WO2016080701A1 - 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도 - Google Patents

중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도 Download PDF

Info

Publication number
WO2016080701A1
WO2016080701A1 PCT/KR2015/012164 KR2015012164W WO2016080701A1 WO 2016080701 A1 WO2016080701 A1 WO 2016080701A1 KR 2015012164 W KR2015012164 W KR 2015012164W WO 2016080701 A1 WO2016080701 A1 WO 2016080701A1
Authority
WO
WIPO (PCT)
Prior art keywords
mers
cov
antibody
nucleocapsid
antigen
Prior art date
Application number
PCT/KR2015/012164
Other languages
English (en)
French (fr)
Inventor
조영식
하건우
정승교
한수호
장성구
김정호
Original Assignee
주식회사 바이오노트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오노트 filed Critical 주식회사 바이오노트
Publication of WO2016080701A1 publication Critical patent/WO2016080701A1/ko
Priority to SA517381545A priority Critical patent/SA517381545B1/ar

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • the present invention is an antibody recognizing a Middle East respiratory syndrome coronavirus (MERS-CoV) nucleocapsid and cells capable of producing the same, a composition, kit for diagnosing a Middle East respiratory syndrome coronavirus comprising the antibody, and the Middle East. It relates to a method for diagnosing a respiratory syndrome coronavirus infection.
  • MERS-CoV Middle East respiratory syndrome coronavirus
  • MERS-CoV Middle East Respiratory Syndrome Corona Virus
  • MERS-CoV has an incubation period of about one week and, like SARS, causes severe respiratory symptoms such as high fever, cough and difficulty breathing. Unlike SARS, however, it is accompanied by acute renal failure. More deadly, the findings suggest that mortality is six times higher than SARS. Depending on age, lethality is over 50%.
  • the source of infection is not yet known, but camels are pointed out.
  • the virus detected from an infected person coincided with the virus detected from a camel.
  • the practice of eating camel meat or drinking milk is known to be difficult.
  • MERS-CoV Middle East respiratory syndrome coronavirus
  • One aspect of the invention provides an antibody that recognizes Middle East respiratory syndrome coronavirus nucleocapsid.
  • Another aspect of the invention provides a hybridoma with accession number KCLRF-BP-00331 or KCLRF-BP-00332.
  • Another aspect of the present invention provides a composition for diagnosing Middle East respiratory syndrome coronavirus.
  • Another aspect of the present invention provides a kit for diagnosing Middle East respiratory syndrome coronavirus.
  • Another aspect of the present invention provides a method for diagnosing a Middle East respiratory syndrome coronavirus infection.
  • One aspect provides antibodies that recognize Middle East respiratory syndrome coronavirus nucleocapsid.
  • MERS-CoV Middle East respiratory syndrome coronavirus
  • 'MERS-CoV' Middle East respiratory syndrome coronavirus
  • the MERS-CoV is a species of the genus Betacoronavirus.
  • the MERS-CoV is also known as HCoV-EMC or NcoV.
  • the antibody may specifically bind to nucleocapsid of MERS-CoV.
  • the nucleocapsid of MERS-CoV may be one having an amino acid sequence of SEQ ID NO: 1.
  • Nucleocapsids of MERS-CoV having amino acid sequences of 22-40, 126-146, 164-202, 234-259, 362-388, or combinations thereof in SEQ ID NO: 1 are hydrophilicity Can be.
  • Nucleocapsids of MERS-CoV having amino acid sequences of 22-40, 126-146, 164-202, 234-259, 362-388, or a combination thereof in SEQ ID NO: 1 are respectively SEQ ID NO: 1, Amino acid sequences of 2, 3, 4, and 5.
  • the nucleocapsid of MERS-CoV having the hydrophilicity may comprise an epitope.
  • the inventors investigated the hydrophilicity of the nucleocapsid protein of MERS-CoV, to prepare a polypeptide antigen of the high hydrophilic region of the protein, to prepare an antibody that specifically binds to it. .
  • a monoclonal antibody that specifically binds to an epitope represented by the amino acid sequence of SEQ ID NO: 2 in the nucleocapsid of MERS-CoV.
  • a monoclonal antibody that specifically binds to an epitope represented by the amino acid sequence of SEQ ID NO: 4 in the nucleocapsid of MERS-CoV is also preferred.
  • a monoclonal antibody that specifically binds to an epitope represented by the amino acid sequence of SEQ ID NO: 2 in the nucleocapsid of MERS-CoV, and an epitope represented by the amino acid sequence of SEQ ID NO: 4 in the nucleocapsid of MERS-CoV
  • An antibody is provided that is a combination of monoclonal antibodies that bind specifically.
  • a complete antibody is a structure having two full length light chains and two full length heavy chains, each of which consists of a heavy chain constant region and a light chain constant region divided by a heavy chain and a disulfide bond (SS-bond) antibody.
  • the heavy chain constant region has gamma ( ⁇ ), mu ( ⁇ ), alpha ( ⁇ ), delta ( ⁇ ) and epsilon ( ⁇ ) types, and subclasses gamma 1 ( ⁇ 1), gamma 2 ( ⁇ 2), and gamma. 3 ( ⁇ 3), gamma 4 ( ⁇ 4), alpha 1 ( ⁇ 1), and alpha 2 ( ⁇ 2).
  • the constant region of the light chain may have kappa ( ⁇ ) and lambda ( ⁇ ) types.
  • monoclonal antibody means that the antibody molecule is made to consist of a single molecule. Monoclonal antibodies have specificity that responds only to antigens with the same epitope, and also show affinity only for specific epitopes.
  • the monoclonal antibody that specifically binds to the epitope represented by the amino acid sequence of SEQ ID NO: 2 may be one produced in hybridoma cells having accession number KCLRFBP00331.
  • the monoclonal antibody that specifically binds to the epitope represented by the amino acid sequence of SEQ ID NO: 4 may be one produced in hybridoma cells having accession number KCLRFBP00332.
  • the hybridoma cells can be prepared using methods known in the art. Specifically, the hybridoma cells are prepared by immunizing a polypeptide of an immunogen MERS-CoV nucleocapsid to an animal and fusing B cells, which are antibody-producing cells derived from the immunized animal, with myeloma cells. Next, it can be prepared by a method of selecting hybridomas that produce monoclonal antibodies that specifically bind to MERS-CoV nucleocapsid. The immunized animal can use an animal such as goat, sheep, morphot, rat or rabbit as well as the mouse used in the examples.
  • a method for immunizing the immunized animal As a method for immunizing the immunized animal, a method already known in the art may be used. For example, when immunizing mice, 1 to 100 ⁇ g of an immunogen is emulsified with an antigen adjuvant such as physiological saline and / or Freund's adjuvant at one time to subcutaneously subcutaneously in the abdominal cavity of the immunized animal. Or 2-6 inoculations every 2-5 weeks intraperitoneally. After immunizing the immunized animals, spleens or lymph nodes are extracted after 3-5 days of final immunization, and according to cell fusion methods already known in the art, B cells contained in their tissues in the presence of a fusion promoter are myeloma. To fuse with the cell.
  • an antigen adjuvant such as physiological saline and / or Freund's adjuvant
  • the fusion promoter may use a material such as polyethylene glycol (PEG), for example.
  • PEG polyethylene glycol
  • the myeloma cells are described, for example, in P3U1, NS-1, P3x63.
  • Mouse derived cells such as Ag 8.653, Sp2 / 0-Ag14, and rat derived cells such as AG1, AG2 can be used.
  • the cell fusion method known in the art for example, B cells and myeloma cells are mixed at a ratio of 1: 1-10: 1, to which a PEG having a molecular weight of 1,000-6,000 is added at a concentration of 10-80%.
  • the method may be performed by incubating at 30-37 ° C. for 1-10 minutes.
  • hybridomas that produce monoclonal antibodies that specifically bind to the nucleocapsid of MERS-CoV are cultured in a selective medium such as HAT medium, in which only hybridomas can survive, and hybridomas are produced. The antibody activity in the culture supernatant can be measured and selected using methods such as ELISA.
  • hybridomas that produce monoclonal antibodies that specifically bind to nucleocapsids of MERS-CoV may, for example, produce high levels of monoclonal antibodies that specifically bind to nucleocapsids of MERS-CoV. For bridoma, it can be selected by repeating cloning by methods such as limiting dilution. Meanwhile, the monoclonal antibody may be of IgG1, IgG2, IgG3, IgG4, IgM, IgE, IgA1, IgA5, or IgD type.
  • Another aspect provides antigen binding fragments according to the monoclonal antibodies described above.
  • antibody is a specific antibody against MERS-CoV, which binds specifically to the nucleocapsid of MERS-CoV, and is a complete antibody, antigen binding fragment of an antibody molecule, synthetic antibody, recombinant antibody, or antibody. It may include a hybrid (antibody hybrid). The description of the complete antibody is as mentioned above.
  • antigen binding fragment refers to a portion of a polypeptide that includes a portion to which an antigen can bind, as a fragment thereof for the entire structure of an immunoglobulin.
  • it can be F (ab ') 2, Fab', Fab, Fv or scFv.
  • Fab of the antigen-binding fragment has one antigen binding site in a structure having a variable region of the light and heavy chains, a constant region of the light chain and a first constant region of the heavy chain (C H1 ).
  • F (ab ') 2 antibodies are produced when the cysteine residues of the hinge region of Fab' form disulfide bonds.
  • Recombinant techniques for generating Fv fragments with minimal antibody fragments in which Fv has only heavy chain variable regions and light chain variable regions are well known in the art.
  • Double-chain Fv is a non-covalent bond in which the heavy chain variable region and the light chain variable region are linked, and the single-chain Fv is generally shared by the variable region of the heavy chain and the short chain variable region through a peptide linker. It may be linked by bond or directly at the C-terminus to form a dimer-like structure such as a double chain Fv.
  • the antigen-binding fragment can be obtained using proteolytic enzymes (for example, restriction digestion of the entire antibody with papain can yield Fab and cleavage with pepsin can yield F (ab ') 2 fragment).
  • proteolytic enzymes for example, restriction digestion of the entire antibody with papain can yield Fab and cleavage with pepsin can yield F (ab ') 2 fragment.
  • the antigen-binding fragment can be produced through genetic recombination technology.
  • Such antibodies include monoclonal antibodies, bispecific antibodies, non-human antibodies, human antibodies, humanized antibodies, chimeric antibodies, single chain Fv (scFv), single chain antibodies, Fab fragments, F (ab ') fragments, disulfide-binding Fv (sdFv) and anti-idiotype (anti-Id) antibodies, and epitope-binding fragments of the antibodies.
  • hybridoma cells (Accession: KCLRFBP00331) that produce monoclonal antibodies that specifically bind to an epitope represented by the amino acid sequence of SEQ ID NO: 2 in the nucleocapsid of MERS-CoV.
  • hybridoma cells (Accession: KCLRFBP00332) that produce monoclonal antibodies that specifically bind to an epitope represented by the amino acid sequence of SEQ ID NO: 4 in the nucleocapsid of MERS-CoV.
  • hybridoma cells prepared according to the following examples were deposited on October 14, 2014 to the Korean Collection for Type Cultures, an international depository institution under the Budapest Treaty (Accession No .: KCLRFBP00331 and KCLRFBP00332).
  • the deposited hybridoma cells are stored according to the provisions of the Budapest Treaty for Microbial Deposits and can be distributed to the general public with reference to the accession number.
  • Another aspect provides a composition for diagnosing MERS CoV of an individual comprising said monoclonal antibody or antigen binding fragment and an anti-MERS CoV monoclonal antibody.
  • the composition may be a liquid composition comprising the antibody in a liquid.
  • the liquid may be one capable of dissolving and maintaining the antibody.
  • it may be water or a buffer solution such as PBS.
  • the composition may further include a substance for keeping the antibody stable.
  • Another aspect provides a MERS-CoV diagnostic kit comprising the above-described antibody or antigen-binding fragment thereof.
  • the kit may further comprise a detectable moiety.
  • a detectable moiety can include a moiety in which the presence, relative amount and / or location (eg, location on the array) of the moiety can be determined directly or indirectly.
  • detectable moieties are well known in the art.
  • detectable moieties can be detected when exposed to certain conditions, such as fluorescent moieties, luminescent moieties, chemiluminescent moieties, radioactive moieties (eg, radioactive atoms), and enzyme moieties. It may be selected from the group consisting of.
  • fluorescent moieties may need to be exposed to radiation at certain wavelengths and intensities that cause excitation of the fluorescent moiety, thereby detecting at a particular wavelength that can be detected. It can be made to emit as much fluorescence as possible.
  • the moiety may include metal nanoparticles.
  • the metal nanoparticles may be gold particles.
  • the gold nanoparticles may be red gold nanoparticles or blue gold nanoparticles.
  • the gold nanoparticles may be in a dispersed state, for example colloid.
  • the kit is a sample pad (1) to which the liquid sample containing the analyte is applied,
  • a storage pad 2 fluidly connected to the sample pad and movably supported by a conjugate of gold particles, wherein the conjugate of gold particles is a conjugate of a first antibody or fragment thereof and gold particles,
  • a chromatographic membrane material comprising a detection zone;
  • a hygroscopic pad 4 in fluid communication with the chromatography membrane material
  • the assay device may be an immunochromatographic detection device.
  • the first and second antibodies specifically bind to an epitope represented by the amino acid sequence of SEQ ID NO: 2, for example, in the nucleocapsid of Middle East respiratory syndrome coronavirus (MERS-CoV).
  • MERS-CoV Middle East respiratory syndrome coronavirus
  • the first antibody and the second antibody may be different.
  • the first antibody is a monoclonal antibody that specifically binds to an epitope represented by the amino acid sequence of SEQ ID NO: 4
  • the second antibody is specifically directed to an epitope represented by the amino acid sequence of SEQ ID NO: 2 It may be a monoclonal antibody that binds.
  • the first antibody is a monoclonal antibody that specifically binds to an epitope represented by the amino acid sequence of SEQ ID NO: 2
  • the second antibody is specific to an epitope represented by the amino acid sequence of SEQ ID NO: 4 It may be a monoclonal antibody that binds to.
  • FIG. 1 is a side view showing an example of an analysis device for detecting and detecting the Middle East Respiratory Syndrome coronavirus of the present invention.
  • the kit is supported by a chromatography material membrane (3) having a detection region (T) and a control region (C) on which a second antibody is immobilized on a solid support (5), wherein the specimen pad (1)
  • the storage pad 2 and the moisture absorption pad on which the first antibody and the gold conjugate are supported are overlapped and connected.
  • the sample is added to the sample pad 1 in the strip, it moves to the storage pad 2 by capillary action so that the antigen in the sample binds to the conjugate of the gold and the first antibody in the storage pad, Capillary movement is made downstream through the direction of the moisture absorption pad (4).
  • the conjugate and the second antibody specifically bind and develop color, and in the absence of the conjugate, no color development occurs.
  • the conjugate of the first antibody and the gold particles together with the sample passes through the control region (C)
  • the conjugate of the first antibody and the gold particles is specific to the first antibody and the gold particle conjugate in the control region. In combination with the color development, it is possible to check whether the capillary movement is properly performed.
  • the kit may be an immunoassay kit using a porous material as a solid carrier of an immunochemical component such as an antigen or an antibody.
  • Sample pads, storage pads, chromatographic membrane materials and hygroscopic pads used in one embodiment of the invention are materials having a porosity and volume sufficient to contain and contain a liquid sample to be analyzed, for example a microporous membrane. It may be a substance. Examples of such microporous membrane materials include nylon, cellulose materials, polysulfones, polyvinylidene difluorides, polyesters and glass fibers. Preferred examples of the microporous membrane material are nitrocellulose membranes.
  • the analysis device may have the form of a strip.
  • the term "in flow communication with” is available to another location (eg storage pad) by capillary movement when a liquid sample is applied at one location (eg sample pad).
  • movably supported means that the conjugate of gold particles is immobilized to the storage pad movably with capillary movement of the liquid sample.
  • nondiffusively immobilized means that the second antibody or fragment thereof is immobilized so as not to diffuse together by capillary movement of the liquid sample in the detection region.
  • the method for non-diffusion immobilizing the antigen and / or antibody can include any method as long as it is capable of non-diffusion immobilizing the chromatography membrane material and the antigen and / or antibody to the detection region of the chromatography membrane material. Examples include, but are not limited to, covalent bonding methods.
  • the detection zone may take any shape, for example rectangular and circular in shape, the area of which is smaller than the area of the chromatography membrane material.
  • Antibodies and gold conjugates used in the kits of one embodiment of the invention can be prepared by methods well known in the art. For example, it can be prepared by making a gold colloidal solution and covalently binding the gold in the solution with the antibody. Antibodies and gold conjugates can be prepared, for example, by the methods disclosed in US Pat. Nos. 5,514,302 and 4,313,734, which are incorporated herein by reference in their entirety.
  • the kit can be used to diagnose MERS-CoV by detecting MERS-CoV according to an immunoassay method.
  • immunoassays can be performed according to various immunoassays or immunostaining protocols developed in the prior art.
  • the immunoassay or immunostaining format may include radioimmunoassay, radioimmunoprecipitation, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), capture-ELISA, inhibition or competition assay, sandwich assay, flow cytometry, immunofluorescence staining.
  • ELISA enzyme-linked immunosorbent assay
  • ELISA enzyme-linked immunosorbent assay
  • capture-ELISA enzyme-linked immunosorbent assay
  • inhibition or competition assay enzyme-linked immunosorbent assay
  • sandwich assay flow cytometry
  • immunofluorescence staining One or more selected from immunoaffinity purification, immunochromatography, and combinations thereof.
  • an antibody labeled with a radioisotope detects MERS-CoV or nucleocapsid thereof. It can be used to.
  • certain embodiments of the present invention comprise the steps of (i) coating an unknown cell sample lysate to be analyzed on the surface of a solid substrate; (ii) reacting said cell lysate with a primary antibody against the nucleocapsid of MERS-CoV; (iii) reacting the resultant of step (ii) with the secondary antibody to which the enzyme is bound; And (iv) measuring the activity of the enzyme.
  • Suitable as the solid substrate are hydrocarbon polymers (eg polystyrene and polypropylene), glass, metal or gel, and may be microtiter plates.
  • the enzyme bound to the secondary antibody may include an enzyme catalyzing a color reaction, a fluorescence reaction, a luminescence reaction or an infrared reaction.
  • an enzyme catalyzing a color reaction e.g., alkaline phosphatase, ⁇ -galactosidase, and horse radish fur Oxidase, luciferase and cytochrome P450.
  • alkaline phosphatase When alkaline phosphatase is used as the enzyme binding to the secondary antibody, bromochloroindolyl phosphate (BCIP), nitro blue tetrazolium (NBT) naphthol-AS-B1-phosphate (naphthol-AS-) Chloronaphthol, aminoethylcarbazole, diaminobenzidine, D-luciferin, lucigenin (bis-phosphate) and chromogenic reaction substrates such as enhanced chemifluorescence (ECF) are used and hose radish peroxidase is used.
  • BCIP bromochloroindolyl phosphate
  • NBT nitro blue tetrazolium
  • naphthol-AS-B1-phosphate naphthol-AS-
  • Chloronaphthol aminoethylcarbazole
  • aminoethylcarbazole diaminobenzidine
  • one embodiment of the present invention comprises the steps of: (i) coating an anti-MERS-CoV antibody on the surface of a solid substrate as a capturing antibody; (ii) reacting the capture antibody with the sample; (iii) a detection antibody (e.g., an antibody or antigen-binding fragment of the present invention) that has a label bound to generate a signal to the result of step (ii) and that specifically reacts to MERS-CoV or a nucleocaptide thereof Reacting with; And (iv) measuring the signal resulting from the label.
  • a detection antibody e.g., an antibody or antigen-binding fragment of the present invention
  • the detection antibody carries a label which generates a detectable signal.
  • the label may include chemicals (eg biotin), enzymes (alkaline phosphatase, ⁇ -galactosidase, horse radish peroxidase and cytochrome P450), radioactive substances (eg C14, I125 , P32 and S35), fluorescent materials (eg, fluorescein), luminescent materials, chemiluminescent, and fluorescence resonance energy transfer (FRET).
  • chemicals eg biotin
  • enzymes alkaline phosphatase, ⁇ -galactosidase, horse radish peroxidase and cytochrome P450
  • radioactive substances eg C14, I125 , P32 and S35
  • fluorescent materials eg, fluorescein
  • luminescent materials eg, chemiluminescent, and fluorescence resonance energy transfer (FRET).
  • Measurement of the final enzyme activity or signal in the ELISA method and the capture-ELISA method can be carried out according to various methods known in the art. Detection of these signals allows for qualitative or quantitative analysis of MERS-CoV. If biotin is used as a label, the signal can be easily detected with streptavidin and luciferin if luciferase is used.
  • Another aspect includes contacting a sample with an antibody or antigen-binding fragment thereof as described above to provide information necessary for diagnosing MERS-CoV; And detecting a complex of the antibody or an antigen-binding fragment thereof and MERS-CoV.
  • the method for detecting MERS-CoV may include contacting the sample with the above-described antibody or antigen-binding fragment thereof.
  • the contacting step comprises contacting the sample with a plate coated with the above-described anti-MERS-CoV antibody or antigen-binding fragment thereof (referred to as 'primary antibody or antigen-binding fragment thereof'), followed by anti-MERS-CoV antibody or
  • the antigen binding fragment thereof (referred to as 'secondary antibody or antigen binding fragment thereof') may further comprise the step of contacting the plate.
  • the primary antibody or antigen-binding fragment thereof and the secondary antibody or antigen-binding fragment thereof may be the same or different.
  • the primary antibody or antigen-binding fragment thereof and the secondary antibody or antigen-binding fragment thereof may be bound to a detectable moiety.
  • the secondary antibody or binding fragment thereof may be one that contains a detectable moiety such as gold.
  • the primary and secondary antibodies or antigen-binding fragments thereof are monoclonal antibodies that specifically bind to an epitope represented by the amino acid sequence of SEQ ID NO: 2 in the nucleocapsid of MERS-CoV, and the nucleo of MERS-CoV, respectively. It may be a monoclonal antibody that specifically binds to an epitope represented by the amino acid sequence of SEQ ID NO: 4 in the capsid, or vice versa.
  • the method of detecting MERS-CoV may include detecting a complex of the antibody or antigen-binding fragment thereof and MERS-CoV.
  • the detection can detect or quantify the MERS-CoV by measuring a detectable moiety bound to the complex.
  • the sample may be a biological material derived from an individual.
  • the subject may be a vertebrate.
  • the vertebrate may be a mammal.
  • the mammal may be a primate, including a human and a non-human primate, a camel, or a rodent, including a mouse and a rat.
  • the sample may be frozen or left in its natural state.
  • the sample may be a water sample, an earth sample, a food sample, an air sample, a nasal swab sample, a nasopharyngeal wash, a bronchial alveolar lavage, or a pleural fluid.
  • the biological material may be nasal swap, nasal aspirate, nasopharyngeal swab, nasopharyngeal aspirate, blood or blood constituent, body fluid fluid), saliva, sputum, or a combination thereof.
  • Another aspect includes contacting a sample with an antibody or antigen-binding fragment thereof described above; Detecting a complex of the antibody or antigen-binding fragment thereof with MERS-CoV; And it provides a MERS-CoV diagnostic method comprising the step of detecting whether the sample MERS-CoV infection from the detection result.
  • the MERS-CoV diagnostic method may include determining that an individual from which the sample is derived is infected with MERS-CoV when an antibody or an antigen-binding fragment thereof and a complex of MERS-CoV is detected. In addition, when the complex is not detected, it may include determining that the individual from which the sample is derived is not infected with MERS-CoV.
  • an antibody specifically binding to a nucleocapsid of MERS-CoV and a composition and kit for diagnosing Middle East respiratory syndrome coronavirus comprising the same, and a method for diagnosing Middle East respiratory syndrome coronavirus using the same, Middle East respiratory syndrome Coronavirus infection can be measured efficiently.
  • FIG. 1 is a side view showing an example of an analysis device for detecting and detecting the Middle East Respiratory Syndrome coronavirus of the present invention.
  • FIG. 2 is a diagram showing the hydrophilicity of the nucleocapsid protein of MERS-CoV of SEQ ID NO: 1.
  • 3A is a diagram showing the results of SDS-PAGE of polypeptides of MERS-CoV NP P1 to P5.
  • Figure 3b is a view showing the Western blot results of the anti-MERS CoV P1 monoclonal antibody.
  • Figure 3c is a diagram showing the Western blot results of the anti-MERS CoV P3 monoclonal antibody.
  • Figure 4 is a schematic illustration of the operation of the kit used in one embodiment of the present invention.
  • a peptide antigen was synthesized in a hydrophilic site in the nucleocapsid (NP) gene of MERS-CoV and used as an immunogen.
  • the hydrophilicity of the gene encoding the nucleocapsid of MERS-CoV was examined to synthesize peptide antigens for high hydrophilic site portions.
  • 2 is a diagram showing the hydrophilicity of the nucleocapsid protein of MERS-CoV of SEQ ID NO: 1. Parker Hydrophilicity prediction program of Immune epitope database was used.
  • the synthesized peptide antigens are the 22-40 amino acids, 126-146 amino acids, 164-202 amino acids, 234-259 amino acids, and 362-388 amino acids in the nucleocapsid of MERS-CoV of SEQ ID NO: 1, respectively. It is referred to as MERS-CoV NP P1, MERS-CoV NP P2, MERS-CoV NP P3, MERS-CoV NP P4, and MERS-CoV NP P5.
  • immunogens were prepared as follows. Immunogens used in the first immunization were prepared by complete Freud's Adjuvant (Sigma), which was prepared by emulsifying the ratio of antigen to the adjuvant in a 1: 1 ratio, and used for the second to fourth immunizations. The immunogen was prepared by incomplete Freud's Adjuvant (Sigma Co., Ltd.) in a 1: 1 ratio of antigen to the adjuvant.
  • the immunogen prepared by the above method was immunized to BALB / c mice at 6 weeks of age and females as follows. Four intraperitoneal injections at weekly intervals in an amount of 200 ⁇ l / horse and after one week the antigen was diluted three times at a daily interval by diluting the antigen to 20% concentration (v / v) in Phosphate buffered saline (PBS). Intravenously injected 20 ⁇ l / time. After the third immunization, a medium titer test was performed with serum obtained from the tail vein. As a result, mice obtained with sufficient amounts of antibodies were selected to perform a cell fusion process.
  • PBS Phosphate buffered saline
  • spleen cells of the antibody-producing mice were removed and filtered through a 70 ⁇ m pore cell strainer (BD Falcon). The precipitated splenocytes were centrifuged to obtain a precipitate, and 5 ml of red blood cell lysis buffer (Sigma) was mixed and left for 1 minute to remove red blood cells. Spleen cells from which red blood cells were removed were washed three times with DMEM (Dulbecco's Modified Eagle's Medium, Gibco) and subjected to cell counting.
  • DMEM Dulbecco's Modified Eagle's Medium, Gibco
  • the cells to be fused with the splenocytes were SP2 / 0-Ag 14 (ATCC CRL-1581) cell line, a mouse-derived myeloma cell, and the mixing ratio was 10: 1 (splenocytes: SP2 / 0).
  • Mixed cells were washed twice with DMEM and then fused using PEG1500 (Roche).
  • Cell fusion was performed with 1.7 ml dropping PEG1500 for 1 minute, 1 second dropping for 30 seconds, 1 ml dropping for 1 minute for DMEM, 2 ml dropping for 1 minute for DEME, 6 ml dropping for 30 seconds of DMEM, and finally DMEM 30 10 ml was dropped for a second.
  • the cell solution after fusion is obtained by centrifugation as a precipitate, and well with DMEM (hereinafter referred to as 'HAT medium') containing 10% of HAT (Gibco), antibiotics (Gibco), and fetal bovine serum (Hyclone). After mixing, the cells were dispensed into 96 well plates at a dose of 200 ⁇ l / well and grown in the incubator for 3 days.
  • DMEM hereinafter referred to as 'HAT medium'
  • HAT HAT
  • antibiotics Gibco
  • Hyclone fetal bovine serum
  • the cell line after the fusion was grown at 37 ° C., 5% CO 2 , and in a cell incubator maintained at humid conditions, and the fused cell line was selected by replacing HAT (hypoxanthine-aminopterin-thymidine medium) for two days at a week.
  • HAT hypoxanthine-aminopterin-thymidine medium
  • the cell lines selected by HAT medium were screened for positive clones by Enzyme-linked immunosorbent assay (ELISA). Specifically, 100 ⁇ l of the fused cell line culture grown in each well of the 96 well plate was placed in a 96 well adsorption plate (Costar) coated with a concentration of 2.5 ug / ml of MERS-CoV nucleocapsid (NP) gene antigen. Dispense at a dose of / well and react for 1 hour at 37 ° C.
  • ELISA Enzyme-linked immunosorbent assay
  • the cells were washed five times, and the anti mouse IgG HRP conjugate and the anti mouse IgM HRP conjugate were dispensed at a dose of 100 ⁇ l / well, and reacted at 37 ° C. for 30 minutes. After the reaction for 30 minutes, it was washed five times, the substrate liquid was dispensed at a dose of 100 ⁇ l / well, and the color reaction was performed for 15 minutes, and the reaction stop solution was added with a dose of 100 ⁇ l / well. After stopping the reaction, the absorbance was measured at 450 nm in the reader to select the positive clones MERS-CoV NP P1 and MERS-CoV NP P3 which showed high values.
  • MERS-CoV NP P1 Selected positive clones were transferred to 24 well tissue culture plates and incubated for 3 days, followed by secondary screening in the same manner as above, that is, by limiting dilution of hybridoma cell lines obtained through repeated selection, the final single positive clone candidate group.
  • MERS-CoV NP P1 Selected positive clones were transferred to 24 well tissue culture plates and incubated for 3 days, followed by secondary screening in the same manner as above, that is, by limiting dilution of hybridoma cell lines obtained through repeated selection, the final single positive clone candidate group.
  • MERS-CoV NP P1 Selected positive clones were transferred to 24 well tissue culture plates and incubated for 3 days, followed by secondary screening in the same manner as above, that is, by limiting dilution of hybridoma cell lines obtained through repeated selection, the final single positive clone candidate group.
  • MERS-CoV NP P1 Selected positive clones were transferred to 24 well tissue culture plates
  • the final selected monoclonal antibody-producing hybridomas were named anti-MERS CoV P1 monoclonal antibodies, and anti-MERS CoV P3 monoclonal antibodies, which were deposited with the Bank of Korea Cell Line and assigned accession numbers.
  • mice The final selected positive clones were transferred to a T75 (SPL) dish and incubated for 3 days, and injected into the abdominal cavity of mice at 1 ⁇ 10 6 cell / ml cell density, and collected one week later.
  • the mouse ascites liquid obtained through the above method was precipitated by centrifugation (3000 rpm, 10 minutes, 4 ° C.), and the supernatant was mixed at a 1: 1 ratio with a binding buffer (Binding buffer, Thermo scientific) at room temperature. Reaction was carried out for 1 hour.
  • the suspension was precipitated once again by centrifugation (3000 rpm, 10 minutes, 4 ° C.), and the unprecipitated suspension was filtered again using a filter having a 1.2 ⁇ m pore size.
  • Ascites fluid was completely removed from the suspension was placed in a column containing Protein G resin (Pierce) to induce binding between the antibody and Protein G.
  • the plural solution was washed three times with phosphate buffer solution and eluted using an elution buffer (Elution buffer, Thermo scientific).
  • the eluted antibody was again applied to a PD-10 column (GE heathcare) and eluted with phosphate buffer solution for final purification.
  • Example 2 monoclonal antibody specifically binds MERS - CoV Nucleocapsid undergarment Epitope Confirm
  • MERS-CoV NP P1, MERS-CoV NP P2, MERS-CoV NP P3, MERS-CoV NP P4, and MERS-CoV NP P5 conjugated to BSA were each expressed in the nucleocapsid of MERS-CoV of SEQ ID NO: 1.
  • To 40th amino acid 126-146 amino acids, 164-202 amino acids, 234-259 amino acids, and 362-388 amino acids.
  • a 10% polyacrylamide gel was prepared and then 5 MERS-CoV combined with bovine serum albumin (BSA) (EQUITECH-BIO, INC) and BSA prepared above as a control.
  • BSA bovine serum albumin
  • Polypeptides of NP P1 to P5 were each loaded at 1.25 ⁇ g. Subsequently, SDS-PAGE was performed for 1 hour under conditions of 160V and 400 mA, and then, mini-Protean 3 Electrophoresis (BIO-RAD) was used on a nitrocellulose membrane (GE healthcare) under conditions of 160V and 400 mA. The polypeptides were transferred for time.
  • 3A is a diagram showing the results of SDS-PAGE of polypeptides of MERS-CoV NP P1 to P5.
  • FIG. 3B is a diagram showing the Western blot results of the anti-MERS CoV P1 monoclonal antibody.
  • the monoclonal antibody of the present invention specifically reacts with the polypeptide including the 22nd to 40th amino acids of lane 2. Therefore, the monoclonal antibody of the present invention against MERS-CoV prepared in Example 1 from the above results is that the 22-40 amino acid sequence portion (SEQ ID NO: 2) of the nucleocapsid (SEQ ID NO: 1) of MERS-CoV epitope I could confirm that.
  • Figure 3c is a diagram showing the Western blot results of the anti-MERS CoV P3 monoclonal antibody.
  • the monoclonal antibody of the present invention specifically reacts with a polypeptide including the 164th to 202th amino acids of lane 4. Therefore, the monoclonal antibody of the present invention against MERS-CoV prepared in Example 1 from the above results is that the 164th to 202th amino acid sequence portion (SEQ ID NO: 4) of the nucleocapsid (SEQ ID NO: 1) of MERS-CoV is epitope. I could confirm that.
  • a swab was put into the nasal cavity of 81 camels (Camel) was used as a sample to diagnose the MERS-CoV virus.
  • a monoclonal antibody that specifically binds to an epitope represented by the amino acid sequence of SEQ ID NO: 2 in the nucleocapsid of MERS-CoV, and an amino acid sequence of SEQ ID NO: 4 in the nucleocapsid of MERS-CoV Kits were prepared comprising monoclonal antibodies (called 'P3') that specifically bind to the indicated epitopes.
  • Monoclonal antibodies that specifically bind to an epitope represented by the amino acid sequence of SEQ ID NO: 2 in the nucleocapsid are those produced in hybridoma cells having accession number KCLRFBP00331.
  • a monoclonal antibody that specifically binds to an epitope represented by the amino acid sequence of SEQ ID NO: 4 in the nucleocapsid of MERS-CoV is one produced in hybridoma cells having accession number KCLRFBP00331.
  • FIG. 4 is a schematic illustration of the operation of the kit used in one embodiment of the present invention.
  • (A), (b) and (c) of FIG. 4 indicate that the analyte 400 is moved by capillary movement in that order, and the analyte 400 operates with a kit according to one embodiment of the present invention.
  • This is a schematic of the principle.
  • FIG. 4 there is a conjugate of the first antibody 100 and the gold particles to the storage pad of the kit, the second antibody 200 is immobilized in the detection region T of the chromatography membrane material, and the control region C ) Is an antibody 300 specific for the conjugate of the first antibody and the gold particles.
  • a monoclonal antibody of P1 is immobilized in the detection region T, and is conjugated with a gold particle and a monoclonal antibody of P3, the first antibody 100.
  • the presence of MERS-CoV may be determined by detecting the presence of a complex of P1 and P3 in the detection region.
  • a monoclonal antibody that specifically binds to an epitope represented by the amino acid sequence of SEQ ID NO: 2 in the nucleocapsid of MERS-CoV was coated on a plate.
  • monoclonal antibodies that specifically bind to an epitope represented by the amino acid sequence of SEQ ID NO: 4 in the nucleocapsid of MERS-CoV are conjugated with gold particles.
  • the conjugation with the gold particles was carried out as follows: Gold chloride was dissolved in distilled water at 0.01% and then heated with addition of 0.1% sodium citrate solution. After heating for about 10 minutes, the mixture was cooled and refrigerated to prepare a colloidal gold solution. Thereafter, anti-MERS-CoV P3 monoclonal antibody was reacted with the colloidal gold solution for 10 minutes to the final concentration of 20 ⁇ g / ml to induce conjugation reaction. After stabilizing the gold particles, centrifuge at 10,000 g for 30 minutes to form a precipitate. The precipitate was again dissolved in physiological saline, filtered through a filter of 0.45 ⁇ m, and then absorbed at 540 nm, diluted to a final 20, and conjugated with gold to anti-MERS-CoV P3.
  • a kit comprising a P1 monoclonal antibody immobilized in the detection region of the plate and a P3 monoclonal antibody conjugated with gold particles included in a storage pad was used as a MERS-CoV diagnostic kit.
  • the positive likelihood ratio is 9.14 and the negative likelihood ratio is 0.29.
  • the positive likelihood ratio was calculated by ⁇ (14/19) / (5/62) ⁇ . Since the positive likelihood ratio was 9.14, it was confirmed that the diagnostic kit including the antigen specifically binding to the epitope of the nucleocapsid of MERS-CoV of the present invention has significance as a diagnostic kit.
  • the negative likelihood ratio was calculated by ⁇ (5/19) / (57/62) ⁇ . In addition, the prevalence by MERS-CoV is 23.46%.
  • the antibody of the present invention was used to test the presence of MERS-CoV virus using a sample of body fluids collected by putting a cotton swab into the nasal cavity of 20 humans.
  • MERS-CoV diagnostic kit was used as the MERS-CoV diagnostic kit described in Example 3.
  • Specimens were obtained from 20 humans. Sample types were phlegm, nasopharyngeal lavage, bronchial alveolar lavage, or pleural fluid. The sample was continuously subjected to 20 minutes at -80 to -60 ° C, 20 minutes at -60 to -20 ° C, 20 minutes at -20 to -8 ° C, 20 minutes at -8 ° C to ice temperature, and ice. Thaw and store at room temperature to room temperature for 30 minutes. Divide all thawed samples into two aliquots and use one aliquot for RNA extraction for real-time PCR (hereinafter referred to as RT-PCR) and the other. Aliquots were used for this kit.
  • RT-PCR real-time PCR
  • Table 3 is a table showing the results of the samples diagnosed using the MERS-CoV diagnostic kit. As shown in Table 3, in the case of the negative sample, there was no band as a result of using the MERS-CoV diagnostic kit, and the negative result was shown.
  • the MERS-CoV diagnostic kit shows a specificity of 100%.
  • viable positive results were shown in the MERS-CoV diagnostic kit, consistent with 28-30 Ct values in RT-PCR.
  • Three samples showed clear but less strong bands in the MERS-CoV diagnostic kit. These three samples had Ct values ranging from 33-35 in the RT-PCR results. Two samples showed faint bands reflecting weak positivity. The Ct value for these two samples was 33.1.

Abstract

중동호흡기증후군 코로나바이러스 (Middle East respiratory syndrome coronavirus, MERS-CoV) 뉴클레오캡시드에 특이적으로 결합하는 단일클론 항체 및 그의 조합인 항체, 및 상기 항체를 포함하는 중동호흡기증후군 코로나바이러스 진단 조성물 및 키트, 및 이를 이용한 중동호흡기증후군 코로나바이러스를 검출하는 방법을 제공한다.

Description

중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도
본 발명은 중동호흡기증후군 코로나바이러스 (Middle East respiratory syndrome coronavirus, MERS-CoV) 뉴클레오캡시드를 인식하는 항체 및 그를 생산할 수 있는 세포, 상기 항체를 포함하는 중동호흡기증후군 코로나바이러스 진단용 조성물, 키트, 및 중동호흡기증후군 코로나바이러스 감염 여부를 진단하는 방법에 관한 것이다.
중동호흡기증후군 코로나 바이러스(MERS-CoV)는 2012년 사우디아라비아에서 처음 발견된 뒤 중동 지역에서 집중적으로 발생한 바이러스다 Coroviridae 군에 속하며 SARS(중증급성호흡기증후군)와 유사한 바이러스로 알려져 있다.
MERS-CoV는 잠복기가 1주일가량이며 SARS와 마찬가지로 고열, 기침, 호흡곤란 등 심한 호흡기 증상을 일으킨다. 다만 SARS와는 달리 급성 신부전증을 동반한다. SARS 보다 치사율이 6배가량 높다는 조사 결과가 나오기도 하는 등 더 치명적인 양상을 보이고 있다. 연령대에 따라 치사율은 50%가 넘는다.
감염원은 아직 정확히 밝혀지지 않았지만 낙타가 지목되고 있다. 감염자로부터 검출된 바이러스와 감염자가 사육하고 있던 낙타에서 검출된 바이러스가 일치한 경우도 있었다. 그러나 낙타고기를 먹거나 우유를 마시는 관습이 있어 예방은 쉽지 않은 것으로 알려져 있다.
따라서, 중동호흡기증후군 코로나바이러스 (Middle East respiratory syndrome coronavirus, MERS-CoV) 감염의 진단이 요구되고 있다.
본 발명의 일 양상은 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체를 제공한다.
본 발명의 다른 양상은 수탁번호 KCLRF-BP-00331 또는 KCLRF-BP-00332인 하이브리도마를 제공한다.
본 발명의 다른 양상은 중동호흡기증후군 코로나바이러스 진단용 조성물을 제공한다.
본 발명의 다른 양상은 중동호흡기증후군 코로나바이러스 진단용 키트를 제공한다.
본 발명의 다른 양상은 중동호흡기증후군 코로나바이러스 감염 여부를 진단하는 방법을 제공한다.
일 양상은 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체를 제공한다.
중동호흡기증후군 코로나바이러스(Middle East respiratory syndrome coronavirus, MERS-CoV, 이하 'MERS-CoV'라고 지칭)는 양성-센스 단일가닥 RNA를 갖는다. 상기 MERS-CoV는 베타코로나바이러스(Betacoronavirus) 속의 종이다. 상기 MERS-CoV는 또한 HCoV-EMC 또는 NcoV로 알려져있다.
상기 항체는 MERS-CoV의 뉴클레오캡시드에 특이적으로 결합할 수 있다. 상기 MERS-CoV의 뉴클레오캡시드는 서열번호 1의 아미노산 서열을 갖는 것일 수 있다. 서열번호 1에서 22 내지 40번째, 126 내지 146번째, 164 내지 202번째, 234 내지 259번째, 362 내지 388번째, 또는 그의 조합의 아미노산 서열을 갖는 MERS-CoV의 뉴클레오캡시드는 친수성(hydrophilicity)일 수 있다. 서열번호 1에서 22 내지 40번째, 126 내지 146번째, 164 내지 202번째, 234 내지 259번째, 362 내지 388번째, 또는 그의 조합의 아미노산 서열을 갖는 MERS-CoV의 뉴클레오캡시드는 각각 서열번호 1, 2, 3, 4, 및 5의 아미노산 서열일 수 있다. 상기 친수성을 갖는 MERS-CoV의 뉴클레오캡시드는 에피토프를 포함할 수 있다. 본 발명의 일 구체예에 따르면, 본 발명자들은 MERS-CoV의 뉴클레오캡시드 단백질의 친수성을 조사하여, 상기 단백질 중 친수성이 높은 부위의 폴리펩티드 항원을 제작하여, 이에 특이적으로 결합하는 항체를 제조하였다.
본 발명의 일 구체예에 따르면, MERS-CoV의 뉴클레오캡시드에서 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체를 제공한다. 또한, 본 발명의 일 구체예에 따르면, MERS-CoV의 뉴클레오캡시드에서 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체를 제공한다. 또한, MERS-CoV의 뉴클레오캡시드에서 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체, 및 MERS-CoV의 뉴클레오캡시드에서 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체의 조합인 것인 항체를 제공한다.
용어, "특이적으로 결합(specifically binding)" 또는 "특이적으로 인식(specifically recognizing)"은 당업자에게 통상적으로 알려진 의미와 동일한 것으로서, 항원 및 항체가 특이적으로 상호작용하여 항원-항체 복합체를 형성할 수 있으며, 또한 면역학적 반응을 하는 것을 의미할 수 있다.
완전한 항체는 2개의 전장(full length) 경쇄 및 2개의 전장 중쇄를 가지는 구조이며 각각의 경쇄는 중쇄와 이황화 결합(disulfide bond, SS-bond) 항체의 불변 영역은 중쇄 불변 영역과 경쇄 불변 영역으로 나뉘어지며, 중쇄 불변 영역은 감마(γ), 뮤(μ), 알파(α), 델타(δ) 및 엡실론(ε) 타입을 가지고, 서브클래스로 감마1(γ1), 감마2(γ2), 감마3(γ3), 감마4(γ4), 알파1(α1) 및 알파2(α2)를 가질 수 있다. 경쇄의 불변 영역은 카파(κ) 및 람다(λ) 타입을 가질 수 있다.
용어, "단일클론 항체(monoclonal antibody)"는 상기 항체 분자가 단일 분자로 구성되도록 제조된 것을 의미한다. 단일클론 항체는 동일한 에피토프를 갖는 항원에 대해서만 반응하는 특이성을 가지며, 또한 특정 에피토프에 대해서만 친화성을 나타낸다.
본 발명의 일구체예에서, 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체는 수탁번호 KCLRFBP00331인 것인 하이브리도마 세포에서 생산되는 것일 수 있다. 또한, 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체는 수탁번호 KCLRFBP00332인 것인 하이브리도마 세포에서 생산되는 것일 수 있다.
상기 하이브리도마 세포는 당업계에 공지된 방법을 사용하여 제조할 수 있다. 구체적으로, 상기 하이브리도마 세포는 면역원인 MERS-CoV 뉴클레오캡시드의 폴리펩티드를 동물에 면역시키고, 상기 피면역 동물로부터 유래된 항체 생산세포인 B 세포를 골수종세포와 융합시켜서 하이브리도마를 제조한 다음, 그 중에서 MERS-CoV 뉴클레오캡시드에 특이적으로 결합하는 단일클론 항체를 생산하는 하이브리도마를 선택하는 방법으로 제조할 수 있다. 상기 피면역 동물은 실시예에서 사용된 마우스뿐만 아니라 염소, 양, 모르모트, 래트 또는 토끼와 같은 동물을 사용할 수 있다.
상기 피면역 동물을 면역시키는 방법으로서는 당업계에 이미 공지된 방법을 사용할 수 있다. 예를 들어, 마우스를 면역시키는 경우 1회에 1 내지 100 ㎍의 면역원을 동량의 생리 식염수 및/또는 프로인드 어주번트(Freund's adjuvant) 등의 항원 보조제로 유화시켜, 상기 피면역원 동물의 복부의 피하 또는 복강 내에 2-5주마다 2-6회 접종시키는 방법으로 수행될 수 있다. 피면역 동물을 면역시킨 후에는 최종 면역 3-5일 후 비장 또는 림프절을 적출하여 당업계에서 이미 공지되어 있는 세포 융합법에 따라서, 융합 촉진제의 존재 하에 이들의 조직에 포함되어 있는 B 세포를 골수종세포와 융합시키게 된다. 상기 융합 촉진제는 예를 들어, 폴리에틸렌 글리콜(PEG)과 같은 물질을 사용할 수 있다. 상기 골수종세포는 예를 들어, P3U1, NS-1, P3x63. Ag 8.653, Sp2/0-Ag14와 같은 마우스 유래 세포, AG1, AG2와 같은 래트 유래 세포를 사용할 수 있다. 또한 상기 당업계에 공지된 세포 융합법은 예를 들어, B 세포와 골수종세포를 1:1-10:1의 비율로 혼합시켜, 이에 분자량 1,000-6,000의 PEG를 10-80%의 농도로 첨가하여, 30-37℃에서 1-10분 동안 배양하는 방법으로 수행될 수 있다. 또한, 상기 MERS-CoV의 뉴클레오캡시드에 특이적으로 결합하는 단일클론 항체를 생산하는 하이브리도마는 예를 들어, 하이브리도마만이 생존 가능한 HAT 배지 등의 선택 배지에서 배양하고, 하이브리도마 배양 상층액 중의 항체 활성을 ELISA 등의 방법을 이용하여 측정하여 선택할 수 있다. 최종적으로, MERS-CoV의 뉴클레오캡시드에 특이적으로 결합하는 단일클론 항체를 생산하는 하이브리도마는 예를 들어, MERS-CoV의 뉴클레오캡시드에 특이적으로 결합하는 단일클론 항체를 생산하는 하이브리도마에 대하여, 한계 희석 등의 방법에 의해 클로닝을 반복함으로써 선별될 수 있다. 한편, 상기 단일클론 항체는 IgG1, IgG2, IgG3, IgG4, IgM, IgE, IgA1, IgA5, 또는 IgD 타입일 수 있다.
다른 양상은 상술한 단일클론 항체에 따른 항원 결합 단편을 제공한다.
용어 “항체(antibody)”는 MERS-CoV에 대한 특이 항체로서, MERS-CoV의 뉴클레오캡시드에 대해 특이적으로 결합하며, 완전한 항체, 항체 분자의 항원 결합 단편, 합성 항체, 재조합 항체, 또는 항체 하이브리드(antibody hybrid)를 포함할 수 있다. 완전한 항체에 대한 설명은 상기 언급한 바와 같다.
용어, "항원 결합 단편(antigen binding fragment)"은 면역글로불린 전체 구조에 대한 그의 단편으로, 항원이 결합할 수 있는 부분을 포함하는 폴리펩티드의 일부를 의미한다. 예를 들어, F(ab')2, Fab', Fab, Fv 또는 scFv일 수 있다. 상기 항원 결합 단편 중 Fab는 경쇄 및 중쇄의 가변영역과 경쇄의 불변 영역 및 중쇄의 첫 번째 불변 영역(CH1)을 가지는 구조로 1개의 항원 결합 부위를 가진다. Fab'는 중쇄 CH1 도메인의 C-말단에 하나 이상의 시스테인 잔기를 포함하는 힌지 영역(hinge region)을 가진다는 점에서 Fab와 차이가 있다. F(ab')2 항체는 Fab'의 힌지 영역의 시스테인 잔기가 디설파이드 결합을 이루면서 생성된다. Fv는 중쇄 가변부위 및 경쇄 가변부위만을 가지고 있는 최소의 항체조각으로 Fv 단편을 생성하는 재조합 기술은 당업계에 널리 공지되어 있다. 이중쇄 Fv(two-chain Fv)는 비공유 결합으로 중쇄 가변부위와 경쇄 가변부위가 연결되어 있고 단쇄 Fv(single-chain Fv)는 일반적으로 펩타이드 링커를 통하여 중쇄의 가변 영역과 단쇄의 가변 영역이 공유 결합으로 연결되거나 또는 C-말단에서 바로 연결되어 있어서 이중쇄 Fv와 같이 다이머와 같은 구조를 이룰 수 있다. 상기 항원 결합 단편은 단백질 가수분해 효소를 이용해서 얻을 수 있다(예를 들어, 전체 항체를 파파인으로 제한 절단하면 Fab를 얻을 수 있고 펩신으로 절단하면 F(ab')2 단편을 얻을 수 있다). 또한 상기 항원 결합 단편은 유전자 재조합 기술을 통하여 제작할 수 있다.
상기 항체는 단일클론 항체, 이특이적 항체, 비-인간 항체, 인간 항체, 인간화 항체, 키메릭 항체, 단쇄 Fv(scFv), 단쇄 항체, Fab 단편, F(ab')단편, 다이설파이드-결합 Fv(sdFv) 및 항-이디오타입(항-Id) 항체, 그리고 상기 항체들의 에피토프-결합 단편을 포함하나 이에 한정되는 것은 아니다.
또 다른 양상은 MERS-CoV의 뉴클레오캡시드에서 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체를 생산하는 하이브리도마 세포 (수탁번호: KCLRFBP00331)를 제공한다. 또 다른 양상은 MERS-CoV의 뉴클레오캡시드에서 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체를 생산하는 하이브리도마 세포 (수탁번호: KCLRFBP00332)를 제공한다.
상기 하이브리도마 세포의 제조 방법은 상기한 바와 같다. 또한, 하기 실시예에 따라 제조된 상기 하이브리도마 세포는 2014년 10월 14일자로 부다페스트 조약 하의 국제 기탁기관인 생명공학연구소 생물자원센터 (Korean Collection for Type Cultures)에 기탁하였다(수탁번호: KCLRFBP00331 및 KCLRFBP00332). 한편, 기탁된 하이브라도마 세포는 미생물 기탁에 대한 부다페스트 조약의 규정에 따라 보관되고 상기 수탁 번호를 참조하여 일반인들에게 분양이 가능하다.
다른 양상은 상기 단일클론 항체 또는 항원 결합 단편 및 항-MERS CoV 단일클론 항체를 포함하는 개체의 MERS CoV 진단용 조성물을 제공한다.
상기 조성물은 항체를 액체 중에서 포함하는 액체 조성물일 수 있다. 상기 액체는 상기 항체를 용해시킬 수 있고 유지시킬 수 있는 것일 수 있다. 예를 들면, 물, 또는 PBS와 같은 버퍼 용액일 수 있다. 상기 조성물은 상기 항체를 안정하게 유지하는 물질을 더 포함할 수 있다.
다른 양상은 상술한 항체 또는 이의 항원 결합 단편을 포함하는 MERS-CoV 진단용 키트를 제공한다.
상기 키트는 검출가능한 모이어티를 더 포함할 수 있다. 검출가능한 모이어티(detectable moiety)는 모이어티의 존재, 상대적 양 및/또는 위치 (예를 들면, 어레이상의 위치)가 직접적으로 또는 간접적으로 결정될 수 있는 모이어티를 포함할 수 있다. 상기 검출가능한 모이어티는 해당 기술분야에서 잘 알려져 있다. 예를 들면, 검출가능한 모이어티는 특정 조건에 노출될 경우, 검출될 수 있는 것으로, 형광성 모이어티, 발광성 모이어티, 화학발광성 모이어티, 방사성 모이어티 (예, 방사성 원자), 및 효소 모이어티로 구성된 군으로부터 선택될 수 있다. 예를 들면, 형광 모이어티는 형광성 모이어티의 여기(excitation)를 야기하는 특정 파장 및 강도에서 방사선(radiation)에 노출될 필요가 있을 수 있고, 이에 의해 검출될 수 있는 특정 파장(wavelength)에서 검출가능한 형광을 발산하게 할 수 있다.
상기 모이어티는 금속 나노 입자를 포함할 수 있다. 상기 금속 나노 입자는 골드 입자일 수 있다. 상기 골드 나노 입자는 적색 골드 나노 입자 또는 청색 금 나노 입자일 수 있다. 상기 골드 나노 입자는 분산 상태, 예를 들면 콜로이드일 수 있다.
상기 키트는 분석물을 포함하는 액체 시료가 적용되는 부위인 검체 패드(1),
상기 검체 패드와 유체 소통가능하게 연결되어 있고, 골드 입자의 접합체가 이동가능하게 지지되어 있는 저장 패드(2)로서, 상기 골드 입자의 접합체는 제1 항체 또는 그의 단편과 골드 입자의 접합체이고,
상기 저장 패드와 유체 소통가능하게 연결되어 있고 모세관 이동에 의하여 상기 액체 시료가 이동하는 크로마토그래피 막(membrane) 물질(3)로서, 상기 저장 패드의 하류에 제2 항체 또는 그의 단편이 비확산적으로 고정화되어 있는 검출 영역을 포함하는 크로마토그래피 막 물질;
상기 크로마토그래피 막 물질과 유체 소통가능하게 연결되어 있는 흡습 패드(4); 및
상기 검체패드, 저장 패드, 크로마토그래피 막 물질 및 흡습 패드를 지지하는 고체 지지체(5)를 포함하는, 중동호흡기증후군 코로나바이러스를 검출하기 위한 분석 장치일 수 있다. 상기 분석 장치는 면역 크로마토그래피 검출 장치일 수 있다.
상기 제1 항체와 제2 항체는 예를 들면, 중동호흡기증후군 코로나바이러스 (Middle East respiratory syndrome coronavirus, MERS-CoV)의 뉴클레오캡시드에서 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체, 및 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체 중 하나의 항체일 수 있다. 상기 제1 항체와 상기 제2 항체는 다른 것일 수 있다. 일 구체예에서, 제1 항체는 상기 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체이고, 제2 항체는 상기 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체일 수 있다. 또한, 일 구체예에서, 제1 항체는 상기 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체이고, 제2 항체는 상기 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체일 수 있다.
도 1은 본 발명의 중동호흡기증후군 코로나바이러스를 검출하기 진단하기 위한 분석 장치의 일 예를 나타내는 측면도이다.
상기 키트는 고체 지지체 (5) 상에 제2 항체가 고정화되어 있는 검출 영역 (T)과 대조 영역 (C)이 형성되어 있는 크로마토그래피 물질 막 (3)이 지지되어 있고 여기에 검체패드 (1), 제1 항체와 골드 접합체가 지지되어 있는 저장 패드(2) 및 흡습 패드가 중첩되어 연결되어 있다. 스트립에 시료를 검체패드 (1)에 첨가하면, 모세관 현상에 의하여 저장패드 (2)로 이동하여 시료 중의 항원은 저장패드 중의 제1 항체와 골드의 접합체와 결합하고 크로마토그래피 물질 막 (3)을 통하여 흡습 패드 (4)의 방향의 하류로 모세관 이동하게 된다. 상기 항원과 상기 접합체의 결합체가 검출 영역 (T)에 도달하게 되면 상기 결합체와 제2 항체가 특이적으로 결합하여 발색하게 되고, 상기 결합체가 없는 경우에는 발색을 하지 않게 된다. 또한, 상기 시료와 함께 제1 항체와 골드 입자의 접합체는 대조 영역 (C)을 통과하는 경우에는 상기 제1 항체와 골드 입자의 접합체는 상기 대조 영역 중의 제1 항체와 골드 입자 접합체에 특이적인 항체와 결합하여 발색함으로써, 모세관 이동이 제대로 되었는지를 확인할 수 있다.
상기 키트는 항원 또는 항체와 같은 면역화학 성분의 고상 담체로서 다공성 물질을 이용하는 면역분석 키트일 수 있다. 본 발명의 일 구체예에서 사용되는 검체패드, 저장 패드, 크로마토그래피 막 물질 및 흡습 패드는 분석될 액체 시료를 수용하고 포함하기 충분한 다공성 (porosity)과 부피를 가진 물질이며, 예를 들면 마이크로다공성 막 물질일 수 있다. 상기 마이크로다공성 막 물질의 예에는 나일론, 셀룰로즈 물질, 폴리술폰, 폴리비닐리덴 디플루오라이드, 폴리에스테르 및 유리 섬유가 포함된다. 상기 마이크로다공성 막 물질의 바람직한 예는, 니트로셀룰로스 막이다. 상기 분석 장치는 스트립의 형태를 가질 수 있다.
용어 "유체 소통가능하게 연결되어 있는 (in flow communication with)"이라는 표현은 하나의 위치 (예, 검체패드)에 액체 시료가 적용되었을 경우 모세관 이동에 의하여 다른 위치 (예, 저장 패드)로 이용가능하게 연결되어 있는 것을 말한다. 또한, 용어 "이동가능하게 지지되어 있는 (movably supported)"이라는 표현은 액체 시료의 모세관 이동과 함께 골드 입자의 접합체가 이동가능하게 저장 패드에 고정화되어 있는 것을 의미한다. 또한, 용어 "비확산적으로 고정화되어 있는 (nondiffusively immobilized)"이라는 표현은 제2 항체 또는 그의 단편이 상기 검출 영역 내에 상기 액체 시료의 모세관 이동에 의하여 함께 확산되지 않도록 고정화되어 있는 것을 의미한다. 항원 및/또는 항체를 비확산적으로 고정화하는 방법은 상기 크로마토그래피 막 물질과 항원 및/또는 항체를 크로마토그래피 막 물질의 상기 검출 영역에 비확산적으로 고정화할 수 있는 것이면 임의의 방법이 포함될 수 있다. 예를 들면, 공유결합법이 포함되나 이에 한정되는 것은 아니다. 상기 검출 영역은 임의의 모양, 예를 들면 사각형 및 원형의 형태를 취할 수 있으며 그 면적은 상기 크로마토그래피 막 물질의 면적보다는 작다.
본 발명의 일 구체예의 키트에 사용되는 항체와 골드 접합체는 당업계에 잘 알려져 있는 방법에 의하여 제조될 수 있다. 예를 들면, 골드 콜로이드 용액을 만들고, 상기 용액 중의 골드를 항체와 공유결합시킴으로써 제조될 수 있다. 항체와 골드 접합체는 예를 들면, 참조에 의하여 그 전체로서 본 명세서에 포함되는 미국 특허 제5,514,302호 및 제4,313,734호에 개시된 방법에 의하여 제조될 수 있다.
또한, 상기 키트는 MERS-CoV를 면역분석 방법에 따라 검출하여 MERS-CoV을 진단하는 데 이용될 수 있다. 이러한 면역분석은 종래에 개발된 다양한 면역분석(immunoassay) 또는 면역염색(immunostaining) 프로토콜에 따라 실시될 수 있다. 상기 면역분석 또는 면역염색 포맷은 방사능면역분석, 방사능면역침전, 면역침전, ELISA(enzyme-linked immunosorbent assay), 캡처-ELISA, 억제 또는 경쟁 분석, 샌드위치 분석, 유세포 분석(flow cytometry), 면역형광염색 면역친화성 정제, 면역 크로마토그래피 (immunochromatography), 및 이들의 조합으로부터 선택된 하나 이상을 포함할 수 있다.
예를 들면, 본 발명의 방법이 방사능면역분석 방법에 따라 실시되는 경우, 방사능동위원소(예를 들어, C14, I125, P32 및 S35)로 표지된 항체가 MERS-CoV 또는 이의 뉴클레오캡시드를 검출하는 데 이용될 수 있다.
또한, 예를 들면, 본 발명의 방법이 ELISA 방식으로 실시되는 경우, 본 발명의 특정 실시예는 (i) 분석하고자 하는 미지의 세포 시료 분해물을 고체 기질의 표면에 코팅하는 단계; (ii) MERS-CoV의 뉴클레오캡시드에 대한 일차항체와 상기 세포 분해물을 반응시키는 단계; (iii) 상기 단계 (ii)의 결과물을 효소가 결합된 이차항체와 반응시키는 단계; 및 (iv) 상기 효소의 활성을 측정하는 단계를 포함할 수 있다.
상기 고체 기질로 적합한 것은 탄화수소 폴리머(예를 들어, 폴리스티렌 및 폴리프로필렌), 유리, 금속 또는 젤이며, 마이크로타이터 플레이트일 수 있다.
상기 이차항체에 결합된 효소는 발색반응, 형광반응, 발광반응 또는 적외선 반응을 촉매하는 효소를 포함할 수 있으며, 예를 들면, 알칼린 포스파타아제, β-갈락토시다아제, 호스 래디쉬 퍼옥시다아제, 루시퍼라아제 및 사이토크롬 P450을 포함한다. 상기 이차항체에 결합하는 효소로서 알칼린 포스파타아제가 이용되는 경우에는, 기질로서 브로모클로로인돌일 포스페이트(BCIP), 니트로 블루 테트라졸리움(NBT)나프톨-AS-B1-포스페이트(naphthol-AS-B1-phosphate) 및 ECF(enhanced chemifluorescence)와 같은 발색반응 기질이 이용되고, 호스 래디쉬 퍼옥시다아제가 이용되는 경우에는 클로로나프톨, 아미노에틸카바졸, 디아미노벤지딘, D-루시페린, 루시게닌(비스-N-메틸아크리디늄 니트레이트), 레소루핀 벤질 에테르, 루미놀, 암플렉스 레드 시약(10-아세틸-3,7-디하이드록시페녹사진), HYR(p-phenylenediamine-HCl and pyrocatechol), TMB(tetramethylbenzidine), ABTS(2,2'-Azine-di[3-ethylbenzthiazoline sulfonate]), o-페닐렌디아민(OPD) 및 나프톨/파이로닌, 글루코스 옥시다아제와 t-NBT(nitroblue tetrazolium) 및 m-PMS(phenzaine methosulfate)과 같은 기질이 이용될 수 있다.
본 발명의 방법이 캡처-ELISA 방식으로 실시되는 경우, 본 발명의 일 구체예는 (i) 포획항체(capturing antibody)로서 항-MERS-CoV 항체를 고체 기질의 표면에 코팅하는 단계; (ii) 포획 항체와 시료를 반응시키는 단계; (iii) 상기 단계 (ii)의 결과물을 시그널을 발생시키는 레이블이 결합되어 있고, MERS-CoV 또는 이의 뉴클레오캡티드에 특이적으로 반응하는 검출항체(예, 본 발명의 항체 또는 항원 결합 단편)와 반응시키는 단계; 및 (iv) 상기 레이블로부터 발생하는 시그널을 측정하는 단계를 포함할 수 있다.
상기 검출 항체는 검출 가능한 시그널을 발생시키는 레이블을 가지고 있다. 상기 레이블은 화학물질(예를 들어, 바이오틴), 효소(알칼린 포스파타아제, β-갈락토시다아제, 호스 래디쉬 퍼옥시다아제 및 사이토크롬 P450), 방사능물질((예를 들어, C14, I125, P32 및 S35), 형광물질(예를 들어, 플루오레신), 발광물질, 화학발광물질(chemiluminescent) 및 FRET(fluorescence resonance energy transfer)을 포함할 수 있다.
상기 ELISA 방법 및 캡처-ELISA 방법에서 최종적인 효소의 활성 측정 또는 시그널의 측정은 당업계에 공지된 다양한 방법에 따라 실시될 수 있다. 이러한 시그널이 검출은 MERS-CoV의 정성적 또는 정량적 분석을 가능하게 한다. 만일, 레이블로서 바이오틴이 이용된 경우에는 스트렙타비딘으로, 루시퍼라아제가 이용된 경우에는 루시페린으로 시그널을 용이하게 검출할 수 있다.
다른 양상은 MERS-CoV 진단에 필요한 정보를 제공하기 위하여, 상술한 항체 또는 이의 항원 결합 단편과 시료를 접촉시키는 단계; 및 상기 항체 또는 이의 항원 결합 단편과 MERS-CoV의 복합체를 검출하는 단계;를 포함하는 MERS-CoV를 검출하는 방법을 제공한다.
상기 MERS-CoV를 검출하는 방법은 상술한 항체 또는 이의 항원 결합 단편과 시료를 접촉시키는 단계를 포함할 수 있다. 상기 접촉시키는 단계는 시료를 상술한 항-MERS-CoV 항체 또는 이의 항원 결합 단편('1차 항체 또는 이의 항원 결합 단편'이라고 지칭)이 코팅된 플레이트에 접촉시킨 이후, 항-MERS-CoV 항체 또는 이의 항원 결합 단편('2차 항체 또는 이의 항원 결합 단편'이라고 지칭)을 추가로 상기 플레이트에 접촉시키는 단계를 포함하는 것일 수 있다. 상기 1차 항체 또는 이의 항원 결합 단편과 2차 항체 또는 이의 항원 결합 단편은 동일하거나 상이한 것일 수 있다. 상기 1차 항체 또는 이의 항원 결합 단편과 2차 항체 또는 이의 항원 결합 단편은 검출가능한 모이어티가 결합된 것일 수 있다. 예를 들면, 2차 항체 또는 이의 결합 단편은 금(gold)과 같은 검출가능한 모이어티를 포함하는 것일 수 있다. 상기 1차 및 2차 항체 또는 이의 항원 결합 단편은 각각, MERS-CoV의 뉴클레오캡시드에서 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체, 및 MERS-CoV의 뉴클레오캡시드에서 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체일 수 있거나, 또는 그 반대일 수 있다.
상기 MERS-CoV를 검출하는 방법은 상기 항체 또는 이의 항원 결합 단편과 MERS-CoV의 복합체를 검출하는 단계를 포함할 수 있다. 상기 검출은 상기 복합체에 결합된 검출가능한 모이어티를 측정함으로써 상기 MERS-CoV의 검출 또는 정량을 할 수 있다.
상기 시료는 개체로부터 유래된 생물학적 물질일 수 있다. 상기 개체는 척추동물일 수 있다. 상기 척추동물은 포유동물일 수 있다. 상기 포유동물은 인간 및 비인간 영장류를 포함한 영장류, 낙타, 또는 마우스 및 래트를 포함한 설치류일 수 있다. 상기 시료는 냉동 보관된 것 또는 자연 상태에 방치된 것일 수 있다. 상기 시료는 물 시료, 흙 시료, 음식 시료, 공기 시료, 비강 면봉 시료, 비인두 세척액(nasopharyngeal wash), 기관지폐포세척액(branchioalveolar lavage), 또는 흉수(Pleural fluid)일 수 있다.
상기 생물학적 물질은 비강 도말(nasal swap), 비강 흡인액 (nasal aspirate), 비인두도말(nasopharyngeal swab), 비인두흡인액(nasopharyngeal aspirate), 혈액 또는 혈액 구성성분(blood constituent), 체액 (bodily fluid), 타액, 가래, 또는 이들의 조합일 수 있다.
다른 양상은 상술한 항체 또는 이의 항원 결합 단편과 시료를 접촉시키는 단계; 상기 항체 또는 이의 항원 결합 단편과 MERS-CoV의 복합체를 검출하는 단계; 및 상기 검출 결과로부터 상기 시료의 MERS-CoV 감염 여부를 검출하는 단계를 포함하는 MERS-CoV 진단 방법을 제공한다.
상기 MERS-CoV 진단 방법은 항체 또는 이의 항원 결합 단편과 MERS-CoV의 복합체가 검출되는 경우 상기 시료가 유래된 개체가 MERS-CoV에 감염된 것으로 결정하는 단계를 포함할 수 있다. 또한, 상기 복합체가 검출되지 않는 경우 상기 시료가 유래된 개체는 MERS-CoV에 감염되지 않은 것으로 결정하는 단계를 포함할 수 있다.
일 구체예에 따른 MERS-CoV의 뉴클레오캡시드에 특이적으로 결합하는 항체 및 이를 포함하는 중동호흡기증후군 코로나바이러스 진단용 조성물 및 키트, 및 이를 사용한 중동호흡기증후군 코로나바이러스의 진단 방법에 따르면, 중동호흡기증후군 코로나바이러스 감염 여부를 효율적으로 측정할 수 있다.
도 1은 본 발명의 중동호흡기증후군 코로나바이러스를 검출하기 진단하기 위한 분석 장치의 일 예를 나타내는 측면도이다.
도 2는 서열번호 1의 MERS-CoV의 뉴클레오캡시드 단백질의 친수성을 나타내는 그림이다.
도 3a는 MERS-CoV NP P1 내지 P5의 폴리펩티드의 SDS-PAGE의 결과를 나타낸 도면이다.
도 3b는 항-MERS CoV P1 단일클론항체의 웨스턴블롯 결과를 나타낸 도면이다.
도 3c는 항-MERS CoV P3 단일클론항체의 웨스턴블롯 결과를 나타낸 도면이다.
도 4는 본 발명의 일 구체예에서 사용되는 키트의 작동을 개략적으로 나타낸 그림이다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: MERS - CoV의 뉴클레오캡시드에 대한 단일클론항체 제조
1. 면역용 항원 제조
MERS-CoV의 뉴클레오캡시드(NP) 유전자 중에서 친수성(hydrophilic)한 부위 중 펩티드 항원을 합성하여 면역원으로 사용하였다. MERS-CoV의 뉴클레오캡시드를 코딩하는 유전자의 친수성(hydrophilicity)을 조사해 친수성이 높은 부위 부분에 대한 펩티드 항원을 합성하였다. 도 2는 서열번호 1의 MERS-CoV의 뉴클레오캡시드 단백질의 친수성을 나타내는 그림이다. Immune epitope database의 Parker Hydrophilicity prediction 프로그램을 이용하였다. 합성된 펩티드 항원은 서열번호 1의 MERS-CoV의 뉴클레오캡시드에서 22 내지 40번째 아미노산, 126 내지 146번째 아미노산, 164 내지 202번째 아미노산, 234 내지 259 번째 아미노산, 및 362 내지 388번째 아미노산으로, 각각 MERS-CoV NP P1, MERS-CoV NP P2, MERS-CoV NP P3, MERS-CoV NP P4, 및 MERS-CoV NP P5라고 지칭한다.
2. 단일 클론 항체 제조
(1) 면역원의 제조
MERS-CoV NP P1, P2, P3, P4, 및 P5의 항체를 제조하기 위한 면역용 펩티드를 합성 후, 다음과 같이 면역원을 제작하였다. 1차 면역시에 사용하는 면역원은 완전 프로인트 보조제 (Complete Freud's Adjuvant: Sigma사)를 항원: 상기 보조제의 비를 1:1로 유액화(emulsion)하여 제조하였고, 2차~4차 면역에 사용하는 면역원은 불완전 프로인트 보조제 (Incomplete Freud's Adjuvant: Sigma사)를 항원 : 상기 보조제의 비를 1:1로 유액화하여 제조하였다.
(2) 접종
상기의 방법으로 제조된 면역원을 6주령, 및 암컷인 BALB/c 마우스에 다음과 같이 면역하였다. 200 ㎕/마리의 양으로 1주 간격으로 4회 복강 주사하고 일주일 후에 상기 항원을 인산염 완충 용액(Phosphate buffered saline: PBS)에 20% 농도 (v/v)로 희석하여 1일 간격으로 3회 꼬리 정맥에 20 ㎕/회 주사하였다. 3차 면역 후에는 꼬리 정맥에서 얻어낸 혈청으로 중간 역가 검사를 실시하였다. 이의 결과로 항체의 양이 충분하게 얻어지는 마우스를 선별하여 세포융합 과정을 수행하였다.
(3) 하이브리도마 세포주 제작
MERS-CoV NP P1, P2, P3, P4, 및 P5의 펩티드의 면역 후에, 항체가 생성된 마우스의 비장 세포를 떼어 70 ㎛ 구멍크기의 세포 strainer(BD Falcon사)를 통해 걸러내었다. 걸러진 비장세포를 원심분리 하여 침전물을 획득하고 적혈구 용해 버퍼 (Red blood cell lysis buffer, Sigma사)를 5 ml 섞어준 뒤 1분간 방치하여 적혈구를 제거하였다. 적혈구가 제거된 비장세포는 DMEM(Dulbecco's Modified Eagle's Medium, Gibco사)을 넣어 3회 세척하고 세포 카운팅을 실시하였다. 비장세포와 융합시킬 세포는 마우스 유래 골수종 세포인 SP2/0-Ag 14(ATCC CRL-1581) 세포주이며, 혼합비율은 10:1 (비장세포: SP2/0)이 되도록 섞어주었다. 혼합된 세포는 DMEM으로 2회 세척 후 PEG1500(Roche사)를 사용하여 융합하였다. 세포 융합은 PEG1500을 1분간 1.7 ml 점적, 30초간 정치, DMEM 1분간 1 ml 점적, 30초간 정치, DEME 1분간 2 ml 점적, DMEM 30초간 6 ml 점적, 및 30초간 정치 후 마지막으로 DMEM을 30초간 10 ml 점적하였다. 융합이 완료된 세포액은 원심분리하여 침전물로 획득하고 HAT(Gibco사)와 항생제(Gibco사), 소태아혈청(Fetal bovine serum, Hyclone사)이 10% 첨가된 DMEM(이하 'HAT배지')과 잘 섞어준 뒤 200 ㎕/웰의 용량으로 96 웰 플레이트에 분주한 뒤 3일간 배양기에서 성장시켰다.
(4) 세포 배양
융합이 완료된 세포주는 37℃, 5%의 CO2, 가습 조건이 유지되는 세포배양기에서 성장시켰으며, 2일 간격으로 일주일 간 HAT(hypoxanthine-aminopterin-thymidine medium) 배지를 교체하여 융합된 세포주를 선별하였다
(5) 양성 클론 세포주 검색 (단일클론 항체를 생산하는 하이브리도마 세포의 선별)
HAT 배지로 선별이 완료된 세포주는 효소연결면역흡광도분석법 (Enzyme-linked immunosorbent assay, ELISA)으로 양성 클론을 다음과 같이 선별하였다. 구체적으로, 96 웰 플레이트의 각각의 웰에서 자라고 있는 융합된 세포주 배양액을 MERS-CoV 뉴클레오캡시드(NP) 유전자 항원이 2.5 ug/ml의 농도로 코팅된 96 웰 흡착 플레이트(Costar사)에 100 ㎕/웰의 용량으로 분주하고 37℃에서 1시간 동안 반응시켰다. 1시간 반응 후, 5회 세척하고 항 마우스 IgG HRP 콘주게이트와 항 마우스 IgM HRP 콘주게이트를 100 ㎕/웰의 용량으로 분주하고 37℃ 에서 30분간 반응시켰다. 30분 반응후 5회 세척하고 기질액을 100 ㎕/웰의 용량으로 분주하여 15분간 발색반응시키고 반응정지액을 100 ㎕/웰의 용량을 첨가하였다. 반응을 정지시킨 후 판독기에서 450 nm 파장으로 흡광도를 측정하여 높은 수치를 나타내는 양성클론 MERS-CoV NP P1, 및 MERS-CoV NP P3을 선별하였다. 선별된 양성클론은 24 웰 조직 배양플레이트로 옮긴 뒤 3일간 배양하고, 위와 동일한 방법으로 2차 검색하여 즉, 반복 선별을 통해 얻은 하이브리도마 세포주를 제한 희석(limiting dilution)하여 최종 단일 양성 클론 후보군 MERS-CoV NP P1, 및 MERS-CoV NP P3을 선별하였다.
최종 선별된 단일클론 항체 생산 하이브리도마를 항-MERS CoV P1 단일클론항체, 및 항-MERS CoV P3 단일클론항체로 명명하고, 이를 한국 세포주 은행에 기탁하여 수탁번호를 부여받았다.
(6) 항체 정제
최종 선별된 양성클론은 T75 (SPL사) 배양접시로 옮긴 뒤 3일간 배양하여 1 X 106 cell/ml 세포 밀도로 0.5 ml씩 마우스의 복강에 주사한 뒤, 일주일 뒤 채취하였다. 상기 방법을 통하여 얻어낸 마우스 복수액은 원심분리(3000 rpm, 10분, 4℃)를 통해 부유물을 침전시키고 상층액을 결합버퍼(Binding buffer, Thermo scientific사)와 1:1 비율로 섞어준 뒤 상온에서 1시간 동안 반응하였다. 1시간 후 원심분리(3000 rpm, 10분, 4℃)를 통해 다시 한번 부유물을 침전시키고, 1.2 um 구멍크기를 가지는 필터를 사용하여 침전되지 않은 부유물을 재차 걸러내었다. 부유물이 완전히 제거된 복수액은 Protein G 레진 (Pierce사)이 들어있는 컬럼에 넣어, 항체와 Protein G 간의 결합을 유도하였다. 복수액이 컬럼을 모두 통과한 후 인산염완충용액으로 3회 세척한 뒤 용출버퍼(Elution buffer, Thermo scientific사)을 사용하여 용출시켰다. 용출된 항체는 다시 PD-10 컬럼(GE heathcare사)에 적용하고 인산염완충용액으로 용출시켜 최종 정제하였다.
실시예 2: 단일클론 항체가 특이적으로 결합하는 MERS - CoV 뉴클레오캡시드 내의 에피토프의 확인
실시예 1에서 제조한 단일클론 항체가 MERS-CoV 뉴클레오캡시드(NP)의 어느 부위의 아미노산 서열을 특이적으로 인식하는지 여부를 확인하기 위해 하기와 같이 실시하였다. MERS-CoV NP 유전자을 5등분하여 펩티드로 합성하고, 합성된 펩티드와 Bovine serum albumine(BSA)를 콘주게이션(conjugation)하였다. 콘주게이트(conjugate)는 실험의 효율을 위하여 Ab Frontier에 의뢰하여 제조하였다. BSA가 콘주게이트된 MERS-CoV NP P1, MERS-CoV NP P2, MERS-CoV NP P3, MERS-CoV NP P4, 및 MERS-CoV NP P5는 각각 서열번호 1의 MERS-CoV의 뉴클레오캡시드에서 22 내지 40번째 아미노산, 126 내지 146번째 아미노산, 164 내지 202번째 아미노산, 234 내지 259 번째 아미노산, 및 362 내지 388번째 아미노산이다.
SDS-PAGE를 위해, 10%의 폴리아크릴아미드 겔을 제조한 다음, 상기 겔에 대조군으로 사용한 소혈청알부민(BSA) (EQUITECH-BIO, INC) 및 상기 제조한 BSA가 결합된 5개의 MERS-CoV NP P1 내지 P5의 폴리펩티드를 각각 1.25 ㎍씩 로딩하였다. 이후, 160V, 400 mA의 조건으로 1시간 동안 SDS-PAGE를 수행한 다음, Mini-Protean 3 Electrophoresis(BIO-RAD)를 이용하여, 니트로셀룰로즈 멤브레인(GE healthcare)에 160V, 400 mA의 조건으로 1시간 동안 상기 폴리펩티드들을 트랜스퍼(transfer)하였다. 도 3a는 MERS-CoV NP P1 내지 P5의 폴리펩티드의 SDS-PAGE의 결과를 나타낸 도면이다.
웨스턴 블롯을 위해, SDS-PAGE gel을 NC-mebrane에 트랜스퍼하였다(200V, 200mA, 1시간). 5% 스킴 밀크에 넣고, 상온에서 30분간 블로킹시킨 다음, 10 μg/mL의 항-MERS CoV P1 단일클론항체 (in 5% Skim milk/TBS)과 항-MERS CoV P3 단일클론항체 (in 5% Skim milk/TBS)를 각각 상온에서 1시간 동안 반응시켰다. 이후, 세척액(1M Tris, 0.0025% Proclin 300, 0.1% Tween 20, 및 0.15 mM NaCl)을 사용하여 5분간 3회 세척을 반복하여 멤브레인 상의 폴리펩티드와 결합하지 않은 단일클론 항체를 제거하였다. 그 후, 2 μg/mL의 Anti mouse IgG AP(SIGMA Cat.NoA4312)를 상기 스킴 밀크에 첨가하여 상온에서 1시간 동안 반응시킨 후, 상기 세척 과정을 반복하여 반응하지 않은 Anti mouse IgG AP(SIGMA Cat.NoA4312)를 제거하고, BCIP/NBT solution(SIGMA Cat.NoB6404)으로 발색하였다.
웨스턴 블롯의 결과, 도 3b는 항-MERS CoV P1 단일클론항체의 웨스턴블롯 결과를 나타낸 도면이다. 도 3b에 보이는 바와 같이, 본 발명의 단일클론 항체는 레인 2의 22 내지 40번째 아미노산을 포함하는 폴리펩티드에 대해 특이적으로 반응하는 것을 확인할 수 있었다. 따라서 상기 결과로부터 상기 실시예 1에서 제작한 MERS-CoV에 대한 본 발명의 단일클론 항체는 MERS-CoV의 뉴클레오캡시드(서열번호 1)의 22 내지 40번째 아미노산 서열 부분(서열번호 2)이 에피토프임을 확인할 수 있었다.
또한, 도 3c는 항-MERS CoV P3 단일클론항체의 웨스턴블롯 결과를 나타낸 도면이다. 도 3c에 보이는 바와 같이, 본 발명의 단일클론 항체는 레인 4의 164 내지 202번째 아미노산을 포함하는 폴리펩티드에 대해 특이적으로 반응하는 것을 확인할 수 있었다. 따라서 상기 결과로부터 상기 실시예 1에서 제작한 MERS-CoV에 대한 본 발명의 단일클론 항체는 MERS-CoV의 뉴클레오캡시드(서열번호 1)의 164 내지 202번째 아미노산 서열 부분(서열번호 4)이 에피토프임을 확인할 수 있었다.
실시예 3: MERS - CoV에 대한 항체를 사용한 MERS - CoV 바이러스 진단 실험
MERS-CoV의 진단을 위하여 본 발명의 항체를 사용하여 81마리의 낙타(Camel)의 비강에 면봉을 넣어 채취된 체액을 시료로 하여 MERS-CoV 바이러스 여부를 진단하였다.
1. 사용 키트
MERS-CoV의 뉴클레오캡시드에서 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론항체('P1' 이라고 지칭)와 MERS-CoV의 뉴클레오캡시드에서 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론항체('P3'이라고 지칭)를 포함하는 키트를 제조하였다. 뉴클레오캡시드에서 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론항체는 수탁번호 KCLRFBP00331인 것인 하이브리도마 세포에서 생산되는 것이다. 또한, MERS-CoV의 뉴클레오캡시드에서 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론항체는 수탁번호 KCLRFBP00331인 것인 하이브리도마 세포에서 생산되는 것이다.
도 4는 본 발명의 일 구체예에서 사용되는 키트의 작동을 개략적으로 나타낸 그림이다. 도 4의 (a), (b) 및 (c)는 그 순서대로 분석물(400)이 모세관 이동에 의하여 움직이는 것을 나타내며, 상기 분석물(400)이 본 발명의 일 구체예에 따른 키트와 작동하는 원리를 개략적으로 나타낸 것이다. 도 4에서 상기 키트의 저장 패드에의 제1 항체(100)와 골드 입자의 접합체가 있고, 크로마토그래피 막 물질의 검출 영역(T)에는 제2 항체(200)가 고정화되어 있고, 대조 영역(C)에는 제1 항체와 골드 입자의 접합체에 특이적인 항체(300)이 위치되어 있다. 본 발명의 일 구체예에서, 제2 항체(200)인 P1의 단일클론항체가 상기 검출 영역(T)에 고정되어 있고, 제1 항체(100)인 P3의 단일클론항체과 골드 입자와 접합되어 있어, MERS-CoV('MERS'라고 지칭)을 포함하는 분석물(400)의 경우 검출 영역에서 P1과 P3의 복합체의 존재를 검출하여 MERS-CoV의 존재를 알 수 있다.
구체적으로, MERS-CoV의 뉴클레오캡시드에서 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론항체를 플레이트에 코팅시켰다.
또한, MERS-CoV의 뉴클레오캡시드에서 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론항체는 골드 입자와 접합되어 있다. 상기 골드 입자와의 접합은 다음과 같이 실시하였다: Gold chloride를 0.01%로 증류수에 용해한 뒤, 0.1% sodium citrate 용액을 첨가하면서 가열한다. 약 10분간 가열한 후 냉각하여 냉장 보관하여 콜로이드 골드 용액을 제조하였다. 그 후, 항 MERS-CoV P3 단일클론항체가 최종 20 ㎍/㎖의 농도가 되게 콜로이드 골드용액에 10분간 반응시켜 접합반응을 유도하였다. 골드 입자를 안정화시킨 후 10,000 g에서 30분간 원심하여 침전을 만든다. 침전을 다시 생리식염액에 용해하고 0.45 ㎛의 여과기로 여과한 뒤, 540 nm에서 흡광도를 측정하여 최종 20이 되도록 희석하여 사용하여 항-MERS-CoV P3에 골드를 접합하였다.
플레이트 중 검출 영역에 고정된 P1 단일클론 항체와 저장 패드에 포함된 골드 입자가 접합된 P3 단일클론 항체를 포함하는 키트를 MERS-CoV 진단 키트로 사용하였다.
2. 사용 검체
81 마리의 낙타(Camel)의 비강에 면봉(nasal swap) 넣어 채취한 체액을 사용 하였다
3. 결과
상기 MERS-CoV 진단 키트와 RT-PCR을 사용하여 사용 검체에 대한 MERS-CoV 유무 결과를 표 1 및 표 2에 나타내었다.
검체 번호 본 발명의 키트의 진단 결과 RT-PCR 결과 검체 번호 본 발명의 키트의 진단 결과 RT-PCR 결과
1 P P 42 N N
2 N N 43 N N
3 N N 44 N N
4 P P 45 N N
5 N N 46 N N
6 N N 47 N N
7 N N 48 N N
8 N N 49 N N
9 P P 50 P P
10 P P 51 N N
11 N N 52 N N
12 P N 53 N N
13 N N 54 P P
14 N N 55 P P
15 N N 56 N N
16 P N 57 N N
17 N N 58 P P
18 N N 59 N N
19 N N 60 N N
20 N N 61 N N
21 P P 62 N N
22 N N 63 N N
23 N N 64 N N
24 N N 65 N N
25 N N 66 P P
26 N N 67 N N
27 N N 68 N N
28 N N 69 N N
29 N N 70 N N
30 P P 71 N N
31 N N 72 N N
32 N N 73 P N
33 P P 74 N N
34 P N 75 N N
35 N N 76 N N
36 P N 77 N N
37 N N 78 N N
38 N N 79 N N
39 N N 80 P P
40 P P 81 N N
41 N N
RT-PCR 결과 합계
양성 음성
본 발명의 키트 양성 14 5 19
음성 5 57 62
합계 19 62 81
표 1에서 P는 양성(positive), N은 음성(negative)을 의미하고, 표 2는 표 1의 내용을 요약한 것이다. 따라서, 본 발명의 키트의 민감도(sensitivity)는 73.68%이며, 특이도(specificity)는 91.94%이다.
또한 양성 가능성 비(positive likelihood ratio)는 9.14이고, 음성 가능성 비는 0.29이다. 상기 양성 가능성 비는 {(14/19)/(5/62)}에 의해 산출되었다. 상기 양성 가능성 비가 9.14이므로 본 발명의 MERS-CoV의 뉴클레오캡시드의 에피토프에 특이적으로 결합하는 항원을 포함하는 진단 키트가 진단 키트로서의 유의성을 가짐을 확인하였다. 상기 음성 가능성 비는 {(5/19)/(57/62)}에 의해 산출되었다. 또한, MERS-CoV에 의한 유병률(disease prevalence)은 23.46%이다.
실시예 4: MERS - CoV에 대한 항체를 사용한 MERS - CoV 바이러스 진단 실험
MERS-CoV의 진단을 위하여 본 발명의 항체를 사용하여 20명의 인간의 비강에 면봉을 넣어 채취된 체액을 시료로 하여 MERS-CoV 바이러스 여부를 진단하였다.
1. 사용 키트
실시예 3에 기재된 상기 MERS-CoV 진단 키트와 동일한 상기 MERS-CoV 진단 키트를 사용하였다.
2. 사용 검체
20명의 인간으로부터 검체를 획득하였다. 시료 유형은 가래, 비인두 세척액, 기관지폐포세척액(branchioalveolar lavage), 또는 흉수(Pleural fluid)이었다. 검체를 연속적으로 -80 내지 -60 ℃에서 20분 동안, -60 내지 -20 ℃에서 20분 동안, -20 내지 -8 ℃동안 20분 동안, -8 ℃ 내지 얼음 온도에서 20분 동안, 및 얼음 온도 내지 상온에서 30분 동안 해동하고 저장하였다. 모든 해동된 검체를 2개의 분취량(aliquot)으로 나누고, 그 중 하나의 분취량을 실시간 PCR (real-time PCR: 이하 'RT-PCR'이라고 지칭)을 위한 RNA 추출을 위해 사용하고 다른 하나의 분취량은 상기 사용키트를 사용하였다.
3. 결과
표 3은 상기 MERS-CoV 진단 키트를 사용하여 진단된 검체의 결과를 나타낸 표이다. 표 3에 나타낸 바와 같이, 음성 검체의 경우 상기 MERS-CoV 진단 키트를 사용한 결과 밴드가 없어 음성 결과를 나타내었다. 9개의 검체가 상기 MERS-CoV 진단 키트와 RT-PCR에 의한 진단 결과 모두 음성이었다. 상기 MERS-CoV 진단 키트는 100%의 특이도를 보여준다. 6개의 검체의 경우, 상기 MERS-CoV 진단 키트에서 생생한 양성 결과 밴트를 보였고, 이는 RT-PCR에서의 28 - 30의 Ct 값과 일치하였다. 3개의 검체의 경우, 상기 MERS-CoV 진단 키트에서 명확하지만 덜 강한 밴드를 보여주었다. 이들 3개 검체는 RT-PCR 결과에서 33-35 범위의 Ct 값을 갖는다. 2개의 검체의 경우 약한 양성을 반영하는 희미한 밴드를 보여주었다. 이들 2개 샘플에 대한 Ct 값은 33.1이었다.
RT-PCR에서 강한 양성 RT-PCR에서 마일드 양성 RT-PCR에서 약한 양성 Ct 값
강한 양성 결과(진한 밴드 세기) 6 28-30
마일드 양성 결과(평균 밴드 세기) 3 33-35
약한 양성 결과(희미한 밴드 세기) 2 33.1
음성 결과 (밴드 없음) 9개의 음성 결과
기탁기관명 : 한국세포주연구재단
수탁번호 : KCLRFBP00331
수탁일자 : 20141014
기탁기관명 : 한국세포주연구재단
수탁번호 : KCLRFBP00332
수탁일자 : 20141014
Figure PCTKR2015012164-appb-I000001
Figure PCTKR2015012164-appb-I000002

Claims (12)

  1. 중동호흡기증후군 코로나바이러스 (Middle East respiratory syndrome coronavirus, MERS-CoV)의 뉴클레오캡시드에서 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체, 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체, 또는 그의 조합인 항체.
  2. 청구항 1에 있어서, 상기 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체는 수탁번호 KCLRFBP00331인 것인 하이브리도마 세포에서 생산되는 것인 항체.
  3. 청구항 1에 있어서, 상기 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체는 수탁번호 KCLRFBP00332인 것인 하이브리도마 세포에서 생산되는 것인 항체.
  4. 청구항 1에 따른 항체의 항원 결합 단편.
  5. MERS-CoV의 뉴클레오캡시드에서 서열번호 2의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체를 생산하는 하이브리도마 세포 (수탁번호: KCLRFBP00331).
  6. MERS-CoV의 뉴클레오캡시드에서 서열번호 4의 아미노산 서열로 표시되는 에피토프에 특이적으로 결합하는 단일클론 항체를 생산하는 하이브리도마 세포 (수탁번호: KCLRFBP00332).
  7. 청구항 1의 항체, 또는 이의 항원 결합 단편을 포함하는 개체의 MERS-CoV 진단용 조성물.
  8. 청구항 7에 있어서, 상기 개체는 포유동물인 것인 조성물.
  9. 청구항 8에 있어서, 상기 포유동물은 인간 또는 낙타인 것인 조성물.
  10. 청구항 1의 항체, 또는 이의 항원 결합 단편을 포함하는 개체의 MERS-CoV 진단용 키트.
  11. 청구항 10에 있어서, 상기 개체는 포유동물인 것인 키트.
  12. 청구항 1의 항체 또는 이의 항원 결합 단편과 시료를 접촉시키는 단계; 및
    상기 항체 또는 이의 항원 결합 단편과 MERS-CoV의 복합체를 검출하는 단계;를 포함하는 개체의 MERS-CoV를 검출하는 방법.
PCT/KR2015/012164 2014-11-17 2015-11-12 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도 WO2016080701A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SA517381545A SA517381545B1 (ar) 2014-11-17 2017-05-16 نيكليوكابسيد تعرف على الجسم المضاد لفيروس الكورونا لمتلازمة الشرق الأوسط التنفسية واستخدامه

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0160059 2014-11-17
KR20140160059 2014-11-17
KR10-2015-0081986 2015-06-10
KR1020150081986A KR101593641B1 (ko) 2014-11-17 2015-06-10 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도

Publications (1)

Publication Number Publication Date
WO2016080701A1 true WO2016080701A1 (ko) 2016-05-26

Family

ID=55355293

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2015/000278 WO2016080591A1 (ko) 2014-11-17 2015-01-12 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도
PCT/KR2015/012164 WO2016080701A1 (ko) 2014-11-17 2015-11-12 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000278 WO2016080591A1 (ko) 2014-11-17 2015-01-12 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도

Country Status (3)

Country Link
KR (1) KR101593641B1 (ko)
SA (1) SA517381545B1 (ko)
WO (2) WO2016080591A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102019008B1 (ko) * 2019-01-31 2019-09-05 대한민국(관리부서 질병관리본부장) 메르스 코로나바이러스 뉴클레오캡시드 융합 단백질을 이용한 메르스 코로나바이러스 검출 방법
US11131672B1 (en) 2021-01-29 2021-09-28 King Abdulaziz University Method for detecting MERS-CoV in Camilidae

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080591A1 (ko) * 2014-11-17 2016-05-26 유한회사 바이오노트 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도
CN105624335B (zh) * 2016-03-10 2019-08-27 中山大学达安基因股份有限公司 一种基因检测中东呼吸综合征冠状病毒的试剂盒
KR101782862B1 (ko) 2016-04-26 2017-09-29 원광대학교산학협력단 메르스바이러스 진단용 단세포군 항체 및 면역크로마토그래피 진단키트
KR102103857B1 (ko) * 2017-09-26 2020-04-27 한국생명공학연구원 메르스 코로나바이러스의 뉴클레오캡시드 단백질의 n-말단 도메인 단편 및 c-말단 도메인 단편을 포함한 nc 융합 단백질 및 이를 이용한 메르스 코로나바이러스 감염 진단용 키트
WO2019151632A1 (ko) 2018-01-31 2019-08-08 (주)셀트리온 중동호흡기증후군 코로나바이러스에 중화활성을 갖는 결합 분자
KR20190093107A (ko) * 2018-01-31 2019-08-08 (주)셀트리온 중동호흡기증후군 코로나바이러스에 중화활성을 갖는 결합 분자
KR20200007980A (ko) 2020-01-02 2020-01-22 조한준 중동 호흡기 증후군 및 중증 급성 호흡기 증후군 바이오마커 및 mers 치료제 개발 후보 화합물
KR102351653B1 (ko) 2020-04-29 2022-01-14 한국화학연구원 사스 코로나바이러스 2 스파이크 단백질과 결합하는 수용체와 항체를 포함하는 사스 코로나바이러스 2 진단 키트
CN111474340B (zh) * 2020-05-18 2023-05-23 天津博奥赛斯生物科技股份有限公司 一种用于新型冠状病毒检测的酶标记的抗原、制备方法及试剂盒与应用
DE102020209412B4 (de) 2020-07-02 2024-02-08 Friedrich-Schiller-Universität Jena Mittel und Verfahren zur An- oder Abreicherung und zum Nachweis von Coronaviren
KR102437114B1 (ko) * 2020-10-21 2022-08-26 재단법인 바이오나노헬스가드연구단 스트렙트아비딘 결합 펩타이드가 태그된 중증급성호흡기증후군 코로나바이러스 특이적 항원 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045254A2 (en) * 2012-09-23 2014-03-27 Erasmus University Medical Center Rotterdam Human betacoronavirus lineage c and identification of n-terminal dipeptidyl peptidase as its virus receptor
WO2016080591A1 (ko) * 2014-11-17 2016-05-26 유한회사 바이오노트 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832870B1 (ko) * 2006-04-19 2008-05-30 대한민국 사스 코로나바이러스 뉴클레오캡시드 단백질에 대한 단클론항체 및 이것의 용도
US9889194B2 (en) * 2013-03-01 2018-02-13 New York Blood Center, Inc. Immunogenic composition for MERS coronavirus infection
CN103724406A (zh) * 2013-11-20 2014-04-16 中国疾病预防控制中心病毒病预防控制所 一种具有中和活性的MERS-CoV合成肽疫苗及其应用
CN103864924B (zh) * 2014-02-14 2016-09-07 中国科学院微生物研究所 一种中东呼吸综合征冠状病毒抗体及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045254A2 (en) * 2012-09-23 2014-03-27 Erasmus University Medical Center Rotterdam Human betacoronavirus lineage c and identification of n-terminal dipeptidyl peptidase as its virus receptor
WO2016080591A1 (ko) * 2014-11-17 2016-05-26 유한회사 바이오노트 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AGNIHOTHRAM ET AL.: "Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronavirus to develop vaccine platforms for the rapid response to emerging coronaviruses", JOURNAL OF INFECTIOUS DISEASES, vol. 209, no. 7, 18 November 2013 (2013-11-18), pages 995 - 1006, XP055227760, DOI: doi:10.1093/infdis/jit609 *
AGNIHOTHRAM ET AL.: "Platform strategies for rapid response against emerging coronaviruses: MERS-CoV serologic and antigenic relationships in vaccine design", JOURNAL OF INFECTIOUS DISEASES ADVANCE ACCESS, vol. 18, no. 22, 18 November 2013 (2013-11-18), pages 1 - 21 *
MA ET AL.: "Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines", VACCINE, vol. 32, no. 18, 18 February 2014 (2014-02-18), pages 2100 - 2108, XP028838491, DOI: doi:10.1016/j.vaccine.2014.02.004 *
SHARMIN ET AL.: "A highly conserved WDYPKCDRA epitope in the RNA directed RNA polymerase of human coronaviruses can be used as epitope-based universal vaccine design", BMC BIOINFORMATICS, vol. 15, no. 161, 29 May 2014 (2014-05-29), pages 1 - 10 *
SONG ET AL.: "Development and validation of a rapid immunochromatographic assay for detection of middle east respiratory syndrome coronavirus antigen in dromedary camels", JOURNAL OF CLINICAL MICROBIOLOGY, vol. 53, no. 4, April 2015 (2015-04-01), pages 1178 - 1182 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102019008B1 (ko) * 2019-01-31 2019-09-05 대한민국(관리부서 질병관리본부장) 메르스 코로나바이러스 뉴클레오캡시드 융합 단백질을 이용한 메르스 코로나바이러스 검출 방법
US11131672B1 (en) 2021-01-29 2021-09-28 King Abdulaziz University Method for detecting MERS-CoV in Camilidae
US11307202B1 (en) 2021-01-29 2022-04-19 King Abdulaziz University Antibody binding detection method for detecting MERS-CoV
US20220244257A1 (en) * 2021-01-29 2022-08-04 King Abdulaziz University Method for detection of mers-cov with igy antibodies

Also Published As

Publication number Publication date
KR101593641B1 (ko) 2016-02-12
SA517381545B1 (ar) 2023-02-21
WO2016080591A1 (ko) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2016080701A1 (ko) 중동호흡기증후군 코로나바이러스 뉴클레오캡시드를 인식하는 항체 및 그의 용도
US9823251B2 (en) Anti-Uroplakin II antibodies systems and methods
CN112679605B (zh) 针对新型冠状病毒核衣壳蛋白的抗体或其抗原结合片段及其应用
EP0741144B1 (en) Antiannexin-v monoclonal antibody, process for producing the same, and use therof
WO2008025964A2 (en) Antibodies to an epitope of agr2. assays and hybridomas
US20080254440A1 (en) Anti-Sars Virus Antibody, Hybridoma Producing the Antibody and Immunoassay Reagent Using the Antibody
WO2015037907A1 (ko) Ast 양의 측정을 통한 간 질환 진단, 예후 또는 모니터링 키트 및 방법
JP7455108B2 (ja) E型肝炎ウイルスのORF2iタンパク質に対する特異性を有する抗体及び診断目的のためのその使用
KR101263913B1 (ko) 우결핵 진단 키트 및 이를 이용한 우결핵 진단 방법
JP7454546B2 (ja) E型肝炎ウイルスのORF2iタンパク質に対して特異性を有する抗体及びその診断目的のための使用
JPH08311100A (ja) ヒト肺腺癌に関するモノクローナル抗体および抗原、及びそれを用いた免疫測定方法
KR102450481B1 (ko) 돼지열병 바이러스 특이적인 항체 및 이의 용도
KR20120118412A (ko) 인간 간-카르복실에스터라제 1을 특이적으로 인식하는 단일클론 항체, 상기 항체를 생산하는 하이브리도마 세포주 및 이의 용도
EP3306319B1 (en) Test object detection method, and immunoassay instrument and monoclonal antibody for same
CA2281262C (en) Anti-human medullasin monoclonal antibody, process for producing the same and immunoassay using the same
KR20190138442A (ko) 전염성 췌장 괴저 바이러스 검출용 항체 및 그의 용도
KR20210116115A (ko) 돼지 유행성 설사병 바이러스와 결합하는 항체 및 이의 용도
KR20190138443A (ko) 랍도비리대 과 바이러스 검출용 항체 및 그의 용도
US10316103B1 (en) Systems and methods for anti-Uroplakin III antibodies
KR100493932B1 (ko) 레지스틴에 대한 단클론 항체, 이의 제조 방법, 및 용도
CN115850459B (zh) 靶向新型冠状病毒n蛋白的抗体及其应用
JP2000125867A (ja) コイのビテロジェニンに対するモノクロ―ナル抗体
CN115894673A (zh) 一种抗新型冠状病毒的抗体及其在检测中的应用
JP5585587B2 (ja) 5.9kDaペプチドの免疫学的測定方法
KR20200049388A (ko) 페스트균의 f1 캡슐 단백질에 특이적으로 결합하는 단일클론항체, 상기 항체를 생산하는 하이브리도마 세포주 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860382

Country of ref document: EP

Kind code of ref document: A1