure or a segmentation exposure on the silicon wafer by adjusting the linear module and the rotation module by the control module.
  • the silicon wafer processing apparatus and method provided by the invention simultaneously realize pre-alignment and edge exposure processing of the silicon wafer by setting the pre-alignment module and the edge exposure module, thereby reducing the occupied space of the system;
  • the linear module drives the lifting module and the rotating module to move in the horizontal direction, realizing the pre-alignment and edge exposure functions of different sizes of silicon wafers, and using a linear module to realize the common relationship between the switching shaft and the centering shaft
  • the function reduces the control object, simplifies the control difficulty and the complexity of the system structure design, and greatly reduces energy consumption and cost.
  • FIG. 1 is a schematic structural view of a silicon wafer processing apparatus of the present invention
  • FIG. 2 is a schematic structural view of a positioning table of the present invention
  • FIG. 3 is a flow chart of a method of processing a silicon wafer by the silicon wafer processing apparatus of the present invention.
  • the figure shows: 1, pre-alignment module; 11, pre-aligned light source; 12 pre-alignment lens; 2, edge exposure module; 21, edge exposure lens; 3, motion module; 31, rotation module; Lifting module; 33, linear module; 4, control module; 5, fixed module; 6, rotating table; 7, silicon wafer; 8, positioning table; 81, vacuum adsorption hole; 82, convex; 83, flexible suction cup ; 9, bracket.
  • the present invention provides a silicon wafer processing apparatus for pre-aligning and edge-exposing the silicon wafer 7, including a pre-alignment module 1, an edge exposure module 2, a motion module 3, and a control module. 4 and the fixed module 5, the rotating table 6 and the positioning table 8; the pre-alignment module 1, the edge exposure module 2, the motion module 3, the control module 4, and the positioning table 8 are respectively connected to the fixed module 5 through the corresponding bracket 9 to control
  • the module 4 is electrically coupled to the pre-alignment module 1, the edge exposure module 2, and the motion module 3.
  • the motion module 3 includes a rotation module 31, a lifting module 32, and a linear module 33 connected in sequence from top to bottom, and three The center axis of the person is coincident, the top end of the rotating module 31 is connected to the rotating table 6, the rotating table 6 is used for carrying and fixing the silicon wafer 7, the rotating module 31 drives the rotating table 6 to rotate, and the positioning table 8 is located below the rotating table 6, positioning The stage 8 is used for adsorbing the silicon wafer 7, and the lifting module 32 drives the rotating module 31 and the rotating table 6 to move in the vertical direction, that is, the Z direction in FIG. 1, and the bottom surface of the linear module 33 and the fixed module 5 slide.
  • the surface of the fixed module 5 that is in contact with the linear module 33 is provided with a guide rail (not shown), and the corresponding surface of the linear module 33 is provided with a motion suitable for the guide rail.
  • the lead screw (not shown) is driven by a motor (not shown), and the linear module 33 can drive the lifting module 32 and the rotating module 31 along the guide rails on the fixed module 5 in the horizontal direction, that is, Moving in the X direction in FIG.
  • the pre-alignment module 1 and the edge exposure module 2 respectively correspond to the edges on both sides of the silicon wafer 7, specifically, the radius of the silicon wafer 7 is 6 inches, 8 inches or 12 Inches, the central axes of the pre-alignment module 1 and the edge exposure module 2 are respectively located at the edges of the two sides of the 12-inch silicon wafer 7 in the X direction;
  • the rotating module 31 When the silicon wafer is at a pre-aligned height, the rotating module 31 first drives the rotating table 6 and the silicon wafer 7 to rotate, and at the same time, the pre-alignment module 1 collects the position information of the silicon wafer 7, and transmits the position information. To the control module 4, the control module 4 then controls the motion module 3 to adjust the position of the silicon wafer 7 to achieve pre-alignment of the silicon wafer 7, and then the control module 4 controls the motion module 3 and the edge exposure module 2 to control the silicon wafer 7. Edge exposure.
  • the pre-alignment module 1 includes a pre-aligned light source 11 and a pre-aligned lens 12, the pre-aligned light source 11 is a visible light band light source, and the pre-aligned light source 11 is located below one side edge of the silicon wafer 7 in the X direction, ie
  • the mounting height of the pre-aligned light source 11 is lower than the pre-aligned height, and the pre-aligned lens 12 is located above the edge of the silicon wafer 7 corresponding to the pre-aligned light source 11, that is, the mounting height of the pre-aligned lens 12 Above the pre-alignment height, when the silicon wafer is at the pre-aligned height, the pre-aligned light source 11 illuminates the edge of the silicon wafer 7 and reaches the pre-aligned lens 12, the image sensor (not shown in the figure) The position data and the gap data of the edge of the silicon wafer are collected, and the collected data is transmitted to the data processing component of the control module 4 to calculate the offset of
  • the edge exposure module 2 includes an edge exposure lens 21, and the edge exposure lens 21 is located above an exposure height, which is located above the edge of the silicon wafer 7 as shown in FIG. 1 in the embodiment, wherein the exposure height is The pre-alignment heights are the same or different.
  • the central axis of the edge exposure lens 21 and the plane of the central axis of the pre-alignment module 1 pass through the center of the silicon wafer, and the edge exposure lens 21 includes an exposure light source and a variable field stop (none of the figures) Marked), the exposure source is an ultraviolet band source, and is located above the variable field diaphragm, and the light from the exposure source is illuminated by the variable field diaphragm Exposure to the silicon wafer.
  • the positioning platform 8 is a U-shaped structure with one opening, and the opening position corresponds to the pre-alignment module 1, that is, the opening direction faces the pre-alignment module 1.
  • the radial size of the U-shaped structure is larger than that of the rotating module 21 and the
  • the radial size of the rotating table 6 is smaller than the radius of the silicon wafer 7, that is, the rotating module 21 and the rotating table 6 can pass through the hollow portion of the positioning table 8, and the silicon wafer 7 cannot pass, and the positioning table 8 adsorbs silicon.
  • the sheet 7 adopts a two-point adsorption method.
  • the U-shaped structure opening sides of the positioning table 8 respectively have one or more vacuum adsorption holes 81 for adsorbing the silicon wafer 7 and a plurality of protrusions for auxiliary support.
  • the vacuum adsorption hole 81 is used to adsorb the silicon wafer 7 on the side close to the pre-alignment module 1
  • the protrusion 82 is used for the auxiliary support of the silicon wafer 7 on the side away from the pre-alignment module 1.
  • the positions of the protrusions 82 are respectively adapted to the sizes of the 6-inch, 8-inch and 12-inch silicon wafers 7; preferably, the vacuum adsorption holes 81 are further provided around
  • the flexible suction cup 83 is used for further improving the adsorption of the non-standard silicon wafer such as the through-hole sheet and the warping piece by the positioning table 8. Force.
  • the method for pre-aligning and edge-exposure processing of the silicon wafers 7 of different sizes by the silicon wafer processing apparatus described above specifically includes the following steps, as shown in FIG. 3:
  • the pre-alignment module 1 and the central axis of the edge exposure module 2 are respectively located at the edges of the two sides of the 12-inch silicon wafer 7 in the X direction, and the distance between the two is equal to the center of the motion module 3;
  • the motion module 3 is caused to move the rotary table 6 to the side of the pre-alignment module 1 by a corresponding distance. Specifically, if the radius of the silicon wafer 7 is 12 inches, the linear module 33 is not required. If the radius of the silicon wafer 7 is 8 inches, the control module 4 drives the linear module 33 to move to the side of the pre-alignment module 1 for a distance such that the edge of the 8-inch silicon wafer 7 is located at the alignment module 1.
  • the embodiment moves 50 mm; if the radius of the silicon wafer 7 is 6 inches, the control module 4 drives the linear module 33 to move to the side of the pre-alignment module 1 a distance such that the edge of the 6-inch silicon wafer 7 is located.
  • the embodiment preferably moves 75 mm;
  • the control module 4 controls the rotation module 31 to drive the rotary table 6 and the silicon wafer 7 to rotate, and the image sensor collects the position information of the silicon wafer 7, and transmits the position information of the silicon wafer 7 to the data processing in the control module 4. element.
  • the pre-aligned light source 11 emits light of a visible wavelength band to illuminate the edge of the silicon wafer 7, and after reaching the pre-aligned lens 12, the image sensor collects the data of the edge of the silicon wafer 7 according to the set sampling frequency and transmits the data to the data processing component.
  • the sampling frequency is as high as possible, and the sampling time is long enough, that is, the data of the silicon wafer 7 is rotated by a plurality of times, and the data processing component calculates the center of the silicon wafer 7 in the X direction according to the sampled data.
  • the offset of the center of the rotary table 6 it should be noted that since both the rotary table 6 and the silicon wafer 7 have a circular shape, the centers of the two are located in the X direction at this time;
  • the control module 4 controls the motion module 3 to adjust the position of the rotary table 6 according to the positional offset information of the center of the silicon wafer 7 with respect to the center of the rotary table 6, and completes the pre-alignment work of the silicon wafer 7, specifically, including The following three steps:
  • the control module 4 drives the lifting module 32 to drive the rotating table 6 and the silicon wafer 7 to move downward according to the positional deviation information of the center of the silicon wafer 7 with respect to the center of the rotating table 6, and reaches the intersection with the positioning table 8, that is, The upper surface of the positioning table 8 is used to transfer the silicon wafer 7 to the positioning table 8. At this time, the silicon wafer 7 is adsorbed on the positioning table 8, and then the lifting module 32 drives the rotating table 6 to continue downward movement to reach below the positioning table 8.
  • the adjustment position is located between the positioning table 8 and the lifting module 32, and the specific position can be set as needed;
  • the control module 4 controls the linear module 33 to drive the rotary table 6 to compensate in the X direction according to the offset, so that the center of the rotary table 6 coincides with the center of the silicon wafer 7; after the adjustment is completed, the control module 4 controls the lift mode.
  • the group 32 drives the rotary table 6 to move up to the transfer position, so that the silicon wafer 7 is separated from the positioning table 8 and returned to the rotary table 6;
  • the rotation module 31 drives the rotation table 6 to rotate to rotate the notch position of the silicon wafer 7 to the side of the pre-alignment lens 12, and collects the position information of the notch through the image sensor, and the data processing component is notched.
  • the position information is processed to obtain the vertex position of the notch, and the control module 4 issues a command to the rotation module 31.
  • the rotation module 31 rotates according to the command, so that the silicon chip notch is under the pre-alignment lens 12, and then the rotation module 31 is small.
  • the angle is rotated back and forth 2 to 3 times, and the gap information is accurately collected.
  • the data is fed back to the rotation module 31 to compensate the rotation angle until the precise orientation of the silicon wafer 7 is achieved.
  • the motion module 3 drives the rotary table 6 to move to the edge exposure module 2 side by a corresponding distance; specifically, if the radius of the silicon wafer 7 is 12 inches, the linear module 33 does not need to move; The radius of the silicon wafer 7 is 8 inches, and the control module 4 drives the linear module 33 to move to the side of the edge exposure module 2 for a distance such that the edge of the 8-inch silicon wafer 7 is located at the edge exposure module 2.
  • the control module 4 drives the linear module 33 to move to the side of the edge exposure module 2 for a distance such that the edge of the 6-inch silicon wafer 7 is located at the edge exposure module 2.
  • the movement is 150 mm;
  • the control module 4 controls the edge exposure module 2 to perform edge exposure processing on the silicon wafer 7. Specifically, the control module 4 turns on the exposure light source to emit ultraviolet band light, and controls the variable field of view diaphragm to adjust according to the width of the exposure required.
  • the ultraviolet band fiber is exposed to the edge of the silicon wafer 7 through a variable field stop for exposure processing.
  • the linear module 33 and the rotation module 31 can be adjusted by the control module 4.
  • the silicon wafer processing apparatus and method provided by the present invention simultaneously achieve pre-alignment and edge exposure processing of the silicon wafer 7 by providing the pre-alignment module 1 and the edge exposure module 2, thereby reducing the occupied space of the system;
  • the linear module 33 drives the lifting module 32 and the rotating module 31 to move in the horizontal direction, thereby realizing the pre-alignment and edge exposure functions of the silicon wafers 7 of different sizes, and the switching axis is realized by using a linear module 33.
  • the common function of the centering shaft reduces the control object, simplifies the control difficulty and the complexity of the system structure design, and only needs to compensate the position deviation of the silicon wafer 7 from the X direction in the pre-alignment centering process. Reduced operational complexity of pre-alignment, greatly reducing energy consumption and cost.

Abstract

本发明公开了一种硅片处理装置及方法,用于对硅片进行预对准和边缘曝光,该硅片处理装置包括预对准模块、边缘曝光模块、运动模块、控制模块和旋转台;运动模块包括由上到下依次连接的旋转模组、升降模组和直线模组,旋转模组顶端与旋转台相连,用于带动所述硅片和旋转台进行旋转,所述升降模组用于带动所述旋转模组和旋转台沿竖直方向移动,所述直线模组用于带动所述升降模组和旋转模组沿水平方向移动;预对准模块和边缘曝光模块分别与硅片两侧边缘相对应。本发明减少了控制对象,简化了控制难度和系统结构设计复杂度,同时降低了预对准的操作复杂度和装置成本。

Description

一种硅片处理装置及方法 技术领域
本发明涉及集成电路制造领域,具体涉及一种硅片处理装置及方法。
背景技术
电镀是IC电路后封装非常重要的工艺之一,其利用硅片的边缘做阳极,硅片中间的电镀窗口做阴极,然后在阴阳两极之间加一定的直流工作电压,通过控制电流大小及电镀槽中电镀液的浓度来控制金属凸块的高度。
由于光刻胶不导电,因此在电镀工艺之前需将硅片边缘的光刻胶去掉,去边宽度大小取决于前道硅片边缘曝光(Wafer Edge Exclusion,WEE)工艺的去边宽度。传统的硅片去边方法很多,但总的归纳起来有两大类:化学去边法和边缘曝光法。化学去边法是在硅片涂胶过程中,通过向硅片边缘喷洒溶剂以消除硅片边缘光刻胶,该方法的缺点是去边时间长、溶剂耗材成本高且溶剂易喷洒到硅片中间图形区域,严重影响图形质量。边缘曝光法是将硅片通过真空吸附在旋转平台上,在硅片边缘上方固定一套紫外曝光镜头以产生一定大小尺寸的均匀照明光斑,然后利用旋转台的旋转来实现硅片边缘曝光。相比化学去边法,边缘曝光法具有生产效率高、装置成本低和过程易于控制等优点。
在边缘曝光过程中,硅片被传输到硅片旋转台上后,首先要对硅片进行预对准处理,这是因为硅片被传输到预对准系统的位置是随机的,存在位置误差,预对准的目的就是要调整这些偏差,完成硅片的定心及缺口的定向。定心就是要把硅片的型心移动到旋转台的型心上,使二者重合,定向就是把硅片的缺口转动到指定位置上,这样就保证硅片能以一个固定的姿态被传输到曝光台上进行曝光。预对准是硅片边缘曝光前的一次精确定位,其定位精度直接影响到整个硅片处理装置的工作效率。
目前市场上对预对准和边缘曝光的要求越来越高,自动化程度越来越高。针对预对准功能,不仅要求可以完成多种类型工艺片的预对准,如通孔片,翘曲片,超薄片等,还要求同时实现对6/8/12英寸硅片的处理。针对边缘曝光功能,不仅要求实现边缘曝光,环形曝光、分段曝光等多种曝光方式,还要求实现曝光视场可调和曝光能量监控功能。同时,要求硅片处理装置的成本越来越低。
目前已有的技术中,硅片预对准和硅片边缘曝光通常由两套装置来完成,需要两套独立的控制系统,占用空间大,而且控制的对象较多,需要同时实现对切换轴、旋转轴、升降轴、定心轴等运动轴的控制,预对准方法繁琐、系统设计复杂、能源消耗大,成本也较高。
发明内容
本发明为了克服以上不足,提供了一种既能同时实现硅片的预对准和边缘曝光功能,又能减少控制对象,降低系统复杂度的硅片处理装置。
为了解决上述技术问题,本发明的技术方案是:一种硅片处理装置,用于对硅片进行预对准和边缘曝光,包括:一旋转台,用于承载所述硅片;一运动模块,由上到下依次包括相互连接的一旋转模组、一升降模组和一直线模组,所述旋转模组的顶端与所述旋转台相连,用于带动所述硅片和旋转台进行旋转,所述升降模组用于带动所述旋转模组和旋转台沿竖直方向移动,且能使所述硅片至少在一第一高度和一第二高度之间移动,所述直线模组用于带动所述升降模组和旋转模组沿水平方向移动;一预对准模块,用于当硅片位于一预对准高度时采集硅片的位置信息;一边缘曝光模块,用于对所述硅片进行边缘曝光,所述预对准模块和边缘曝光模块分别位于所述硅片的两侧;以及一控制模块,与所述预对准模块、边缘曝光模块和运动模块之间电联接,用于接收所述硅片的位置信息并根据硅片的位置信息控制运动模块对旋转台的位置进行调整,实现硅片预对准,所述控制模块还用于控制边缘曝 光模块对硅片进行边缘曝光。
进一步的,所述硅片处理装置还包括一固定模块,所述预对准模块、边缘曝光模块、运动模块和控制模块均与所述固定模块相连,所述直线模组能够在所述固定模块的一表面上沿水平方向移动。
进一步的,所述预对准模块包括预对准光源和预对准镜头,所述预对准光源的安装高度低于所述预对准高度,所述预对准镜头的安装高度高于所述预对准高度,当所述硅片位于所述预对准高度时,所述预对准光源发出照射光线照射所述硅片的边缘,并到达所述预对准镜头后由一图像传感器采集硅片边缘的位置信息。
进一步的,所述预对准光源为可见光波段光源。
进一步的,所述硅片预对准包括水平方向上硅片的圆心与所述旋转台的中心对准。
进一步的,所述控制模组还包括数据处理元件,用于根据采集到的所述硅片的位置信息计算出硅片圆心相对于旋转台中心的偏移量和/或硅片缺口顶点位置。
进一步的,所述边缘曝光模块包括一边缘曝光镜头,所述边缘曝光镜头位于所述硅片的一曝光高度上方,所述边缘曝光镜头的中心轴与所述预对准模块的中心轴所在的平面经过所述硅片的圆心,边缘曝光镜头包括曝光光源和可变视场光阑,所述曝光光源位于可变视场光阑上方,曝光光源发出的光线经过可变视场光阑之后照射到硅片上进行曝光。
进一步的,所述曝光高度与所述预对准高度相同或不同。
进一步的,所述曝光光源为紫外波段光源。
进一步的,所述旋转模组、升降模组和直线模组三者的中心轴重合。
进一步的,所述的硅片处理装置还包括一定位台,位于所述第一、第二高度之间,所述定位台允许旋转台竖直向经过,但不允许所述硅片竖直向经过,且在硅片靠近所述定位台时用于吸附硅片。
进一步的,所述定位台是一侧开口的U型结构,所述U型结构中空处的径向大小大于所述旋转模组和所述旋转台的径向大小,且小于所述硅片的半径。
进一步的,所述定位台吸附硅片采用两点吸附的方式。
进一步的,所述定位台开口两边分别对应设有一个或多个用于吸附硅片的真空吸附孔和若干个用于辅助支撑的凸起。
进一步的,所述真空吸附孔周围设有柔性吸盘。
进一步的,所述硅片选自多种不同尺寸的硅片,所述预对准模块和边缘曝光模块的水平设置位置与所述多种不同尺寸的硅片中最大尺寸硅片的边缘位置对应。
本发明还提供一种采用上述硅片处理装置对硅片进行预对准和边缘曝光的方法,包括如下步骤:
(1)对运动模块的位置进行初始化;
(2)将硅片放置到旋转台上,使硅片与旋转台的位置相对固定,并判断硅片的尺寸;
(3)根据硅片的尺寸,使运动模块带动旋转台向预对准模块一侧移动;
(4)控制模块控制旋转模组带动旋转台和硅片进行旋转,同时预对准模块采集硅片的位置信息,并将硅片的位置信息传送至控制模块;
(5)控制模块根据得到的硅片的位置信息控制运动模块对旋转台的位置进行调整,完成硅片的预对准工作;
(6)根据硅片的尺寸使运动模块带动旋转台向边缘曝光模块一侧移动;
(7)控制模块控制边缘曝光模块对硅片进行边缘曝光处理。
进一步的,所述硅片处理装置还包括一定位台,位于所述第一、第二高度之间,所述定位台允许旋转台竖直向经过,但不允许所述硅片竖直向经过,且在硅片靠近所述定位台时用于吸附硅片。
进一步的,所述硅片处理装置的所述预对准模块包括预对准光源和预对 准镜头,所述预对准光源的安装高度低于所述预对准高度,所述预对准镜头的安装高度高于所述预对准高度,当所述硅片位于所述预对准高度时,所述预对准光源发出照射光线照射所述硅片的边缘,并到达所述预对准镜头后由一图像传感器采集硅片边缘的位置信息。
进一步的,所述步骤(5)包括以下步骤:
(5a)控制模块根据硅片圆心相对于旋转台中心的位置偏移量,驱动升降模组带动旋转台和硅片向下运动,到达与定位台的交接位,此时定位台吸附硅片;
(5b)升降模组带动旋转台继续向下运动,到达定位台下方的调整位,调整位位于定位台和升降模组之间;
(5c)控制模块控制直线模组带动旋转台根据偏移量在水平方向上进行移动,使旋转台的中心与硅片的圆心对齐;
(5d)控制模块控制升降模组带动旋转台向上运动至交接位,使硅片脱离定位台回到旋转台上;
(5e)重复步骤(4)至步骤(5d),直至满足硅片与旋转台的定心精度;
(5f)旋转模组带动旋转台转动将硅片的缺口位置旋转至预对准镜头一侧;
(5g)图像传感器采集缺口的位置信息并传送至控制模块,控制模块对缺口的位置信息进行处理得到硅片缺口的顶点位置;
(5h)控制模块下发命令至旋转模组,旋转模组根据命令旋转,使硅片缺口处于预对准镜头的下方;
(5i)重复步骤(5g)-(5h),直至满足硅片定向精度。
进一步的,所述步骤(7)还包括通过控制模块调节直线模组和旋转模组对硅片进行指定位置曝光或分段曝光。
本发明提供的硅片处理装置和方法,通过设置预对准模块和边缘曝光模块同时实现对硅片的预对准和边缘曝光处理,降低了系统的占用空间;同时 通过直线模组带动升降模组和旋转模组在水平方向上进行移动,实现了对不同尺寸硅片的预对准和边缘曝光功能,使用一个直线模组实现了切换轴和定心轴的共同功能,减少了控制对象,简化了控制难度和系统结构设计复杂度,大大降低了能源消耗和成本。
附图说明
图1是本发明硅片处理装置的结构示意图;
图2是本发明定位台的结构示意图;
图3是本发明硅片处理装置处理硅片的方法流程图。
图中所示:1、预对准模块;11、预对准光源;12预对准镜头;2、边缘曝光模块;21、边缘曝光镜头;3、运动模块;31、旋转模组;32、升降模组;33、直线模组;4、控制模块;5、固定模块;6、旋转台;7、硅片;8、定位台;81、真空吸附孔;82、凸起;83、柔性吸盘;9、支架。
具体实施方式
下面结合附图对本发明作详细描述。
如图1、2所示,本发明提供一种硅片处理装置,用以对硅片7进行预对准和边缘曝光,包括预对准模块1、边缘曝光模块2、运动模块3、控制模块4和固定模块5、旋转台6和定位台8;预对准模块1、边缘曝光模块2、运动模块3、控制模块4、和定位台8分别通过相应的支架9与固定模块5相连,控制模块4与预对准模块1、边缘曝光模块2和运动模块3之间电联接,运动模块3包括由上到下依次连接的旋转模组31、升降模组32和直线模组33,且三者的中心轴重合,旋转模组31顶端与旋转台6相连,旋转台6用于承载和固定硅片7,旋转模组31带动旋转台6进行旋转,定位台8位于旋转台6下方,定位台8用于吸附硅片7,升降模组32带动旋转模组31和旋转台6沿竖直方向,即图1中的Z方向进行移动,直线模组33的底面与固定模块5滑 动相连,具体的,所述固定模块5与直线模组33相接触的面上设有导轨(图中未标出),在直线模组33相应的面上设有与导轨相适配的运动丝杆(图中未标出),在电机(图中未标出)的驱动下,直线模组33可带动升降模组32和旋转模组31沿固定模块5上的导轨在水平方向,即图1中的X方向上进行移动;预对准模块1和边缘曝光模块2分别与硅片7两侧的边缘相对应,具体的,所述硅片7的半径为6英寸、8英寸或12英寸,预对准模块1和边缘曝光模块2的中心轴分别位于12英寸硅片7在X方向上两侧的边缘处;
当硅片位于一预对准高度时,旋转模组31首先带动旋转台6和硅片7进行旋转,与此同时预对准模块1采集硅片7的位置信息,并将所述位置信息传送至控制模块4,接着控制模块4控制运动模块3对硅片7的位置进行调整,实现硅片7的预对准,然后控制模块4通过控制运动模块3和边缘曝光模块2对硅片7进行边缘曝光。
所述预对准模块1包括预对准光源11和预对准镜头12,预对准光源11为可见光波段光源,预对准光源11位于硅片7在X方向上一侧边缘的下方,即预对准光源11的安装高度低于所述预对准高度,预对准镜头12位于与预对准光源11相对应的硅片7的边缘上方,即所述预对准镜头12的安装高度高于所述预对准高度,当所述硅片位于所述预对准高度时,预对准光源11照射硅片7的边缘并到达预对准镜头12,图像传感器(图中未标出)采集硅片边缘的位置数据和缺口数据,并将采集到的数据传送给控制模块4的数据处理元件计算硅片中心相对于旋转台中心的偏移量和/或缺口顶点的位置。
所述边缘曝光模块2包括一个边缘曝光镜头21,边缘曝光镜头21位于一曝光高度上方,在本实施例中如图1所示位于硅片7边缘的上方,其中,所述曝光高度与所述预对准高度相同或不同。所述边缘曝光镜头21的中心轴与所述预对准模块1的中心轴所在的平面经过所述硅片的圆心,边缘曝光镜头21包括曝光光源和可变视场光阑(图中均未标出),曝光光源为紫外波段光源,且位于可变视场光阑上方,曝光光源发出的光线经过可变视场光阑之后照射 到硅片上进行曝光。
所述定位台8是一侧开口的U型结构,开口位置与预对准模块1相对应,即开口方向朝向预对准模块1,U型结构中空的径向大小大于旋转模组21和所述旋转台6的径向大小,且小于所述硅片7的半径,即旋转模组21和旋转台6可以从定位台8的中空处通过,而硅片7不能通过,定位台8吸附硅片7采用两点吸附的方式,具体地,定位台8的U型结构开口两边分别对应设有一个或多个用于吸附硅片7的真空吸附孔81和若干个用于辅助支撑的凸起82,如图2所示,真空吸附孔81用于对硅片7在靠近预对准模块1一侧进行吸附,凸起82用于硅片7在远离预对准模块1一侧的辅助支撑,以更好的吸附固定硅片7,所述凸起82的位置分别与6英寸、8英寸和12英寸硅片7的尺寸相适配;优选的,所述真空吸附孔81周围还设有柔性吸盘83,用于进一步提高定位台8对通孔片、翘曲片等不标准硅片的吸附能力。
以上所述的硅片处理装置对不同尺寸的硅片7进行预对准和边缘曝光处理的方法具体包括如下步骤,如图3所示:
(1)将预对准模块1、边缘曝光模块2、运动模块3、控制模块4和固定模块5、旋转台6和定位台8之间按照设定的初始位置进行装配,即预对准模块1和边缘曝光模块2的中心轴分别位于12英寸硅片7在X方向上两侧的边缘处,两者到运动模块3中心处的距离相等;
(2)将硅片7放置到旋转台6上,使硅片7与旋转台6的位置相对固定,并判断硅片7的尺寸,具体的,由人工来判断硅片7的尺寸;
(3)根据硅片7的半径,使运动模块3带动旋转台6向预对准模块1一侧移动相应距离,具体的,若硅片7的半径为12英寸,则无需对直线模组33进行移动;若硅片7的半径为8英寸,则控制模块4驱动直线模组33向预对准模块1一侧移动一段距离使得8英寸的硅片7的边缘位于对准模块1处,本实施例优选的,移动50mm;若硅片7的半径为6英寸,则控制模块4驱动直线模组33向预对准模块1一侧移动一段距离使得6英寸的硅片7的边缘位 于对准模块1处,本实施例优选的,移动75mm;
(4)控制模块4控制旋转模组31带动旋转台6和硅片7进行旋转,同时图像传感器采集硅片7的位置信息,并将硅片7的位置信息传送至控制模块4中的数据处理元件。具体的,预对准光源11发出可见波段的光照射硅片7的边缘,并到达预对准镜头12后由图像传感器根据设定的采样频率采集硅片7边缘的数据并传送至数据处理元件,为了尽可能多的采集点数,采样频率尽可能高,且使采样的时间足够长,即一次采样硅片7旋转多圈的数据,数据处理元件根据采样数据计算出X方向上硅片7中心相对于旋转台6中心的偏移量,需要说明的是,由于旋转台6和硅片7都呈圆形状,因此此时两者的中心位于X方向上;
(5)控制模块4根据硅片7中心相对于旋转台6中心的位置偏移量信息控制运动模块3对旋转台6的位置进行调整,完成硅片7的预对准工作,具体的,包括以下三个步骤:
(5a)控制模块4根据硅片7中心相对于旋转台6中心的位置偏移量信息驱动升降模组32带动旋转台6和硅片7向下运动,到达与定位台8的交接位,即定位台8的上平面,将硅片7交接给定位台8,此时硅片7被吸附在定位台8上,接着升降模组32带动旋转台6继续向下运动,到达定位台8下方的调整位,调整位位于定位台8和升降模组32之间,具体位置可根据需要进行设定;
(5b)控制模块4控制直线模组33带动旋转台6根据偏移量在X方向上进行补偿,使旋转台6的中心与硅片7的中心重合;调整结束之后,控制模块4控制升降模组32带动旋转台6向上运动至交接位,使硅片7脱离定位台8回到旋转台6上;
(5c)重复步骤(4)-(5b),直至满足硅片7的定心精度。
(5d)旋转模组31带动旋转台6转动将硅片7的缺口位置旋转至预对准镜头12一侧,通过图像传感器采集缺口的位置信息,数据处理元件对缺口的 位置信息进行处理得到缺口的顶点位置,控制模组4下发命令至旋转模组31,旋转模组31根据命令旋转,使硅片缺口处于预对准镜头12的下方,然后旋转模组31小角度来回旋转2到3次,精确采集缺口信息,数据上传后经处理反馈到旋转模组31,补偿旋转角度,直至实现硅片7的精确定向;
(6)根据硅片7的尺寸使运动模块3带动旋转台6向边缘曝光模块2一侧移动相应距离;具体的,若硅片7的半径为12英寸,则直线模组33无需移动;若硅片7的半径为8英寸,则控制模块4驱动直线模组33向边缘曝光模块2一侧移动一段距离使得8英寸的硅片7的边缘位于边缘曝光模块2处,本实施例优选的,移动100mm;若硅片7的半径为6英寸,则控制模块4驱动直线模组33向边缘曝光模块2一侧移动一段距离使得6英寸的硅片7的边缘位于边缘曝光模块2处,本实施例优选的,移动150mm;
(7)控制模块4控制边缘曝光模块2对硅片7进行边缘曝光处理,具体的,控制模块4开启曝光光源发出紫外波段光,并控制可变视场光阑根据需要曝光的宽度进行调节,紫外波段光纤通过可变视场光阑之后照射到硅片7的边缘进行曝光处理。
当需要对硅片7进行指定位置曝光或者分段曝光时,可通过控制模块4调节直线模组33和旋转模组31来实现。
综上所述,本发明提供的硅片处理装置和方法,通过设置预对准模块1和边缘曝光模块2同时实现对硅片7的预对准和边缘曝光处理,降低了系统的占用空间;同时通过直线模组33带动升降模组32和旋转模组31在水平方向上进行移动,实现了对不同尺寸硅片7的预对准和边缘曝光功能,使用一个直线模组33实现了切换轴和定心轴的共同功能,减少了控制对象,简化了控制难度和系统结构设计复杂度,同时在预对准的定心过程中只需要从X方向上对硅片7的位置偏差进行补偿,降低了预对准的操作复杂度,大大降低了能源消耗和成本。
虽然说明书中对本发明的实施方式进行了说明,但这些实施方式只是作 为提示,不应限定本发明的保护范围。在不脱离本发明宗旨的范围内进行各种省略、置换和变更均应包含在本发明的保护范围内。

Claims (21)

  1. 一种硅片处理装置,用于对硅片进行预对准和边缘曝光,其特征在于,包括:
    一旋转台,用于承载所述硅片;
    一运动模块,由上到下依次包括相互连接的一旋转模组、一升降模组和一直线模组,所述旋转模组的顶端与所述旋转台相连,用于带动所述硅片和旋转台进行旋转,所述升降模组用于带动所述旋转模组和旋转台沿竖直方向移动,且能使所述硅片至少在一第一高度和一第二高度之间移动,所述直线模组用于带动所述升降模组和旋转模组沿水平方向移动;
    一预对准模块,用于当硅片位于一预对准高度时采集硅片的位置信息;
    一边缘曝光模块,用于对所述硅片进行边缘曝光,所述预对准模块和边缘曝光模块分别位于所述硅片的两侧;以及
    一控制模块,与所述预对准模块、边缘曝光模块和运动模块之间电联接,用于接收所述硅片的位置信息并根据硅片的位置信息控制运动模块对旋转台的位置进行调整,实现硅片预对准,所述控制模块还用于控制边缘曝光模块对硅片进行边缘曝光。
  2. 根据权利要求1所述的硅片处理装置,其特征在于,还包括一固定模块,所述预对准模块、边缘曝光模块、运动模块和控制模块均与所述固定模块相连,所述直线模组能够在所述固定模块的一表面上沿水平方向移动。
  3. 根据权利要求1所述的硅片处理装置,其特征在于,所述预对准模块包括预对准光源和预对准镜头,所述预对准光源的安装高度低于所述预对准高度,所述预对准镜头的安装高度高于所述预对准高度,当所述硅片位于所述预对准高度时,所述预对准光源发出照射光线照射所述硅片的边缘,并到达所述预对准镜头后由一图像传感器采集硅片边缘的位置信息。
  4. 根据权利要求3所述的硅片处理装置,其特征在于,所述预对准光源 为可见光波段光源。
  5. 根据权利要求1所述的硅片处理装置,其特征在于,所述硅片预对准包括水平方向上硅片的圆心与所述旋转台的中心对准。
  6. 根据权利要求5所述的硅片处理装置,其特征在于,所述控制模组还包括数据处理元件,用于根据采集到的所述硅片的位置信息计算出硅片圆心相对于旋转台中心的偏移量和/或硅片缺口顶点位置。
  7. 根据权利要求5所述的硅片处理装置,其特征在于,所述边缘曝光模块包括一边缘曝光镜头,所述边缘曝光镜头位于所述硅片的一曝光高度上方,所述边缘曝光镜头的中心轴与所述预对准模块的中心轴所在的平面经过所述硅片的圆心,边缘曝光镜头包括曝光光源和可变视场光阑,所述曝光光源位于可变视场光阑上方,曝光光源发出的光线经过可变视场光阑之后照射到硅片上进行曝光。
  8. 根据权利要求7所述的硅片处理装置,其特征在于,所述曝光高度与所述预对准高度相同或不同。
  9. 根据权利要求7所述的硅片处理装置,其特征在于,所述曝光光源为紫外波段光源。
  10. 根据权利要求1所述的硅片处理装置,其特征在于,所述旋转模组、升降模组和直线模组三者的中心轴重合。
  11. 根据权利要求1所述的硅片处理装置,其特征在于,还包括一定位台,位于所述第一、第二高度之间,所述定位台允许旋转台竖直向经过,但不允许所述硅片竖直向经过,且在硅片靠近所述定位台时用于吸附硅片。
  12. 根据权利要求11所述的硅片处理装置,其特征在于,所述定位台是一侧开口的U型结构,所述U型结构中空处的径向大小大于所述旋转模组和所述旋转台的径向大小,且小于所述硅片的半径。
  13. 根据权利要求12所述的硅片处理装置,其特征在于,所述定位台吸附硅片采用两点吸附的方式。
  14. 根据权利要求12所述的硅片处理装置,其特征在于,所述定位台开口两边分别对应设有一个或多个用于吸附硅片的真空吸附孔和若干个用于辅助支撑的凸起。
  15. 根据权利要求14所述的硅片处理装置,其特征在于,所述真空吸附孔周围设有柔性吸盘。
  16. 根据权利要求1所述的硅片处理装置,其特征在于,所述硅片选自多种不同尺寸的硅片,所述预对准模块和边缘曝光模块的水平设置位置与所述多种不同尺寸的硅片中最大尺寸硅片的边缘位置对应。
  17. 一种采用如权利要求1所述硅片处理装置对硅片进行预对准和边缘曝光的方法,其特征在于,包括如下步骤:
    (1)对运动模块的位置进行初始化;
    (2)将硅片放置到旋转台上,使硅片与旋转台的位置相对固定,并判断硅片的尺寸;
    (3)根据硅片的尺寸,使运动模块带动旋转台向预对准模块一侧移动;
    (4)控制模块控制旋转模组带动旋转台和硅片进行旋转,同时预对准模块采集硅片的位置信息,并将硅片的位置信息传送至控制模块;
    (5)控制模块根据得到的硅片的位置信息控制运动模块对旋转台的位置进行调整,完成硅片的预对准工作;
    (6)根据硅片的尺寸使运动模块带动旋转台向边缘曝光模块一侧移动;
    (7)控制模块控制边缘曝光模块对硅片进行边缘曝光处理。
  18. 根据权利要求17所述的方法,其特征在于,所述硅片处理装置还包括一定位台,位于所述第一、第二高度之间,所述定位台允许旋转台竖直向经过,但不允许所述硅片竖直向经过,且在硅片靠近所述定位台时用于吸附硅片。
  19. 根据权利要求18所述的方法,其特征在于,所述硅片处理装置的所述预对准模块包括预对准光源和预对准镜头,所述预对准光源的安装高度低 于所述预对准高度,所述预对准镜头的安装高度高于所述预对准高度,当所述硅片位于所述预对准高度时,所述预对准光源发出照射光线照射所述硅片的边缘,并到达所述预对准镜头后由一图像传感器采集硅片边缘的位置信息。
  20. 根据权利要求19所述的方法,其特征在于,所述步骤(5)包括以下步骤:
    (5a)控制模块根据硅片圆心相对于旋转台中心的位置偏移量,驱动升降模组带动旋转台和硅片向下运动,到达与定位台的交接位,此时定位台吸附硅片;
    (5b)升降模组带动旋转台继续向下运动,到达定位台下方的调整位,调整位位于定位台和升降模组之间;
    (5c)控制模块控制直线模组带动旋转台根据偏移量在水平方向上进行移动,使旋转台的中心与硅片的圆心对齐;
    (5d)控制模块控制升降模组带动旋转台向上运动至交接位,使硅片脱离定位台回到旋转台上;
    (5e)重复步骤(4)至步骤(5d),直至满足硅片与旋转台的定心精度;
    (5f)旋转模组带动旋转台转动将硅片的缺口位置旋转至预对准镜头一侧;
    (5g)图像传感器采集缺口的位置信息并传送至控制模块,控制模块对缺口的位置信息进行处理得到硅片缺口的顶点位置;
    (5h)控制模块下发命令至旋转模组,旋转模组根据命令旋转,使硅片缺口处于预对准镜头的下方;
    (5i)重复步骤(5g)-(5h),直至满足硅片定向精度。
  21. 根据权利要求19所述的方法,其特征在于,所述步骤(7)还包括通过控制模块调节直线模组和旋转模组对硅片进行指定位置曝光或分段曝光。
PCT/CN2015/095431 2014-11-26 2015-11-24 一种硅片处理装置及方法 WO2016082746A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017527867A JP6474143B2 (ja) 2014-11-26 2015-11-24 ウエハ処理装置及び方法
KR1020177017434A KR101981872B1 (ko) 2014-11-26 2015-11-24 웨이퍼 처리 장치 및 이와 관련된 방법
EP15863383.4A EP3226284B1 (en) 2014-11-26 2015-11-24 Wafer processing device and method therefor
US15/531,320 US10658214B2 (en) 2014-11-26 2015-11-24 Wafer processing device and method therefor
SG11201704323XA SG11201704323XA (en) 2014-11-26 2015-11-24 Wafer processing device and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410697547.1A CN105632971B (zh) 2014-11-26 2014-11-26 一种硅片处理装置及方法
CN201410697547.1 2014-11-26

Publications (1)

Publication Number Publication Date
WO2016082746A1 true WO2016082746A1 (zh) 2016-06-02

Family

ID=56047766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095431 WO2016082746A1 (zh) 2014-11-26 2015-11-24 一种硅片处理装置及方法

Country Status (8)

Country Link
US (1) US10658214B2 (zh)
EP (1) EP3226284B1 (zh)
JP (1) JP6474143B2 (zh)
KR (1) KR101981872B1 (zh)
CN (1) CN105632971B (zh)
SG (1) SG11201704323XA (zh)
TW (1) TWI581356B (zh)
WO (1) WO2016082746A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3082155B1 (en) * 2015-04-14 2023-08-30 Ebara Corporation Substrate processing apparatus and substrate processing method
JP6444909B2 (ja) * 2016-02-22 2018-12-26 東京エレクトロン株式会社 基板処理方法、基板処理装置及びコンピュータ読み取り可能な記録媒体
CN107561864B (zh) * 2016-06-30 2019-10-25 上海微电子装备(集团)股份有限公司 边缘曝光装置和方法
CN108803245B (zh) * 2017-04-28 2020-04-10 上海微电子装备(集团)股份有限公司 硅片处理装置及方法
CN109427616B (zh) * 2017-09-05 2020-08-25 上海微电子装备(集团)股份有限公司 一种硅片涂胶及预对准检测装置及方法
CN110068989B (zh) * 2018-01-23 2021-03-02 上海微电子装备(集团)股份有限公司 硅片处理装置及方法
KR102219879B1 (ko) * 2018-05-17 2021-02-24 세메스 주식회사 기판 처리 장치 및 기판 정렬 방법
CN110231756A (zh) * 2018-08-10 2019-09-13 上海微电子装备(集团)股份有限公司 曝光装置、曝光方法、半导体器件及其制造方法
CN110943021B (zh) * 2018-09-21 2022-05-31 上海微电子装备(集团)股份有限公司 预对准装置及方法
CN111106053B (zh) * 2018-10-25 2023-08-04 上海微电子装备(集团)股份有限公司 一种硅片预对准装置和方法
CN111381451B (zh) * 2018-12-29 2021-12-17 上海微电子装备(集团)股份有限公司 预对准系统、预对准方法及光刻设备
KR20210001315A (ko) 2019-06-27 2021-01-06 주식회사 쿠온솔루션 웨이퍼 처리 시스템 및 이에 있어서 냉각 방법
CN113467202B (zh) * 2020-03-30 2023-02-07 上海微电子装备(集团)股份有限公司 光刻设备及硅片预对准方法
CN112051708A (zh) * 2020-09-15 2020-12-08 青岛天仁微纳科技有限责任公司 对中上料装置及纳米压印设备
CN112366165A (zh) * 2020-10-28 2021-02-12 中国电子科技集团公司第五十五研究所 一种高度可调的晶圆对中找平边载片机构
CN114578655B (zh) * 2020-11-30 2024-04-26 上海微电子装备(集团)股份有限公司 一种边缘曝光装置、方法及光刻设备
KR102535354B1 (ko) * 2021-06-04 2023-05-26 (주)이오테크닉스 웨이퍼 정렬 장치
US20230036587A1 (en) * 2021-07-29 2023-02-02 Changxin Memory Technologies, Inc. Wafer alignment device, wafer alignment method and wafer alignment system
CN113932734B (zh) * 2021-11-23 2023-08-18 浙江海纳半导体股份有限公司 晶片边缘轮廓测试仪
CN117219552A (zh) * 2022-06-02 2023-12-12 华为技术有限公司 晶圆处理装置和晶圆处理方法
CN115063432B (zh) * 2022-08-22 2022-11-11 合肥新晶集成电路有限公司 对准标记图形的识别方法及装置、计算机设备和存储介质
CN115732380B (zh) * 2022-10-08 2023-11-24 吉姆西半导体科技(无锡)有限公司 一种晶圆偏心调节方法、装置及存储介质
CN115547915B (zh) * 2022-11-28 2023-02-14 四川上特科技有限公司 一种晶圆曝光夹具及曝光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979792A (zh) * 2005-12-06 2007-06-13 东京毅力科创株式会社 基板输送方法及基板输送装置
CN101216686A (zh) * 2008-01-10 2008-07-09 上海微电子装备有限公司 一种晶片预对准平台及使用该平台的晶片预对准方法
CN101498897A (zh) * 2008-12-17 2009-08-05 上海微电子装备有限公司 边缘曝光装置及其控制方法
CN101640181A (zh) * 2008-07-31 2010-02-03 佳能安内华股份有限公司 基底对准设备和基底处理设备
CN102157421A (zh) * 2010-02-11 2011-08-17 上海微电子装备有限公司 一种硅片预对准装置及预对准方法
CN103472680A (zh) * 2012-06-08 2013-12-25 上海微电子装备有限公司 硅片预对准装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328553A (en) * 1976-12-07 1982-05-04 Computervision Corporation Method and apparatus for targetless wafer alignment
US4836733A (en) * 1986-04-28 1989-06-06 Varian Associates, Inc. Wafer transfer system
US4880348A (en) * 1987-05-15 1989-11-14 Roboptek, Inc. Wafer centration device
JP2835746B2 (ja) 1989-08-24 1998-12-14 富士通株式会社 ウェーハの周辺露光装置
JP3180357B2 (ja) 1990-04-06 2001-06-25 株式会社ニコン 円形基板の位置決め装置および方法
US5043973A (en) * 1990-07-30 1991-08-27 Conner Peripherals, Inc. Disk centering method and apparatus for centering disks for disk drives
JP2949528B2 (ja) * 1991-03-13 1999-09-13 東京エレクトロン株式会社 ウエハの中心位置検出方法及びその装置
JP2547212Y2 (ja) * 1992-03-30 1997-09-10 大日本スクリーン製造株式会社 基板用測定装置
US5452521A (en) * 1994-03-09 1995-09-26 Niewmierzycki; Leszek Workpiece alignment structure and method
JP3172085B2 (ja) * 1996-03-18 2001-06-04 キヤノン株式会社 周辺露光装置
JP3356047B2 (ja) * 1997-11-26 2002-12-09 ウシオ電機株式会社 ウエハ周辺露光装置
US6077026A (en) 1998-03-30 2000-06-20 Progressive System Technologies, Inc. Programmable substrate support for a substrate positioning system
US6275742B1 (en) 1999-04-16 2001-08-14 Berkeley Process Control, Inc. Wafer aligner system
US6517130B1 (en) * 2000-03-14 2003-02-11 Applied Materials, Inc. Self positioning vacuum chuck
KR20030090057A (ko) 2002-05-21 2003-11-28 삼성전자주식회사 얼라인먼트기능을 갖는 노광유니트 및 그 얼라인방법
US20050248754A1 (en) * 2004-05-05 2005-11-10 Chun-Sheng Wang Wafer aligner with WEE (water edge exposure) function
JP2006071395A (ja) * 2004-09-01 2006-03-16 Nikon Corp 較正方法及び位置合わせ方法
DE502006008604D1 (de) * 2005-02-22 2011-02-10 Oc Oerlikon Balzers Ag Verfahren zur positionierung eines wafers
WO2007023501A2 (en) * 2005-08-26 2007-03-01 Camtek Ltd. Wafer inspection system and a method for translating wafers
US20070085988A1 (en) * 2005-10-19 2007-04-19 Dongbuanam Semiconductor Inc. Wafer edge exposure method in semiconductor photolithographic processes, and orientation flatness detecting system provided with a WEE apparatus
CN100355055C (zh) * 2005-10-28 2007-12-12 清华大学 硅晶圆预对准控制方法
JP4522360B2 (ja) * 2005-12-02 2010-08-11 日東電工株式会社 半導体ウエハの位置決定方法およびこれを用いた装置
DE102007017630B4 (de) 2006-05-16 2009-08-20 Vistec Semiconductor Systems Gmbh Verfahren zum Steigern der Messgenauigkeit beim Bestimmen der Koordinaten von Strukturen auf einem Substrat
KR20100107019A (ko) 2008-03-31 2010-10-04 후지쯔 가부시끼가이샤 면형체의 얼라이먼트 장치, 제조 장치, 면형체의 얼라이먼트 방법 및 제조 방법
JP5324231B2 (ja) * 2009-01-08 2013-10-23 日東電工株式会社 半導体ウエハのアライメント装置
CN101963766B (zh) 2009-07-23 2012-02-01 上海微电子装备有限公司 一种用于光刻机的掩模预对准装置及方法
US20110024879A1 (en) * 2009-07-28 2011-02-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method to reduce pre-alignment error using multi-notch pattern or in combination with flat side
CN102569113B (zh) * 2010-12-09 2014-11-05 无锡华润上华半导体有限公司 去边宽度检测方法
CN102856224B (zh) * 2011-06-30 2015-10-07 细美事有限公司 晶圆边缘部分的处理方法和装置
CN103034062B (zh) * 2011-09-29 2014-11-26 中芯国际集成电路制造(北京)有限公司 用于晶片边缘曝光的方法、光学模块和自动聚焦系统
KR101414830B1 (ko) 2011-11-30 2014-07-03 다이닛뽕스크린 세이조오 가부시키가이샤 얼라이먼트 방법, 전사 방법 및 전사장치
CN202434487U (zh) * 2011-12-13 2012-09-12 昆山中辰矽晶有限公司 晶圆寻边定位装置及蚀刻机台
JP6023451B2 (ja) * 2012-04-05 2016-11-09 キヤノン株式会社 照明光学系、露光装置及びデバイス製造方法
CN103811387B (zh) * 2012-11-08 2016-12-21 沈阳新松机器人自动化股份有限公司 晶圆预对准方法及装置
US9879977B2 (en) * 2012-11-09 2018-01-30 Kla-Tencor Corporation Apparatus and method for optical metrology with optimized system parameters
CN203472680U (zh) 2013-08-05 2014-03-12 北京汽车股份有限公司 一种车辆后视野辅助系统
JP6360287B2 (ja) 2013-08-13 2018-07-18 キヤノン株式会社 リソグラフィ装置、位置合わせ方法、および物品の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979792A (zh) * 2005-12-06 2007-06-13 东京毅力科创株式会社 基板输送方法及基板输送装置
CN101216686A (zh) * 2008-01-10 2008-07-09 上海微电子装备有限公司 一种晶片预对准平台及使用该平台的晶片预对准方法
CN101640181A (zh) * 2008-07-31 2010-02-03 佳能安内华股份有限公司 基底对准设备和基底处理设备
CN101498897A (zh) * 2008-12-17 2009-08-05 上海微电子装备有限公司 边缘曝光装置及其控制方法
CN102157421A (zh) * 2010-02-11 2011-08-17 上海微电子装备有限公司 一种硅片预对准装置及预对准方法
CN103472680A (zh) * 2012-06-08 2013-12-25 上海微电子装备有限公司 硅片预对准装置

Also Published As

Publication number Publication date
KR20170106306A (ko) 2017-09-20
JP2018503973A (ja) 2018-02-08
CN105632971A (zh) 2016-06-01
SG11201704323XA (en) 2017-06-29
EP3226284B1 (en) 2020-12-16
TW201622046A (zh) 2016-06-16
JP6474143B2 (ja) 2019-02-27
CN105632971B (zh) 2019-06-25
US10658214B2 (en) 2020-05-19
TWI581356B (zh) 2017-05-01
EP3226284A4 (en) 2018-07-18
US20170345696A1 (en) 2017-11-30
EP3226284A1 (en) 2017-10-04
KR101981872B1 (ko) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2016082746A1 (zh) 一种硅片处理装置及方法
KR102379269B1 (ko) 통합된 얼라이너를 갖는 로봇
CN106814550B (zh) 工件台基板交接装置与预对准方法
CN110068989B (zh) 硅片处理装置及方法
WO2018196838A1 (zh) 硅片处理装置及方法
KR102379168B1 (ko) 반도체 칩 본딩 장치
US20170162428A1 (en) Room-temperature bonding apparatus
JP2012238791A (ja) 電子部品実装機
CN114578655B (zh) 一种边缘曝光装置、方法及光刻设备
WO2023042649A1 (ja) 電子部品の処理装置
TWI704637B (zh) 翹曲片的預對準裝置及方法
TWI744956B (zh) 基板搬運裝置以及基板搬運裝置的手部的位置修正方法
CN113467202B (zh) 光刻设备及硅片预对准方法
CN113644013A (zh) 一种用于集成电路芯片的固晶系统及其方法
KR20210078353A (ko) 축을 사용하는 기판 틸팅 구조를 가진 박막 증착 장치
CN219916172U (zh) 掩膜版组件
KR101421282B1 (ko) 멀티 노광장치
JP2013114153A (ja) 撮像装置、アライメント装置およびパターン形成装置
KR200249359Y1 (ko) 스텝퍼의 웨이퍼 홀더
JPH0862850A (ja) プロキシミティ露光装置
CN116093000A (zh) 一种晶圆自动对位装置及其对位方法
JP5878822B2 (ja) パターン転写装置およびパターン転写方法
TWM602635U (zh) 切割後半導體晶圓檢查模組及其檢查設備
CN114800475A (zh) 一种半导体设备用机械手与预上片台系统
KR20210078355A (ko) 카메라 틸팅 구조를 가진 박막 증착 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527867

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15531320

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 11201704323X

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20177017434

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015863383

Country of ref document: EP